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We present a unifying theme relating BPS partition functions and superconformal indices. In the case
with complex supersymmetry central charges (as in N ¼ 2 in d ¼ 4 and N ¼ ð2; 2Þ in d ¼ 2), the known
results can be reinterpreted as the statement that the BPS partition functions can be used to compute a
specialization of the superconformal indices. We argue that in the case with real central charge in the
supersymmetry algebra, as in N ¼ 1 in d ¼ 5 (or the N ¼ 2 in d ¼ 3), the BPS degeneracy captures
the full superconformal index. Furthermore, we argue that refined topological strings, which capture
five-dimensional (5d) BPS degeneracies of M theory on Calabi-Yau 3-folds, can be used to compute a 5d
supersymmetric index including in the sectors with three-dimensional defects for a large class of 5d
superconformal theories. Moreover, we provide evidence that distinct Calabi–Yau singularities which are
expected to lead to the same Superconformal field theory yield the same index.
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I. INTRODUCTION

Supersymmetric BPS states have played an important
role in many aspects of string theory. Their mass is typically
protected by supersymmetry (SUSY) and provides a tool
to analyze various limits of string theory. On the other
hand, superconformal theories have also figured promi-
nently inmany developments of string theory. Aswe deform
conformal theory away from the conformal point, (BPS)
states arise in the resulting theory. It is natural to ask what is
the relation between BPS states that appear and
the properties of the superconformal theory they come from.
In fact, there is evidence that the BPS spectrum away from
the conformal point is faithful, and the superconformal
theories are entirely captured by the BPS spectrum. In
particular, we do not have a single example of two distinct
superconformal theories which give the same BPS spectrum
upon deformation. Of course, the arbitrary BPS spectrum
does not give a consistent theory, and consistency conditions
on what the allowed BPS states can be have been proposed
as a way to classify conformal theories for N ¼ ð2; 2Þ in
d ¼ 2 [1] and N ¼ 2 in d ¼ 4 [2,3]. If this is the case, it
should be possible to recover all the data at the conformal
fixed point solely from the BPS data. In particular, it is
natural to ask if the superconformal partition functions such
as supersymmetric indices [4–6] are reproducible from the
BPS spectrum.
The most natural idea would be to treat BPS states as if

they are the elementary building blocks of the theory and
use them to compute the superconformal partition

functions. However, the story is not always so simple.
For example, for theories with complex central charge, the
BPS spectrum has different chambers separated by walls.
Nevertheless, as we will review (and partially reinterpret), it
is known that at least in the cases of d ¼ 2 withN ¼ ð2; 2Þ
[2] and d ¼ 4 with N ¼ 2 [7] a specialization of the
superconformal index can be recovered from the BPS
spectrum in any chamber.
We will provide evidence that the situation is similar but

more powerful in the case of theories in d ¼ 3; 5 dimen-
sions with a Coulomb branch, with N ¼ 2; 1 supersym-
metries, respectively. Both of these cases involve a real
central charge. In these cases, we propose that one can
recover the full superconformal index solely from the BPS
data in a Coulomb branch of the theory. In the case of
d ¼ 3, we reinterpret the computations already done as
computing contributions from BPS states. The main new
case involves the superconformal index in d ¼ 5.
The basic class of examples we consider is obtained from

M theory on Calabi–Yau 3-folds leading to N ¼ 2 theories
in d ¼ 5 dimensions. It is known that for these cases the
topological string captures the BPS degeneracies (corre-
sponding toM2-braneswrapping2-cycles) [8,9]. In addition,
one can introduce M5-branes wrapping Lagrangian subma-
nifolds of Calabi–Yau. These lead to three-dimensional
defects in the five-dimensional (5d) theory. Furthermore, it
is known that open topological strings capture the open BPS
state degeneracy for these sectors corresponding to M2-
branes ending on M5-branes [10,11]. We will argue that
superconformal index, i.e., the partition function on S1 × S4

where the three-dimensional (3d) defects wrap S1 × S2

where S2 ⊂ S4, can be computed simply by considering
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where Ztop is the refined open and closed topological
string amplitudes; Qi correspond to the Wilson line
associated with normalizable Kähler moduli of Calabi–
Yau; ~Qk is the non-normalizable Kähler moduli, which
correspond to mass parameters; Uj correspond to the
Wilson lines for the Lagrangian branes; and ðq1; q2Þ are
the two coupling constants of the refined topological string.
Here, complex conjugation sends1 ðQi;Uj; ~Qk; q1; q2Þ →
ðQ−1

i ; U−1
j ; ~Qk

−1;q−11 ; q−12 Þ. Furthermore, this computation
can be viewed as computing the scattering amplitudes of a
string theory in four dimensions proposed recently [12].
A unifying theme seems to emerge about the connection

of BPS states to the index, which can be summarized roughly
as follows: We order the BPS states according to the phase of
their BPS central charge. In the case of real central charge,
this simply means dividing the BPS states to CPT conjugate
pairs where one-half of the states are on right and the other on
the left of the real line. In the case of complex central charge,
this means organizing the states on a circle according to the
phase of the central charge where CPT conjugate pairs are
diametrically opposite. Whether it is real or complex central
charge, we can consider a “partition function” of the BPS
states where each BPS state i is represented by an operatorΦi
and we take the product over all the BPS states. The operator
acts on a different Hilbert space depending on the dimension
and the theory in question: In the two-dimensional (2d) case,
it involves the space of massive vacua; in the 3d and 5d cases,
it is the space of flat connections on S1 for the corresponding
Abelian gauge groups, and in the four-dimensional (4d) case,
it is the Hilbert space of a Uð1Þ Chern–Simons theory on the
Seiberg–Witten curve.
In the complex central charge case, Φi do not commute,

and we have to order them according to the phase of the
central charge in the SUSY algebra. In the real central
charge case, they commute. Moreover, knowing the con-
tribution for half the states is sufficient, because the CPT
conjugate case can be obtained from them. Let

S ¼
Y
i

Φi

denote the (ordered) product over the BPS states for which
the phase is on one side. The full partition over BPS states
will take the form

M ¼ SS−t: ð1:1Þ
Then the statement is that

TrM ¼ ZðS1 × Sd−1Þ ð1:2Þ

for suitably defined partition function Z of the theory on
S1 × Sd−1. For d ¼ 3; 5, this gives the full index, and for
d ¼ 2; 4, this gives a specialization of the index.
The intuitive idea for why such a picture holds may be

that we can view operators at the conformal fixed point as
being made of the composite of operators which create BPS
states. In some cases where there is a weak coupling
description of the theory, as in d ¼ 3 gauge theories, this
picture can be fully justified.
The fact that we propose that the superconformal index

in five dimensions can be computed only from the knowl-
edge of BPS particles is surprising in the following sense:
These theories also have BPS strings. If we go to the
conformal point, we will have a system of interacting
massless particles and tensionless strings. Upon going to
the Coulomb branch, the particles pick up mass, and
tensionless strings pick up tension. Moreover, the mass
scales for both the interacting strings and the particles are
the same [13]. What is surprising is that nevertheless the
knowledge of only BPS particles is enough to recapture
the full superconformal index in five dimensions. Perhaps
this can be explained by the fact that S1 × S4 has no 2-
cycles for the worldsheet of BPS strings to wrap around and
the properties of the BPS strings are secretly encoded by the
particle states, as far as the index is concerned.
The organization of this paper is as follows. In Sec. II, we

discuss the relation between superconformal indices and
BPS states in the two- and four-dimensional theories with
complex central charges. In Sec. III, we discuss the three-
and five-dimensional gauge theories with real cental
charges, superconformal indices, and their relation with
BPS states including coupling to the 3d defects. In Sec. IV,
we review the refinement of topological strings and how the
refined amplitudes can be calculated. In Sec. V, we discuss
some properties of the 5-branes webs which give rise to
superconformal field theories. In Sec. VI, we give some
examples of index computations for certain 5d theories
coming from local CY 3-folds including in the presence of
3d defects. In Sec. VII, we present our conclusions.

II. BPS STATES AND THEORIES WITH COMPLEX
CENTRAL CHARGE IN d ¼ 2;4

In this section, we review (and partially reinterpret) what
is known for the relation between BPS states and super-
conformal partition functions in the case of N ¼ ð2; 2Þ
theories in d ¼ 2 and N ¼ 2 theories in d ¼ 4.

A. N ¼ ð2;2Þ theories in d ¼ 2

Consider an N ¼ ð2; 2Þ conformal theory in d ¼ 2. In
this context, we can define a superconformal index (which
is an elliptic genus) [14] given by the following trace in the
Ramond sector:

1As we will discuss later, for the defect sector, we can turn on
monopole flux which would correspond to allowing Uj to be
complex.
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Zðq; zÞ ¼ Trð−1ÞFzJLqHLq̄HR;

where JL is the left-moving Uð1ÞR charge and F ¼
FL − FR, FL;R being the fermion numbers of the left
and the right movers. Since the Ramond sector is super-
symmetric, by the SUSY argument as in the Witten
index, the above index only depends on q; z and is
independent of moduli of conformal theory. It receives
contributions from all the states which are ground states of
the HR, and it is an arbitrary eigenstate of HL. Note that in
the limit q → 0 this receives contribution only from the
ground state HL ¼ HR ¼ 0. In this case, Zð0; zÞ simply
computes the partition function of the ground states in the
Ramond sector weighted by their R charge JL.
We will consider a subset of N ¼ ð2; 2Þ theories which

admits deformations which flow in the IR to a trivial theory.
For this to be possible, in particular JL − JR ∈ Z, and the
ground states have equal JL; JR charges. The index of such
theories, which is also equal to the number of distinct vacua
upon mass deformations, is N ¼ Zð0; 1Þ.
For special values of z, the index simplifies and becomes

q independent: Let

z ¼ expð2πikÞ;
note that since JL is not necessarily an integer, putting z ¼
expð2πikÞ is not the same as z ¼ 1. Moreover, in this limit,
the left-moving supercharges also commute with the
elements in the trace, and the partition function is q
independent and in particular can be evaluated by taking
the q → 0 limit:

Zðq; expð2πikÞÞ ¼ Zð0; expð2πikÞÞ ¼ Zk:

In particular, as shown in Ref. [15] using spectral flow, Zk
counts the index of the theory relative to ðGþ

k ; Ḡ
þ
0 Þ, where

ðG; ḠÞ refer to (left, right)-moving supercharges in the
Ramond sector.
This theory will have BPS kinks connecting the various

vacua. The number of kinks depends on how we deform the
superconformal theory to the massive ones, and there are
domain walls in parameter space where the BPS degener-
acies change [16]. Let mij be the number of kinks
connecting the ith vacuum to the jth one, taking into
account the ð−1ÞF acting on the lowest state of the
multiplet. BPS kinks come with complex central charges.
Order the vacua such that the phase of the corresponding
central charges Zi;iþ1 goes counterclockwise as we increase
i. In this basis, let A be the upper triangular matrix given by
Aij ¼ mij for each i < j. Consider the matrix

S ¼ 1 − A;

and furthermore construct the matrix

M ¼ SS−t ¼ ð1 − AÞ · 1

1 − At ; ð2:1Þ

where S−t is the inverse transpose of S. Since A is upper
triangular, we have

S−t ¼ 1þ At þ A2t þ…þ AðN−1Þt:

The wall crossing formula for the BPS states [16] implies
that the eigenvalues ofM do not depend on which chamber
we compute it them (even though S does change). So the
eigenvalues are purely a property of the conformal fixed
point. Moreover, using tt� equations [17], it was shown in
Ref. [1] that2

TrMk ¼ TrH¼0 expð2πikJLÞ
¼ Zk: ð2:2Þ

Moreover, this was used as a starting point of a program to
classify N ¼ ð2; 2Þ theories in d ¼ 2. For a recent dis-
cussion of the meaning of this relation, see Ref. [18].

1. An example

As an example, consider the case of Landau-Ginzburg
theory with superpotential W ¼ 1

3
x3 for which a conformal

fixed point is expected [19,20]. The spectrum of theR charges
at the conformal point is� 1

6
. Thechiral ring consists off1; xg,

and when the theory is deformed so that the superpotential
becomes W ¼ 1

3
x3 − ax, we get two vacua for x� ¼ � ffiffiffi

a
p

.
There is a single BPS kink connecting them; therefore,

M ¼ SS−t has two eigenvalues expð� 2πi
6
Þ which agrees

with the spectrum of the R charges of the theory at the
conformal point.
It is interesting to note that Eq. (2.1) has the structure of the

partition function of fermions and bosons. It is as if we are
constructing composite operators from the fields creating the
kinks. Moreover, consider the kink operators placed on a
circle ordered by the phase of their central charge and the ones
on the left semicircle are fermionic and the ones on the right
half are bosonic. Then theTrM can beviewed as the totality of
operators we can make out of them which can be placed on a
circle (i.e., start from one vacuum and end on the same
vacuum). This structure will repeat, as we shall see in all the
other dimensions where we connect BPS degeneracies with
partition functions at superconformal points.

