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We present a unifying theme relating BPS partition functions and superconformal indices. In the case
with complex supersymmetry central charges (asin N =2ind = 4 and N' = (2,2) in d = 2), the known
results can be reinterpreted as the statement that the BPS partition functions can be used to compute a
specialization of the superconformal indices. We argue that in the case with real central charge in the
supersymmetry algebra, as in N'=1in d =5 (or the N’ =2 in d = 3), the BPS degeneracy captures
the full superconformal index. Furthermore, we argue that refined topological strings, which capture
five-dimensional (5d) BPS degeneracies of M theory on Calabi-Yau 3-folds, can be used to compute a 5d
supersymmetric index including in the sectors with three-dimensional defects for a large class of 5d
superconformal theories. Moreover, we provide evidence that distinct Calabi—Yau singularities which are

expected to lead to the same Superconformal field theory yield the same index.
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I. INTRODUCTION

Supersymmetric BPS states have played an important
role in many aspects of string theory. Their mass is typically
protected by supersymmetry (SUSY) and provides a tool
to analyze various limits of string theory. On the other
hand, superconformal theories have also figured promi-
nently in many developments of string theory. As we deform
conformal theory away from the conformal point, (BPS)
states arise in the resulting theory. It is natural to ask what is
the relation between BPS states that appear and
the properties of the superconformal theory they come from.
In fact, there is evidence that the BPS spectrum away from
the conformal point is faithful, and the superconformal
theories are entirely captured by the BPS spectrum. In
particular, we do not have a single example of two distinct
superconformal theories which give the same BPS spectrum
upon deformation. Of course, the arbitrary BPS spectrum
does not give a consistent theory, and consistency conditions
on what the allowed BPS states can be have been proposed
as a way to classify conformal theories for N' = (2,2) in
d=2[1]and N =2 in d = 4 [2,3]. If this is the case, it
should be possible to recover all the data at the conformal
fixed point solely from the BPS data. In particular, it is
natural to ask if the superconformal partition functions such
as supersymmetric indices [4—6] are reproducible from the
BPS spectrum.

The most natural idea would be to treat BPS states as if
they are the elementary building blocks of the theory and
use them to compute the superconformal partition
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functions. However, the story is not always so simple.
For example, for theories with complex central charge, the
BPS spectrum has different chambers separated by walls.
Nevertheless, as we will review (and partially reinterpret), it
is known that at least in the cases of d = 2 with N = (2,2)
[2] and d =4 with A" =2 [7] a specialization of the
superconformal index can be recovered from the BPS
spectrum in any chamber.

We will provide evidence that the situation is similar but
more powerful in the case of theories in d = 3,5 dimen-
sions with a Coulomb branch, with A/ = 2,1 supersym-
metries, respectively. Both of these cases involve a real
central charge. In these cases, we propose that one can
recover the full superconformal index solely from the BPS
data in a Coulomb branch of the theory. In the case of
d = 3, we reinterpret the computations already done as
computing contributions from BPS states. The main new
case involves the superconformal index in d = 5.

The basic class of examples we consider is obtained from
M theory on Calabi-Yau 3-folds leading to N = 2 theories
in d = 5 dimensions. It is known that for these cases the
topological string captures the BPS degeneracies (corre-
sponding to M2-branes wrapping 2-cycles) [8,9]. In addition,
one can introduce M5-branes wrapping Lagrangian subma-
nifolds of Calabi—Yau. These lead to three-dimensional
defects in the five-dimensional (5d) theory. Furthermore, it
is known that open topological strings capture the open BPS
state degeneracy for these sectors corresponding to M2-
branes ending on M5-branes [10,11]. We will argue that
superconformal index, i.e., the partition function on S' x $*
where the three-dimensional (3d) defects wrap S' x 2
where S? C $*, can be computed simply by considering
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where Z, is the refined open and closed topological
string amplitudes; Q; correspond to the Wilson line
associated with normalizable Kiahler moduli of Calabi—

Yau; Qk is the non-normalizable Kéhler moduli, which
correspond to mass parameters; U; correspond to the
Wilson lines for the Lagrangian branes; and (g, q,) are
the two coupling constants of the refined topological string.
Here, complex conjugation sends' (Q;, U i 0u:q1.92) —
(071, U]T', Qk_l;ql",qgl). Furthermore, this computation
can be viewed as computing the scattering amplitudes of a
string theory in four dimensions proposed recently [12].

A unifying theme seems to emerge about the connection
of BPS states to the index, which can be summarized roughly
as follows: We order the BPS states according to the phase of
their BPS central charge. In the case of real central charge,
this simply means dividing the BPS states to CPT conjugate
pairs where one-half of the states are on right and the other on
the left of the real line. In the case of complex central charge,
this means organizing the states on a circle according to the
phase of the central charge where CPT conjugate pairs are
diametrically opposite. Whether it is real or complex central
charge, we can consider a “partition function” of the BPS
states where each BPS state i is represented by an operator @,
and we take the product over all the BPS states. The operator
acts on a different Hilbert space depending on the dimension
and the theory in question: In the two-dimensional (2d) case,
it involves the space of massive vacua; in the 3d and 5d cases,
it is the space of flat connections on S' for the corresponding
Abelian gauge groups, and in the four-dimensional (4d) case,
it is the Hilbert space of a U(1) Chern—Simons theory on the
Seiberg—Witten curve.

In the complex central charge case, ®; do not commute,
and we have to order them according to the phase of the
central charge in the SUSY algebra. In the real central
charge case, they commute. Moreover, knowing the con-
tribution for half the states is sufficient, because the CPT
conjugate case can be obtained from them. Let

s=]]e

denote the (ordered) product over the BPS states for which
the phase is on one side. The full partition over BPS states
will take the form

M =S5, (1.1)

Then the statement is that

'As we will discuss later, for the defect sector, we can turn on
monopole flux which would correspond to allowing U; to be
complex.
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TrM = Z(S' x §¢-1) (1.2)

for suitably defined partition function Z of the theory on
S x §9=1. For d = 3, 5, this gives the full index, and for
d = 2,4, this gives a specialization of the index.

The intuitive idea for why such a picture holds may be
that we can view operators at the conformal fixed point as
being made of the composite of operators which create BPS
states. In some cases where there is a weak coupling
description of the theory, as in d = 3 gauge theories, this
picture can be fully justified.

The fact that we propose that the superconformal index
in five dimensions can be computed only from the knowl-
edge of BPS particles is surprising in the following sense:
These theories also have BPS strings. If we go to the
conformal point, we will have a system of interacting
massless particles and tensionless strings. Upon going to
the Coulomb branch, the particles pick up mass, and
tensionless strings pick up tension. Moreover, the mass
scales for both the interacting strings and the particles are
the same [13]. What is surprising is that nevertheless the
knowledge of only BPS particles is enough to recapture
the full superconformal index in five dimensions. Perhaps
this can be explained by the fact that S' x $* has no 2-
cycles for the worldsheet of BPS strings to wrap around and
the properties of the BPS strings are secretly encoded by the
particle states, as far as the index is concerned.

The organization of this paper is as follows. In Sec. II, we
discuss the relation between superconformal indices and
BPS states in the two- and four-dimensional theories with
complex central charges. In Sec. III, we discuss the three-
and five-dimensional gauge theories with real cental
charges, superconformal indices, and their relation with
BPS states including coupling to the 3d defects. In Sec. 1V,
we review the refinement of topological strings and how the
refined amplitudes can be calculated. In Sec. V, we discuss
some properties of the 5-branes webs which give rise to
superconformal field theories. In Sec. VI, we give some
examples of index computations for certain 5d theories
coming from local CY 3-folds including in the presence of
3d defects. In Sec. VII, we present our conclusions.

II. BPS STATES AND THEORIES WITH COMPLEX
CENTRAL CHARGE INd =24

In this section, we review (and partially reinterpret) what
is known for the relation between BPS states and super-
conformal partition functions in the case of N = (2,2)
theories in d = 2 and N/ = 2 theories in d = 4.

A. N = (2,2) theories in d = 2

Consider an N = (2,2) conformal theory in d = 2. In
this context, we can define a superconformal index (which
is an elliptic genus) [14] given by the following trace in the
Ramond sector:
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Z(q.z) = Tr(=1)Fzrg"L g,

where J; is the left-moving U(1l); charge and F =
F; — Fg, F; g being the fermion numbers of the left
and the right movers. Since the Ramond sector is super-
symmetric, by the SUSY argument as in the Witten
index, the above index only depends on ¢,z and is
independent of moduli of conformal theory. It receives
contributions from all the states which are ground states of
the Hp, and it is an arbitrary eigenstate of H; . Note that in
the limit ¢ — O this receives contribution only from the
ground state H; = Hi = 0. In this case, Z(0,z) simply
computes the partition function of the ground states in the
Ramond sector weighted by their R charge J; .

We will consider a subset of N' = (2, 2) theories which
admits deformations which flow in the IR to a trivial theory.
For this to be possible, in particular J; — Jp € Z, and the
ground states have equal J; , Ji charges. The index of such
theories, which is also equal to the number of distinct vacua
upon mass deformations, is N = Z(0, 1).

For special values of z, the index simplifies and becomes
q independent: Let

7z = exp(2zik);

note that since J; is not necessarily an integer, putting z =
exp(2xik) is not the same as z = 1. Moreover, in this limit,
the left-moving supercharges also commute with the
elements in the trace, and the partition function is g
independent and in particular can be evaluated by taking
the ¢ — 0O limit:

Z(q,exp(2xik)) = Z(0,exp(2zik)) = Z,.

In particular, as shown in Ref. [15] using spectral flow, Z;
counts the index of the theory relative to (G}, G;), where
(G, G) refer to (left, right)-moving supercharges in the
Ramond sector.

This theory will have BPS kinks connecting the various
vacua. The number of kinks depends on how we deform the
superconformal theory to the massive ones, and there are
domain walls in parameter space where the BPS degener-
acies change [16]. Let m;; be the number of kinks
connecting the ith vacuum to the jth one, taking into
account the (—1)F acting on the lowest state of the
multiplet. BPS kinks come with complex central charges.
Order the vacua such that the phase of the corresponding
central charges Z; ;.| goes counterclockwise as we increase
i. In this basis, let A be the upper triangular matrix given by
A;j = my; for each i < j. Consider the matrix

S=1-A,
and furthermore construct the matrix

1

M=SS"=(1-A) ——,
(1-4) 1=

(2.1)
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where S' is the inverse transpose of S. Since A is upper
triangular, we have

ST =1+A+ A" 4 ..+ AWV,

The wall crossing formula for the BPS states [16] implies
that the eigenvalues of M do not depend on which chamber
we compute it them (even though S does change). So the
eigenvalues are purely a property of the conformal fixed
point. Moreover, using 7" equations [17], it was shown in
Ref. [1] that’

TrM* = Try_gexp(2nikJ ;)

= 7. (2.2)

Moreover, this was used as a starting point of a program to
classify N = (2,2) theories in d = 2. For a recent dis-
cussion of the meaning of this relation, see Ref. [18].

