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The effect of the anomalous magnetic moment of quarks on thermodynamic properties of the chiral
condensate is studied, using a two-flavor Nambu–Jona-Lasinio model at finite temperature T, chemical
potential μ, and in the presence of a uniform magnetic field eB. To this purpose, the Schwinger linear-in-B
ansatz for the anomalous magnetic moment of quarks is considered in terms of the nonperturbative Bohr
magneton. In a two-dimensional flavor space, it leads to the correction T̂Sch ¼ κ̂ Q̂ eB in the energy
dispersion relation of quarks. Here, Q̂ is the quark charge matrix. We consider three different sets for κ̂,
and numerically determine the dependence of the constituent quark mass on T; μ, and eB for fixed κ̂.
By exploring the complete phase portrait of this model in T − μ, μ − eB, and T − eB phase spaces for
various fixed eB, T, μ, and κ̂, we observe that inverse magnetic catalysis occurs for large enough κ̂.
Moreover, in the regime of weak magnetic fields, the phenomenon of reentrance of chiral symmetry broken
and restored phases occurs for T-, μ-, and eB-dependent κ̂.
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I. INTRODUCTION

The effects of uniform magnetic fields on relativistic
quark matter have been studied extensively in recent years
(for an overview, see [1]). The main interest arises from the
relevance of these effects on the physics of neutron stars, as
well as on the dynamics of the quark-gluon plasma created
in relativistic heavy ion collisions (HICs). It is known that
magnetars, a certain class of neutron stars, exhibit magnetic
fields up to 1012–1013 Gauß on their surface, and 1018–1020

Gauß in their inner core [2]. In [3] the dynamo effect during
the first few seconds after the star’s gravitational collapse is
made responsible for the generation of these unusual
magnetic fields. Even larger magnetic fields are believed
to be created in early stages of noncentral HICs. Depending
on the collision energies and impact parameters of the
collisions, the strength of these magnetic fields are esti-
mated to be of the order eB ∼ 0.03 GeV2 at RHIC and
eB ∼ 0.3 GeV2 at LHC [4].1 As it is shown for the first time
in [5], the magnetic fields created in noncentral HICs are
time-dependent and rapidly decay after τ ∼ 1–2 fm=c2.2

However, as is described in [7], the presence of certain
medium effect, like the electric conductivity, substantially
delays the decay of these time-dependent magnetic fields.
This is why in the most cases, the effect of constant and
uniform magnetic fields on quark matter is discussed in the
literature.

A uniform and spatially constant magnetic field breaks the
Lorentz invariance of the physical system, and consequently
induces anisotropies in the parallel and perpendicular
directions with respect to the direction of the background
magnetic field. The anisotropies include those in the neutrino
emission and magnetic winds in the astrophysics of magnet-
ars [3], or anisotropies arising in the refraction indices [8],
and decay constants of mesons in hot and magnetized quark
matter [9,10]. The latter may be relevant for the physics of
heavy ion collisions. Recently, the pressure anisotropies for a
gas of protons and a gas of neutrons are studied in [11]. It is,
in particular, demonstrated that the inclusionof theanomalous
magnetic moment (AMM) of protons and neutrons increases
the level of anisotropies in both cases. Pressure anisotropies,
arising from uniform and spatially fixed magnetic fields, are
supposed to have significant effects on the elliptic flow v2 in
heavy ion collisions [12].
In the present paper, we apply the method used in [11], to

study the effect of various T-, μ-, and eB-dependent and
independent AMM of quarks on the phase diagram of a
two-flavor magnetized Nambu–Jona-Lasinio (NJL) model
at finite temperature T and chemical potential μ. We will
explore the phenomenon of magnetic catalysis (MC),3 and
inverse magnetic catalysis (IMC),4 as well as the reentrance
of chiral symmetry broken and restored phases in the phase
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1Here, eB ¼ 1 GeV2 corresponds to B ∼ 1.7 × 1020 Gauß.
2See also [6] for a recent review of this topic.