2Furthermore, it was shown how this can be refined to compute
the Zð0; zÞ for arbitrary z.
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B. BPS states and N ¼ 2 in d ¼ 4 dimensions

The connection between degeneracies of BPS states for
N ¼ 2 theories in d ¼ 4 and certain partition functions
at the superconformal point was found in Ref. [7]. We
consider the theory in the background involving S1 ×MCq

where MCq is the Melvin cigar: MCq is given by C × S1

where we rotate C by q as we go around S1. Moreover, as
we go around the other S1, we twist by tr−R where r is the
extra r-charge which is a symmetry at the conformal point
and R is a Cartan in the SUð2ÞR. The MCq can be viewed
topologically as 1

2
S3 with squashing parameter q. We will

denote this by

MCq ¼
1

2
S3q:

One considers the partition function on S1 × 1
2
S3q which can

be represented in the operator formulation as (suppressing
the irrelevant e−βH)

Zðt; qÞ ¼ Tr1
2
S3qð−1ÞFtr−R: ð2:3Þ

We now explain the relation of this partition function with
the deformed theory. Each BPS state is characterized by a
charge γ which belongs to the lattice of electric and
magnetic charges. Note that this lattice has a canonical
skew-symmetric product pairing the electric with the
corresponding magnetic charges. Consider the quantum
torus algebra given by introducing for each element γ of the
lattice an operator Uγ satisfying3

UγUβ ¼ qhγ;βiUβUγ:

For each BPS state of charge γ and spin s, introduce the
operator

Φðγ; sÞ ¼
Y
n

ð1 − qnþsþ1
2UγÞð−1Þ2s : ð2:4Þ

Consider BPS states for which the central charges lie on the
upper half-plane,

S ¼ T

� Y
BPS−upper

Φðγi; siÞ
�
; ð2:5Þ

where T denote ordering the product in order of the
increasing phase of the central charge as we go in the
counterclockwise direction. Furthermore, consider thematrix

M ¼ SS−t;

as in the 2d case, where the inverting of S means replacing
Uγ → U−1

γ and q → q−1, s → −s, and taking the inverse of
the products. Furthermore, transposition means the order in
the product continues in the order of increasing phase of
central charge. It was found in Ref. [7] that

TrMk ¼ Zðt ¼ e2πik; qÞ ¼ Tr1
2
S3qð−1ÞFe2πikr: ð2:6Þ

The fact that this gives the same result in all chambers follows
from the work of Kontsevich and Soibelman [21] and its
refinement [22]. The similarity of the setup to the 2d case is
striking and was explained in Ref. [7]. For alternative
derivation, see Ref. [23].
It is tempting to connect this to a more standard super-

conformal index. In fact, as noted in Refs. [7,24–26], if we
consider the double space S3q, the partition function on this
space gets related to a doubled version of BPS contribu-
tions given by

Φ̂ðγ; sÞ ¼
Q

nð1 − qnþsþ1
2UγÞð−1Þ2sQ

nð1 − q̂nþsþ1
2ÛγÞð−1Þ2s

where q̂ ¼ expð−2πi=τÞ with the parametrizations q ¼
expð2πiτÞ, and Û ¼ U

1
τ . It can be checked that Ûγ satisfy

ÛγÛβ ¼ qhγ;βiÛβÛγ:

Moreover, Uγ and Ûβ commute. Then, it was proposed in
Ref. [7] that if we consider

M̂ ¼ ŜŜ−t;

where Ŝ is constructed out of Φ̂, then

TrM̂k ¼ TrS3qð−1ÞFe2πikr:

It is natural to compare this with the usual superconformal
index. Given the relation between the superconformal index
in 4d and the partition function on squashed S3 [27–29], it
is natural to propose4

TrM̂k ¼ Trð−1ÞFe2πikðr−RÞqJ12−J34 ;

which can be viewed as a special limit of the N ¼ 2
superconformal index:

Trð−1ÞFtr−RqJ12−RpJ34−R;

with the specialization pq ¼ 1; t ¼ e2πik.

3When the N ¼ 2, d ¼ 4 theory is realized in terms of an
M5-brane wrapping Σ × S1 inside a CY 3-fold, S1 being the
time direction, then BPS states are given by M2-branes bound-
ing γ ∈ H1ðΣ;ZÞ, and Uγ is the holonomy of the gauge field
coming from the B field on the M5-brane reduced along the
cycles of Σ [7].

4Here, the J12 − J34 is naturally suggested by the relation with
topological strings.
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III. BPS STATES AND GAUGE THEORIES WITH
REAL CENTRAL CHARGES IN d ¼ 3;5

In this section, we review the computation of the
superconformal index for gauge theories with N ¼ 2 in
d ¼ 3 and N ¼ 1 in d ¼ 5. In both cases, we argue that
they can be written entirely in terms of BPS states of the
corresponding theories in the Coulomb branches. This
reinterpretation leads to our general proposal for relation
between BPS states and the index for all superconformal
theories in d ¼ 3; 5.

A. Superconformal index in d ¼ 3, N ¼ 2

Here, we review the basic statement for computation of
the superconformal index for gauge theories on S1 × S2

[26,30–32].
Consider a 3d theory with gauge group G and some

matter representations R. Moreover, depending on what
interactions are turned on, certain flavor symmetries can be
introduced. The superconformal index can be viewed as
computation of

I3 ¼ Trð−1ÞFqR−J
Y
i

zFi
i ;

where J is the rotation generator on S2, R denotes the R
charge, and Fi are some flavor charges. The basic statement
is that we can compute I3 simply by taking the contribution
of all the fields in the UV to the index, where it can be taken
to be a weakly coupled theory. Since the index does not
change upon flow, this would give the superconformal
index at the conformal point as well. If we have gauge
group factors, we can turn on flat connections on S1, which
we denote by Ui, which need to be integrated over. This
is equivalent to projecting to gauge invariant fields.
Moreover, for each flavor charge, we introduce a fugacity
zi around the circle.
The contribution for each particle splits up formally to a

square due to the CPT structure of each multiplet. Let
Φaðzi; Uj; qÞ be the contribution of one of the particles. Let
the spin of the particle be s and charges fi under the flavor
symmetries, and charge pi under the gauge symmetries.
Then5

Φaðzi; Uj; qÞ ¼
Y
n

�
1 − qnþδaþ1

2U
pj

j zfii
�ð−1Þ2s

;

where δa is the R charge of the field (and for free theory
gets identified with s). Including the CPT conjugate is the
same as introducing Φ−t

a ¼ 1=Φaðz−1i ; U−1
j ; qÞ. Let

S ¼
Y
a

Φa:

Then the index can be written as6

I3 ¼ TrM ¼ TrSS−t

¼
Z

dUj

Uj

Y
a

Φaðzi; Uj; qÞ ·
1

Φaðz−1i ; U−1
j ; qÞ ;

which has the same structure as what we had seen in
d ¼ 2; 4. Indeed, if we go to the Coulomb branch, the basic
field becomes BPS states, and so this can also be viewed as
computation using the BPS states,7 in the same sense as we
had seen in d ¼ 2; 4. Note that at least formally this can be
written in the form

I3 ¼
Z

dUj

Uj

���Y
a

Φaðzi; Uj; qÞ
���2

using the fact that (not worrying about regions of con-
vergence of q)

Φðz−1i ; U−1
j ; q−1Þ ¼ 1

Φðz−1i ; U−1
j ; qÞ :

This computes the index at zero monopole number. One
can also include the effect of the global symmetries
associated with shifting the dual photon. This can be done
most naturally by considering a generalized index [32] with
fixed monopole numbers mj. This is equivalent [26] to
shifting the holonomies Uj → UjXj, where Xj are viewed
as real, and substituting Xj ¼ qmj=2 after taking j…j2.

B. N ¼ 1, d ¼ 5 and BPS states

The superconformal index in d ¼ 5 is defined [5] by the
twisted partition function on S1 × S4:

I5 ¼ Trð−1ÞFqJ12−R1 qJ34−R2 z
fj
j ;

where J12 and J34 are the rotations of two planes in S4 and
R denotes the Cartan of the SUð2Þ R symmetry and fi
denote flavor symmetries. The fact that there are nontrivial
N ¼ 1 superconformal theories has been argued from
many different viewpoints [13,33–36]. There are nontrivial
superconformal field theories of which the existence is

5Here, we are turning off the fugacity associated with
monopole number which can be viewed as complexification of
Uj [26].

6The integration is over the Cartan ofUð1Þn. This is also true in
the non-Abelian case where the extra measure factors can be
viewed as arising from the contributions Φa of the massive gauge
particles of the non-Abelian group in the Coulomb branch.

7More precisely, what we mean by this is that if we ungauge
the Uð1Þ’s the BPS partition function of the global symmetries
determines what are the BPS states. The index for the Uð1Þ’s
which we gauge is determined entirely in terms of by global
symmetries.
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signaled by the existence of massless particles and tension-
less strings. Moreover, as argued in Ref. [33], many
superconformal theories deform upon mass deformations
to gauge theories. In turn, in the IR limit, the gauge theories
become weakly coupled, and one can use this weakly
coupled IR theory to compute the index. Since the index is
independent of deformations, this can be used to recover
the index at the conformal point. This idea has been
considered in Ref. [37] where the superconformal index
for some theories was computed using localization tech-
niques. This includes that of SUð2Þ with up to Nf ¼ 7
fundamental matter. Moreover, the expected ENfþ1 sym-
metry of these theories was successfully tested. The basic
structure of the answer can be recast, which we discuss in
more detail in Sec. VI, as8

I5 ¼
Z

dUi

Ui
jZNekrasov

5d ðUi; zj; q1; q2Þj2;

where ZNekrasov
5d denotes the Nekrasov partition function for

the 4d theories coming from compactification of the theory
on S1 and Ui denote the holonomy of the gauge group
along S1 and zj are the exponential of mass parameters and
the instanton number (which is one of the flavor sym-
metries). Moreover, in the above formula, the j…j2 involves
complex conjugating the Ui; zj → U−1

i ; z−1j but keeping
q1;2 unchanged. Of course, this result was already antici-
pated by the computation of Pestun [38] relating the
4d Nekrasov partition function with the gauge theory
partition function on S4. This can be viewed as a special
instance of that general argument where the argument is
applied to the 4d theory obtained by compactification from
five dimensions.
The question is what is the relation of this index with

BPS states? Unlike the 3d case, where the basic fields can
be viewed as BPS states in the Coulomb branch, in the
5d case, the gauge fields and matter fields are not the only
BPS states. Indeed, this is consistent with the fact that I5 is
considerably more complicated than the 3d case where the
index is given by treating the basic fields as the only
relevant ingredients for the computations. Indeed, there are
infinitely many BPS states in this case. The question is
whether I5 can be reinterpreted just in terms of BPS states,
as was the case in d ¼ 2; 3; 4.
As is well known, the partition function of refined

topological strings on a CY which engineers the

corresponding gauge theory [39] is identical with
Nekrasov’s partition function. Therefore, we can interpret
the above statement as

I5 ¼
Z

dUi

Ui
jZtop

CYðUi; zj; q1; q2Þj2:

On the other hand, it is known that topological strings
capture BPS degeneracies [8] (see Ref. [9] for the refined
version),

Ztop¼
Y

si;ni;mj

Y∞
m;n¼1

ð1−q
mþs1þ1

2

1 q
nþs2þ1

2

2 Uni
i z

mj

j Þð−1Þ2sNs1 ;s2 ;ni;mj ;

where Ns1;s2;ni;mj
is the BPS degeneracy with SOð4Þ spins

si written in an orthogonal basis of Cartan, gauge charges
ni and flavor charge mj [where in topological strings
ðni; mjÞ translate to an element of H2 of CY where the
M2-brane wraps to give rise to the BPS state]. Thus, we can
view this Ztop as a partition function of BPS particles,

Ztop ¼
Y
i∈BPS

Φi ¼ S;

with Φ identified as the above, counting the BPS states as if
they are the elementary building blocks of the theory, even
though there is no weak coupling Lagrangian which
describes them as fundamental fields. Nevertheless, they
seem to behave as such. Moreover, S−t is given by

S−t ¼ Ztopðq−11 ; q−12 ; U−1
i ; z−1j Þ ¼ 1

Ztopðq1; q−12 ; U−1
i ; z−1j Þ

¼ Ztopðq1; q2; U−1
i ; z−1j Þ:

The proof of this is given in Sec. IV above Eq. (4.15)
when we discuss the properties of the refined partition
function.
Therefore, we can again write the index as

I5 ¼ TrM ¼ TrSS−t ¼
Z

dUi

Ui
jZtopðq1; q2; Ui; zjÞj2:

Thus, we have a unified picture in d ¼ 2; 3; 4; 5 on the
relation between BPS states and supersymmetric partition
functions.