1. An example

As an example, consider the case of Landau-Ginzburg
theory with superpotential W = $x* for which a conformal
fixed point is expected [19,20]. The spectrum of the R charges
at the conformal point s = . The chiral ring consists of {1, x},
and when the theory is deformed so that the superpotential
becomes W = 1x* — ax, we get two vacua for x; = +/a.
There is a single BPS kink connecting them; therefore,

1 -1
g —
0 1
@ °
W (v/a) W(~y/a)

M = SS™" has two eigenvalues exp(+ 2%) which agrees
with the spectrum of the R charges of the theory at the
conformal point.

Itis interesting to note that Eq. (2.1) has the structure of the
partition function of fermions and bosons. It is as if we are
constructing composite operators from the fields creating the
kinks. Moreover, consider the kink operators placed on a
circle ordered by the phase of their central charge and the ones
on the left semicircle are fermionic and the ones on the right
half are bosonic. Then the TrM can be viewed as the totality of
operators we can make out of them which can be placed on a
circle (i.e., start from one vacuum and end on the same
vacuum). This structure will repeat, as we shall see in all the
other dimensions where we connect BPS degeneracies with
partition functions at superconformal points.

2Furthermore, it was shown how this can be refined to compute
the Z(0, z) for arbitrary z.
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B. BPS states and A/ = 2 in d = 4 dimensions

The connection between degeneracies of BPS states for
N =2 theories in d =4 and certain partition functions
at the superconformal point was found in Ref. [7]. We
consider the theory in the background involving S' x MC,
where MC, is the Melvin cigar: MC, is given by C x § !
where we rotate C by ¢ as we go around S'. Moreover, as
we go around the other S, we twist by #~® where r is the
extra r-charge which is a symmetry at the conformal point
and R is a Cartan in the SU(2)g. The MC, can be viewed
topologically as %53 with squashing parameter g. We will
denote this by

1'5
MC, = S3.

173
One considers the partition function on §! x 13 which can
be represented in the operator formulation as (suppressing
the irrelevant e#H)

Z(t,q) = Tr%sz(—l)Ft"R. (2.3)
We now explain the relation of this partition function with
the deformed theory. Each BPS state is characterized by a
charge y which belongs to the lattice of electric and
magnetic charges. Note that this lattice has a canonical
skew-symmetric product pairing the electric with the
corresponding magnetic charges. Consider the quantum
torus algebra given by introducing for each element y of the
lattice an operator U, satisfying

— B
U,U; = ¢"PU,U,.

For each BPS state of charge y and spin s, introduce the
operator

‘I’(}/,S) _ H(l _ qn+s+'5U}/)(_1)2s.

n

(2.4)

Consider BPS states for which the central charges lie on the
upper half-plane,

SZT( H ‘1’(7i,5i)>v
BPS—upper

where T denote ordering the product in order of the
increasing phase of the central charge as we go in the
counterclockwise direction. Furthermore, consider the matrix

(2.5)

*When the N =2, d = 4 theory is realized in terms of an
M5-brane wrapping X x S! inside a CY 3-fold, S' being the
time direction, then BPS states are given by M2-branes bound-
ing y € Hy(X.,Z), and U, is the holonomy of the gauge field
coming from the B field on the M5-brane reduced along the
cycles of Z [7].

PHYSICAL REVIEW D 90, 105031 (2014)
M =SS,

as in the 2d case, where the inverting of S means replacing
U, - Uy" and ¢ —» g, s — —s, and taking the inverse of
the products. Furthermore, transposition means the order in
the product continues in the order of increasing phase of
central charge. It was found in Ref. [7] that

TrM* = Z(t = %, q) = T (=1)Fe™. (2.6)
The fact that this gives the same result in all chambers follows
from the work of Kontsevich and Soibelman [21] and its
refinement [22]. The similarity of the setup to the 2d case is
striking and was explained in Ref. [7]. For alternative
derivation, see Ref. [23].

It is tempting to connect this to a more standard super-
conformal index. In fact, as noted in Refs. [7,24-26], if we
consider the double space S3, the partition function on this
space gets related to a doubled version of BPS contribu-
tions given by

(i)( S) _ Hn(l _ qn+s+%Uy)(_1)2:
P - )

where § = exp(—2zi/7) with the parametrizations g =
exp(2zit), and U = U=, It can be checked that U, satisty

A

070ﬂ = q<7ﬁ>f]/}Uy

Moreover, U, and U s commute. Then, it was proposed in
Ref. [7] that if we consider

A

M =388,
where S is constructed out of i), then
Tri* = Trg (—1)Fe* .

It is natural to compare this with the usual superconformal
index. Given the relation between the superconformal index
in 4d and the partition function on squashed S3 [27-29], it
is natural to propose4

Ter — TI'(—I)FeZﬂik(r_R>qjlz_J34,

which can be viewed as a special limit of the N =2
superconformal index:

Tr(—1)F r~Rg/neR plu—R,

with the specialization pg = 1,1 = ",

“Here, the J 5 — J34 is naturally suggested by the relation with
topological strings.
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III. BPS STATES AND GAUGE THEORIES WITH
REAL CENTRAL CHARGES IN d = 3.5

In this section, we review the computation of the
superconformal index for gauge theories with ' =2 in
d=3and N =1 in d = 5. In both cases, we argue that
they can be written entirely in terms of BPS states of the
corresponding theories in the Coulomb branches. This
reinterpretation leads to our general proposal for relation
between BPS states and the index for all superconformal
theories in d = 3, 5.

A. Superconformal index ind =3, N =2

Here, we review the basic statement for computation of
the superconformal index for gauge theories on S! x §?
[26,30-32].

Consider a 3d theory with gauge group G and some
matter representations R. Moreover, depending on what
interactions are turned on, certain flavor symmetries can be
introduced. The superconformal index can be viewed as
computation of

ITT.F:
I3 = Tr(=1)F gk JHZi ,
i

where J is the rotation generator on S?, R denotes the R
charge, and F; are some flavor charges. The basic statement
is that we can compute /3 simply by taking the contribution
of all the fields in the UV to the index, where it can be taken
to be a weakly coupled theory. Since the index does not
change upon flow, this would give the superconformal
index at the conformal point as well. If we have gauge
group factors, we can turn on flat connections on S', which
we denote by U,, which need to be integrated over. This
is equivalent to projecting to gauge invariant fields.
Moreover, for each flavor charge, we introduce a fugacity
z; around the circle.

The contribution for each particle splits up formally to a
square due to the CPT structure of each multiplet. Let
®,(z;, U}, q) be the contribution of one of the particles. Let
the spin of the particle be s and charges f; under the flavor
symnsletries, and charge p; under the gauge symmetries.
Then

1oopi £\ (D
®,(z;, Uj,q> _ H(l _ q”*‘s”fo’z{‘)( 1) ’

n

where §, is the R charge of the field (and for free theory
gets identified with s). Including the CPT conjugate is the
same as introducing ®;' = 1/®,(z;', U7', q). Let

Here, we are turning off the fugacity associated with
monopole number which can be viewed as complexification of
U; [26].

J
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s =1]®.

Then the index can be written as®

I; =TrM = TrSS™!

au; 1
= [ i [®uzUj @) -~
/ Uj ’ a(z Jj Q> (I)a<zi_1’ ;1’ C])

which has the same structure as what we had seen in
d = 2, 4. Indeed, if we go to the Coulomb branch, the basic
field becomes BPS states, and so this can also be viewed as
computation using the BPS states,’ in the same sense as we
had seen in d = 2,4. Note that at least formally this can be
written in the form

/de
L= [ S
U;

using the fact that (not worrying about regions of con-
vergence of q)

’ 2

Hq)a(zh Uj. q)

U a7 = gy
J <I>(z,-‘1, .,71,61)

This computes the index at zero monopole number. One
can also include the effect of the global symmetries
associated with shifting the dual photon. This can be done
most naturally by considering a generalized index [32] with
fixed monopole numbers m;. This is equivalent [26] to
shifting the holonomies U; — U;X;, where X; are viewed
as real, and substituting X; = ¢"/? after taking |...|%.

B. N =1,d =5 and BPS states

The superconformal index in d = 5 is defined [5] by the
twisted partition function on S' x $*:

Is = Tr(=1) (> g3 *0,

where J;, and J, are the rotations of two planes in S* and
R denotes the Cartan of the SU(2) R symmetry and f;
denote flavor symmetries. The fact that there are nontrivial
N =1 superconformal theories has been argued from
many different viewpoints [13,33-36]. There are nontrivial
superconformal field theories of which the existence is

%The integration is over the Cartan of U(1)". This is also true in
the non-Abelian case where the extra measure factors can be
viewed as arising from the contributions ®, of the massive gauge
particles of the non-Abelian group in the Coulomb branch.

More precisely, what we mean by this is that if we ungauge
the U(1)’s the BPS partition function of the global symmetries
determines what are the BPS states. The index for the U(1)’s
which we gauge is determined entirely in terms of by global
symmetries.
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signaled by the existence of massless particles and tension-
less strings. Moreover, as argued in Ref. [33], many
superconformal theories deform upon mass deformations
to gauge theories. In turn, in the IR limit, the gauge theories
become weakly coupled, and one can use this weakly
coupled IR theory to compute the index. Since the index is
independent of deformations, this can be used to recover
the index at the conformal point. This idea has been
considered in Ref. [37] where the superconformal index
for some theories was computed using localization tech-
niques. This includes that of SU(2) with up to N, =7
fundamental matter. Moreover, the expected Ey +1 Sym-
metry of these theories was successfully tested. The basic
structure of the answer can be recast, which we discuss in
more detail in Sec. VI, as®

s

du;
15_/ U, S| ZESV (UL 25 91, g0) P

where ZE¢kasoV denotes the Nekrasov partition function for
the 4d theories coming from compactification of the theory
on S' and U; denote the holonomy of the gauge group
along S' and z ; are the exponential of mass parameters and
the instanton number (which is one of the flavor sym-
metries). Moreover, in the above formula, the |.. |2 involves
complex conjugating the U;,z; — U,~‘1,zjTl but keeping
g1, unchanged. Of course, this result was already antici-
pated by the computation of Pestun [38] relating the
4d Nekrasov partition function with the gauge theory
partition function on S*. This can be viewed as a special
instance of that general argument where the argument is
applied to the 4d theory obtained by compactification from
five dimensions.

The question is what is the relation of this index with
BPS states? Unlike the 3d case, where the basic fields can
be viewed as BPS states in the Coulomb branch, in the
5d case, the gauge fields and matter fields are not the only
BPS states. Indeed, this is consistent with the fact that /5 is
considerably more complicated than the 3d case where the
index is given by treating the basic fields as the only
relevant ingredients for the computations. Indeed, there are
infinitely many BPS states in this case. The question is
whether /5 can be reinterpreted just in terms of BPS states,
as was the case in d = 2,3, 4.

As is well known, the partition function of refined
topological strings on a CY which engineers the

$Just as in the 3d case, we can consider a generalized 5d index,
where we turn on U(1) instantons for the flavor symmetries on
S*. We can consider sectors with first Chern class of U(1) along
the two planes of S* be given by (m;,m,). In this context, it is
natural to expect that this formula gets changed simply by shifting

(Ui z;) = (U; qun 2 2/2, ]q:" /2q;"2/ ), coming from the shift

of spins of the BPS states in that background. For simplicity of
exposition, we restrict our attention in this paper to the sectors
where m’s are zero.