3The phenomenon of MC is introduced originally in [13,14],
and is extensively discussed in the literature (for a recent review,
see [15]).

4To the best of our knowledge, the term “inverse magnetic
catalysis” is used for the first time in [16], but the phenomenon of
IMC had been previously observed, e.g., in [17].
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space of our model. The phenomenon of reentrance is
already observed in the condensed matter physics of
superfluidity [18] and liquid crystals [19], as well as in
the astrophysics of neutron stars [20].
In our previous works [21,22], we have already studied

in detail the complete T − μ, μ − eB, and T − eB phase
portraits of the magnetized two-flavor NJL model, without
inclusion of the quark AMM. We mainly worked in the
supercritical regime of the NJL coupling, i.e., the coupling
constant of the NJL model was chosen in such a way that
the system exhibited chiral symmetry breaking even for
vanishing magnetic fields. In this case, the magnetic field
only enhances the production of bound states; they consist
of mesons in chiral symmetry broken phase (χSB) and
diquarks in color symmetry broken phase. In this sense,
in [22], we focused on the phenomenon of MC of chiral
and color symmetry breaking, and reported about various
interesting phenomena, such as de Haas-van Alphen
(dHvA) oscillations [23], that lead to reentrant chiral and
color symmetry broken phases, mainly in the regime of
weak magnetic fields. The phenomenon of MC is discussed
intensively in many contexts [15]. At zero temperature, it
arises from a dimensional reduction from D to D − 2
dimensions in the lowest Landau level (LLL). This is
believed to be responsible for the aforementioned enhance-
ment of bound state formation. As a consequence, in a
massless theory, whose original Lagrangian density sat-
isfies the chiral symmetry, a finite mass is dynamically
created, which then breaks the chiral symmetry of the
theory. Finite temperature and baryonic chemical potential
compete with external magnetic fields in this regard,
and, except in the regime of very strong magnetic fields,
suppress the formation of mesonic bound states (see [22]
for more details). In our model, this regime is characterized
by a threshold magnetic field eBt ∼ 0.5 GeV2, abovewhich
the dynamics of the fermions is solely dominated by LLL.
In this regime, the constituent quark mass monotonically
increases with increasing eB as a consequence of MC.
In the regime eB < 0.5 GeV2, however, the eB dependence
of the condensate exhibits dHvA oscillations, which occur
whenever Landau levels pass the quark Fermi level.5 Thus,
because of these oscillations in the regime of eB < eBt, at a
fixed temperature and for both vanishing and nonvanishing
chemical potential, the chiral condensate exhibits two
different behaviors: In some regimes, it increases with
increasing eB, this is related to the phenomenon of MC.
But, in some other regimes, it decreases with increasing eB.
This is related to the phenomenon of IMC.
In [22], we have also studied the effect of external

magnetic fields on T − μ, T − eB, and μ − eB phase
portraits of magnetized two-flavor NJL model. We have
shown that, as a consequence of the background magnetic

fields, second-order chiral phase transitions turn into first-
order ones, and, in the regime above eBt ∼ 0.5 GeV2, for
fixed μ and T, the critical temperature Tc and chemical
potential μc of χSB, monotonically increase with increasing
eB. This has been supposed to be an indication of the
phenomenon of MC, which is mainly a LLL dominated
effect. On the other hand, it has been shown, that in the
regime of weak magnetic fields, the aforementioned dHvA
oscillations, lead again to two different behaviors of Tc and
μc as a function of eB: In some regimes, Tc and μc increase
with increasing eB, because of MC. In some other regimes,
however, as a result of IMC, Tc and μc decrease with
increasing eB. The phenomenon of reentrance of chiral
(color) symmetry broken phases at certain fixed ðT; μ; eBÞ
is also believed to be a consequence of dHvA oscillations in
the weak field regime [22].
Several other groups also investigate the effects of

