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The averaged null energy conditions (ANEC) states that, along a complete null curve, the negative
energy fluctuations of a quantum field must be balanced by positive energy fluctuations. We use the AdS/
CFT correspondence to prove the ANEC for a class of strongly coupled conformal field theories in flat
spacetime. A violation of the ANEC in the field theory would lead to acausal propagation of signals in the
bulk.
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It has long been known [1] that local quantum field
theories allow negative energy fluctuations. The presence
of negative energy is somewhat constrained in theories with
a positive total energy; however, positivity does not place
any obvious restriction on the integrated local energy
measured by a single causal observer and therefore is
insufficient to answer many interesting questions. Among
these are the possible existence of warp drives, traversable
wormholes, and other exotic phenomena (see e.g. [2–7]) as
well as the fate of the singularity theorems of Hawking and
Penrose [8].
To gain traction on these questions it is necessary to

study operators that are better suited to capture the
experience of physical observers. One such operator is
the averaged null energy, which is defined as the integral of
the null-null component of the stress tensor along a null
geodesic which is complete in both directions. The pos-
itivity of this quantity is called the averaged null energy
condition (ANEC):

Z
γðλÞ

dλTkk ≥ 0: ð1Þ

Here γðλÞ is a complete null geodesic with affine parameter
λ and associated tangent vector k, Tab is the stress tensor,
and Tkk ≔ hTabikakb.
The ANEC was first studied in a purely classical setting

by Borde [9], who showed that standard focusing theorems
(see [10]) continue to hold when pointwise energy con-
ditions (such as the null energy condition Tkk ≥ 0) are
replaced by integrated energy conditions similar to (1).1

Borde’s theorems are sufficiently powerful to prove many
other results in general relativity including a positive
energy theorem [12], topological censorship [13], and
the Gao-Wald theorem [14] (which we review below).
Progress has also been made in proving singularity

theorems with weakened energy conditions [15–17],
though this program remains unfinished. Some recent
reviews of energy conditions are [18,19]).
The above results establish that the ANEC is a useful

restriction to place on the stress tensor. It remains to be seen
if the ANEC holds for physically interesting field theories.
Existing results establish that the ANEC holds in
Minkowski space for free scalar fields [20,21], Maxwell
fields [22], and arbitrary two-dimensional theories with
positive energy and a mass gap [23]. One can also use
a null surface initial data formulation to show that all
free or superrenormalizable theories obey the ANEC in
Minkowski space, or on bifurcate Killing horizons [24].
For two-dimensional curved spacetimes, one can also

prove the ANEC for minimally scalar fields [25–27], at
least if space is noncompact. Otherwise there is a Casimir
energy which allows for ANEC violation in the vacuum,
but there is still an ANEC-like bound for energy differences
[21]. Many other investigations have provided additional
support for the ANEC [28–31], including the work of
Blanco and Casini [32] which gives a simple argument
showing that negative energy cannot be isolated far away
from positive energy in a CFT.
For curved spacetimes with dimension greater than two,

it is known that the ANEC does not hold on every null
curve [33,34]. However, Graham and Olum have proposed
a weaker condition which they call the “self-consistent
achronal ANEC” [35] (see also [36]) which weakens (1) in
two ways. First, (1) is only required to hold only on
complete achronal geodesics, i.e. on null curves for which
no two points are timelike separated. Such curves are often
called “null lines” in the literature. Second, the ANEC is
only imposed on self-consistent spacetimes for which the
gravitational field is sourced by the quantum fields, as well
as any additional classical background sources.2 As pointed
out in [35], generic spacetimes satisfying the self-consistent
achronal ANEC will not have any achronal null lines. But
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2Without this latter restriction there are known violations of the
“achronal ANEC” [34].
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this fact, far from rendering the achronal ANEC trivial, has
profound consequences, ruling out closed timelike curves
and traversable wormholes [35,37], and also negative
energy objects [12].
But is the self-consistent achronal ANEC true? So far,

Kontou and Olum have also shown that the self-consistent
achronal ANEC is satisfied for a minimally coupled free
scalar field on a class of curved spacetimes [38]. At first
order in quantum corrections, it also follows if the
generalized second law holds on all causal horizons [39].
In this paper we use the AdS/CFT correspondence