C. Inclusion of codimension-2 defects

In the context of topological strings, we can also
consider M5-branes wrapping special Lagrangian subma-
nifolds. These correspond to 3d defects in gauge theory,
giving the analog of surface operators in the context of 4d
gauge theory [40,41]. We will describe the detailed
definition of them shortly. We can then ask how one
may compute the index of the 5d theory in the presence

8Just as in the 3d case, we can consider a generalized 5d index,
where we turn on Uð1Þ instantons for the flavor symmetries on
S4. We can consider sectors with first Chern class of Uð1Þ along
the two planes of S4 be given by ðm1; m2Þ. In this context, it is
natural to expect that this formula gets changed simply by shifting

ðUi; zjÞ → ðUiq
mi

1
=2

1 q
mi

2
=2

2 ; zjq
mj

1
=2

1 q
mj

2
=2

2 Þ, coming from the shift
of spins of the BPS states in that background. For simplicity of
exposition, we restrict our attention in this paper to the sectors
where m’s are zero.
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of 3d defects. This fits nicely with the above formalism by
simply combining the degrees of freedom of the BPS states
involving M2-branes ending on M5-branes, which open
topological string counts [10,11]:

I5;3 ¼
Z

dUi

Ui

dVj

Vj
jZtop

open;closedðq1; q2; Ui; Vj; zkÞj2;

whereUi; Vj are the bulk and defect holonomies around S1,
respectively, and zk are the flavor symmetries. zk corre-
spond to Kähler classes in the Calabi–Yau. This computes
the index in the zero monopole number sector. To obtain the
generalized index of Refs. [26,32] with fixed monopole
numbers mj, it suffices to take Vj to have a real piece
Vj → VjXj and substituting, after taking the j…j2, Xj ¼
q
mj=2
1 , where we have taken the M5-brane to be in the

12-plane.9

Next, we discuss in more detail the connection between
M5-branes wrapping Lagrangian submanifolds and gauge
theoretic defects (see also Ref. [42]). M5-branes wrapped
on special Lagrangian submanifolds and filling anR3 ⊂ R5

in spacetime correspond to supersymmetric defects pre-
serving half of the supersymmetries (i.e., leading toN ¼ 2
supersymmetry in three dimensions). We will be mainly
considering noncompact Calabi–Yau 3-folds which are
toric. A distinguished class of special Lagrangian cycles
in these cases [43,44] has the topology of R × T2 for which
a cycle of T2 shrinks at each end. In the compact region of
the toric 3-fold, where one cycle w0 of T2 shrinks it ends on
the web of the toric diagram. With no loss of generality, let
us call this the (1, 0) cycle of T2. At infinity, a cycle w∞ of
the T2 shrinks ending on the “spectators brane.” Let us call
this direction the w∞ ¼ ðp; qÞ. The topology of this
Lagrangian submanifold is the lens space Lðq; pÞ which
has fundamental group Zq. As discussed in Ref. [25], there
is an N ¼ 2 supersymmetric Uð1Þ Chern–Simons gauge
theory living on the noncompact three dimensions of the
wrapped M5-brane, with level q. Furthermore, this theory
has a flavor Uð1Þ symmetry associated with the monopole
number (corresponding to shifting the angular scalar dual to
the photon). The p corresponds to the Chern–Simons level
for this flavor symmetry. Furthermore, the position of the
brane on the web is determined by the FayetIliopoulos term
ξ0 for the Uð1Þ gauge symmetry. Such a defect can be
defined for any 5d conformal theory arising from toric CY,
where the lines of the web pass through the same point. As
the web is resolved through breathing modes of the web,
one per cycle, the spectator ðq; pÞ line where the brane is
suspended can intersect a number of edges in the diagram,
and the brane can end on any of the lines (see Fig 1). To

make sure the amplitudes are invariant under resolutions,
and they are defects associated to a superconformal theory,
we need to sum over all such possible endings.
In case the toric geometry engineers an SUðNÞ gauge

theory (corresponding to N parallel lines, the ðp; qÞ
spectator line will intersect the ladder of parallel lines at
any of N points, and we will need to sum over all of them.
This would correspond to breaking SUðNÞ to SUðN − 1Þ ×
Uð1Þ near the defect position. Moreover, as discussed in
Ref. [41] in the analogous situation of surface defects in
four dimensions, the surface defect generates a deficit angle
0 ≤ α ≤ 2π in the Uð1Þ ⊂ Uð1Þ × SUðN − 1Þ, propor-
tional to FI term ξ0. We have

ξ0 ¼
α

2πg2YM

corresponding to moving the end brane along the line for
which the length is 1=g2YM; as the brane traverses the line,
the deficit angle varies from 0 to 2π. As we change the
Coulomb branch parameters, the effective ξ� depends not
only on the Coulomb parameter a but also on the slope p=q
(see Fig. 1).
In computing the index I in the presence of the defect,

we choose a number of defect spectators with various
slopes ðpi; qiÞ and some fixed positions (corresponding to
their FI term ξi). We can also have more than one brane
suspended from each. In the gauge theory setup, this will
translate to more general patterns of breaking the gauge
symmetry near the defect. We then integrate over the
breathing modes of the loops (i.e., Wilson lines of the 5d
gauge theory) and the Wilson lines associated to the gauge
field on the brane, fixing the position of the suspended lines
at infinity and the external lines of the web, which collec-
tively play the role of mass parameters.

FIG. 1. The geometry of Lagrangian brane on local P1 × P1.
Here, we have chosen the spectator brane to be ðp; qÞ with
slope p=q. The Chern-Simons level on the brane is at k ¼ q. The
Lagrangian brane is suspended from the spectator brane at either
of the two points (denoted by black dots). The Coulomb branch
parameter is labeled by a. Moreover, the slope being p=q
affects how the effective FI terms ξ� ¼ ξ0 þ a

2
� ap

2q change
with a.

9As noted earlier, we can do a similar generalization of the
index for the 5d sector, which for simplicity we will not consider
in this paper.
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IV. TOPOLOGICAL STRINGS AND BPS STATES

The N ¼ 2 topological strings propagating on a CY 3-
fold X have been intensely studied in recent years from
both mathematical and physical viewpoints. They not only
provide an exactly solvable sector of the full string theory
but also provide very useful insight into the spacetime
physics. In this section, we will summarize the relation
between topological strings on X and BPS states which
arise in the M-theory compactification on X.

Consider a Calabi–Yau 3-fold X, and let ω ¼Ph1;1ðXÞ
a¼1 taωa be the Kähler class. The classes

fω1;ω2;…;ωh1;1g span H2ðX;ZÞ, and we denote with
Da the 4-cycle dual to ωa. The genus g A-model topo-
logical string amplitude on the Calabi–Yau 3-fold X is then
given by [45]

F0ðωÞ ¼
cabctatbtc

6
þ

X
β∈H2ðX;ZÞ

N0
βe

−
R
β
ω

F1ðωÞ ¼ −
1

24

Xh1;1
a¼1

ta

Z
X
c2ðXÞ ∧ ωa þ

X
β∈H2ðX;ZÞ

N1
βe

−
R
β
ω

Fg≥2ðωÞ ¼ ð−1Þg
�Z

Mg

λ3g−1

�
χðXÞ
2

þ
X

β∈H2ðX;ZÞ
Ng

βe
−
R
β
ω
;

ð4:1Þ

where cabc ¼
R
X ωa ∧ ωb ∧ ωc are the triple intersection

number Da ·Db ·Dc of the divisors Da dual to ωa, N
g
β are

the genus g Gromov–Witten invariants, the λg−1 is the
ðg − 1Þth Chern class of the Hodge bundle over the moduli
space of genus g curves, Mg, and

Z
Mg

λ3g−1 ¼
jB2g∥B2g−2j

ð2gÞð2g − 2Þð2g − 2Þ! : ð4:2Þ

In the above equation, B2g are the Bernoulli num-
bers,

P∞
n¼0 Bn

xn
n! ¼ t

et−1.
The topological string partition function is given by

Zðω; gsÞ ¼ exp

�X∞
g¼0

g2g−2s FgðωÞ
�
; ð4:3Þ

where gs is the topological string coupling constant. In
Ref. [8], topological strings on a CY 3-fold X were studied
from a spacetime point of view, and it was shown that
the topological string partition function captures the
degeneracy of BPS particles in the 5d theory coming from
M theory on X. We present a short summary of their
argument linking the BPS states in five dimensions with
topological strings. Consider M-theory compactification on
CY 3-fold X which gives a 5d theory. The massive BPS
particles will form a representation of the little group in 5d

SOð4Þ ¼ SUð2ÞL × SUð2ÞR. These BPS particles in
five dimensions arise from M2-branes wrapping a holo-
morphic curve in X and have mass equal to the area of the
curve. These BPS particles are electrically charged under
the h1;1ðXÞ Abelian gauge fields AðaÞ coming from the
3-form C,

C ¼
Xh1;1ðXÞ
a¼1

AðaÞ ∧ ωa: ð4:4Þ

As has been mentioned before, the 5d theory also has states
which are magnetically charged under AðaÞ. These mag-
netically charged states are not point particles but are
strings coming from M5-branes wrapping the 4-cycles in
X. The M2-brane wrapping a holomorphic curve in the
class β gives rise to a set of BPS particles in five dimensions
with mass equal to

R
β ω and certain SUð2ÞL × SUð2ÞR spin

content. Let us denote by NjL;jR
β the number of particles

with spin ðjL; jRÞ and charge β (which determines the
mass), and let

njLβ ¼
X
jR

ð−1Þ2jRð2jR þ 1ÞNjL;jR
β : ð4:5Þ

The integers njLβ are invariant under complex structure
deformations of X and are the BPS degeneracies captured
by the topological strings. In terms of njLβ , the topological
string partition function can be written as ðq ¼ eigsÞ

Zðω; gsÞ ¼ Z0ðω; gsÞ
Y

β∈H2ðX;ZÞ

Y
jL

YþjL

kL¼−jL

Y∞
m¼1

×
�
1 − q2kLþme

−
R
β
ω
�
mð−1Þ2jL njLβ

Z0ðω; gsÞ ¼
exp

�
cijktitjtk

6g2s
− 1

24

P
h1;1
a¼1 ta

R
X c2ðXÞ ∧ ωa

�

exp
�
− ζð3Þ

g2s
þP∞

g¼2 g
2g−2
s ð−1Þg RMg

λ3g−1

�
−χðXÞ

2

:

In Z0ðω; gsÞ above, the numerator is the classical contri-
bution from genus zero worldsheet with three punctures
(the cubic term) and genus one worldsheet with one
puncture. The denominator is the contribution coming
from constant maps and can also be written as

−
ζð3Þ
g2s

þ
X∞
g¼2

g2g−2s ð−1Þg
Z
Mg

λ3g−1

¼ −
X∞
n¼1

n logð1 − qnÞ ¼ logMðqÞ; ð4:6Þ

where MðqÞ ¼ Q∞
n¼1ð1 − qnÞ−n is the generating function

of the number of plane partitions known as the MacMahon
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function. Thus, the full topological string partition function
is given by

Zðω; gsÞ ¼ e
cijktitjtk

6g2s
− 1
24

P
h1;1

a¼1
ta
R
X
c2ðXÞ∧ωa

MðqÞχðXÞ2

×
Y

β;jL;kL;m

ð1 − q2kLþme
−
R
β
ωÞmð−1Þ2jL njLβ :

There also exists a refinement of the above topological
string partition function. Gopakumar-Vafa invariant njLβ is

an index over the Hilbert space of states coming from β and
the index structure is needed since complex structure
deformations can change NjL;jR

β but do not change njLβ .
This is the story for the generic CY 3-fold. For a local CY
3-fold (noncompact toric CY 3-folds), the story is much
more interesting. The local CY 3-folds enjoy extra R
symmetry, and therefore NjL;jR

β are also invariants. The
refinement of the topological string partition function
captures these full BPS degeneracies10:

Zðω; t; qÞ ¼ e−
cijktitjtk
6ϵ1ϵ2

− 1
24

P
h1;1

a¼1
ta
R
X
c2ðXÞ∧ωaðMðt; qÞMðq; tÞÞχðXÞ4

×
Y

β∈H2ðX;ZÞ

Y
jL;jR

YþjL

kL¼−jL

YþjR

kR¼−jR

Y∞
m1;m2¼1

ð1 − tkLþkRþm1−1
2qkL−kRþm2−1

2QβÞMjL;jR
β

MjL;jR
β ¼ ð−1Þ2ðjLþjRÞNjL;jR

β ; ð4:7Þ

where Mðt; qÞ is the refined MacMahon function,

Mðt; qÞ ¼
Y∞
i;j¼1

ð1 − qitj−1Þ−1; ð4:8Þ

and q ¼ eiϵ1 ; t ¼ e−iϵ2 . The usual topological string parti-
tion function is recovered in the limit ϵ1 ¼ −ϵ2 ¼ gs.
Notice that we have kept the classical contribution and
the constant map contribution. Equation (4.7) can also be
written as

Zðω; t;qÞ¼ e−
cijktitjtk
6ϵ1ϵ2

− 1
24

P
h1;1

a¼1
ta
R
X
c2ðXÞ∧ωaðMðt;qÞMðq;tÞÞχðXÞ4

×PE½Fðω; t;qÞ�
Fðω; t;qÞ¼

X
β∈H2ðX;ZÞ

X
jL;jR

e
−
R
β
ω

×
ð−1Þ2ðjLþjRÞNjL;jR

β TrjRðqtÞjR;3TrjLðqtÞjL;3
ðq1=2−q−1=2Þðt1=2− t−1=2Þ ;

ð4:9Þ

where PE½fðx1; x2;…Þ� is the Plethystic exponential of
fðxÞ defined as

PE½fðx1; x2;…Þ� ¼ exp

�X∞
n¼1

fðxn1; xn2;…Þ
n

�
: ð4:10Þ

In general for a local CY 3-fold, X χðXÞ is not well defined;
however, if we only consider compact homologies in its
definition, we get it equal to twice the number of 4-cycles.
This is the value we will use in writing the factors of the
MacMahon function in the refined partition functions.
Before we discuss how the refined topological string

partition function can be calculated for local CY 3-folds, let
us discuss an important property of the partition function
which has been mentioned before and which will be of
importance later. We would like to see how the refined
partition function transforms under complex conjugation.
In the later calculations of the index, as have been discussed
earlier, the Kähler parameters will be taken to be pure
imaginary, and some of them will be integrated over.
Keeping this in mind, the complex conjugation acts as
follows on the variables ðω; t; qÞ:

ðω; t; qÞ ↦ ð−ω; t−1; q−1Þ: ð4:11Þ

Now it is easy to see from Eq. (4.9) that11

Fð−ω; t−1; q−1Þ ¼ Fð−ω; t; qÞ: ð4:12Þ

The MacMahon function, which is part of the closed
topological string partition function, behaves in a nontrivial
way under the complex conjugation,

10In the previous sections, the coupling constants of the refined
topological strings were denoted by q1 and q2. From now on, we
will denote them by t and qwhich are more familiar in the context
of calculations involving the refined topological vertex.