external magnetic fields on the phase diagram of hot
QCD. These includes the groups working on lattice QCD
at finite T, zero μ and nonvanishing eB [27–32], or
investigating the QCD phase diagram by making use of
functional renormalization group method [33–35]. Many
other groups elaborate different QCD-like models at
finite ðT; μ; eBÞ, that exhibit χSB. The latter consists
of, e.g., NJL-model [36,37], Polyakov-linear-σ model
[38], Polyakov-NJL model [39–41], Polyakov-Quark-
Meson model [42,43], NJL model including axial chemi-
cal potential [44,45], Ginzburg-Landau model [46],
charged scalar model with spontaneous χSB [47], NJL
model with dynamical AMM generation [48]. Let us
notice that the interest on this subject grows up after
the still not fully comprehended lattice results by Bali
et al. in [28]. They reported an unprecedented decrease of
Tc as a function of eB within an ab initio lattice QCD
simulation, and declared this as a signature of IMC in this
framework. The physical explanation of the phenomenon
of IMC is, in particular, still under investigation: In
[31,40], the interaction of the magnetic field with the
sea quarks leading to a backreaction of the Polyakov loop,
and in [36] the magnetic inhibition because of neutral
meson fluctuations are made responsible for IMC. In [45],
it is explained how IMC is induced by sphalerons.
Recently, in [37,41,47,48], the running of the correspond-
ing coupling constants to the considered models, and
therefore their eB dependence are taken into account, and
it is shown how the lattice results on the eB dependence
of Tc in [28] can be successfully reproduced.
In a parallel development, the competition between mass

and eB contributions to QCD pressure is considered up to
two-loop radiative corrections in [49]. It is argued that the
deviation of the Landé g-factor from 2, which is of about
g − 2 ∼ 10−3, may produce sizable corrections to the QCD
pressure. This affects the energy of the LLL by turning
the mass into m2

eff ¼ m2 þ ðg − 2ÞeB. For the relevant
eB > 0.01 GeV2, the correction will be in the MeV range.

5De Haas-van Alphen oscillations are studied in [24,25], and
recently in [26].
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It may thus compete with m, and cannot be ignored in
quantitative studies [49]. The effect of dynamically gen-
erated AMM of fermions on the phase diagram of a
magnetized one-flavor NJL model is recently investigated
in [50].6 Here, inspired by the results presented in [53], a
nonperturbative mechanism for the generation of the quark
AMM is introduced. To this purpose, a one-flavor NJL
Lagrangian density including an appropriate tensor channel
is used. It is in particular shown, that in the subcritical
regime of the NJL coupling, where the phenomenon of MC
is solely responsible for χSB, two independent condensates
emerge in the LLL dominant regime. They correspond to
the dynamical mass and the AMM of quarks. The fact that
the dynamical generation of AMM is mainly a LLL effect
suggests that the Schwinger linear-in-B ansatz [54] for the
quark AMM is not appropriate for massless fermions. This
is argued to be in sharp contrast to theories with massive
fermions, where the Schwinger ansatz is allowed in the
limit of weak magnetic fields [55]. Moreover, in [50], the
critical temperature of the second-order phase transition of
χSB is determined in a LLL approximation, and it is shown
that the generation of the quark AMM increases Tc as a
function of eB, and therefore it cannot be responsible for
the phenomenon of IMC. In [48], however, following the
aforementioned proposal of eB-dependent coupling con-
stant, the effect of running coupling constant of the
one-flavor NJL model on Tc is studied. It is shown, that
in the regime of strong magnetic fields, characterized by
eB ≫ Λ2

QCD, the coupling constant of the model becomes
anisotropic, and only the coupling parallel to the direction
of the background magnetic field receives contributions
from quarks in a LLL approximation. Interestingly, as a
result of a certain antiscreening arising from these
quarks, this coupling decreases with increasing eB.
The dependence of Tc on this specific coupling leads to
the desired phenomenon of IMC in the strong magnetic
field limit.
In the present paper, motivated by the above intriguing

developments, we will consider the quark AMM in the
one-loop effective potential of a magnetized two-flavor
NJL model at finite T and μ. In contrast to [50–52], and
similar to the method used in [11], we will induce the quark
AMM by an additional term âσμνFμν in the original
Lagrangian of the model, including massive quarks. The
coefficient â, proportional to the Bohr magneton μB ≡ e