PHYSICAL REVIEW D 90, 105031 (2014)

corresponding gauge theory [39] is identical with
Nekrasov’s partition function. Therefore, we can interpret
the above statement as

%

On the other hand, it is known that topological strings
capture BPS degeneracies [8] (see Ref. [9] for the refined
version),

tOp (

Ui,Zj;611,42)|2-

710p — H H m+51+2 ;+sz+2 Un‘ m/)(—l)ZJNJI_SZ.nimj’
sing,m;mn=1
where N . . m, is the BPS degeneracy with SO(4) spins

s; written in an orthogonal basis of Cartan, gauge charges
n; and flavor charge m; [where in topological strings
(n m;) translate to an element of H, of CY where the
M2- brane wraps to give rise to the BPS state]. Thus, we can
view this Z'°P as a partition function of BPS particles,

70 = ] @ =s.

ieBPS

with ® identified as the above, counting the BPS states as if
they are the elementary building blocks of the theory, even
though there is no weak coupling Lagrangian which
describes them as fundamental fields. Nevertheless, they
seem to behave as such. Moreover, S~ is given by

1
Ztop(ql q2 7Ui_1’ ZJTI)

ST =27y qy" . U 25 =

_ Zmp(ql,fh, Ui_lvzfl)'

The proof of this is given in Sec. IV above Eq. (4.15)
when we discuss the properties of the refined partition
function.

Therefore, we can again write the index as

dU;
Is=TtM = TrSS~ = /Fflz“"’(ql, 92, Up, ).
I

Thus, we have a unified picture in d =2,3,4,5 on the
relation between BPS states and supersymmetric partition
functions.

C. Inclusion of codimension-2 defects

In the context of topological strings, we can also
consider M5-branes wrapping special Lagrangian subma-
nifolds. These correspond to 3d defects in gauge theory,
giving the analog of surface operators in the context of 4d
gauge theory [40,41]. We will describe the detailed
definition of them shortly. We can then ask how one
may compute the index of the 5d theory in the presence
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of 3d defects. This fits nicely with the above formalism by
simply combining the degrees of freedom of the BPS states
involving M2-branes ending on MS5-branes, which open
topological string counts [10,11]:

du,;dv;
Is; = / l—j|Z;[)(g:¢n,closed(ql’ 92, Ui’Vj’Zk)‘z’
U, Vv,

where U;, V; are the bulk and defect holonomies around § I
respectively, and z; are the flavor symmetries. z; corre-
spond to Kihler classes in the Calabi—Yau. This computes
the index in the zero monopole number sector. To obtain the
generalized index of Refs. [26,32] with fixed monopole
numbers m;, it suffices to take Vj to have a real piece
V; — V;X; and substituting, affer taking the |...|*, X; =

q'lnj/ 2, where we have taken the M5-brane to be in the

12—plane.9

Next, we discuss in more detail the connection between
MS5-branes wrapping Lagrangian submanifolds and gauge
theoretic defects (see also Ref. [42]). M5-branes wrapped
on special Lagrangian submanifolds and filling an R* C R>
in spacetime correspond to supersymmetric defects pre-
serving half of the supersymmetries (i.e., leading to A = 2
supersymmetry in three dimensions). We will be mainly
considering noncompact Calabi-Yau 3-folds which are
toric. A distinguished class of special Lagrangian cycles
in these cases [43,44] has the topology of R x T2 for which
a cycle of T? shrinks at each end. In the compact region of
the toric 3-fold, where one cycle wy, of T? shrinks it ends on
the web of the toric diagram. With no loss of generality, let
us call this the (1, 0) cycle of T?%. At infinity, a cycle w,, of
the T2 shrinks ending on the “spectators brane.” Let us call
this direction the wy, = (p,q). The topology of this
Lagrangian submanifold is the lens space L(g, p) which
has fundamental group Z,. As discussed in Ref. [25], there
is an N = 2 supersymmetric U(1) Chern-Simons gauge
theory living on the noncompact three dimensions of the
wrapped MS5-brane, with level ¢. Furthermore, this theory
has a flavor U(1) symmetry associated with the monopole
number (corresponding to shifting the angular scalar dual to
the photon). The p corresponds to the Chern—Simons level
for this flavor symmetry. Furthermore, the position of the
brane on the web is determined by the Fayetlliopoulos term
&y for the U(1) gauge symmetry. Such a defect can be
defined for any 5d conformal theory arising from toric CY,
where the lines of the web pass through the same point. As
the web is resolved through breathing modes of the web,
one per cycle, the spectator (g, p) line where the brane is
suspended can intersect a number of edges in the diagram,
and the brane can end on any of the lines (see Fig 1). To

’As noted earlier, we can do a similar generalization of the
index for the 5d sector, which for simplicity we will not consider
in this paper.
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FIG. 1. The geometry of Lagrangian brane on local P! x P!.
Here, we have chosen the spectator brane to be (p,q) with
slope p/g. The Chern-Simons level on the brane is at k = g. The
Lagrangian brane is suspended from the spectator brane at either
of the two points (denoted by black dots). The Coulomb branch
parameter is labeled by a. Moreover, the slope being p/gq
affects how the effective FI terms &, =&, +5=+ % change

with a.

make sure the amplitudes are invariant under resolutions,
and they are defects associated to a superconformal theory,
we need to sum over all such possible endings.

In case the toric geometry engineers an SU(N) gauge
theory (corresponding to N parallel lines, the (p,q)
spectator line will intersect the ladder of parallel lines at
any of N points, and we will need to sum over all of them.
This would correspond to breaking SU(N) to SU(N — 1) x
U(1) near the defect position. Moreover, as discussed in
Ref. [41] in the analogous situation of surface defects in
four dimensions, the surface defect generates a deficit angle
0<a<2z in the U(1) c U(1) x SU(N — 1), propor-
tional to FI term &,. We have

a

0= Z”Q%M

corresponding to moving the end brane along the line for
which the length is 1/g3,,; as the brane traverses the line,
the deficit angle varies from O to 2z. As we change the
Coulomb branch parameters, the effective £, depends not
only on the Coulomb parameter a but also on the slope p/g
(see Fig. 1).

In computing the index / in the presence of the defect,
we choose a number of defect spectators with various
slopes (p;, ¢;) and some fixed positions (corresponding to
their FI term &;). We can also have more than one brane
suspended from each. In the gauge theory setup, this will
translate to more general patterns of breaking the gauge
symmetry near the defect. We then integrate over the
breathing modes of the loops (i.e., Wilson lines of the 5d
gauge theory) and the Wilson lines associated to the gauge
field on the brane, fixing the position of the suspended lines
at infinity and the external lines of the web, which collec-
tively play the role of mass parameters.
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IV. TOPOLOGICAL STRINGS AND BPS STATES

The N = 2 topological strings propagating on a CY 3-
fold X have been intensely studied in recent years from
both mathematical and physical viewpoints. They not only
provide an exactly solvable sector of the full string theory
but also provide very useful insight into the spacetime
physics. In this section, we will summarize the relation
between topological strings on X and BPS states which
arise in the M-theory compactification on X.

Consider a Calabi-Yau 3-fold X,

ZZ] & )t ®, be the Kihler class. The classes
{a)l,a)z, ..ywp1 ) span H*(X,Z), and we denote with
D, the 4-cycle dual to w,. The genus g A-model topo-
logical string amplitude on the Calabi—Yau 3-fold X is then

given by [45]

and let w=

t,tpt - | ®
Fo(w) = Sctalle 5~ noo=),

6 pet,(X.2)

> wpe b

hll
F](a)): 24 /CZ /\CO +

pEH,(X,Z)
ngz(w):(—1)9</ /13_)7+ Z Nje fw
M, BEH,(X.Z)

(4.1)

where ¢ ;. = f ¥ @4 N @, A @, are the triple intersection
number D, - D, - D, of the divisors D, dual to w,,, N[gj are
the genus g Gromov-Witten invariants, the 4, ; is the
(g — 1)th Chern class of the Hodge bundle over the moduli
space of genus g curves, M, and

13 _
L=

In the above equation, B,, are the Bernoulli num-

bers, > ® (B, % = 7.
The topological string partition function is given by

Z(w, g,) = exp<z W0 > (4.3)

where g, is the topological string coupling constant. In
Ref. [8], topological strings on a CY 3-fold X were studied
from a spacetime point of view, and it was shown that
the topological string partition function captures the
degeneracy of BPS particles in the 5d theory coming from
M theory on X. We present a short summary of their
argument linking the BPS states in five dimensions with
topological strings. Consider M-theory compactification on
CY 3-fold X which gives a 5d theory. The massive BPS
particles will form a representation of the little group in 5d

|Boy | Boy—s|
(29)(29-2)(29-2)!"

(4.2)
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SO(4) = SU(2), x SU(2)g. These BPS particles in
five dimensions arise from M2-branes wrapping a holo-
morphic curve in X and have mass equal to the area of the
curve. These BPS particles are electrically charged under
the h''(X) Abelian gauge fields A coming from the
3-form C,

C= VAN (4.4)

As has been mentioned before, the 5d theory also has states
which are magnetically charged under A(®). These mag-
netically charged states are not point particles but are
strings coming from MS5-branes wrapping the 4-cycles in
X. The M2-brane wrapping a holomorphic curve in the
class /3 gives rise to a set of BPS particles in five dimensions
with mass equal to fﬂ w and certain SU(2); x SU(2)g spin

content. Let us denote by Nf;,"’j’e the number of particles

with spin (j;,jg) and charge f (which determines the
mass), and let

np = (=1)¥r(2jg + HNJE.

Jr

(4.5)

The integers nz"

deformations of X and are the BPS degeneracies captured

are invariant under complex structure

by the topological strings. In terms of néL, the topological

string partition function can be written as (g = e'%)

+iL co
Z(0.9,) = Zo(w.g) ] TI II H
PEH(X,Z) jL kp=—jL m=
X (1 — qsz+m€_f/fm)m( 1>2]Ln//iL
c,,kt tity R
exp 242 1 ta fX cz(X) A @,
ZO(CU, gs) - .