11As long as for each β we have the full spin content
corresponding to ðjL; jRÞ. This is indeed the case for the class
β if the corresponding moduli space of D-brane Mβ is compact.
A counterexample to this is the case of Oð−2Þ ⊕ Oð0Þ ↦ P1. In
this case, the moduli space of the P1 is C, and the corresponding

FðT; t; qÞ ¼ e−T
ffiffi
q
t

p
ðq1=2−q−1=2Þðt1=2−t−1=2Þ.
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Mðt−1; q−1Þ ¼
Y∞
i;j¼1

ð1 − q−it−jþ1Þ−1

¼ exp

�X∞
i;j¼1

X∞
n¼1

q−nit−nðj−1Þ

n

�

¼ exp
�X∞

n¼1

q−n

nð1 − q−nÞð1 − t−nÞ
�

¼ exp

�X∞
n¼1

tn

nð1 − qnÞð1 − tnÞ
�

ð4:13Þ

¼
Y∞
i;j¼1

ð1 − qi−1tjÞ−1 ¼ Mðq; tÞ: ð4:14Þ

Thus, from Eqs. (4.12) and (4.14), it follows that

Zðω; t; qÞ ¼ Zð−ω; t−1; q−1Þ ¼ Zð−ω; t; qÞ; ð4:15Þ

and therefore

jZðω; t; qÞj2 ¼ ðMðt; qÞMðq; tÞÞχðXÞ2 PE½Fðω; t; qÞ
þ Fð−ω; t; qÞ�; ð4:16Þ

where the classical piece cancelled because it was odd in ω.
Now, we will briefly discuss the open string case which

will be of use when we consider the 5d index with a 3d
defect. In the A-model topological string, one can consider
a worldsheet with boundaries as long as proper boundary
conditions are enforced which preserve the A-model super-
symmetry. The boundary conditions in this case require the
boundary of the worldsheet to end on a Lagrangian sub-
manifold of the target space. These Lagrangian submani-
folds on which the worldsheet can have boundaries are the
Lagrangian branes of the theory. For the local CY 3-folds,
we are considering these Lagrangian branes are noncompact
and have the topology of S1 ×R2. The partition function
of the A model in the presence of branes was studied in
Ref. [10] from a spacetime viewpoint, and it was shown that
in this case, just as in the case of closed strings, the partition
function captures certain BPS degeneracies. The spacetime
picture arises if we consider type IIA compactification and
consider a D4-brane wrapped on the Lagrangian cycle. In
this, D2-branes can wrap holomorphic curves in X and end
on the D4-brane. The open topological string partition
function captures the degeneracies of BPS states arising
from D2-branes ending on the D4-brane. If we denote the
Lagrangian brane by L, then the D4-brane wraps L ×R2

where R2 is part of the spacetime R4. The theory on the R2

has a Uð1Þs rotation and a Uð1Þr R symmetry. We combine
these twoUð1Þ’s and defineSL ¼ Sþ R andSR ¼ S − R. In
addition to these quantum numbers, the D2-brane couples to
the gauge field on the D4-brane, and we can introduce a
holonomy factor TrRU where U is the holonomy of the

gauge field on the D4-brane around the nontrivial S1 ofL. If
we denote by NsL;sR

R;β the number of particles with charge β
and Uð1ÞL ×Uð1ÞR quantum numbers sL; sR in the repre-
sentation R, then the open topological string partition
function is given by

Zopenðω; t; q; UÞ ¼ PE½Fopenðω; t; q; UÞ� ð4:17Þ

Fopenðω; qÞ ¼
X
R;β;sL

e
−
R
β
ωð−1Þ2sLnsLR;β

qsL

ðq1
2 − q−

1
2ÞTrRU;

ð4:18Þ

where

nsLR;β ¼
X
sR

NsL;sR
β;R ð−1Þ2sLþ2sR : ð4:19Þ

The SL þ SR is the fermion number, and the above index is
invariant under complex structure deformations.
A refinement of the above partition function also exists

and is given by Ref. [11] (see also Ref. [46]):

Zopenðω; t; qÞ ¼ PE½Fðω; t; qÞ� ð4:20Þ

Fðω; t; qÞ ¼
X

β;R;sL;sR

e
−
R
β
ωð−1Þ2sLþ2sRNsL;sR

R;β

×
qsLtsR

ðq1
2 − q−

1
2ÞTrRU: ð4:21Þ

The action of complex conjugation on the open string
partition function is different than in the case of the closed
string partition function that we discussed above. The
action of complex conjugation on the open string variables
is given by

ðω; t; q; UÞ ↦ ð−ω; t−1; q−1; U−1Þ: ð4:22Þ

With this action, Eq. (4.21) gives

Fð−ω; t−1; q−1Þ ¼ −Fð−ω; t; q; U−1Þ;

Zopenð−ω; t−1; q−1; U−1Þ ¼ 1

Zopenð−ω; t; q; U−1Þ : ð4:23Þ

Thus, for the open string case

jZopenðω; t; q; UÞj2 ¼ Zopenðω; t; q; UÞ
Zopenð−ω; t; q; U−1Þ : ð4:24Þ

A. An example

Consider the case of Oð−1Þ ⊕ Oð−1Þ ↦ P1 with a
Lagrangian brane on the P1. In this case, the open string
partition function is given by
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ZopenðQ; t; q; zÞ ¼
Y∞
m¼1

ð1 − qm−1
2zÞ−1ð1 − qm−1

2Qz−1Þ−1:

Using

Y∞
m¼1

ð1 − q−mþ1
2zÞ−1 ¼ exp

�X∞
n¼0

zn

n
q−n=2

1 − q−n

�

¼ exp

�
−
X∞
n¼0

zn

n
qn=2

1 − qn

�

¼
Y∞
m¼1

�
1 − qm−1

2z

�
; ð4:25Þ

it is easy to see that

ZopenðQ−1; t−1; q−1; z−1Þ ¼ 1

ZopenðQ−1; t; q; z−1Þ :

V. FIVE-DIMENSIONAL SUPERCONFORMAL
THEORIES FROM TORIC CALABI–YAU 3-FOLDS

In this section, we briefly recall the class of 5d super-
conformal theories for which our methods yield the
corresponding index. See Ref. [12] and references therein
for more detail.
We consider M theory on toric Calabi–Yau 3-folds,

or equivalently type IIB string theory with a web of
ðp; qÞ 5-branes. Let x0; x1;…; x9 be the coordinates of
the ten -dimensional spacetime. The ðp; qÞ 5-branes fill
the R1;4 part of the spacetime given by x0; x1;…x4 and
extend as a web of piecewise straight lines in the plane given
by x5 and x6. The generic ðp; qÞ 5-brane web can be viewed
as a trivalent graph in R2 depicting each 5-brane as a line
segment inR2 (filling theR1;4 spacetime) where the slope of
each ðp; qÞ line is given by the q=p. The generic graph is
trivalent with

P
iðpi; qiÞ ¼ 0 on each vertex. An example of

such a web is shown in Fig. 2.
In the limit where the web becomes singular, consisting

of lines all passing through the same point, we get a
superconformal theory in five dimensions. An example is
shown in Fig. 3 where the singular web gives a super-
conformal theory with SUð2Þ global symmetry.
The resolutions of the web, fixing the external line,

correspond to going to the Coulomb branch of the 5d gauge

theory. Some of these theories correspond to gauge theories
upon resolutions [39]. However, most of them do not have a
direct gauge theory interpretation. Our method for comput-
ing the index applies equally well to all of them.
Moving the external lines corresponds to changing the

mass parameters of the theory. The data of the conformal
theory are thus captured by a collection of external lines
characterized by wi ¼ ðpi; qiÞ 5-branes, with the condition
that X

i

wi ¼ 0:

Moreover, for each ~wi, one can introduce a mass parameter
mi corresponding to moving the external lines parallel to
itself. They add up to zero, and there is in addition a two
parameter redundancy due to shifting the origin of theR2, so
the number of mass parameters is 3 less than the number of
external lines. It was proposed in Ref. [12] that this data can
be identified with the states of a 4d string on T�T2.
Moreover, the scattering amplitudes of the resulting string
states are identified with the superconformal index I5 of the
resulting theory in five dimensions:

DY
i

Φwi
ðmiÞ

E
¼ I5 · δ

�X
mi

�
δ
�X

wi

�
:

In addition, we can select a number of spectator branes from
which the Lagrangian branes can be suspended, giving rise
to defects of the 5d theory. The slope of the spectator branes
determines the type of defect we introduce. Its position is a
mass parameter associated to the FI termon the defect. These
correspond to degrees of freedom of the unwound string in
the proposal of Ref. [12].

A. Loop variables and Kähler parameters

In calculating the index, we need to integrate over the
loop variables associated with the 4-cycles in the geometry.
Each loop variable corresponds to a Uð1Þ coming from the
4-cycle as discussed in Sec. IV. Since the partition function
depends on the Kähler parameters, we need to determine
how the Kähler parameters depend on the loop variables.
This relation can be easily determined either from the web
diagram or from the geometry.
Let us first show how we can determine the dependence

of the Kähler parameters on the loop variables using theFIG. 2. A generic ðp; qÞ 5-brane web.

FIG. 3. The singular limit of the web gives a superconformal
theory. In this case, the theory has SUð2Þ global symmetry at the
superconformal point. In the M-theory compactification, this
corresponds to a 4-cycle (P1 × P1) shrinking to a point.

BPS DEGENERACIES AND SUPERCONFORMAL INDEX IN … PHYSICAL REVIEW D 90, 105031 (2014)

105031-11



web diagram. Consider an edge Ewhich is one of the edges
forming the loop (4-cycle) in the web diagram. Let E1 and
E2 be the two edges connected with E but not part of the
loop as shown in Fig. 4 where we have used SLð2;ZÞ
transformation to convert the edge E to a horizontal line.
From Fig. 4, it is clear that as the 4-cycle size changes the

size of the edge E also changes with it. The relation
between the deformation of the 4-cycle given by the change
in the loop variable δa and the change in the size of the
edge E δtE depends on the slope of the connected edges E1

and E2 and is given by

δtE ¼ δa

����p1

q1
−
p2

q2

����: ð5:1Þ

If we define Qe ¼ eitE , the loop variable U ¼ eia, and
let w1; w2, and we be the winding vectors associated with
E1; E2, and E, then the SLð2;ZÞ invariant version of the
relation between the edge variable Qe and the loop variable
U is given by

Qe ¼ Q0Un; n ¼
���� w1 ∧ w2

ðw1 ∧ weÞðw2 ∧ weÞ
����; ð5:2Þ

where Q0 is the value of Qe for a ¼ 0 and is determined by
the position of the external legs.
If the geometry has many 4-cycles, then it may become

difficult to determine the dependence of the Kähler param-
eters on the loop variables using the web diagram although
the basic idea still is same. A more geometric way of
obtaining the relation follows from the fact that holomor-
phic curves in the geometry give rise to BPS particles in the
5d theory which are electrically charged under the Uð1Þg
gauge group (assuming there are g 4-cycles in the geom-
etry). The scaling relation between the Kähler parameter of
a curve C and the loop variables is just given by the electric
charge of the corresponding state:

QC ¼ QC;0eiðd1a1þd2a2þ·dgagÞ; ð5:3Þ
where fa1; a2;…; agg are the loop variables corresponding
to the g 4-cycles and di is electric charge of the state coming

from C under the Uð1Þi [the Uð1Þ coming from the ith 4-
cycle]. The electric charge of the curve C is a purely
geometric quantity given by the intersection of the curve C
with the 4-cycle. If we denote the 4-cycles in the geometry
by D1; D2;…; Dg, then

diðCÞ ¼ Di · C

¼ −KDi
· C; ð5:4Þ

where −KDi
is the anticanonical class of the divisor Di. We

will use Eqs. (5.3) and (5.4) to determine the relation
between the Kähler parameters and the loop variables when
calculating the index in Sec. VI.

VI. COMPUTATIONOF THE 5D INDEX THROUGH
TOPOLOGICAL STRING

In this section, we will calculate the index for certain 5d
theories using the refined topological string partition
function. The refined partition function will be calculated
using the refined topological vertex. We will give a short
introduction to the refined vertex formalism.