[40,41] to prove the ANEC for strongly coupled conformal
field theories in d ≥ 2 spacetime dimensions with a
consistent holographic dual.3 We will consider source-free
CFT’s in Minkowski space—where all null curves are
achronal, and it is neither necessary nor possible to impose
gravitational self-consistency. In a companion paper [42]
we will extend our results to curved spacetimes.
Unfortunately, it is not currently possible to enumerate

all field theories which satisfy the condition of having a
consistent holographic dual. What is known is that AdS/
CFT requires a strongly coupled field theory with a large
number of species N, and several examples of the dual field
theories have been worked out in great detail, most
famously N ¼ 4 supersymmetric Yang-Mills in four
spacetime dimensions. It has also been conjectured that
any strongly coupled CFT with a large-N expansion and a
gap in the spectrum of anomalous dimensions has an AdS
dual with local dynamics [43]. We will work in the large N,
strong coupling limit in which the dual theory is well
approximated by general relativity. Note that this limit is
distinct from taking the classical limit of the field theory.
The overall strategy of our proof is to assume our theory

has nice causal properties and use these properties to derive
constraints on the stress tensor. Our approach is similar in
spirit to that of Page et al. [44], who proved a positive mass
theorem for asymptotically AdS spacetimes with consistent
holographic duals. Their proof is similar to the proofs found
in [12,45] except that Page et al. assume their holographic
theory has nice causal properties instead of assuming that
the bulk spacetime satisfies an energy condition.
Several other researchers have also studied the interplay

between bulk causality and various CFT bounds [46–52].
In [46], Brigante et al. studied the famous viscosity to
entropy density ratio η=s for conformal fluids with a Gauss-
Bonnet gravity dual. They were able to use causality
constraints to place bounds on both the strength of the
Gauss-Bonnet coupling and on the ratio η=s. These
techniques were later generalized and applied to more
general Lovelock theories by Camanho et al. in [51].

In [47] Hofman and Maldecena derived upper and lower
bounds on the ratio of the central charges a=c in a four-
dimensional CFT. These bounds are shown to follow from
positivity of the energy radiated by collider experiments as
measured by distant observers [47] (which is equivalent to
the ANEC [48]). Assuming that the dual bulk is described
by an Einstein–Gauss–Bonnet gravity theory, the same
lower bound on a=c follows [48] from the assumption that
the dual gravitational Lovelock theories satisfies the cau-
sality constraint found in [46]. This analysis was extended
to Lovelock gravity by the authors of [49,50] who also
found precise matching between positive energy flux in
the boundary and good causal properties in the bulk.
Additionally, Hofman [48] gave a nonrigorous argument
that the ANEC should hold in any UV-complete QFT, but
this was subject to some unproven assumptions about
nonlocal operators in the theory. Even if there did exist
a totally satisfactory field-theoretic proof of the ANEC, it
would still be a nontrivial test of AdS/CFT to prove the
same result using the duality.
We assume that our theory has good causality properties,

in order to prove the ANEC. This gives a partial converse to
[47], which assumed the ANEC in order to prove that a=c
lies in the coupling window that permits good causality.
In the Einstein gravity limit (which in d ¼ 4 implies
a=c ¼ 1), our assumption of good causality is the Gao-
Wald theorem, reviewed below.
It is natural to assume the gravity theory is Einstein in

light of the recent result of Camanho et al. [52], who
used causality to place a much tighter bound on higher-
derivative corrections to the bulk equations of motion. They
argue that any finite deviation from Einstein gravity in the
bulk at level of the three-point functions (which in d ¼ 4 is
equivalent to a deviation from a=c ¼ 1) is inconsistent with
boundary causality unless the theory contains an infinite
tower of massive higher spin particles (as in string theory).
For this reason we will work in the large N, strong coupling
limit in which these corrections can be neglected. It would
be of interest to extend our analysis to leading order in these
corrections.
We now briefly review the elements of the AdS/CFT

correspondence that will be used in our proof. Consider
a d-dimensional conformal field theory (hereafter called the
“boundary theory”) living on Minkowski space, with
metric ηab. The AdS/CFT correspondence states that
this theory has a dual description in terms of a dþ 1-
dimensional gravitational theory (the “bulk” theory) with a
metric of the form

ds2 ¼ R2
AdS

z2
ðdz2 þ gabðz; xÞdxadxbÞ; ð2Þ

where RAdS is the AdS length scale and gabð0; xÞ ¼ ηab.
Close to the conformal boundary z ¼ 0, the Einstein
equation dictates that gab take the form