3 o 292
exp(—é[(ﬁ) gzzgsg <_1)gf/\/ty’12—1) ’

In Zy(w, g;) above, the numerator is the classical contri-
bution from genus zero worldsheet with three punctures
(the cubic term) and genus one worldsheet with one
puncture. The denominator is the contribution coming
from constant maps and can also be written as

_ 2 Z 19//\4,1!31_1

s =2 g
= —anog(l -q")
n=1

where M(q) = [[,(1 —¢")™" is the generating function
of the number of plane partitions known as the MacMahon

=log M(q), (4.6)
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function. Thus, the full topological string partition function
is given by

Cilitite ALl
o2 2 sala fXCZ(X)/\wa

Z(w,g,) = ¢ o8 e M(q)“T”
x I (1= germe Jooynvrin,
BojLky.m

There also exists a refinement of the above topological
string partition function. Gopakumar-Vafa invariant nﬂ

_"’ijk'i’/"k_i AN

Z(w.1.q) = & fam 2 S ON (a1 g M (g, 1))

+iL +r

< 11

M1 I Mo
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an index over the Hilbert space of states coming from f and
the index structure is needed since complex structure

deformations can change N’L /% but do not change n“

This is the story for the generic CY 3-fold. For a local CY
3-fold (noncompact toric CY 3-folds), the story is much
more interesting. The local CY 3-folds enjoy extra R

symmetry, and therefore NjL’jR are also invariants. The

refinement of the topologlcal stnng partition function
captures these full BPS degeneracies

X)

tkL+kR+m| qu kg-+my— Qﬂ)MjLIR

PEH(X.Z) jr-Jr kp=—Jj1 kg=—jg mi.my=1

MészR _ (_l)z(jL+jR)N2ijR’

where M(t, q) is the refined MacMahon function,

0

[[0-qon.

ij=1

M(t,q) = (4.8)

and g = ¢!, t = e~*2, The usual topological string parti-
tion function is recovered in the limit €; = —¢, = g;.
Notice that we have kept the classical contribution and
the constant map contribution. Equation (4.7) can also be
written as

Cijklitj'k 1

Z(w,t,q)=e" we
x PE[F(w,1,q)]
Fota= Y b
PEH,(X,Z) ]L JR
(- 1)21L+JR)NJLJRTr ()J Tr; ( t)iLs
(q1/2 1/2)(t1/2_t 1/2) ’
(4.9)

L1 X
S e 0men (a1 )M (g, )Y

where PE[f(x1, X, ...
f(x) defined as

)] is the Plethystic exponential of

PE[f(xl,xz,...)]:exp<i%). (4.10)

"In the previous sections, the coupling constants of the refined
topological strings were denoted by ¢, and ¢,. From now on, we
will denote them by # and ¢ which are more familiar in the context
of calculations involving the refined topological vertex.

(4.7)

l
In general for a local CY 3-fold, X y(X) is not well defined;
however, if we only consider compact homologies in its
definition, we get it equal to twice the number of 4-cycles.
This is the value we will use in writing the factors of the
MacMahon function in the refined partition functions.
Before we discuss how the refined topological string
partition function can be calculated for local CY 3-folds, let
us discuss an important property of the partition function
which has been mentioned before and which will be of
importance later. We would like to see how the refined
partition function transforms under complex conjugation.
In the later calculations of the index, as have been discussed
earlier, the Kihler parameters will be taken to be pure
imaginary, and some of them will be integrated over.
Keeping this in mind, the complex conjugation acts as
follows on the variables (w, ¢, q):

((/), t7 q) = (_w7 t_laq_1>‘ (4'11)
Now it is easy to see from Eq. (4.9) that'"!
F(-w,t7',q7") = F(-w,1, q). (4.12)

The MacMahon function, which is part of the closed
topological string partition function, behaves in a nontrivial
way under the complex conjugation,

MAs long as for each f we have the full spin content
corresponding to (j;, jg). This is indeed the case for the class
p if the corresponding moduli space of D-brane /\/lﬂ is compact.
A counterexample to this is the case of O(=2) @ O(0) > P'. In
this case, the moduli space of the P! is C, and the corresponding

q
F(T,t,q) =eT

‘
<q1/2_q—1/2)([l/2_t—1/2)’
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M@ 'q") = H(l g 7t

zoo: iq—mt—n] 1) >

1 n=1

L= =)

/—\N/—\
T

= exp
n=1
= 4.13
eXP<; n(l - 61" (1= t")) “.13)
= [[(1-q")" = M(q.0). (4.14)
ij=1
Thus, from Egs. (4.12) and (4.14), it follows that
Z(w,t,q) = Z(~w, 17", ¢7") = Z(~w,t,q),  (4.15)
and therefore
£(X)
Z(w,1,q)]? = (M(t,q)M(q. 1)) PE[F(w, 1, 9)
+ F(-w,1,q)], (4.16)

where the classical piece cancelled because it was odd in .

Now, we will briefly discuss the open string case which
will be of use when we consider the 5d index with a 3d
defect. In the A-model topological string, one can consider
a worldsheet with boundaries as long as proper boundary
conditions are enforced which preserve the A-model super-
symmetry. The boundary conditions in this case require the
boundary of the worldsheet to end on a Lagrangian sub-
manifold of the target space. These Lagrangian submani-
folds on which the worldsheet can have boundaries are the
Lagrangian branes of the theory. For the local CY 3-folds,
we are considering these Lagrangian branes are noncompact
and have the topology of S! x R?. The partition function
of the A model in the presence of branes was studied in
Ref. [10] from a spacetime viewpoint, and it was shown that
in this case, just as in the case of closed strings, the partition
function captures certain BPS degeneracies. The spacetime
picture arises if we consider type IIA compactification and
consider a D4-brane wrapped on the Lagrangian cycle. In
this, D2-branes can wrap holomorphic curves in X and end
on the D4-brane. The open topological string partition
function captures the degeneracies of BPS states arising
from D2-branes ending on the D4-brane. If we denote the
Lagrangian brane by £, then the D4-brane wraps £ x R?
where R? is part of the spacetime R*. The theory on the R?
has a U(1), rotation and a U(1), R symmetry. We combine
thesetwo U(1)’sanddefine S; = S+ Rand Sz = S — R.In
addition to these quantum numbers, the D2-brane couples to
the gauge field on the D4-brane, and we can introduce a
holonomy factor TrrU where U is the holonomy of the

PHYSICAL REVIEW D 90, 105031 (2014)

gauge field on the D4-brane around the nontrivial S' of £. If

we denote by N ;" the number of particles with charge /3

and U(1), x U(1)g quantum numbers s, sp in the repre-
sentation R, then the open topological string partition
function is given by

Zopen(w7 t,q, U) = PE[Fopen(wv t,q, U)] (4'17)
2\ qSL
open (@,9) e LnR - Trr U,
R;L Mg —q7)
(4.18)
where
iy = > NJRE(=1)2et 2, (4.19)

The S; + Sk is the fermion number, and the above index is
invariant under complex structure deformations.

A refinement of the above partition function also exists
and is given by Ref. [11] (see also Ref. [46]):

Zopenl®.1.q) = PE[F(w.1.q)]  (4.20)
F(a)7 t,q) = Z f/; 2sL+2SRN‘;€);R
B.R.sL.Sg
SL Sk
X A T (4.21)
(¢2—q™)

The action of complex conjugation on the open string
partition function is different than in the case of the closed
string partition function that we discussed above. The
action of complex conjugation on the open string variables
is given by

(w,t,q,U) > (~0,t7', g7, U). (4.22)
With this action, Eq. (4.21) gives
F(—o,t™,q7") = =F(-w,t,q,U™"),
1
ZO en(_wv t_17 q_la U_l) - _ . (423)
’ Zopen(_wv I, q, U 1)
Thus, for the open string case
Z ,tq, U
|Zopen(w7 Z, q, U) ‘2 = Open((l) 4q ) (424)

Zopen(_wv t,q, U_l) .

A. An example

Consider the case of O(=1) ® O(=1) — P! with a
Lagrangian brane on the P!. In this case, the open string
partition function is given by
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BPS DEGENERACIES AND SUPERCONFORMAL INDEX IN ...

Zopen(Q:1,9,2) = [ [ (1 = ¢"22)7" (1 = g"2Qz7") 7",

(4.25)

it is easy to see that

1
Zopen(Q7 ' 1. g, 27")

Zopen(Q_1 > r! ’ q_l > Z_l) =

V. FIVE-DIMENSIONAL SUPERCONFORMAL
THEORIES FROM TORIC CALABI-YAU 3-FOLDS

In this section, we briefly recall the class of 5d super-
conformal theories for which our methods yield the
corresponding index. See Ref. [12] and references therein
for more detail.

We consider M theory on toric Calabi—Yau 3-folds,
or equivalently type IIB string theory with a web of
(p.q) 5-branes. Let x°,x!,...,x” be the coordinates of
the ten -dimensional spacetime. The (p,g) 5-branes fill
the R'# part of the spacetime given by x°,x',...x* and
extend as a web of piecewise straight lines in the plane given
by x3 and x%. The generic (p, ¢) 5-brane web can be viewed
as a trivalent graph in R? depicting each 5-brane as a line
segment in R? (filling the R'* spacetime) where the slope of
each (p, q) line is given by the ¢/p. The generic graph is
trivalent with >, (p;, ¢;) = 0 on each vertex. An example of
such a web is shown in Fig. 2.

In the limit where the web becomes singular, consisting
of lines all passing through the same point, we get a
superconformal theory in five dimensions. An example is
shown in Fig. 3 where the singular web gives a super-
conformal theory with SU(2) global symmetry.

The resolutions of the web, fixing the external line,
correspond to going to the Coulomb branch of the 5d gauge

-

FIG. 2. A generic (p, g) 5-brane web.

PHYSICAL REVIEW D 90, 105031 (2014)

=N

FIG. 3. The singular limit of the web gives a superconformal
theory. In this case, the theory has SU(2) global symmetry at the
superconformal point. In the M-theory compactification, this
corresponds to a 4-cycle (P! x P') shrinking to a point.

theory. Some of these theories correspond to gauge theories
upon resolutions [39]. However, most of them do not have a
direct gauge theory interpretation. Our method for comput-
ing the index applies equally well to all of them.
Moving the external lines corresponds to changing the
mass parameters of the theory. The data of the conformal
theory are thus captured by a collection of external lines
characterized by w; = (p;, g;) 5-branes, with the condition

that
Zw,- =0.

L

Moreover, for each w;, one can introduce a mass parameter
m; corresponding to moving the external lines parallel to
itself. They add up to zero, and there is in addition a two
parameter redundancy due to shifting the origin of the R?, so
the number of mass parameters is 3 less than the number of
external lines. It was proposed in Ref. [12] that this data can
be identified with the states of a 4d string on T*T2.
Moreover, the scattering amplitudes of the resulting string
states are identified with the superconformal index /5 of the
resulting theory in five dimensions:

<H<1>wi(mi)> — I 5(2 m,-)5<z w,.).

In addition, we can select a number of spectator branes from
which the Lagrangian branes can be suspended, giving rise
to defects of the 5d theory. The slope of the spectator branes
determines the type of defect we introduce. Its position is a
mass parameter associated to the FI term on the defect. These
correspond to degrees of freedom of the unwound string in
the proposal of Ref. [12].

A. Loop variables and Kiihler parameters

In calculating the index, we need to integrate over the
loop variables associated with the 4-cycles in the geometry.
Each loop variable corresponds to a U(1) coming from the
4-cycle as discussed in Sec. IV. Since the partition function
depends on the Kéhler parameters, we need to determine
how the Kihler parameters depend on the loop variables.
This relation can be easily determined either from the web
diagram or from the geometry.

Let us first show how we can determine the dependence
of the Kéhler parameters on the loop variables using the

105031-11



AMER IQBAL AND CUMRUN VAFA

FIG. 4. A local deformation of 5-brane web.

web diagram. Consider an edge E which is one of the edges
forming the loop (4-cycle) in the web diagram. Let £ and
E, be the two edges connected with E but not part of the
loop as shown in Fig. 4 where we have used SL(2,Z)
transformation to convert the edge E to a horizontal line.

From Fig. 4, it is clear that as the 4-cycle size changes the
size of the edge E also changes with it. The relation
between the deformation of the 4-cycle given by the change
in the loop variable da and the change in the size of the
edge E oty depends on the slope of the connected edges E,
and E, and is given by

Sty = 6a| DL P2

. 5.1
91 492 ( )

If we define Q, = ez, the loop variable U = ¢, and
let wi,w,, and w, be the winding vectors associated with
E,,E,, and E, then the SL(2, Z) invariant version of the
relation between the edge variable Q, and the loop variable
U is given by

41 /\W2
Q.= QoU", n= ,
‘ 0 (Wl A We)(WZ A We)

(5.2)

where Q, is the value of Q, for a = 0 and is determined by
the position of the external legs.