A. Refined vertex formalism

The topological vertex, which was derived using large N
transition from Chern–Simons theory, can be used to
calculate the topological string partition function for a
toric CY 3-fold [47]. A refinement of the topological vertex
was found in Ref. [48] and allows the calculation of refined
topological string partition function for a large class of toric
CY 3-folds.12 The refined topological vertex is given by

Cλμνðt; qÞ ¼ fμtðq; tÞq
∥ν∥2
2 ~Zνðt; qÞ

X
η

�
q
t

�jηjþjλj−jμj
2

× sλt=ηðt−ρq−νÞsμ=ηðt−νtq−ρÞ; ð6:1Þ

where sλ=ηðxÞ is the skew-Schur function and the following
table summarizes other quantities:

λ¼ fλ1 ≥ λ2 ≥ � � �≥ λlðλÞ > 0g, λt¼fλt1≥λt2≥ ���jλti¼#fajλa≥igg
jλj ¼ PlðλÞ

a¼1 λa, ∥λ∥2 ¼
PlðλÞ

a¼1ðλaÞ2

fλðt; qÞ ¼ ð−1Þjλjt∥λt∥22 q−
∥λ∥2
2 ,

~Zλðt; qÞ ¼
QlðλÞ

i¼1

Qλi
j¼1ð1 − qλi−jtλ

t
j−iþ1Þ−1

ρ ¼ f− 1
2
;− 3

2
;− 5

2
; � � �g, t−ρq−λ ¼ ft12q−λ1 ; t32q−λ2 ; t52q−λ3 ; � � �g

sλ=μðxÞ ¼
P

ηN
λ
μηsηðxÞ, Nλ

μη ¼ Littlewood–Richardson
coefficients

FIG. 4. A local deformation of 5-brane web.

12See Ref. [49] for an earlier attempt at refining the topo-
logical vertex by replacing Schur polynomials with Macdonald
polynomials.
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Given any web diagram corresponding to a toric Calabi–
Yau 3-fold, we give orientation to the edge and associate to
each internal edge eα a partition λðαÞ. To each external edge,
we associate the trivial partition, i.e., the empty set. Since in
the web diagram three edges meet at each vertex, we have a
set of three partitions for each vertex. If an edge is oriented
such that it is going out from the vertex, the corresponding
partition is changed to its transpose. We use these three
partitions, say, λ; μ; ν, associated to the incoming edges of
the vertex, to associate with the vertex the refined topologi-
cal vertex Cλμνðt; qÞ. The ordering of the three partitions in
writing the refined vertex is taken to be anticlockwise as we
go around the vertex, and this should be the same for all
vertices in the web diagram. To each edge eα of the web
diagram, we had associated a partition λðαÞ, and we now
associate a factor of e−jλðαÞjðtαþiπÞðfλðαÞ ðt; qÞÞpα where tα is the
length of this edge eα and pα is an integer which is
determined by the local geometry of the P1 associated to
the edge eα in theCY3-fold. In the neighborhood of aP1 in a
CY 3-fold, the geometry looks like Oðm1Þ ⊕ OÞðm2Þ with
m1 þm2 ¼ −2, the integer p ¼ ðm2 −m1Þ=2. Another
important constraint that needs to be considered in the case
of the refined topological vertex, but not for the usual
topological vertex, is that at each vertex we need to assign
one edge as the preferred edge, and all preferred edges in the
web diagram should be parallel to each other. This constraint

comes from the construction of the refined topological vertex
in terms of plane partitions and restricts the class of toric CY
3-folds to which the refined vertex can be applied to those
geometries which are fibrations over a P1 or a chain of P1 ’s.
In writing the refined vertex for a vertex, of theweb diagram,
the partition associated with the preferred edge is always the
last partition in the refined vertex, and the two refined vertex
factors which appear for two vertices connected by a
preferred edge should have ðt; qÞ parameters switched
between them. With these constraints in place, the refined
topological string partition function is given by taking the
product over all vertices of the corresponding refined vertex
factors and taking a product over all edges of the corre-
sponding edge factors and summing over all partitions:

Zrefinedðtα; t; qÞ ≔
X

all partitions

Y
α

ðe−jλðαÞjðtαþiπÞðfλðαÞ ðt; qÞÞpαÞ

×
Y

vertices

CλðαÞλðβÞλðγÞ :

1. An example

Consider local Fm which is the total space of the
canonical bundle on the Hirzebruch surface Fm. The web
diagram of this geometry is shown in the figure below. We
take the two horizontal lines to be the preferred edges:

(6.2)

The refined partition function is then given by

ZlocalFm ¼
X

λμνð1Þνð2Þ
edge factor × vertex factor: ð6:3Þ

After some simplification and using the identity
P

λsλðxÞsλðyÞ¼
Q

i;jð1−xiyjÞ−1, we get ðQb¼e−tb ;Qf¼e−tfÞ

ZlocalFm ¼
X
νη

ðð−1ÞmQbÞðjνþjηjÞQmjηj
f ðfνtðq; tÞÞmðfηðq; tÞÞmq∥ηt∥2t∥νt∥2 ~Zνðt; qÞ ~Zηtðt; qÞ ~Zηðq; tÞ ~Zνtðq; tÞ

×
Y∞
i;j¼1

½ð1 −Qfti−ηjqj−1−νiÞð1 −Qfqi−νj tj−1−ηiÞ�−1: ð6:4Þ
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B. Example 1: Local P1 × P1

Let us begin with a very interesting example of local
P1 × P1. This CY 3-fold gives rise to Nf ¼ 0 SUð2Þ gauge
theory, and we will be able to compare the answer we get
from topological strings with the gauge theoretic calcu-
lation of Ref. [37].
The web diagram corresponding to this CY 3-fold

(which is dual to the Newton polygon encoding the toric
data of this CY 3-fold) is shown below in Fig. 5.

In the above figure, Qb and Qf are related to the Kähler
parameters tb and tf corresponding to the base P1, which
we will denote by B, and the fiber P1, which we will denote
by F, respectively, as

Qb ¼ e−tb ; Qf ¼ e−tf :

The refined partition function of this geometry
was calculated above and is given by taking m ¼ 0
in Eq. (6.4),

ZlocalP1×P1ðQb;Qf; t; qÞ ¼ ðMðt; qÞMðq; tÞÞ12ZðQb;Qf; t; qÞ
ZðQb;Qf; t; qÞ ≔

X
ν1ν2

Qjν1jþjν2j
b q∥ν

t
2
∥2t∥ν

t
1
∥2 ~Zν1ðt; qÞ ~Zν2ðq; tÞ ~Zνt

1
ðq; tÞ ~Zνt

2
ðt; qÞ

×
Y∞
i;j¼1

½ð1 −Qfti−1−ν2;jqj−ν1;iÞð1 −Qfqi−1−ν1;j tj−ν2;iÞ�−1: ð6:5Þ

The refined topological vertex calculation gives the last
factor in Eq. (6.5). The first factor involving the refined
MacMahon function Mðt; qÞ has been added in accor-
dance with Eq. (4.7) while taking χðXÞ ¼ 2, as discussed
in Sec. V, since there is only one 4-cycle. We have
ignored the classical contribution in writing the refined
partition function since it cancels when we take the
absolute value square of the refined partition function as
discussed in Sec. V.
The index for this geometry is given by

I ¼
Z

dajZlocalP1×P1ðQb;Qf; t; qÞj2;

where a is the loop variable (breathing mode) for the 4-
cycle in the geometry. In Sec. VI, we discussed the general
relation between the Kähler parameters and the loop
variable. In this case, we see that the Qf is related to
the loop variable as

Qf ¼ e2ia: ð6:6Þ

Qb also depends on the loop variable and therefore on Qf.
This dependence can be easily determined using the web
diagram. Consider the web diagram shown in Fig. 5. If the
external legs are fixed, then the two parameters Qb and Qf

are not independent anymore; instead, the choice of the
external legs determines a parameter u ¼ e−h such that
Qb
Qf

¼ u as shown in Fig. 6.

Thus, the index is given by

IlocalP1×P1 ¼
Z

dajZlocalP1×P1ðue2ia; e2ia; t; qÞj2:

We can now use Eq. (6.5) to determine the above index to
obtain13

FIG. 6. The parameter h is determined by the position of the
external legs and is fixed. In the 5d gauge theory, h is proportional
to the inverse of the tree level gauge coupling and has dimensions
of mass.

FIG. 5. The Newton polygon (a) and web diagram (b) of local
P1 × P1. The Newton polygon has a unique triangulation;
therefore, this geometry has only one phase.

13The index can also be written as a infinite product

I ¼
Y
a;b;c

ð1 − xaybucÞCða;b;cÞ; ð6:7Þ

where Cða; b; cÞ ∈ Z. It would be interesting to see if Cða; b; cÞ
have a direct physical meaning.
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IlocalP1×P1 ≔ 1þ χ3ðuÞx2 þ χ2ðyÞð1þ χ3ðuÞÞx3 þ ðχ3ðyÞ½1þ χ3ðuÞ� þ 1þ χ5ðuÞÞx4
þ ðχ4ðyÞ½1þ χ3ðuÞ� þ χ2ðyÞ½1þ χ3ðuÞ þ χ5ðuÞ�Þx5 þ ðχ5ðyÞ½1þ χ3ðuÞ�
þ χ3ðyÞ½1þ χ3ðuÞ þ χ5ðuÞ þ χ3ðuÞχ3ðuÞ� þ χ3ðuÞ þ χ7ðuÞ − 1Þx6 þ ðχ6ðyÞ½1þ χ3ðuÞ�
þ χ4ðyÞ½2þ 4χ3ðuÞ þ 2χ5ðuÞ� þ χ2ðyÞ½1þ 3χ3ðuÞ þ 2χ5ðuÞ þ χ7ðuÞ�Þx7 þ ðχ7ðyÞ½1þ χ3ðuÞ�
þ χ5ðyÞ½4þ 5χ3ðuÞ þ 3χ5ðuÞ� þ χ3ðyÞ½2þ 7χ3ðuÞ þ 3χ5ðuÞ þ 2χ7ðuÞ� þ 3þ 2χ3ðuÞ þ 2χ5ðuÞ þ χ9ðuÞÞx8
þ ðχ8ðyÞ½1þ χ3ðuÞ� þ χ6ðyÞ½3χ5ðuÞ þ 7χ3ðuÞ þ 4� þ χ4ðyÞ½3χ7ðuÞ þ 6χ5ðuÞ þ 10χ3ðuÞ þ 6�
þ χ2ðyÞ½χ9ðuÞ þ 2χ7ðuÞ þ 4χ5ðuÞ þ 7χ3ðuÞ þ 4�Þx9 þ ðχ9ðyÞ½1þ χ3ðuÞ� þ χ7ðyÞ½4χ5ðuÞ þ 8χ3ðuÞ þ 6�
þ χ5ðyÞ½4χ7ðuÞ þ 9χ5ðuÞ þ 16χ3ðuÞ þ 7� þ χ3ðyÞ½2χ9ðuÞ þ 4χ7ðuÞ þ 10χ5ðuÞ þ 11χ3ðuÞ þ 10�
þ χ11ðuÞ þ 3χ7ðuÞ þ 3χ5ðuÞ þ 7χ3ðuÞ þ 1Þx10 þ � � � ; ð6:8Þ

where x ¼
ffiffi
q
t

q
and y ¼ ffiffiffiffiffi

qt
p

.

Equation (6.8) agrees will the result of Ref. [37] for the
case of SUð2Þ gauge theory with Nf ¼ 0.
To understand the relation between the gauge theoretic

calculation [37] and topological string result that we just
derived, we will look carefully at the various factors which
arise in the calculation of the index.
In Ref. [37], the index for SUð2Þ gauge theory with

Nf ¼ 0 was calculated using equivariant localization and
was given by

I ¼
Z

da2sin2ðaÞPE½fvecða; x; yÞ�|fflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}
perturbative contribution

jZNekrasovða; q; x; yÞj2|fflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}
instanton contribution

;

ð6:9Þ

where a is the parameter on the Coulomb branch, q is the
instanton counting parameter, and x and y are related to the

equivariant parameters q and t for the Uð1Þ × Uð1Þ action
of C2,

ðz1; z2Þ ∈ C2 ↦ ðqz1; t−1z2Þ;

x ¼
ffiffiffi
q
t

r
; y ¼ ffiffiffiffiffi

qt
p

: ð6:10Þ

The perturbative contribution after subtracting the Haar
measure is given by fvecða; x; yÞ,

fvecða;x;yÞ¼−
xðyþ 1

yÞ
ð1−xyÞð1− x

yÞ
ðe2iaþ1þe−2iaÞ: ð6:11Þ

Now, we can identify different pieces of the integrand in
Eq. (6.9) with different contributions to the topological
string partition function. The topological string partition
function of local P1 × P1 can be written as

ZlocalP1×P1ðQb;Qf; t; qÞ ¼ ðMðt; qÞMðq; tÞÞ12Z0ðQf; t; qÞZ0ðQb;Qf; t; qÞ ð6:12Þ

Z0ðQf; t; qÞ ¼
Y∞
i;j¼1

½ð1 −Qfqitj−1Þð1 −Qfqi−1tjÞ�−1

Z0ðQb;Qf; t; qÞ ¼
X
ν1ν2

Qjν1jþjν2j
b q∥ν

t
2
∥2t∥ν

t
1
∥2 ~Zν1ðt; qÞ ~Zν2ðq; tÞ ~Zνt

1
ðq; tÞ ~Zνt

2
ðt; qÞ

×
Y∞
i;j¼1

ð1 −Qfti−1qjÞð1 −Qfqi−1tjÞ
ð1 −Qfti−1−ν2;jqj−ν1;iÞð1 −Qfqi−1−ν1;j tj−ν2;iÞ

: ð6:13Þ

In Eq. (6.12), Z0ðQf; t; qÞ is the contribution to the
partition function coming from branes wrapping the fiber
curve F only, and Z0ðQb;Qf; t; qÞ is the contribution to
the partition function coming from branes wrapping the
base curve B at least once and wrapping the fiber curve
arbitrary number of times. The contribution Z0ðQb;Qf;t;qÞ
is such that

lim
Qb↦0

Z0ðQb;Qf; t; qÞ ¼ 1: ð6:14Þ

Thus, in the limit Qb ↦ 0, the only contribution to the
partition function comes from branes wrapping the fiber
curve F and the D0-branes (the constant map contribution).
Z0ðQf; t; qÞ gives the perturbative part of the 4d gauge
theory partition function in the limit
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Qf ¼ e2iaβ; q ¼ eβϵ1t ¼ e−iβϵ2 ; β ↦ 0: ð6:15Þ