3For d ¼ 2 the ANEC follows from an even more general
argument. In 1þ 1 CFT’s the right and left moving sectors
decouple and scale invariance implies that the total energy is
positive if and only if the Left and right Hamiltonians are
separately positive—which is equivalent to the ANEC.
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gab ¼ ηab þ zdtab þOðzdþ1Þ; ð3Þ

where tab is a traceless, conserved tensor that is otherwise
unconstrained by the equations of motion. The AdS/CFT
dictionary [41] states that the expectation value of the stress
tensor of the boundary theory is given by

hTabi ¼
dRd−1

AdS

16πG
tab; ð4Þ

whereG is the dþ 1-dimensional Newton’s constant. From
here on we set RAdS ¼ 1; powers of RAdS can be restored by
dimensional analysis. In writing down (3) and (4) we have
used our restriction that all boundary sources have been
turned off. In the bulk, this amounts to requiring that any
bulk matter fields fall of fast enough at conformal infinity
that they do not play a direct role in our analysis.
In order for the boundary theory to be local there can be

no “shortcuts through the bulk” which would effectively
allow signals to propagate faster than light [see Fig. 1(a)].
This principle is encapsulated by the Gao-Wald theorem
(Theorem 2 of [14]), which states that the fastest possible
path between two boundary points is a null geodesic on the
boundary. The Gao-Wald theorem was proven for Einstein
gravity whenever the bulk stress tensor Tbulk

μν satisfies the
ANEC and the bulk is a generic, asymptotically locally
AdS spacetime. For our purposes it is natural to take the
conclusion of the Gao-Wald theorem to be part of the
definition of a consistent holographic theory. After all, if
the bulk dual permitted signaling through the bulk faster
than the speed of light on the boundary, it would imply that

the dual CFT permits acausal signaling (see e.g. [53]).
Alternatively, we could assume that our classical bulk
geometry satisfies the assumptions of the Gao-Wald and
invoke the theorem.
Finally our proof requires two formal assumptions about

Tkk, namely that jTkkj is bounded (jTkkj < Tmax) and
absolutely convergent on γðλÞ (

R
γ jTkkj is finite). This

allows us to define the integral (1) as a limit of integrals
over finite intervals. It is likely that these assumptions could
be weakened by using the more general formulation of the
ANEC in e.g. [9,26].
We are now ready to begin our proof. Consider null

coordinates on the boundary spacetime

ηabdxadxb ¼ −ðdudvþ dvduÞ þ d~y2; ð5Þ

where d~y2 is the Euclidean line element over the remaining
d − 2 spatial directions. Note that u is an affine parameter
for the geodesic v ¼ ðconstantÞ; ~y ¼ ðconstantÞ. We
assume that all components of the bulk metric are smooth
and bounded in these coordinates.
The strategy of our proof is to construct a causal curve

which dips into the bulk, but has both endpoints anchored
to the boundary. We will engineer this curve to remain close
to the boundary and calculate the time delay or advance
relative to a nearby boundary null geodesic [see Fig. 1(b)].
We will find a positive “kinetic” contribution to the time
delay coming from the radial motion of the curve into the
bulk, and a second “potential” contribution whose sign is
that of tuu, and therefore may be either a delay or advance.
We will carefully construct our curve so that the latter
contribution dominates. Our causal assumption requires
that the net time delay of the entire excursion must be
positive; we will show that this restriction implies (1).
We parametrize our curve by the coordinate u so that

v ¼ VðuÞ and z ¼ ZðuÞ. Without loss of generality we set
~y ¼ 0. This curve will be causal if V; Z satisfy

ðZ0Þ2 − 2V 0 þ Zdðtuu þ tuvV 0 þ tvvðV 0Þ2Þ þOðZdþ1Þ ≤ 0;

ð6Þ

where primes indicate u derivatives.
We now construct a curve satisfying (6). Consider the

interval u ∈ ½−L;L� for some L which we will ultimately
take to be arbitrarily large. It is useful to introduce a small
parameter ϵ, which parametrizes how deep into the bulk our
curve reaches. We need to take an ϵ → 0 limit in order to
relate our results to tuu using (3), but in this limit any time
advance due to tuu is swamped by the time delay due to
veering into the bulk. Thus in order to prove an interesting
result it is necessary to take a simultaneous limit in which L
becomes large as ϵ becomes small. This is why good
causality implies the ANEC but not the null energy
condition Tuu ≥ 0. It turns out to be convenient to set

(a) (b)

FIG. 1. (a) Two curves which begin and end on the conformal
boundary but which dip into the bulk. The assumption of good
causality requires that the curve which ends outside of the
boundary light cone (dashed line) cannot be causal. (b) Schematic
of the construction used in our proof. The solid line is the
conformal boundary z ¼ 0 and the dashed lines represent
causal curves extending into the bulk. The v direction has been
suppressed in this diagram.
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L ¼ ϵ−ðd−1Þ: ð7Þ

We will construct our casual curve by joining together two
smooth causal curves at a sharp angle, one curve dipping
into the bulk and the other coming back to the boundary
[Fig. 1(b)], by choosing V; Z to be given on the interval
u ∈ ½−L;L� by

ZðuÞ ¼ ϵ

�
L − juj

L

�
½1 − ϵ ~Z�

VðuÞ ¼ ϵd

2

�Z
u

−L
du0

�
L − ju0j

L

�
d
tuuðu0; 0Þ þ ϵ

�
Lþ u
L

��
:

ð8Þ

(In the second equation, the first term is the “potential” time
delay and the second the “kinetic” delay.) For sufficiently
small ϵ (and fixed, positive ~Z), this curve is causal since it
satisfies (6). We have used the fact that tuu is smooth to
power expand,

tuuðu; VðuÞÞ ¼ tuuðu; 0Þ þOðϵdÞ; ð9Þ

since VðuÞ ∼ ϵd.
Since the curve (8) is causal, our causality assumption

requires that the end points of (8) must be causally
separated in the boundary spacetime. This implies that
the time delay ΔV ≔ VðLÞ − Vð−LÞ must be positive. In
terms of the stress tensor (4) we then find that for any L,

Z
L

−L
dλfLTkk ≥ −

�
32πG

dR2ðd−1Þ
AdS

�
ϵ; fLðλÞ ¼

�
L − jλj

L

�
d
;

ð10Þ

where we have momentarily restored the correct powers of
RAdS. Note that 0 ≤ fL ≤ 1.
We will now show that (10) implies the ANEC (1). For

illustrative purposes we begin by making the simplifying
assumption that Tkk is non-negative outside of some
interval λ ∈ ½−λ0; λ0�. In this case we may write

Z
L

−L
dλfLTkk ≤ −Tðλ0Þ

min

�Z
λ0

−λ0
dλð1 − fLÞ

�
þ
Z

L

−L
dλTkk;

ð11Þ

where Tðλ0Þ
min is a lower bound on Tkk in ½−λ0; λ0�, which

must exist by our assumption that jTkkj is bounded. For
fixed λ0 the term in square brackets vanishes like L−2 as L
becomes large. Combining (11) and (10) and taking
L → ∞ yields (1).
If the previous assumption doesn’t hold then the integral

in (1) is oscillatory and we must be a little more careful. In
this case it is useful to note that

Z
L

−L
dλfLTkk ≤

Z
L

−L
dλð1 − fLÞjTkkj þ

Z
L

−L
dλTkk: ð12Þ

We now must show that the first term on the right-hand side
of (12) vanishes as L → ∞ and (1) will follow as before. In
other words, we must show that for any δ > 0 there exists
an L such that Z

L

−L
dλð1 − fLÞjTkkj < δ: ð13Þ

By our assumption that Tkk is absolutely convergent, there
must exist some λ1 such that

Z
∞

λ1

dλjTkkj þ
Z −λ1
−∞

dλjTkkj <
δ

2
: ð14Þ

Now for any L > λ1 we have

Z
L

−L
dλð1 − fLÞjTkkj < Tðλ1Þ

max

�Z
λ1

−λ1
dλð1 − fLÞ

�
þ δ

2
; ð15Þ

where Tðλ1Þ
max is the maximum of jTkkj in ½−λ1; λ1�. As before

the term in square brackets goes like L−2, and therefore
there always exists some L satisfying (13). This completes
our proof of (1).
We have just given a simple, geometric proof of the

ANEC for any field theory on Minkowski space with a
consistent holographic dual. Our proof applies to strongly
coupled CFT’s on Minkowski space, but it would be of
interest to extend our results to curved space as a test of the
self-consistent achronal ANEC [35]. On a curved back-
ground Eqs. (3) and (4) contain extra terms that involve the
background metric and curvature as well as any back-
ground source terms. These terms become increasingly
complicated as the dimension increases and there is no
known expression for arbitrary dimension. However, all of
the curvature terms needed to analyze d ≤ 6 have been
known for some time (see [54])—six dimensions being the
largest dimension with a known AdS/CFT duality [40]. For
general backgrounds the analysis becomes more complex
and we defer the details to [42].
It would also be of interest to extend our arguments to

include perturbative quantum and stringy corrections in the
bulk. Because we are proving an inequality we only need to
consider perturbative correctionswhen the classical inequal-
ity is saturated. Presumably the ANEC can only be saturated
in very stringent situations, but this does not follow from our
proof. It may be possible to make progress on this point by
bounding the minimum time delay for a generic spacetime,
possibly using techniques adapted from [14,44].
These results have the potential to lead to new insights

about holography in the spirit of [44–52]. There are many
unanswered questions about the emergence of causal
structure in AdS/CFT, so understanding the field-theoretic
origin of the Gao-Wald theorem—and any perturbative
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higher-curvature analogues—will lead to new insights
related to this emergence. It would be of interest to develop
a more complete understanding of how bulk causality
restricts the field theory. Our analysis was restricted to
causal curves which remain close to the boundary, but
curves which go deeper into the bulk place restrictions on
the fields in bounded regions, which are nonlinear in the
boundary stress-tensor.
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