2m,
will then be identified with the quark AMM. Here, μB
depends on the constituent quark mass m≡m0 þ σ0,
where m0 is the current quark mass and σ0 is the chiral
condensate. This is in contrast to the approach described
in [52], where the Bohr magneton is inversely proportional
to current (bare) quark mass m0. The aforementioned
additional term âσμνFμν in the Lagrangian density of the
NJL model leads to the energy dispersion

Eðp;sÞ
qf ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
p2
3 þ ½ð2pjqfeBj þm2Þ1=2 − sTf�2

q
; ð1:1Þ

for up and down quarks in the presence of a constant
magnetic field. Here, Tf ¼ κfqfeB with κf ≡ αf

2m, p labels
the Landau levels, s ¼ �1 states for the spin of quarks,
f ¼ u; d labels the up (u) and down (d) flavors, and qf ¼
2=3;−1=3 is the charge of up and down quarks. Moreover,
αf is related to the deviation of the Landé g-factor from 2.
The above additional term Tf is equivalent to the linear-in-
B ansatz by Schwinger Tsch

f ¼ αfqfμBB for Tf, with the
nonperturbative (effective) Bohr magneton [53] μB ¼ e

2m.
Let us notice, that in the one-loop level, αf is proportional
to the electromagnetic fine structure constant αe ¼ 1

137
.

Perturbatively, it receives radiative corrections from the
vertex function of quarks and the background photon field.
In the framework of constituent quark model [56], it
appears in the ratio If ¼ M

1þαf
¼ μN

μf
qfmp, with M the

constituent (effective) quark mass,7 μN ≡ e
2mp

the nuclear

magneton, μf the magnetic moment of the fth quark
flavor,8 and mp the proton mass (see Appendix or more
details). As it is argued in [56], choosing the experimental
values for μN; μf; qf, and mp, the ratio If is fixed to be
Iu ∼ 338 MeV for the up quark and Id ∼ 322 MeV for the
down quark [56]. A phenomenological constant value for
κf, compatible with the constituent quark model, can then
be determined by choosing an appropriate constant value
for the constituent (effective) mass M, that yields αf, and
consequently κf through given values of If; f ¼ u; d, and
the definition κf ¼ αf

2M.
In this paper, we will consider three different sets for the

dimensionful coupling κf; f ¼ u; d in Tf ¼ κfqfeB; two
of them will be T-, μ-, and eB-independent, and arise, in the
framework of constituent quark model, by separately
choosing M ¼ 420 MeV, and M ¼ 340 MeV, and fixing
αf through the phenomenologically given ratio If, as
described above. The third set of κf; f ¼ u; d will depend
on T; μ, and eB, and include the T-dependent one-loop
perturbative correction to αf, generalized from the QED
results presented in [57,58]. Plugging first (1.1) with given
values of κf into the one-loop effective potential of our
model, and then minimizing the resulting expression with
respect to m, we will determine the T; μ, and eB depend-
ence of the constituent quark mass for each fixed set of
κf; f ¼ u; d. The complete T − μ, μ − eB, and T − eB
phase portraits of the model for various fixed eB; T; μ, and
κf will also be explored. We will show that for large
enough phenomenological value for κf, the phenomenon of
IMC occurs, i.e., in certain regimes of the parameter space,

6See also [51,52] for similar studies.