The index is expressed in terms of the variables x and y
which couple to the SUð2ÞR and SUð2ÞL spins. To see the

relation between the integrand of the index and the
topological string partition function, let us express partition
function jMðt; qÞZ0ðQf; t; qÞj2 in terms of the variables

x ¼
ffiffi
q
t

q
and y ¼ ffiffiffiffiffi

qt
p

:

Mðt; qÞ ¼
Y∞
i;j¼1

ð1 − qitj−1Þ−1 ¼
Y∞
i;j¼1

ð1 − xiþjyi−jÞ ð6:16Þ

Mðt; qÞ ¼ Mðt−1; q−1Þ ¼ Mðq; tÞ ¼
Y∞

ði;jÞ≠ð1;1Þ
ð1 − xiþj−2yi−jÞ

jMðt; qÞj2 ¼ Mðt; qÞMðq; tÞ ¼
Y∞
i;j¼1

ð1 − xiþjyi−jÞ
Y∞

ði;jÞ≠ð1;1Þ
ð1 − xiþj−2yi−jÞ

¼
Y∞
i;j¼1

ð1 − xiþj−1yi−jþ1Þð1 − xiþj−1yi−j−1Þ ¼
���� Y

∞

i;j¼1

ð1 − xiþj−1yi−jþ1Þ
����2: ð6:17Þ

Similarly,

Z0ðQf; t; qÞ ¼
	Y∞
i;j¼1

ð1 −Qfqitj−1Þð1 −Qftiqj−1Þ


−1

¼
Y∞
i;j¼1

ð1 −Qfxiþjyi−jÞð1 −Qfxiþj−2yi−jÞ

¼ ð1 −QfÞ
Y∞
i;j¼1

ð1 −Qfxiþjyi−jÞ
Y

ði;jÞ≠ð1;1Þ
ð1 −Qfxiþj−2yi−jÞ

¼ ð1 −QfÞ
Y∞
i;j¼1

ð1 −Qfxiþj−1yi−jþ1Þ
Y∞
i;j¼1

ð1 −Qfxiþj−1yi−j−1Þ ð6:18Þ

Z0ðQf; t; qÞ ¼
Y∞
i;j¼1

ð1 −Q−1
f x−i−jy−iþjÞð1 −Q−1

f x−i−jþ2y−iþjÞ

¼
Y∞
i;j¼1

ð1 −Q−1
f xiþj−2yi−jÞð1 −Q−1

f xiþjyi−jÞ

¼ ð1 −Q−1
f Þ

Y∞
i;j¼1

ð1 −Q−1
f xiþj−2yi−jÞ

Y
ði;jÞ≠ð1;1Þ

ð1 −Q−1
f xiþjyi−jÞ

¼ ð1 −Q−1
f Þ

Y∞
i;j¼1

ð1 −Q−1
f xiþj−1yi−jþ1Þ

Y∞
i;j¼1

ð1 −Q−1
f xiþj−1yi−j−1Þ: ð6:19Þ

Using Eq. (6.11), it is easy to see that

2sin2ðaÞPE½fvec� ¼
1

2
ð1 − e2iaÞð1 − e−2iaÞ

Y∞
i;j¼1

½ð1 − xiþj−1yi−jþ1Þð1 − xiþj−1yi−j−1Þð1 − e2iaxiþj−1yi−jþ1Þ

× ð1 − e2iaxiþj−1yi−j−1Þð1 − e−2iaxiþj−1yi−jþ1Þð1 − e−2iaxiþj−1yi−j−1Þ�

¼ 1

2

����ð1 − e2iaÞ
Y∞
i;j¼1

ð1 − xiþj−1yi−jþ1Þð1 − e2iaxiþj−1yi−jþ1Þð1 − e2iaxiþj−1yi−j−1Þ
����2: ð6:20Þ
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Comparing Eqs. (6.16), (6.18), (6.19), and (6.20), we
see that

2sin2ðαÞPE½fvec� ¼
1

2
jMðt; qÞZ0ðQf; t; qÞj2: ð6:21Þ

Thus, the perturbative part of the integrand in Eq. (6.9) is
exactly given by the part of the topological string partition
function which gets contributions from the D0-branes and
D2-branes wrapping the fiber curve. The instanton part
of the integrand in Eq. (6.9) is precisely the Nekrasov
instanton partition function. It is known that Nekrasov’s
instanton partition function for SUð2Þ with Nf ¼ 0 is
precisely equal to the part of the topological string partition
function which includes contributions from the base curve,
i.e., Z0ðQb;Qf; t; qÞ given by Eq. (6.13).

C. Example 2: Blowup of local P1 × P1

The blowup of local P1 × P1 is another interesting
example that we will work out in this section. The corre-
sponding gauge theory is N ¼ 2 SUð2Þ with Nf ¼ 1. The
Newton polygon and the web diagram of this geometry are
shown in Fig. 7 below.
The H2ðX;ZÞ is spanned by fB;F; Eg where B and F

are the base and the fiber curves and E is the exceptional
curve coming from the blowup. The intersection numbers
are given by

B · B ¼ 0; F · F ¼ 0; B · F ¼ þ1;

B · E ¼ F · E ¼ 0; E · E ¼ −1: ð6:22Þ

The anticanonical class is given by

−KX ¼ 2ðBþ FÞ − E; ð6:23Þ

and using Eq. (6.22), we get

−KX ·B¼þ2; −KX ·F¼þ2; −KX ·E¼þ1: ð6:24Þ

As discussed before, the intersection number of the curves
with the aniticanonical class (the degree of the curve)
determines the electric charges of the state coming from the
M2-brane wrapping the curve and determines the relation
between the loop variables and the Kähler parameters. In
this case, we get14

Qb ¼ ue2ia; Qf ¼ e2ia; Q ¼ ~ue−ia: ð6:25Þ

The refined partition function of this geometry is given
by

ZXðQb;Qf;Q; t; qÞ ¼ ðMðt; qÞMðq; tÞÞ12ZðQb;Qf; t; qÞ
ZðQb;Qf; t; qÞ

≔
X
ν1ν2

Qjν1jþjν2j
b q∥ν

t
2
∥2t∥ν

t
1
∥2 ~Zν1ðt; qÞ ~Zν2ðq; tÞ

× ~Zνt
1
ðq; tÞ ~Zνt

2
ðt; qÞ

×
Y∞
i;j¼1

ð1 −Qti−
1
2
−νt

1;jqj−
1
2Þð1 −QQfti−

1
2
−ν1;jqj−

1
2Þ

ð1 −Qfti−1−ν2;jqj−ν1;iÞð1 −Qfqi−1−ν1;j tj−ν2;iÞ
:

ð6:26Þ

Using the refined partition function and Eq. (6.25), the
index of this geometry is given by

IXðu; ~u; t; qÞ ¼
Z

dajZXðue2ia; e2ia; ~ueia; t; qÞj2

¼ 1þ
�
2þ ~uþ 1

~u

�
x2

þ
�
3yþ 3

y
þ ~uyþ ~u

y
þ 1

y ~u
þ y

~u

�
x3 þ � � �

ð6:27Þ

This agrees with the result of Ref. [37].
A more detailed analysis can be carried out in this case to

identify different pieces of the gauge theoretic calculation
and the topological string calculation. The gauge theory
calculation of Ref. [37] gives the index to be

I ¼
Z

da2sin2ðaÞPE½fvecða; x; yÞ þ fmatterða;m; x; yÞ�|fflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}
perturbative contribution

In the previous example, we have already shown that part of
the above perturbative contribution that depends on the
Haar measure and fvecða; x; yÞ comes from the fiber curve
and the D0-brane contribution (the constant map configu-
rations in the worldsheet terms). The new contribution to
the perturbative part here is the term that depends on

fmatterða;m; x; yÞ where ðx ¼
ffiffi
q
t

q
; y ¼ ffiffiffiffiffi

qt
p Þ,

FIG. 7. Toric and web diagram of local P1 × P1 blown up at
one point.

14As before, we have chosen the position of the external line of
the web diagram such that tf ↦ 0 as a ↦ 0.
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fmatterða; x; y;mÞ
¼ x

ð1 − xyÞð1 − x
yÞ
ðe−ia−im þ eia−im þ e−iaþim þ eiaþimÞ

¼ −
1

ðq1
2 − q−

1
2Þðt12 − t−

1
2Þ

× ðe−ia−im þ eia−im þ e−iaþim þ eiaþimÞ: ð6:28Þ

It is easy to see that the contribution of this term to the
perturbative part obtained through the plethystic exponen-
tial is precisely equal to the contribution of the curve E and
F þ E to the partition function and its complex conjugate.
These are the only holomorphic curves that do not involve
the curve B (which would be the instanton contribution).
Since the curves E and F þ E are locally both ð−1;−1Þ
curves, they are rigid and have NjL;jR

E ¼ NjL;jR
EþF ¼ δjL;0δjR;0,

and therefore from Eq. (4.7) the contribution to the partition
function from these curves is given by

~ZðQ;Qf; t; qÞ ¼
Y
i;j

�
1 −Qqi−

1
2tj−

1
2

��
1 −QQfqi−

1
2tj−

1
2

�
:

ð6:29Þ
From Eq. (6.28), the definition of the plethystic exponential
and the above equation it follows that

PE½fmatterða;m; x; yÞ�

¼
Y∞
i;j¼1

ð1 − e−ia−imlqi−
1
2tj−

1
2Þð1 − eia−imlqi−

1
2tj−

1
2Þ

× ð1 − e−iaþimlqi−
1
2tj−

1
2Þ × ð1 − eiaþimlqi−

1
2tj−

1
2Þ

¼ ~ZðQ;Qf; t; qÞ ~ZðQ−1; Q−1
f ; t; qÞ ¼ j ~ZðQ;Qf; t; qÞj2;

where

Q ¼ e−ia−im; QQf ¼ eia−im: ð6:30Þ

D. Example 3: Local F1

Let us consider the CY 3-fold which is the total space of
canonical bundle on the Hirzebruch surface F1. M theory
on this CY 3-fold gives rise to pure SUð2Þ gauge theory
which differs from the SUð2Þ gauge theory coming from
local P1 × P1, discussed in the last section, due to the Z2

valued theta angle [34].
F1 is a nontrivial P1 bundle over P1, and we will denote

the base P1 by B and the fiber P1 by F with corresponding
Kähler parameters tb and tf, respectively, such that
B·B¼−1. As usual, we define Qb ¼ e−tb and Qf ¼ e−tf .
The Newton polygon and the web diagram of local F1 are
shown in Fig. 8.
The refined partition function for this geometry was

calculated in Ref. [48] and is given by (see Appendix A of
Ref. [48] for notation and other details)

ZlocalF1ðQb;Qf; t; qÞ ≔ ðMðt; qÞMðq; tÞ12ZðQb;Qf; t; qÞ
ZðQb;Qf; t; qÞ

¼
X
ν1;ν2

Qjν1jþjν2j
b Qjν2j

f ð−1Þðjν1jþjν2jÞ
�q
t

�∥ν1∥
2þ∥ν2∥

2

2 t
κðν1Þ−κðν2Þ

2

× q∥ν
t
2
∥2t∥ν

t
1
∥2 ~Zν1ðt; qÞ ~Zνt

1
ðq; tÞ ~Zν2ðq; tÞ ~Zνt

2
ðt; qÞ

×
Y∞
i;j¼1

½ð1−Qfti−ν2;jqj−1−ν1;iÞð1−Qfqi−ν1;j tj−1−ν2;iÞ�−1:

ð6:31Þ

The index for this geometry is therefore given by

IlocalF1 ¼
Z

dajZlocalF1ðQb;Qf; t; qÞj2; ð6:32Þ

where a is the loop variable corresponding to the only
4-cycle in the geometry. To calculate the index, we have to
determine the dependence of the Kähler parameters tb and
tf on the loop variable. It is easy to see from the general
result given in Sec. VI that

Qf ¼ e2ia: ð6:33Þ

The geometry of the web determines the relation between tf
and tb. If we fix the external legs of the web, we can change
the size of the 4-cycle by changing tf; if we take tf ¼ 0,
then the web diagram is shown in Fig. 9, and the parameter
h is determined by the position of the external legs. The
index will be a function of this parameter h (along with x
and y). The relation between the Qb and Qf can be easily
determined from the web diagram and is given by

FIG. 8. The Newton polygon (a) and the web diagram (b) of
local F1. In this case, there are two distinct triangulations of the
Newton polygon corresponding to two different phases.