If the geometry has many 4-cycles, then it may become
difficult to determine the dependence of the Kihler param-
eters on the loop variables using the web diagram although
the basic idea still is same. A more geometric way of
obtaining the relation follows from the fact that holomor-
phic curves in the geometry give rise to BPS particles in the
5d theory which are electrically charged under the U(1)?
gauge group (assuming there are g 4-cycles in the geom-
etry). The scaling relation between the Kihler parameter of
a curve C and the loop variables is just given by the electric
charge of the corresponding state:

QC _ QC’0€i<d1al+d2a2+'d-‘/af/>,

(5.3)

where {a,, ay, ..., a,} are the loop variables corresponding
to the g 4-cycles and d; is electric charge of the state coming

PHYSICAL REVIEW D 90, 105031 (2014)

from C under the U(1); [the U(1) coming from the ith 4-
cycle]. The electric charge of the curve C is a purely
geometric quantity given by the intersection of the curve C
with the 4-cycle. If we denote the 4-cycles in the geometry
by D] s Dz, ceey Dg, then

where —K, is the anticanonical class of the divisor D;. We
will use Egs. (5.3) and (5.4) to determine the relation
between the Kéhler parameters and the loop variables when
calculating the index in Sec. VL

VI. COMPUTATION OF THE 5D INDEX THROUGH
TOPOLOGICAL STRING

In this section, we will calculate the index for certain 5d
theories using the refined topological string partition
function. The refined partition function will be calculated
using the refined topological vertex. We will give a short
introduction to the refined vertex formalism.

A. Refined vertex formalism

The topological vertex, which was derived using large N
transition from Chern—-Simons theory, can be used to
calculate the topological string partition function for a
toric CY 3-fold [47]. A refinement of the topological vertex
was found in Ref. [48] and allows the calculation of refined
topological string partition function for a large class of toric
CY 3-folds.'? The refined topological vertex is given by

12

[l |Al=ll
Cou(t.9) = (.04 > Z,(t.9) <g> 2

t
n

XSG ) s (17 47), 6.1)

where s, ,(x) is the skew-Schur function and the following
table summarizes other quantities:

A=A 22 2 Ay > Oh 2 = {4 20 > -2 =#{ald, 2 1})
£(A 2(2

A = S0 s 1212 = 202 (4,2

Falt q) = (=D

5 () 1A TN

Z,(t.q) = Hiz(l) Hj;l(l — ghmifiTi

p = —%’ —%, _%, .. .}’ [_/’q_/1 — {[%q_’ll s [%q_ﬂz’ 1‘%(]"137 .. }
$1/u(X) = >, Njys,(x), Nj, = Littlewood—Richardson
coefficients

"2See Ref. [49] for an earlier attempt at refining the topo-
logical vertex by replacing Schur polynomials with Macdonald
polynomials.
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Given any web diagram corresponding to a toric Calabi—
Yau 3-fold, we give orientation to the edge and associate to
each internal edge e, a partition A(9). To each external edge,
we associate the trivial partition, i.e., the empty set. Since in
the web diagram three edges meet at each vertex, we have a
set of three partitions for each vertex. If an edge is oriented
such that it is going out from the vertex, the corresponding
partition is changed to its transpose. We use these three
partitions, say, 4, u, v, associated to the incoming edges of
the vertex, to associate with the vertex the refined topologi-
cal vertex C,,,(t, g). The ordering of the three partitions in
writing the refined vertex is taken to be anticlockwise as we
go around the vertex, and this should be the same for all
vertices in the web diagram. To each edge e, of the web
diagram, we had associated a partition A(*), and we now

associate a factor of e=#“IUatin) (£, (1, ¢))P« where 1, is the
length of this edge e, and p, is an integer which is
determined by the local geometry of the P! associated to
the edge e, in the CY 3-fold. In the neighborhood of a P! in a
CY 3-fold, the geometry looks like O(m;) @ O)(m,) with
m; +m, = =2, the integer p = (m, —m;)/2. Another
important constraint that needs to be considered in the case
of the refined topological vertex, but not for the usual
topological vertex, is that at each vertex we need to assign
one edge as the preferred edge, and all preferred edges in the
web diagram should be parallel to each other. This constraint

PHYSICAL REVIEW D 90, 105031 (2014)

comes from the construction of the refined topological vertex
in terms of plane partitions and restricts the class of toric CY
3-folds to which the refined vertex can be applied to those
geometries which are fibrations over a P! or a chain of P!’s.
In writing the refined vertex for a vertex, of the web diagram,
the partition associated with the preferred edge is always the
last partition in the refined vertex, and the two refined vertex
factors which appear for two vertices connected by a
preferred edge should have (¢,¢q) parameters switched
between them. With these constraints in place, the refined
topological string partition function is given by taking the
product over all vertices of the corresponding refined vertex
factors and taking a product over all edges of the corre-
sponding edge factors and summing over all partitions:

[T (£ (1, 4))P)

all partitions «

X H Cr,;0;00-

vertices

Zreﬁned(tm L q) =

1. An example

Consider local F,, which is the total space of the
canonical bundle on the Hirzebruch surface F,,. The web
diagram of this geometry is shown in the figure below. We
take the two horizontal lines to be the preferred edges:

Edge factor :

Vertex factors :

The refined partition function is then given by

Ziocal F, —

(—=1)AFlelF Il o=t (Al RD+olv [+ (totmis)inl- o

After some simplification and using the identity »,s,(x)s,(y) =], ;(1-x;y;)~", we get (Q,=e™"*.Q;=e")

Zigeatr, = 3 _((=1)" Q)07 (£, (g, 1)) (£, (g, 0)"q" V" WV Z, (1, 9)Z, (1, 9)Z,(q. 1)Z,s (. 1)

vn
0

(6.2)
fV(ta q) —ml f17<Q7 t)m+1 f)\ (t7 q) fu(qa t)
C)\t@I/ (t7 q) C@)\nt (ta q)C,ut@'r]<q7 t) C@’U,l/t (Q7 t)
Z edge factor x vertex factor. (6.3)
PN
(6.4)

x [T = @pimgi=1=)(1 = @ gi=+rsi=1=m)] 71,

ij=1
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- o Qr
‘ Qp

FIG. 5. The Newton polygon (a) and web diagram (b) of local
P! x P'. The Newton polygon has a unique triangulation;
therefore, this geometry has only one phase.

B. Example 1: Local P! x P!

Let us begin with a very interesting example of local
P! x P'. This CY 3-fold gives rise to N; = 0 SU(2) gauge
theory, and we will be able to compare the answer we get
from topological strings with the gauge theoretic calcu-
lation of Ref. [37].

The web diagram corresponding to this CY 3-fold
(which is dual to the Newton polygon encoding the toric
data of this CY 3-fold) is shown below in Fig. 5.

PHYSICAL REVIEW D 90, 105031 (2014)

\\ 7
N
——

h tb

tb:h-i-tf
Qy=uQy

FIG. 6. The parameter 4 is determined by the position of the
external legs and is fixed. In the 5d gauge theory, / is proportional
to the inverse of the tree level gauge coupling and has dimensions
of mass.

In the above figure, Q), and Q are related to the Kéhler
parameters #;, and 7, corresponding to the base P!, which
we will denote by B, and the fiber P! which we will denote
by F, respectively, as

Qp=e", Qp=e.
The refined partition function of this geometry

was calculated above and is given by taking m =0
in Eq. (6.4),

Ziocap it (Qps Qo 1. q) = (M(t,q)M(q, 1)):Z(Qy. Q.1.q)
2(04. 0. 1.9) = 0 gAY Z, (1,9)Z,,(g.0)2,1 (9. 1) 2,1 (1, 9)

vy

0

% H [(1- thi—l—l/z.jqj—”l,i)(l — Qf.qi—l—l’l.jtj—l/z.i>]—] .

i,j=1

The refined topological vertex calculation gives the last
factor in Eq. (6.5). The first factor involving the refined
MacMahon function M(z,q) has been added in accor-
dance with Eq. (4.7) while taking y(X) = 2, as discussed
in Sec. V, since there is only one 4-cycle. We have
ignored the classical contribution in writing the refined
partition function since it cancels when we take the
absolute value square of the refined partition function as
discussed in Sec. V.
The index for this geometry is given by

2
’

I:/dazlocalﬂl"xﬂj"<Qb’ va I,Q)

where a is the loop variable (breathing mode) for the 4-
cycle in the geometry. In Sec. VI, we discussed the general
relation between the Kéhler parameters and the loop
variable. In this case, we see that the O is related to
the loop variable as

Qf = €2m. (66)

(6.5)

|
Q) also depends on the loop variable and therefore on Q.
This dependence can be easily determined using the web
diagram. Consider the web diagram shown in Fig. 5. If the
external legs are fixed, then the two parameters Q;, and Q
are not independent anymore; instead, the choice of the
external legs determines a parameter u = e~" such that
% = u as shown in Fig. 6.

Thus, the index is given by

_ 2ia  L2ia 2
IlocalIP‘x[P’l _/da|Zlocal[P’1><[P’l(ue , € J?Q)‘ .

We can now use Eq. (6.5) to determine the above index to
. 13
obtain

"The index can also be written as a infinite product

I = H(l _ xayhuc)c(a,h,c),

a,b,c

(6.7)

where C(a, b, ¢) € Z. Tt would be interesting to see if C(a, b, ¢)
have a direct physical meaning.

105031-14
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PHYSICAL REVIEW D 90, 105031 (2014)

Bocarprpr = 14 23()® + 12 (0) (1 4 23()) + Qs 0)[1 + 23 ()] + 1 4 5 (w))x*
+ W+ 23] + 2201+ 23 () + x5 (w)])2 + (rs(0)[1 + 3 (w)]

+x3(9)
+ x4y
+x5(y

[
[

—_ —

Lt s () 425 () + 3 (s ()] + 23 () + o7 (1) = 13 + (s () [1+ 3 (w)]
2 +4ys(u) + 25 ()] + 22 (0)[1+ 373 (1) + Zs () + o7 (w)])x7 + Gz ()1 + 3 (w)]
[4+ 513 (u) + 35 ()] + 3 () (2 + Tra () + s (u) + 27 ()] + 3 + s () + 25 (u) + 0 (1) )°

+ Qs+ 3 ()] + x6(v) [Brs () + Tys(u) + 4] + xa(v)[By7(u) + 6xs(u) + 10y3(u) + 6]
+22() o (u) + 27 (u) + 4xs(u) + Tya(u) +4)x° + (ro(V)[1 + x3(w)] + 27() [4xs(u) + 8x3(u) + 6]
+xs(9)[dx7 () + Oys(u) + 16x3(u) + 7] + x3(¥)[2ro(u) + 47 () + 10xs(u) + 11y3(u) + 10]

+)(11(M) + 3}(7(”) + 3}(5<M) + 7)(3(1,5) + l)xlo + -,

where x = \/% and y = \/qt.

Equation (6.8) agrees will the result of Ref. [37] for the
case of SU(2) gauge theory with N, = 0.