7Assuming the isospin symmetry, we have Mu ¼ Md ≡M.
8The magnetic moment of quarks will be determined by the

magnetic moments of protons and neutrons.
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the critical temperature (chemical potential) Tc (μc)
decreases with increasing eB. Moreover, for T-, μ-, eB-
dependent κf, including the one-loop perturbative correc-
tion for α, the phenomenon of reentrance of χSB occurs for
certain fixed values of T and μ, and in the regime of weak
magnetic fields.
The organization of this paper is as follows. In Sec. II, we

will introduce the quark AMM in the magnetized two-
flavor NJL model and will determine the one-loop effective
action of this model at finite T; μ, and eB. We will also
introduce three different sets of the factor κf; f ¼ u; d,
mentioned above. In Sec. III A, the T; μ, and eB depend-
ence of the constituent quark mass m will be presented for
each fixed κf. In Sec. III B, the complete phase portrait of
the model will be explored for various fixed κf. We will
also study, in Sec. III C, the effect of different sets of κf on
the pressure anisotropies in the longitudinal and transverse
directions with respect to the direction of the magnetic
field. Eventually, the eB dependence of the magnetization
M will be demonstrated, and the effect of κf on the product
of MB as a function of eB will be studied. Section IV is
devoted to our concluding remarks. In Appendix, we will
use the constituent quark model, and argue how the
constant values of κf; f ¼ u; d can be determined by the
phenomenological data of the magnetic moment of protons
and neutrons.

II. THE MODEL

We start with the Lagrangian density of a two-flavor NJL
model in the presence of a uniform magnetic field,

L ¼ ψ̄ðxÞ
�
iγμDμ −m0 þ

1

2
âσμνFμν

�
ψðxÞ

þ Gf½ψ̄ðxÞψðxÞ�2 þ ½ψ̄ðxÞiγ5τψðxÞ�2g: ð2:1Þ

Here, the Dirac field ψc
f carries two flavors, f ∈ ð1; 2Þ ¼

ðu; dÞ, and three colors, c ∈ ð1; 2; 3Þ ¼ ðr; g; bÞ. In the
presence of a constant magnetic field, the covariant
derivative Dμ is defined by Dμ ¼ −∂μ þ ieQ̂Aext

μ , where
the quark charge matrix is given by Q̂≡ diagðqu; qdÞ ¼
diagð2=3;−1=3Þ,9 and the gauge field Aext

μ ¼ ð0; 0; Bx1; 0Þ
is chosen so that it leads to a uniform magnetic field
B ¼ Be3, aligned in the third direction. The up and down
current quark masses are assumed to be equal, and denoted
by m0 ≡mu ¼ md. This guarantees the isospin symmetry
of the theory in the limit of vanishing magnetic field.
The latter is introduced by the term proportional to
σμνFμν in the fermionic kernel of the Lagrangian density
L. Here, σμν ¼ i

2
½γμ; γν�, and the Abelian field strength

tensor is given by Fμν ¼ ∂ ½μAext
ν� , with Aext

μ given above.

The proportionality factor â is related to the quark AMM
(for more details, see Appendix). In the present
two-flavor NJL model, â is defined by â≡ Q̂ α̂ μB, where
Q̂ and α̂≡ diagðαu; αdÞ are 2 × 2 matrices in the flavor
space. At one-loop level, and for a system with isospin

symmetry αf ¼ αeq2f
2π for both f ¼ u; d flavors. Here, αe ¼

1
137

is the electromagnetic fine structure constant, and μB ≡
e
2m is given in terms of the electric charge e and the quark
constituent mass m≡m0 þ σ0, where m0 is the current
quark mass and σ0 the chiral condensate.