FIG. 9. The web corresponding to local F1.
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Qb ¼ uQ
1
2

f: ð6:34Þ

Thus, the index is given by

IlocalF1 ¼
Z

dajZlocalF1ðueia; e2ia; t; qÞj2

¼
Z

1

2

dQf

2πiQf
jZlocalF1ðuQ

1
2

f; Qf; t; qÞj2: ð6:35Þ

Using Eqs. (6.31) and (6.35), we get

IlocalF1 ¼ 1þ x2 þ 2

�
yþ 1

y

�
x3 þ

�
3þ 2y2 þ 2

y2

�
x4

þ
�
2y3 þ 3yþ 3

y
þ 2

y3

�
x5

þ
�
u2 þ 1

u2
þ 5þ 2y4 þ 5y2 þ 5

y2
þ 2

y4

�
x6

þ
�
2y5 þ 6y3 þ u2yþ 10yþ y

u2
þ u2

y
þ 1

u2y

þ 10

y
þ 6

y3
þ 2

y5

�
x7 þ � � �

1. Flop invariance of the index

Recall that the Newton polygon of the local F1 has two
distinct triangulations. These two triangulations correspond
to two different geometries which are related with each
other by a flop transition. Here, we will show that the index
we have computed above is invariant under the flop
transition.
In Fig. 10, the two triangulations and the corresponding

web diagrams are shown. The neighborhood of the base
curve B of the local F1 is Oð−1Þ ⊕ Oð−1Þ ↦ P1 which
can undergo a flop, giving the resulting geometry which is

local P2 together with the flopped curve. We will denote by
X the local F1 geometry and will denote by Y the geometry
obtained by the flop from X.
The relation between the Kähler parameters on the two

sides of the flop is given by

QH ¼ QbQf; Q ¼ Q−1
b : ð6:36Þ

The refined partition function of Y can be determined from
the partition function of X by carefully following the flop
and is given by [50]

ZYðQH;Q; t; qÞ ¼ ZlocalF 1
ðQ−1; QHQ; t; qÞ: ð6:37Þ

In the corresponding web diagram Fig. 10(b), if we fix
the external legs, then the size of the P1, which came from
the flop, changes with the size of the P2, and the relation
between them, as shown in Fig. 11, is given by

Q ¼ uQ
−1
3

H ; u ¼ e−h; ð6:38Þ

where h is the size of the flopped curve when tH ¼ 0.
The index of Y is then given by

IYðu; t; qÞ ≔
Z

dajZYðQH; uQ
−1
3

H ; t; qÞj2; ð6:39Þ

where a is the loop variable corresponding to the 4-cycle
P2. The relation between the loop variable a and the Kähler
parameter tH is given by

tH ¼ 3a: ð6:40Þ

Equation (6.39) becomes

IYðu; t; qÞ ¼
Z

dz
2πiz

jZYðz3; uz−1; t; qÞj2; ð6:41Þ

where z ¼ eia. Using the relation between the partition
function of Y and that of X, Eq. (6.37) then gives

FIG. 10. The two triangulations of toric diagram of local F1 and
corresponding webs. FIG. 11. Local P2 blown up at one point.
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IYðu; t; qÞ ¼
Z

dz
2πiz

jZXðu−1z; uz2; t; qÞj2: ð6:42Þ

Changing the integration variable z ↦ zffiffi
u

p , we get

IYðu; t; qÞ ¼
Z

dz
2πiz

jZXðu−3
2z; z2; t; qÞj2;

¼
Z

dajZXðu−3
2eia; e2ia; t; qÞj2: ð6:43Þ

Comparing the above with Eq. (6.35), we see that

IYðu; t; qÞ ¼ IXðu−2=3; t; qÞ: ð6:44Þ

E. Example 4: Local F2

The Hirzebruch surface F2 is also a P1 bundle over P1.
The total space of the canonical bundle on F2 gives a local
CY 3-fold. As before, the Kähler parameters corresponding
to the base B and the fiber F will be called tb and tf, and we
defineQb ≔ e−tb andQf ≔ e−tf . The Newton polygon and
the web diagram of local F2 are shown in Fig. 12.
The refined partition function for this geometry is

given by

ZlocalF2ðQb;Qf; t; qÞ ¼ ðMðt; qÞMðq; tÞ12ZðQb;Qf; t; qÞ
ZðQb;Qf; t; qÞ ¼

X
ν1;ν2

Qjν1jþjν2j
b Q2jν2j

f

�q
t

�
∥ν1∥2þ∥ν2∥2tκðν1Þ−κðν2Þq∥νt2∥2t∥νt1∥2 ~Zν1ðt; qÞ ~Zνt

1
ðq; tÞ ~Zν2ðq; tÞ ~Zνt

2
ðt; qÞ

×
Y∞
i;j¼1

½ð1 −Qfti−ν2;jqj−1−ν1;iÞð1 −Qfqi−ν1;j tj−1−ν2;iÞ�−1: ð6:45Þ

The index is given by

IlocalF2 ¼
Z

dajZlocalF2ðQb;Qf; t; qÞj2: ð6:46Þ

The relation between the loop variable a and the fiber
parameter tf is the same as before:

tf ¼ 2a: ð6:47Þ

Just as before, we fix the external legs of the web
so that we have one parameter h as shown in Fig. 13.
The relation between the Qb and Qf in this case is
given by15

Qb ¼ e−h ¼ u: ð6:48Þ

Thus, the index becomes

IlocalF2
¼

Z
dajZlocalF2ðu; e2ia; t; qÞj2: ð6:49Þ

Using Eq. (6.45), we get

IlocalF2 ¼ 1þ x2 þ 2

�
yþ 1

y

�
x3 þ

�
3þ 2y2 þ 2

y2

�
x4

þ
�
2y3 þ 3yþ 3

y
þ 2

y3
−
�
uþ 1

y

��
yþ 1

y

��
x5

×

�
2y4 þ 5y2 þ 5

y2
þ 2

y4
þ 4

−
�
uþ 1

u

��
3þ y2 þ 1

y2

��
x6

þ
�
2y5 þ 6y3 þ 9yþ 9

y
þ 6

y3
þ 2

y5

−
�
uþ 1

u

��
y3 þ 3yþ 3

y
þ 1

y3

��
x7 þ � � �

FIG. 13. In this case, since there are two parallel legs, the area
of the base curve does not change with the area of the fiber curve.

FIG. 12. The Newton polygon (a) and the web diagram (b) of
local F2.

15In general for local Fm, the relation is Qb ¼ uQ
1−m

2

f .
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F. Example 5: Local P2

The local P2 is the total space of Oð−3Þ ↦ P2. As
discussed in Sec. IV, the refined topological vertex alone
cannot be used to calculate its partition function since there
is no set of edges which covers the vertices and has edges
parallel to each other. However, some recent developments
have made it possible to calculate the refined partition
function for any local toric CY 3-fold [50–52]. We use the
form of the partition function given in Ref. [50]. The web
diagram of the local P2 is shown in Fig. 14.
The refined partition function of local P2 is given by

[50,51]

ZlocalP2ðQ; t; qÞ ¼
X
λμν

ð−QÞjλjþjμjþjνjq
3∥νt∥2

2 t−
∥ν∥2
2

× ~Zνðq; tÞ ~Zνtðt; qÞsλðq−ρt−νÞ

× sμðq−ρt−νÞ
�q
t

�jλj−jμj
2 Nη

λμRη; ð6:50Þ

where

Rη ¼
X
σ

Uησt
∥σt∥2

2 q−
∥ν∥2
2 Pσðt−ρ; q; tÞ:

Nη
λμ are the Littlewood–Richardson coefficients, and Uησ

is the matrix which takes Macdonald polynomials to
Schur polynomials, sηðxÞ ¼

P
σUησPσðx; q; tÞ. The

matrix elements Uησ are rational functions of q and t,
for example,

Uð1Þð1Þ ¼ 1 Uð2Þð2Þ ¼ 1;

Uð2Þð11Þ ¼
t − q
1 − tq

; Uð11Þð2Þ ¼ 0; Uð11Þð11Þ ¼ 1:

The above partition function can also be written as

ZðQ; t; qÞ ¼
X
ν

ð−QÞjνj½q3∥νt∥2
2 t−

∥ν∥2
2 ~Zνðq; tÞ ~Zνtðt; qÞ�

× ZνðQ; t; qÞ; ð6:51Þ

where

ZνðQ; t; qÞ ¼
X
λμη

ð−QÞjλjþjμjsλðq−ρt−νÞsνðq−ρt−νÞ

×
�q
t

�jλj−jμj
2 Nη

λμRη: ð6:52Þ

In Eq. (6.51), the factor in the square bracket has expansion
in positive powers of q and t−1 (i.e., positive powers of x,)
but the factor in the second line, Zν, has expansion in
positive powers of q−1 and t (i.e., negative powers of x).
This is the generic case for partition functions calculated
using the refined topological vertex and can be understood
from Eq. (4.9). Since the variables x and y couple to the
SUð2ÞR and SUð2ÞL, as long as we have full ðjL; jRÞ spin
content, negative power of x cannot be avoided. However,
in some cases we can sum over a class of curves and get a
product representation which allows expansion in positive
powers of x at the expense of introducing Q and Q−1. This
is how the index as expansion in positive powers of x was
determined in the last three examples. Therefore, what is
required here is some way of summing up the contribution
from the curves labelled by λ and μ in Fig. 14, ZνðQ; t; qÞ,
to obtain a product representation which can then be
expanded in positive powers of x.
The index is then given by

IlocalP2 ¼
Z

dajZlocalP2ðQ; t; qÞj2: ð6:53Þ

The relation between the loop variable andQ is the same as
we derived in showing the flop invariance of the index in
Sec. VI D 1,

Q ¼ e3ia: ð6:54Þ

Thus, the index becomes

IlocalP2 ¼
Z

dajZlocalP2ðe3ia; t; qÞj2: ð6:55Þ

G. Example 6: Flop invariance of the index

Here, we present another example which shows that
the index is invariant under flop transition. The web
diagram of the geometry we will discuss is shown in
Fig. 15. The geometry consists of two 4-cycles D1 and
D2, both a Hirzebruch surface F1, intersecting along a P1

which is the base of the fibration for both divisors. In the
neighborhood of the base curve, the geometry looks like
Oð−1Þ ⊕ Oð−1Þ ↦ P1, and therefore the base curve can
flop as shown in Fig. 15.
We will call the geometry before the flop (the one with

two F1 divisors) X and the geometry after the flop (the one
with two P2 divisors) Y. The relation between the Kähler
parameters of geometry X and Y is given byFIG. 14. The web diagram of local P2.
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QH1
¼ QbQf1 ; QH2

¼ QbQf2 ; Q ¼ Q−1
b :

ð6:56Þ

The relation between the partition functions follows from
the above relation between the Kähler parameters,

ZYðQH1
; QH2

; Q; t; qÞ ¼ ZXðQ−1; QH1
Q;QH2

Q; t; qÞ:
ð6:57Þ

The geometry X has two 4-cycles and hence two
loop variables a1 and a2. As discussed in Sec. V, the
relation between the Kähler parameters and the loop
variables can be determined using the intersection between
curves and the 4-cycles, i.e., intersection of the curve and
the anticanonical class of the 4-cycle. Let us denote the
4-cycles in X byD1 and D2; then, the anticanonical class is
given by

−KD1
¼ 2Bþ 3F1; −KD2

¼ 2Bþ 3F2: ð6:58Þ

Then, the charge vector of the curve C ¼ nB ¼ m1F1 þ
m2F2 is given by

~d ¼ ð−KD1
· C;−KD2

· CÞ
¼ ðnþ 2m1 −m1; n −m1 þ 2m2Þ; ð6:59Þ

where we have used the following intersection numbers in
calculating Eq. (6.59):

B · B ¼ −1; B · F1 ¼ þ1; B · F2 ¼ þ1;

F1 · F2 ¼ −1: ð6:60Þ

Thus, the Kähler parameter corresponding to C in terms of
the loop variables is given by

QC ¼ QC;0ei
~d·~a ¼ eiðnþ2m1−m2Þa1þiðn−m1þ2m2Þa2 : ð6:61Þ

Thus, for geometry X,

Qf1 ¼ eið2a1−a2Þ; Qf2 ¼ eið2a2−a1Þ; Qb ¼ ueiða1þa2Þ:

ð6:62Þ

In the case of geometry Y, the two 4-cycles will be denoted
by P1 and P2 with corresponding loop variables b1 and b2,
respectively. Both these divisors are P2, and the antica-
nonical class of these divisors is given by

−KP1
¼ 3H1 − E; −KP2

¼ 3H2 − E; ð6:63Þ

where H1 is the hyperplane class of P1, H2 is the hyper-
plane class of P2, and E is the curve connecting the two
which comes from the flop of the curve B. The intersection
numbers of these curves are

H1 ·H1 ¼ 1; H2 ·H2 ¼ 1; H1 ·H2 ¼ 0;

H1 · E ¼ H2 · E ¼ 0: ð6:64Þ

Using the above intersection numbers, we can easily
determine the charge vector of the curve C ¼ nH1 þ
mH2 − kE,

~d ¼ ð−KP1
· C;−KP2

· CÞ ¼ ð3n − k; 3m − kÞ; ð6:65Þ

thus, the Kähler parameter of C scales with loop variables
as

QC ¼ QC;0ei
~d·~b ¼ QC;0eið3n−kÞb1þð3m−kÞb2 : ð6:66Þ

Thus, for geometry Y,

QH1
¼ e3ib1 ; QH2

¼ e3ib2 ; Q¼QE ¼ ~ue−iðb1þb2Þ:

ð6:67Þ

Now that we have the relation between the Kähler param-
eters and the loop variables, we can discuss the index
of the two geometries. The index for geometry X and Y is
given by

IXðu; t; qÞ ¼
Z

da1da2jZXðQb;Qf1 ; Qf2Þj2

¼
Z

da1da2jZXðueiða1þa2Þ;

eið2a1−a2Þ; eið2a2−a1ÞÞj2

IYð ~u; t; qÞ ¼
Z

db1db2jZYðQH1
; QH2

; QÞj2

¼
Z

db1db2jZYðe3ib1 ; e3ib2 ; ~ue−iðb1þb2ÞÞj2:

ð6:68Þ

Now, using Eq. (6.57), we get

FIG. 15. Local Calabi-Yau 3-fold with two F1 divisors.
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IYð ~u;t;qÞ¼
Z
db1db2jZXð ~u−1eiðb1þb2Þ; ~ueið2b1−b2Þ ~ueið2b2−b1Þj2

¼
Z

dz1
2πiz1

dz2
2πiz2

jZXð ~u−1z1z2; ~uz21z−12 ; ~uz22z
−1
1 j2:

ð6:69Þ

Let z1 ↦ ~u−1z1; z2 ↦ ~u−1z2; then, we get

IYð ~u; t; qÞ ¼
Z

dz1
2πiz1

dz2
2πiz2

jZXð ~u−3z1z2; z21z−12 ; z22z
−1
1 j2

¼ IXð ~u−3; t; qÞ; ð6:70Þ
which proves the flop invariance of the index.