To understand the relation between the gauge theoretic
calculation [37] and topological string result that we just
derived, we will look carefully at the various factors which
arise in the calculation of the index.

In Ref. [37], the index for SU(2) gauge theory with
N; =0 was calculated using equivariant localization and
was given by

I = /daQ’Sinz(a)PE[ vec(a’xvy)] ‘ZNekrasov(a’ q,x,y) 2’

perturbative contribution

instanton contribution

(6.9)

where a is the parameter on the Coulomb branch, ¢ is the
instanton counting parameter, and x and y are related to the
|

(6.8)

equivariant parameters ¢ and 7 for the U(1) x U(1) action
of C2,

(Zl’ ZZ) € C2 = (qu,t_122),

q
x:\[? Y =/qt.

The perturbative contribution after subtracting the Haar
measure is given by f..(a, x,y),

(6.10)

1
frslaxy) == v t) (e £ 1+4e2a).  (6.11)

1—xy)(1-3)

Now, we can identify different pieces of the integrand in
Eq. (6.9) with different contributions to the topological
string partition function. The topological string partition
function of local P! x P! can be written as

Zyocap'xp! (Qp- Q. 1. q) = (M(t,q)M(q, t))%ZO(Qf’ t.9)Z' (Qp. Q. 1.q) (6.12)
200y.1.0) = T110- 0sq™)(1 - 0y
ij=
20y, Opot.q) = S QPG AP 7, (1. )Z, (0. 07,1 (q.1)Zs (1. )
B Y e Vi B 019
=0, =g (1= 0 g =075
In Eq. (6.12), Zy(Qy.t.q) is the contribution to the Qlir'_r)loz’(Qb,Qf,t, q) = 1. (6.14)

partition function coming from branes wrapping the fiber
curve F only, and Z'(Q,, Oy, t,q) is the contribution to
the partition function coming from branes wrapping the
base curve B at least once and wrapping the fiber curve
arbitrary number of times. The contribution Z'(Q,,.Qy.1.q)
is such that

Thus, in the limit Q;, + 0, the only contribution to the
partition function comes from branes wrapping the fiber
curve F and the DO-branes (the constant map contribution).
Zy(Qy.t.q) gives the perturbative part of the 4d gauge
theory partition function in the limit

105031-15
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Qf =e€

2iaﬂ’ q= eﬂelt = e—iﬂGz’ ﬂ = 0 (615)

The index is expressed in terms of the variables x and y

which couple to the SU(2), and SU(2), spins. To see the
|

M(t,q) = [[ (1 =¢'# ) = T (1 =x"y) (6.16)
ij=1 ij=1
M(t.q) =M(r'.q7") = = I (=2
(i.)#(1.1)
M(t,q)2 = M(1,q)M(q,1) = ] (1 = x"7y') H (1 = xt7=2y=))
i.j=1 (i,))#(1,1)
H xiti-1 —]+l)(1 _xl+J—1y1—J—1) _ H (1 _x1+J—1yl—]+1) (617)
j=1 ij=1
Similarly,
Zy(Qy.t.q) [H 1— Qg ™) (1 - Qptig/™t) } (1= Qpx' iy =T (1 = Qpxti=2yi=)
=1 ij=1
=(1-0p) [J(1=0puxy=) T] (1= 2y
i,j=1 (i.j)#(1,1)
1_Qf) H l_Qflerj 1y,i— /+1) H I_Qfler/ 1y,i—j— l) (618)
i,j=1 i,j=1
ZO(Qf’ t, q) H (1 _ Q 1 —l—jy—H-j)(l _ Q;lx—i—j+2y—i+j)
i,j=1
_ H (1 _ Q;lxi+j—2yi—j)(1 _ Q;lxi+jyi—j)
ij=1
= (1 -of") [Ta-o7tx 2y [ (1-@5'x*y)
i.j=1 (i.j)#(1.1)
— (1 _ Q;l) H (1 _ Qj:lxi+j—1yi—j+1) H (1 _ Qf_-le_j_lyi—j_l). (619)
ij=1 ij=1
Using Eq. (6.11), it is easy to see that
2Sin2(a)PE[ vec] — 5(1 _ eQm)(l _ 6—2111) H [(1 _xl+]—lyl—]+1)(1 _xl+]—]yz—1—l)(1 _ eZlaxl+]—1y1—j+l)
ij=1
% (1 _ e2iaxi+j—1yi—j—1)(1 _ e—2iaxi+j—1yi—j+1)(1 _ e—2iaxi+j—1yi—j—l)]
1 - I -
— E‘(1 _ eZza) H (1 _ xl+]—1yl—j+1)(1 _ eZzaxz+j—1yz—j+1>(1 _ eZlaxH-j—lyz—]—l) (620)

ij=1

PHYSICAL REVIEW D 90, 105031 (2014)

relation between the integrand of the index and the
topological string partition function, let us express partition
function |M(t,q)Zo(Qy.1,q)* in terms of the variables

x:\/%andy:\/ﬁ
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Comparing Egs. (6.16), (6.18), (6.19), and (6.20), we
see that

i @PElf ] = 3 () Z(Qp. 1) (621)

Thus, the perturbative part of the integrand in Eq. (6.9) is
exactly given by the part of the topological string partition
function which gets contributions from the DO-branes and
D2-branes wrapping the fiber curve. The instanton part
of the integrand in Eq. (6.9) is precisely the Nekrasov
instanton partition function. It is known that Nekrasov’s
instanton partition function for SU(2) with Ny, =0 is
precisely equal to the part of the topological string partition
function which includes contributions from the base curve,

ie., Z'(Qp. Oy, 1. q) given by Eq. (6.13).

C. Example 2: Blowup of local P! x P!

The blowup of local P! x P! is another interesting
example that we will work out in this section. The corre-
sponding gauge theory is ' = 2 SU(2) with N; = 1. The
Newton polygon and the web diagram of this geometry are
shown in Fig. 7 below.

The H,(X, Z) is spanned by {B, F, E} where B and F
are the base and the fiber curves and E is the exceptional
curve coming from the blowup. The intersection numbers
are given by

B-B =0, F-F=0, B-F=+1,
B-E=F-E=0, E-E=-1. (6.22)
The anticanonical class is given by

-Ky =2(B+F)—E, (6.23)
and using Eq. (6.22), we get
—Kx-B=+42, —-Kx-F=+42, —-Kyx-E=+I1. (6.24)

As discussed before, the intersection number of the curves
with the aniticanonical class (the degree of the curve)
determines the electric charges of the state coming from the
M2-brane wrapping the curve and determines the relation
between the loop variables and the Kdhler parameters. In
this case, we get14
Q, = ue’, Qf = e, Q =ue™,  (6.25)
The refined partition function of this geometry is given
by

YAs before, we have chosen the position of the external line of
the web diagram such that ¢, — 0 as a — 0.

PHYSICAL REVIEW D 90, 105031 (2014)

Q—

Qy Qs

@

FIG. 7. Toric and web diagram of local P! x P! blown up at
one point.

Zx(Qp. Qr. Q. 1.q) = (M(t.q)M(q.1))*Z(Q4. Qy.1.9)
Z(va Qf7 t’ Q)
- ZQ\bV1|+\Dz\q||v’2||2tllu’l ¥z, (t.9)Z,,(q.1)

vy
X Zu’l (qv I)Zu;(h CI)

i—L_ 1t 21 21 -1
o (1= 0 g ) (1 - QO g )
<1 '
ij=1 (

1-— thi—l—l’z../qj—l/l,[)(l — qui_l_yl.jtj_yz.i) :

(6.26)

Using the refined partition function and Eq. (6.25), the
index of this geometry is given by

Ix(u,it,t,q) _/da|ZX(ue2i",eZi”,ﬁei“,t,q)|2

1
:1+<2+ﬁ+:>x2
u

3 . u 1 y\ 4
+(3y+-—tuy+—-—+—=+Z|x+
y y yu u

(6.27)

This agrees with the result of Ref. [37].

A more detailed analysis can be carried out in this case to
identify different pieces of the gauge theoretic calculation
and the topological string calculation. The gauge theory
calculation of Ref. [37] gives the index to be

] = / dazSinz(a)PE[fVeC(a7 x’ y) + fmatter(av m’ x’ y)]

perturbative contribution

In the previous example, we have already shown that part of
the above perturbative contribution that depends on the
Haar measure and f\..(a,x,y) comes from the fiber curve
and the DO-brane contribution (the constant map configu-
rations in the worldsheet terms). The new contribution to
the perturbative part here is the term that depends on

1y =/4q1),

fmalter(a’ m, x, y) where (x =

105031-17



AMER IQBAL AND CUMRUN VAFA

fmatter(a’x’ Y, m)
X —ia—im ia—im —ia+im ia+im
= m(e +e + eTiatim . etatim)
y

1

1

(¢* = q72)(F = 172)
X (e—ia—im + eia—im + e—ia+im + eia+im)‘

(6.28)

It is easy to see that the contribution of this term to the
perturbative part obtained through the plethystic exponen-
tial is precisely equal to the contribution of the curve E and
F + E to the partition function and its complex conjugate.
These are the only holomorphic curves that do not involve
the curve B (which would be the instanton contribution).
Since the curves E and F + E are locally both (—1,—1)

curves, they are rigid and have N7*/* = Ni2/f = 6; 46, 0.
and therefore from Eq. (4.7) the contribution to the partition

function from these curves is given by

Z(0.0y.1.9) = H(l - Qq"—%ﬂ'—%) (1 - Qqui—%tj—%)_

LJ

(6.29)

From Eq. (6.28), the definition of the plethystic exponential
and the above equation it follows that

PE[ matter(aﬂ m, 'x’ y)]

_ H (1 _ e—ia—iqui—%tj—%)(l _ eia—iqui—%tj—%>

i,j=1
% (1 _ e—ia—}—imt»qi—%tj—% % (1 _ eia-&-iqui—%tj—%
= Z(Q’ Qf’ t7 q)Z(Q_l’ Q;l7 [’ q) = ‘Z(Qv Qf’ t! q)|2’

where

Q — e—ia—im’ QQf — eia—im. (630)

D. Example 3: Local [,

Let us consider the CY 3-fold which is the total space of
canonical bundle on the Hirzebruch surface ;. M theory
on this CY 3-fold gives rise to pure SU(2) gauge theory
which differs from the SU(2) gauge theory coming from
local P! x P!, discussed in the last section, due to the Z,
valued theta angle [34].

[, is a nontrivial P! bundle over P!, and we will denote
the base P! by B and the fiber P! by F with corresponding
Kéhler parameters 7, and 7y, respectively, such that
B-B=-1. As usual, we define Q), = ¢™" and Q; = e™".
The Newton polygon and the web diagram of local [, are
shown in Fig. 8.

The refined partition function for this geometry was
calculated in Ref. [48] and is given by (see Appendix A of
Ref. [48] for notation and other details)

PHYSICAL REVIEW D 90, 105031 (2014)

Q b

Qy Qr

QQy

FIG. 8. The Newton polygon (a) and the web diagram (b) of
local F;. In this case, there are two distinct triangulations of the
Newton polygon corresponding to two different phases.