10 To introduce the
chiral condensate σ0, let us rewrite the NJL Lagrangian
(2.1) in a semi-bosonized form

Lsb ¼ ψ̄ðxÞðiγμDμ −m0 þ âσ12BÞψðxÞ

− ψ̄ðxÞðσ þ iγ5τ · πÞψðxÞ −
ðσ2 þ π2Þ

4G
; ð2:2Þ

where the mesonic fields σ and π are defined by

σðxÞ ¼ −2Gψ̄ðxÞψðxÞ; π ¼ −2Gψ̄ðxÞiγ5τψðxÞ:
ð2:3Þ

Here, as in (2.1), G is the NJL mesonic coupling and
τ ¼ ðτ1; τ2; τ3Þ are the Pauli matrices. To arrive at (2.2),
F12 ¼ −F21 ¼ B is used. Integrating out the fermionic
degrees of freedom, and using

eiΓeff ½σ;π� ¼
Z

Dψ̄Dψ exp

�
i
Z

d4xLsb

�
; ð2:4Þ

the effective action of mesons ðσ;πÞ, Γeff ¼ Γð0Þ
eff þ Γð1Þ

eff is
derived. It is given in terms of a tree-level action

Γð0Þ
eff ½σ; π� ¼ −

Z
d4x

ðσ2 þ π2Þ
4G

; ð2:5Þ

and a one-loop effective action

Γð1Þ
eff ¼ −iTrfcfσxg ln½iS−1Q ðσ; πÞ�; ð2:6Þ

where the inverse fermion propagator is formally given by

iS−1Q ðσ; πÞ ¼ iγμDμ þ âσ12B − ðm̄þ iγ5τ · πÞ: ð2:7Þ

Here, m̄ ¼ m0 þ σðxÞ. Expanding the effective action
around a constant configuration ðσ0; π0Þ ¼ ðconst; 0Þ for
the mesonic fields ðσ; πÞ, the constituent mass m̄ turns out
to be constant, and can be given by m ¼ m0 þ σ0. By
carrying out the trace operation over color (c), flavor (f),
spinor (σ) degrees of freedom, as well as over the

9In this paper, the hat symbol on each quantity denotes its
matrix character in the two-dimensional flavor space.

10This is in contrast to [51,52], where the Bohr magneton is
defined in terms of the current quark mass m0 (see below).
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four-dimensional space-time coordinate (x), the one-loop
effective action of this model reads

Γð1Þ
eff ¼ −6i

X
qf¼f2

3
;−1

3
g
ln detxðEðp;sÞ2

qf − p2
0Þ: ð2:8Þ

Here, the energy spectrum of up and down quarks in the
presence of external magnetic fields and for nonvanishing
AMM is given by

Eðp;sÞ
qf ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
p2
3þ½ðjqfeBj½2pþ1−sξf�þm2Þ1=2−sκfqfeB�2

q
;

ð2:9Þ

wherep ≥ 0 labels the Landau levels, and s ¼ �1 stands for
the spin of the quarks. Moreover, ξf ≡ sgnðqfeBÞ and

κf ≡ αf
2m, with f ¼ u; d. The energy Eðn;sÞ

qf arises either by
computing the fermion determinant of the present two-flavor
NJL model including the quark AMM, or by solving the
modified Dirac equation ðγ · Π −mþ 1

2
âσμνFμνÞψðxÞ ¼ 0,

withΠμ ≡ i∂μ − eQ̂Aext
μ , using, e.g., the Ritus eigenfunction

method [59]. Following this method, which is descibed also
in [60] for two- and four-dimensional space-time, it turns out
that for nonvanishing fermion AMM, only the energy
eigenvalues of the Dirac operator are modified, while the
Ritus eigenfunctions remain the same as for vanishing
AMM. Let us notice that, the additional âσμνFμν term in
the Dirac operator commutes with ðγ · ΠÞ2. This is why
the modified Dirac operator γ · Π −mþ 1

2
âσμνFμν has the

same eigenfunctions as the ordinary Dirac γ · Π −m for
vanishing AMM.
Let us compare, at this stage, the energy dispersion (2.9),

with the energy dispersion (1.1) appearing also in
[51–53].11 According to Schwinger [54], Tf is linear in
B, and is given by Tsch

f ≡ αfqfμBB. Plugging μB ¼ e
2m into

this relation and using κf ¼ αf
2m, we obtain Tsch

f ¼ κfqfeB,
which appears also in (2.9). Thus, starting from the above
Tsch
f ., the two energy dispersion relations (2.9) and (1.1) are

equal. The Schwinger linear-in-B ansatz for AMM is
recently discussed in the literature [51,52]. In particular,
it is shown, that this ansatz is only valid in the weak-field
limit eB ≪ m2