H. Computation of the index with 3d defects

As discussed in Sec. III, 3d defects in the 5d theory can
be engineered using Lagrangian branes. In this section, we
consider some examples in which there is a single
Lagrangian brane in the geometry.

1. Lagrangian brane on C3

Let us begin by considering the simplest of the brane
configurations, a Lagrangian brane on C3. The geometry is
shown in Fig. 16 below.
The partition function of the brane is given by

ZBraneðQ;U; t; qÞ ¼
X
α

ð−QÞjαjTrαUsλtðq−ρÞ; ð6:71Þ

whereU is the holonomyon the brane and− logQ is the area
of the disk ending on the brane. Since we are considering a
single brane, U ¼ eiθ, and the sum over the partitions is
restricted to partitions of type fðkÞjk ¼ 0; 1; 2;…g. The
partition function is then given by

ZBrane ¼
X∞
k¼0

ð−QUÞksðkÞðq−ρÞ

¼
X∞
k¼0

ð−QUÞkqk=2
Yk
i¼1

ð1 − qiÞ−1

¼
Y∞
n¼1

ð1 −QUqn−
1
2Þ: ð6:72Þ

Define z ¼ QUq−
1
2. Then,

jZBranej2 ¼
Y∞
r¼0

�
1 − zqrþ1

1 − z̄qr

�
;

this is precisely the result given in Ref. [26] [Eq. (3.6)] if we
take z ¼ q

m
2ζ for the generalized index [32] where m is the

monopole charge.

2. Lagrangian brane on local P1 × P1

Here, we will consider a single Lagrangian brane on
P1 × P1. The brane configuration is shown in Fig. 17 below.
In the limit a ↦ 0, the 4-cycle collapses to the curve B,

and the position of the Lagrangian brane on the B is
determined by ξ0. When we deform away from this point,
there are two possibilities for the Lagrangian brane. Either
it ends on the upper horizontal line or the lower one as
shown in Fig. 18. We will consider both possibilities in
calculating the index.
The partition function of the brane depends on

ðQ1; Qb;QfÞ, which in turn depend on the parameters of
the geometry for a given fixed position of the external legs,
and the holonomy on the brane. For the brane attached to
the lower horizontal leg (see Fig. 18),

Qb ¼ uQf; Q1 ¼ ueξ0Q
pþ1
2

f : ð6:73Þ

FIG. 16. A Lagrangian brane on C3 with boundary condition
given by .α.

FIG. 17. The geometry of the Lagrangian brane on local
P1 × P1.

FIG. 18. The two choices for the Lagrangian brane on local
P1 × P1.
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The partition function of the geometry when the
Lagrangian brane is on the upper horizontal leg is given
by

Zp
BraneðQ0

1; Qb;QfÞ; ð6:74Þ

where

Qb ¼ uQf

Q0
1 ¼ e−ξ0Q

pþ1
2

f : ð6:75Þ

To introduce a Lagrangian brane on one of the internal
legs of this CY 3-fold, we generalize the unrefined
formalism of Ref. [53]. Two new partitions α and β are
introduced to account for the new open strings. The open
string partition function is given by

ZBrane ≔
X
ν1ν2

ð−QbÞjν1jþjν2jð−Q1Þjαjð−Q2Þjβjðfν1⊗βðt; qÞÞp−1ðfνt
1
⊗αðq; tÞÞpfνt

2
ðt; qÞ

× Pν1⊗αðtρ; q; tÞPνt
1
⊗βðqρ; t; qÞPν2ðqρ; t; qÞPνt

2
ðtρ; q; tÞTrαUTrβU−1

×
Y
i;j

½ð1 −Qft−iþ1þν2;jq−jþðν1⊗αÞ1;iÞð1 −Qfq
−iþ1þðν1⊗βtÞ1;j t−jþν2;iÞ�−1;

where p is the framing of the brane. Since we are considering a single brane, the sum over α and β is restricted to partitions
of type fðnÞjn ¼ 0; 1;…g. It is clear from Fig. 18 that

Q1Q2 ¼ Qb; ð6:76Þ

therefore,

ZBrane ≔
X
ν1ν2

ð−QbÞjν1jþjν2jþjβjð−Q1Þjαj−jβjðfν1⊗βðt; qÞÞp−1ðfνt
1
⊗αðq; tÞÞpfνt

2
ðt; qÞ

× Pν1⊗αðtρ; q; tÞPνt
1
⊗βðqρ; t; qÞPν2ðqρ; t; qÞPνt

2
ðtρ;q; tÞTrαUTrβU−1

×
Y
i;j

½ð1 −Qft−iþ1þν2;jq−jþðν1⊗αÞ1;iÞð1 −Qfq
−iþ1þðν1⊗βtÞ1;j t−jþν2;iÞ�−1:

Taking into account contributions of order Qb and Q1, we get

Zp
BraneðQ1; Qb;QfÞ ¼ Z0ð ~Z −QbðZ1 þ Z2 þ Z3Þ þ � � �Þ; ð6:77Þ

where

Z0 ¼
	Y

i;j

½ð1 −Qftiqj−1Þð1 −Qfqitj−1Þ�−1



~Z ≔
X
α

ð−Q1UÞjαjðfαðq; tÞÞpPαðtρ; q; tÞ
Y

ði;jÞ∈α
ð1 −Qfq−itjÞ−1

¼
�
1þ Q1UQ−1

f q
p
2
þ1t−

p
2
−3
2

ð1 − t−1Þð1 − qt−1Q−1
f Þ −

Q2
1U

2Q−2
f qpþ3t−2p−3

ð1 − t−1Þð1 − tqÞð1 − qt−1Q−1
f Þð1 − qt−2Q−1

f Þ þ � � �
�
; ð6:78Þ

and

Z1 ¼ −
q
t

ð1 − qÞð1 − t−1Þð1 − qt−1QfÞ
X
α

ð−Q1UÞjαjðfαðq; tÞÞpPαðtρ; q; tÞ
Y
i;j

1 −Qft−iþ1q−j

1 −Qft−iþ1q−jþð□⊗αÞi

¼ qt−1

ð1 − qÞð1 − t−1Þð1 −QfÞð1 − qt−1QfÞ
	
1 −Q1U

q
p
2t−

pþ1
2

ð1 − t−1Þð1 −QfÞð1 − qQfÞð1 − t−1QfÞ

−Q2
1U

2
qpþ1t−2p

ð1 − t−1Þð1 − qtÞð1 −QfÞð1 − t−1QfÞð1 − qQfÞ2ð1 − q2QfÞ
þ � � �
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Z2 ¼
1

ð1 − qÞð1 − t−1Þð1 −QfÞ
X
α

ð−Q1UÞjαjðfαðq; tÞÞpPαðtρ; q; tÞ
Y
i;j

1 −Qft−iþ1q−j

1 −Qft−iþ1þ□jq−jþαi

¼ qt−1

ð1 − qÞð1 − t−1Þð1 −QfÞ
	
−

Q−1
f

ð1 − qt−1Q−1
f Þ −Q1U

q
p
2
−1t−

p−1
2

ð1 − t−1Þð1 −QfÞ

−Q2
1U

2
qpt−2pþ1

ð1 − t−1Þð1 − qtÞð1 −QfÞð1 − qQfÞ
þ � � �




Z3 ¼ −
Q−1

1 U−1
� ffiffi

t
q

q �
p−1 ffiffiffi

q
p

ð1 − qÞð1 − q
t QfÞ

X
α

ð−Q1UÞjαjðfαðq; tÞÞpPαðtρ; q; tÞ
Yα
i¼1

ð1 −Qfqα−iÞ−1

¼ −
Q−1

1 U−1
� ffiffi

t
q

q �
p−1 ffiffiffi

q
p

ð1 − qÞð1 − q
t QfÞ

	
1 −Q1U

q
p
2t−

pþ1
2

ð1 −QfÞ
−Q2

1U
2

qpþ1t−2p

ð1 − t−1Þð1 − qtÞð1 −QfÞð1 − qQfÞ
þ � � �



: ð6:79Þ

In the above equations, Pαðx;q; tÞ are Macdonald polynomials, and since α only takes the values fðmÞjm ¼ 0; 1;…g, we
give below the explicit expression for PðmÞðtρ; q; tÞ as a function of x and y which we will need later:

PðmÞðtρ; q; tÞ ¼ ð−1Þmtm=2qmðm−1Þ=2Ym
j¼1

ð1 − tqm−jÞ−1

¼ ð−1Þm−1 y
m2

2
−1x

m2

2
þ1−m

ð1 − xy−1ÞQm−1
j¼1 ð1 − ym−jþ1xm−j−1Þ

PðmÞðqρ; t; qÞ ¼ −
x1−

m
2y1−

m
2

ð1 − xyÞQm−1
j¼1 ð1 − xm−j−1yj−m−1Þ : ð6:80Þ

The partition function of the geometry with the
Lagrangian brane has a closed string factor which is the
partition function of the geometry without the brane and an
open string factor,

ZBrane ¼ Zclosed × Zopen: ð6:81Þ

In our case, there are two different possibilities for the
brane to end when the loop variable is deformed. We denote
the open string partition function of the brane on the lower
leg by Zopen and the open string partition function of the

brane on the upper leg by ~Zopen. The two are related as
follows:

~Zopen ¼ Zopenðe−ξ0Q
pþ1
2

f U−1; uQf;QfÞ; ð6:82Þ

where the open string partition function of the brane on the
lower leg is

Zopenðueξ0Q
pþ1
2

f U; uQf;QfÞ:

The index of the defect theory is given by

Ip ¼
Z

1

2

dQf

2πiQf

dU
2πiU

jZopen
~Zopenj2

¼
Z

1

2

dQf

2πiQf

dU
2πiU

jZopenðueξ0Q
pþ1
2

f U; uQf;QfÞ

× Zopenðe−ξ0Q
pþ1
2

f U−1; uQf;QfÞj2; ð6:83Þ

where under complex conjugation

ðe−ξ0 ; u; Qf; UÞ ↦ ðe−ξ0 ; u−1; Q−1
f ; U−1Þ: ð6:84Þ

For p ¼ 1, the above index up to order x2 is ðv ¼ eξ0Þ

Ip¼1 ¼
	
1þ x

u3y
þ
�
2

u3
þ 4

u2
−

1

uv2
−
v2

u
þ 1

u6y2
þ 4

u3y2

−
10y2

u4ð1 − y2Þ2 −
12

u5ð1 − y2Þ −
2

uð1 − y2Þ

þ 2y2

uð1 − y2Þ
�
x2 þ � � �



:

To compute the index in the monopole sector m, we simply
substitute v ¼ xm=2.
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VII. CONCLUSION

We have seen in this paper that the BPS states which arise
in the IR flow of superconformal theories upon deformations
are a powerful tool in computing superconformal indices at
the conformal point. This is particularly so in d ¼ 3; 5,
where we have proposed how one may recover the full index
in terms of the BPS partition functions. We have given an
indirect argument for our proposal based on reduction of the
theory to four dimensions and Pestun’s result for partition
functions on S4. We have checked that it works in all the
known examples. It should be possible16 to derive these
results by compactifying M theory on toric 3-folds times
S1 × S4 and applying localization ideas to the full string
theory similar to the derivation of Ooguri-Strominger-Vafa
conjecture in Ref. [55].
It is natural to ask whether we can compute the partition

function of supersymmetric theories on S5 and S3 using
BPS data. Indeed, there is a natural proposal for this [56],
which shows how this may be done using topological

strings. Moreover, this leads to computation of the index of
six-dimensional superconformal theories with N ¼ ð1; 0Þ
and N ¼ ð2; 0Þ supersymmetry on S1 × S5 [56]. We thus
see that BPS states, as captured by topological strings, are
powerful enough to capture the partition function and the
superconformal index of a large number of theories in
diverse dimensions.
Our work gives further motivation for a reformulation of

supersymmetric theories entirely in terms of their BPS data
in the IR, in diverse dimensions with varying amounts of
supersymmetry. It would be very important to see if one can
fully reconstruct the superconformal theories solely from
their BPS data.
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