Ziocarr, (Qp: Qp: 1, q) = (M(t, q)M (q, t)%Z(va Qr.1.q)
Z(Qh’ va Z, q)

= S gl glal (g atlad (2)

t
vyl

v 2 1% 2
B )y
t 2

P 7 7 7

x g Z, (1,9)Z,(q.0)Z,,(q.1)Z, (1. q)
X H (1= Q= 2ig/~ 1) (1 = Qg i/~ 12|

ij=1

(6.31)

The index for this geometry is therefore given by

IlocalF] = /da|Zlocal[F| (Qh’ va f, Q)|27 (632)

where a is the loop variable corresponding to the only
4-cycle in the geometry. To calculate the index, we have to
determine the dependence of the Kihler parameters 7, and
17 on the loop variable. It is easy to see from the general
result given in Sec. VI that

(6.33)

The geometry of the web determines the relation between 7,
and #,,. If we fix the external legs of the web, we can change
the size of the 4-cycle by changing 7; if we take 1, = 0,
then the web diagram is shown in Fig. 9, and the parameter
h is determined by the position of the external legs. The
index will be a function of this parameter 4 (along with x
and y). The relation between the Q) and O can be easily
determined from the web diagram and is given by

ty
| —

2
sy

FIG. 9. The web corresponding to local F;.
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0, = uQ:. (6.34)

Thus, the index is given by

Ilocal[Fl = / da|Zlocal[F1 (ueia’ eZia7 f, Q)|2

1 4oy ;
:/EFQf|Zlocal[Fl(quvaa Lq)*.  (6.35)

Using Egs. (6.31) and (6.35), we get
2 1\ 5 AW
Ilocal[Fl =1+x4+2 y—i—; X7+ 3—|—2y +)7 X
3 2
+ <2y3+3y+—+—3>x5
y oy
1 5 2
+<u2+7+5+2y4+5y2+y—2+y—4>x6

2
y u 1
+ (2y5+6y3+u2y+10y+?+—+7
y uy

10

6 2\,
— ot )+
y oy oy

1. Flop invariance of the index

Recall that the Newton polygon of the local F; has two
distinct triangulations. These two triangulations correspond
to two different geometries which are related with each
other by a flop transition. Here, we will show that the index
we have computed above is invariant under the flop
transition.

In Fig. 10, the two triangulations and the corresponding
web diagrams are shown. The neighborhood of the base
curve B of the local F; is O(=1) @ O(-1) — P! which
can undergo a flop, giving the resulting geometry which is

Qy \Q

Qy o

FIG. 10. The two triangulations of toric diagram of local [F; and
corresponding webs.

PHYSICAL REVIEW D 90, 105031 (2014)

local P? together with the flopped curve. We will denote by
X the local F; geometry and will denote by Y the geometry
obtained by the flop from X.
The relation between the Kéhler parameters on the two
sides of the flop is given by
On = 0,0y, 0=0," (6.36)
The refined partition function of Y can be determined from
the partition function of X by carefully following the flop
and is given by [50]
Zy(Qu: 0.1, 9) = Zigearr, (07'.040.1.q). (6.37)
In the corresponding web diagram Fig. 10(b), if we fix
the external legs, then the size of the P!, which came from
the flop, changes with the size of the P2, and the relation
between them, as shown in Fig. 11, is given by

0= uQ,_f, u=eom, (6.38)

where h is the size of the flopped curve when t5 = 0.
The index of Y is then given by

hut.q) = [ dalzy(Qu.uy 0P, (639)

where a is the loop variable corresponding to the 4-cycle
P2. The relation between the loop variable a and the Kiihler
parameter ty is given by

ty = 3a. (6.40)

Equation (6.39) becomes
I = [ Bz ) 6.41
y(u.t.q) oo | er(@uz )l (6.41)

ziz

where z = ¢/, Using the relation between the partition
function of Y and that of X, Eq. (6.37) then gives

FIG. 11.

Local P? blown up at one point.
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3 Qp
Qr Qf

QQy

FIG. 12. The Newton polygon (a) and the web diagram (b) of
local [F,.

Iy(u.t,q) =/%§Z|Zx(u‘lz,uz2,t, Q> (6.42)
Changing the integration variable z — \/Lﬁ we get
Iy(u.1.q) =/2dl 1Zx (u™z, 2%, 1, q) 2,
—/da|ZX(u_%ei“,eZi“,t,q)|2. (6.43)

Comparing the above with Eq. (6.35), we see that

Ziocarr, (Qp: Q. 1. q) = (M(1,q)M(q, 1):Z(Qy, 0.1, q)

PHYSICAL REVIEW D 90, 105031 (2014)

FIG. 13. In this case, since there are two parallel legs, the area
of the base curve does not change with the area of the fiber curve.

Iy(u,t,q) = IX(u_2/3,t, q). (6.44)

E. Example 4: Local [,

The Hirzebruch surface [, is also a P! bundle over P'.
The total space of the canonical bundle on [, gives a local
CY 3-fold. As before, the Kéhler parameters corresponding
to the base B and the fiber F’ will be called 7, and 7, and we
define Q), :== e™" and Q; := ¢~"/. The Newton polygon and
the web diagram of local [, are shown in Fig. 12.

The refined partition function for this geometry is
given by

2 2 ~ ~ ~
(0. Qs 1.9) = y_0;" 0] (%) Wl i) ot) g4I AP Z, (1, 420 (9:1)2,,(4.1)Z,, (1. q)

(22

oo

X H [(1 — thi—bz.jqj—l—Vu)(] - quf—yl.jt/—l—bz.i)]—l_

ij=1
The index is given by

Ilocal[Fz = /da|Zlocal[F2(Qba Qfa I8 q)‘z- (646)

The relation between the loop variable a and the fiber
parameter 7, is the same as before:

ty=2a. (6.47)
Just as before, we fix the external legs of the web
so that we have one parameter # as shown in Fig. 13.

The relatlon between the Q, and Qf in this case is
given by

0,=e¢" =u. (6.48)

®In general for local F,,, the relation is Q) = quf_f.

(6.45)

Thus, the index becomes

Ilocale = / da|Zlocal[F2 (u’ eZia’ t, Q) |2- (649)

1 2
Ilocal[Fz =1 +)C2 +2<y+;)x3 + (3 +2y2 +)7>X4

3.2 1 1
+ <2y3+3y+—+—3— <u+—> <y+—))x5
yoy y y

2
><<2y + 5y? + + 1 t+4

1 1

— (u—l——) <3 +y2+—2>>x6
u y

9,6

Using Eq. (6.45), we get
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F. Example 5: Local P?

The local P? is the total space of O(=3) > P2. As
discussed in Sec. IV, the refined topological vertex alone
cannot be used to calculate its partition function since there
is no set of edges which covers the vertices and has edges
parallel to each other. However, some recent developments
have made it possible to calculate the refined partition
function for any local toric CY 3-fold [5S0-52]. We use the
form of the partition function given in Ref. [50]. The web
diagram of the local P? is shown in Fig. 14.

The refined partition function of local P? is given by
[50,51]

%uv 12 _lel?
ZlOCﬁlPZ(Q’ t’ 6]) - Z( Q)M|+‘”|+‘U‘ 2

Auv

x Z,(q.1)Z,(1.q)s (‘”‘”)

o)

(6.50)

/1/4 n

where

)12 12
Ry = S U e

NZ” are the Littlewood-Richardson coefficients, and U,,
is the matrix which takes Macdonald polynomials to
Schur  polynomials, s,(x) =) ,U,,P,(x:q,t). The
matrix elements U,, are rational functions of g and 7,
for example,

The above partition function can also be written as

[

Z(0,t,q) = Z( Q)‘ |[ Wi t

12

Z,(q.0Z,(t.q)]

x Z,(0,t,q), (6.51)

FIG. 14. The web diagram of local P2.

PHYSICAL REVIEW D 90, 105031 (2014)

where
Z,(Q.1.9) =) _(=Q)""¥s, (g7 17)s, (g7 17)
Aun
LI
x(5) T MR (6.52)

In Eq. (6.51), the factor in the square bracket has expansion
in positive powers of g and r~! (i.e., positive powers of x,)
but the factor in the second line, Z,, has expansion in
positive powers of ¢g~! and ¢ (i.e., negative powers of x).
This is the generic case for partition functions calculated
using the refined topological vertex and can be understood
from Eq. (4.9). Since the variables x and y couple to the
SU(2)g and SU(2),, as long as we have full (j;, jg) spin
content, negative power of x cannot be avoided. However,
in some cases we can sum over a class of curves and get a
product representation which allows expansion in positive
powers of x at the expense of introducing Q and Q~!. This
is how the index as expansion in positive powers of x was
determined in the last three examples. Therefore, what is
required here is some way of summing up the contribution
from the curves labelled by 4 and p in Fig. 14, Z,(Q, t, ),
to obtain a product representation which can then be
expanded in positive powers of x.
The index is then given by

Ilocal[lj’2 = /da|Zlocal[P’2(Q’t’ q)|2 (653)

The relation between the loop variable and Q is the same as
we derived in showing the flop invariance of the index in
Sec. VID 1,

Q = e, (6.54)
Thus, the index becomes
Locaip? = /da|Zlocal[P2(e3m7 £ q)|2' (655)

G. Example 6: Flop invariance of the index

Here, we present another example which shows that
the index is invariant under flop transition. The web
diagram of the geometry we will discuss is shown in
Fig. 15. The geometry consists of two 4-cycles D; and
D,, both a Hirzebruch surface F,, intersecting along a P!
which is the base of the fibration for both divisors. In the
neighborhood of the base curve, the geometry looks like
O(=1) ® O(=1) — P!, and therefore the base curve can
flop as shown in Fig. 15.

We will call the geometry before the flop (the one with
two [, divisors) X and the geometry after the flop (the one
with two P? divisors) Y. The relation between the Kihler
parameters of geometry X and Y is given by
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S~ QR

Qf, Qn

Qp Qr

FIG. 15. Local Calabi-Yau 3-fold with two [F; divisors.

On, = 00y, QOu,=0s0p.  0=0;"

(6.56)

The relation between the partition functions follows from
the above relation between the Kéhler parameters,

ZY(QHN Qsz Qv I3 Q) = ZX(Q_I’ QHle QHsz I3 C])
(6.57)

The geometry X has two 4-cycles and hence two
loop variables a; and a,. As discussed in Sec. V, the
relation between the Kéhler parameters and the loop
variables can be determined using the intersection between
curves and the 4-cycles, i.e., intersection of the curve and
the anticanonical class of the 4-cycle. Let us denote the
4-cycles in X by D; and D,; then, the anticanonical class is
given by

-Kp, = 2B+ 3F), -Kp, =2B+3F,. (6.58)
Then, the charge vector of the curve C = nB = mF +
m,F, is given by

Zi: (—I(D1 '(j,—I(D2 . C)

=Mn+2m —my,n—m; +2m,), (6.59)

where we have used the following intersection numbers in
calculating Eq. (6.59):

B-F,=+1, B-Fy=+I,

(6.60)

Thus, the Kéhler parameter corresponding to C in terms of
the loop variables is given by

QC —_ QC,Oeid-ZJ _ ei(n+2ml—mz)u1+i(n—m1+2m2)a2.

(6.61)

Thus, for geometry X,

PHYSICAL REVIEW D 90, 105031 (2014)

Qf — pi(a1—ar) Qf — pi(2ar-ay) 0, = ueilaita)
1 K 2 9 .

(6.62)

In the case of geometry Y, the two 4-cycles will be denoted
by P, and P, with corresponding loop variables b; and b,,
respectively. Both these divisors are P2, and the antica-
nonical class of these divisors is given by

_KPI :3H1 —E, —sz :3H2—E, (663)
where H, is the hyperplane class of P, H, is the hyper-
plane class of P,, and E is the curve connecting the two
which comes from the flop of the curve B. The intersection
numbers of these curves are

HI'HIZI, H2‘H2:1,
HlE:HzE:O

Hl . H2 - 0,
(6.64)
Using the above intersection numbers, we can easily
determine the charge vector of the curve C =nH| +
mH2 - kE,
d=(-Kp -C,—Kp,-C) = (3n—k,3m—k); (6.65)

thus, the Kihler parameter of C scales with loop variables
as

St

QC _ QC,OeidA —_ Qc,oei(3”_k)bl+(3m_k)b2. (666)

Thus, for geometry Y,
= 3ih 0=0;= i1e—ibitba)
(6.67)

On, = e, O,

Now that we have the relation between the Kéihler param-
eters and the loop variables, we can discuss the index
of the two geometries. The index for geometry X and Y is
given by

Ie(u.1.q) = / daydas)Zy(0y. 05 . 02

:/dalda2|ZX(uei(”l+“2),

ei(lal—aQ)’ ei(2a2—al))|2
Iy(iist,q) = / dbydby|Zy(Qn, O O

_ /dbldb2|ZY(€3ibl, e3ib2’ ite_i(bl+b2))|2~
(6.68)

Now, using Eq. (6.57), we get
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Iy(ﬁ,nq):i/kbldbﬂzg(ﬁ‘le“h+*ﬁ,ﬁe“zm—bﬁﬁe“ﬂh‘h)P

dz; dz . Ry
_/Zﬂiz12ﬂiz2|ZX(u 121Z27“Z%2217MZ%211|2-
(6.69)
Let z; > i~ 'z;, 25 > i 'zy; then, we get
- le dZ2 ~_ _ —
Iylin.t.q) = /2711'11 27izy i 272202 7
=Ix(a7,1,9), (6.70)

which proves the flop invariance of the index.

H. Computation of the index with 3d defects

As discussed in Sec. 111, 3d defects in the 5d theory can
be engineered using Lagrangian branes. In this section, we
consider some examples in which there is a single
Lagrangian brane in the geometry.

1. Lagrangian brane on C3

Let us begin by considering the simplest of the brane
configurations, a Lagrangian brane on C>. The geometry is
shown in Fig. 16 below.

The partition function of the brane is given by

ZBrane(Q’ U.,t, q) = Z(—Q)MTI’(IUS/V(C]_/}),

a

(6.71)

where U is the holonomy on the brane and — log Q is the area
of the disk ending on the brane. Since we are considering a
single brane, U = ¢, and the sum over the partitions is
restricted to partitions of type {(k)|k =0,1,2,...}. The
partition function is then given by

0

> (=QU sy (q7)

ZBrane =

kol
(=}

Il
1

k
(-U)q > [[(1-4)"

(1-QUq"™).

s

(6.72)

3
Il

1
1
1
1
1
o 1
1

FIG. 16. A Lagrangian brane on C* with boundary condition
given by .a.
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Define z = QU q‘%. Then,

o 1 _ qu+l>
ZBrane 2= e
et =11 (%
this is precisely the result given in Ref. [26] [Eq. (3.6)] if we

take z = ¢2¢ for the generalized index [32] where m is the
monopole charge.

2. Lagrangian brane on local P! x P!

Here, we will consider a single Lagrangian brane on
P! x P!. The brane configuration is shown in Fig. 17 below.

In the limit a — 0, the 4-cycle collapses to the curve B,
and the position of the Lagrangian brane on the B is
determined by &,. When we deform away from this point,
there are two possibilities for the Lagrangian brane. Either
it ends on the upper horizontal line or the lower one as
shown in Fig. 18. We will consider both possibilities in
calculating the index.

The partition function of the brane depends on
(Q1.0p.Qy), which in turn depend on the parameters of
the geometry for a given fixed position of the external legs,
and the holonomy on the brane. For the brane attached to
the lower horizontal leg (see Fig. 18),

Qb = MQf, Ql = ueiOQ;%l. (673)

a H< e=6+5E%

FIG. 17. The geometry of the Lagrangian brane on local
P! x P!,

Vi

Vo

\ I6] «

(b)

FIG. 18.
P! x P,

The two choices for the Lagrangian brane on local
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The partition function of the geometry when the Q) = uQy
Lagrangian brane is on the upper horizontal leg is given pel
by Q) =ehQ7. (6.75)

To introduce a Lagrangian brane on one of the internal
Zrane(O1, Qb Of), (6.74)  legs of this CY 3-fold, we generalize the unrefined
formalism of Ref. [53]. Two new partitions « and f are
introduced to account for the new open strings. The open
where string partition function is given by
|

ZBrane = Z(_Qb)\l/ﬂﬂ’/z\ (_Q1)|a|(_Q2)W (fy,@/i(t’ q)>p—1 (fb’i@a(q’ t))pfu;(t7 Q)

vy

X Py ga(t: 6. 1)Pugp(q’s 1, q)P,,(q"3 1, @) Py (175 ¢, ) Tt UTrU™!
x JJI(1 = Q1502 g+ 1®@i) (1 — Qg 1+ ypmivaiy] =1,

i

where p is the framing of the brane. Since we are considering a single brane, the sum over a and f is restricted to partitions
of type {(n)|n =0,1,...}. It is clear from Fig. 18 that

010> = Op: (6.76)

therefore,

ZBrane = Z(_Qb)\vﬂﬂbz‘ﬂﬁ\ (_Ql)‘{I'_‘ﬂl(ful@ﬂ(t’ Q))p_l (fyﬁ@a(qv t)>pfy’2(t’ q)

Vi

X Py ga(t’3 4. )Pyep(q’s 1, )Py, (¢ 1. q) Py (5 ¢, 1) Tr, UTr, U™

% H[(l — th_i+l+l/2.jq_j+(yl®a)l,i)(1 — qu_H’H’(”l®/’")1.j[_j+l/2.i)]—l'
i

Taking into account contributions of order Q, and Q;, we get

Zgrane(le Qh’ Qf) = ZO(Z - Qb(Zl + Zz + Z3) + - ‘), (677)
where
2= [T - Qa1 - Qa1
i.j
Z:=> (=010) (folq. )P Po(t3q.1) T] (1= Qpg™')"
a (i.j)ea
Q1UQ;1(]L27+11_§_% Q2U2Q qp+3t—2p -3 >
= (1 - -, 6.78
R e e Ry (o (R Temracor (679
and
q 1= Q t H—lq —-Jj
— ! — la| f
Z (1 —q)(l —l_l)(l —ql_le) za:( QlU) (f (6], .4, t)H Q it —/+(D®a)-
N ql_l |:1 _oU qlz)l‘_pTJrl
(I-q)(1 =) (1-0Qp)(1 —qr ' Qy) Ca-rh- 0)(1—qQp)(1-17'0Qy)
202 qPHI_ZP }
— + P
ST U= - o) (1 -0, - 40)*(1 - °0;)
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7, - ! S (0u0)f1(g. ) Pa(ws g 0 L
2 (l—q)(l—t‘l)(l—Qf) . 1 a\q> a\” > 4> * I_th—i+1+D,-q—j+a,
- gr! R £
‘(1—q><1—r1><1—Qf>{ (-qrion 2V a-mi-o)
_ R grt !
S T -0 -q0) }
or'v (i) va . o
R (e T e SR DI CrR) | (U7
Ql—lU—l é>p—1\/§ qgt‘%l . qp+lt—2p
B (el e e R T vt

In the above equations, P,(X; ¢, t) are Macdonald polynomials, and since a only takes the values {(m)|m = 0,1, ...}, we
give below the explicit expression for P, (#;q,t) as a function of x and y which we will need later:

Po(#36.0) = (<12t [T (1 e
Jj=1

e

= (=) - m—
(1 =xy™) [T (1 = ym=/ it
P (q x Ay 6.80
itq) = — B ) .
(m) (q q) (1 _ xy) ;nz—ll(l _ xm—j—lyj—m—l) ( )
|
The partition function of the geometry with the [ - 1 dQ; dU 7 »
Lagrangian brane has a closed string factor which is the P EZm’Q k 2m’U‘ open OPe“|
partition function of the geometry without the brane and an 1 d dU »
open string factor. _ (149 =z (ueéonTU uQ;. 0;)
’ 22xiQ, 2xiU " ;R Ey
ol
Zgrane = Zelosed X Zopen- (681) X Zopen (8_50 Q;z U_l, MQf, Qf)|2’ (683)
In our case, there are two different possibilities for the  where under complex conjugation
brane to end when the loop variable is deformed. We denote
the open string partition function of the brane on the lower (e~ u, 05, U) = ( e8!, ijl’ U-h. (6.84)

leg by Zpe, and the open string partition function of the

brane on the upper leg by Zopen' The two are related as
follows:

= il
Zopen = Zopen<e_§0Qf2 U_l, qu, Qf), (682)

where the open string partition function of the brane on the
lower leg is

p+l1

Zopen(uefonTUv qu? Qf)

The index of the defect theory is given by

For p = 1, the above index up to order x* is (v = €%)

1—1:{1+i+< +——L——2+—+i
p= l/t%y 3 2 u? u u6y2 u3y2
10y? 12 2
1=y 2w (1= u(l =)

%_:2)))(2—'—'”]

To compute the index in the monopole sector m, we simply
substitute v = x™/2.

+
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VII. CONCLUSION

We have seen in this paper that the BPS states which arise
in the IR flow of superconformal theories upon deformations
are a powerful tool in computing superconformal indices at
the conformal point. This is particularly so in d = 3,5,
where we have proposed how one may recover the full index
in terms of the BPS partition functions. We have given an
indirect argument for our proposal based on reduction of the
theory to four dimensions and Pestun’s result for partition
functions on S*. We have checked that it works in all the
known examples. It should be possible16 to derive these
results by compactifying M theory on toric 3-folds times
S x §* and applying localization ideas to the full string
theory similar to the derivation of Ooguri-Strominger-Vafa
conjecture in Ref. [55].

It is natural to ask whether we can compute the partition
function of supersymmetric theories on S° and S° using
BPS data. Indeed, there is a natural proposal for this [56],
which shows how this may be done using topological

oWe conjecture that this should make sense in the full M-
theory context, at least for a noncompact Calabi—Yau 3-fold, i.e.,
that one could embed the constructions of Refs. [38,54] and
similar extensions in other dimensions in the full string theory.

PHYSICAL REVIEW D 90, 105031 (2014)

strings. Moreover, this leads to computation of the index of
six-dimensional superconformal theories with A" = (1,0)
and N = (2,0) supersymmetry on S' x S [56]. We thus
see that BPS states, as captured by topological strings, are
powerful enough to capture the partition function and the
superconformal index of a large number of theories in
diverse dimensions.

Our work gives further motivation for a reformulation of
supersymmetric theories entirely in terms of their BPS data
in the IR, in diverse dimensions with varying amounts of
supersymmetry. It would be very important to see if one can
fully reconstruct the superconformal theories solely from
their BPS data.
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