0. In the present paper, however, we will use it
for the whole range of eB. To explain this apparent
discrepancy, let us notice that the crucial difference
between our approach and the one presented in [51,52],
is that in our approach the Bohr magneton μB is defined in
terms of the constituent quark mass m ¼ m0 þ σ0, with m0

the current quark mass and σ0 the chiral condensate, while

in [51,52], the Schwinger ansatz is defined in terms of
μ0B ≡ e

2m0
, and is independent of σ0. Having this in mind, we

expect, that the difficulties related to the Schwinger linear
ansatz with μ0B, described in [51,52], do not occur in our
work.
As described in Sec. I, in the present paper, the quark

AMM will be introduced in the framework of a constituent
quark model. This is in contrast to [50–53], where a
dynamical symmetry breaking is responsible for its gen-
eration. In [50], for instance, the quark AMM is dynami-
cally induced through a nonvanishing spin-one condensate.
Here, starting from a massless theory, it is shown that since
a nonperturbative mechanism of quark pairing, mainly in
the LLL, is responsible for the dynamical generation of
AMM, the Schwinger linear-in-B ansatz, Tsch

f ¼ αfqfμ0BB,
is not even valid in the aforementioned weak-field approxi-
mation.12 In the present paper, however, in contrast to [50],
we do not start with a massless Dirac theory. Moreover,
we will work, in contrast to [50], in the supercritical regime
of the NJL model, i.e., we will choose the NJL coupling G
in such a way that the model exhibits a dynamical mass,
even for zero eB. We will consider the contributions of all
Landau level, and will neither restrict ourselves to LLL, as
in [50], nor to one-loop approximation in the LLL, as in
[51,52]. Hence, starting from the Schwinger linear ansatz
with μB instead of μ0B seems to be reasonable within the
constituent quark model. Here, although the quark AMM is
not dynamically generated, as in [50–52], but it is related
to the dynamically generated quark mass m through
the nonperturbative (effective) Bohr magneton [53] μB
in Tsch

f ≡ αfqfμBB.
The constituent quark mass m is determined by mini-

mizing the thermodynamic (one-loop effective) potential,
arising from (2.8). For a constant configuration σ0, the one-
loop effective potential of the theory is given by performing
the remaining determinant over the coordinate space in
(2.8). This leads to the one-loop effective potential Ωeff .,
defined by Ωð1Þ

eff ≡ −V−1Γð1Þ
eff , where V denotes the four-

dimensional space-time volume. In momentum space, the
aforementioned determinant is evaluated by the standard
replacement

Z
d4p
ð2πÞ4 fðp0;pÞ →

jqfeBj
β

×
Xþ∞

n¼−∞

Xþ∞

p¼0

X
s¼�1

Z
dp3

8π3
fðiωn − μ; p; s; p3Þ; ð2:10Þ

where temperature T and chemical potential μ are intro-
duced by replacing p0 with p0 ¼ iωn − μ. Here, the

11We have slightly changed the notations of Ferrer et al. in
[51–53], to be able to compare their results with ours. In
particular, to consider the multiflavor nature of the NJL model
in the present paper, we have inserted qf wherever it was
necessary.

12The LLL approximation is allowed only in the strong-field
limit eB ≫ m2

0. Moreover, the nonperturbative result for AMM,
arising in the LLL approximation [50] is nonanalytic, and cannot
be Taylor expanded in the orders of B.
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Matsubara frequencies ωn ≡ ð2nþ1Þπ
β with β≡ T−1

are labeled by n. After performing the sum over n, the
effective potential of the two-flavor NJL model, including
the tree-level and the one-loop part is given by

Ωeffðm;T; μ; eBÞ

¼ ðm −m0Þ2
4G

− 3
X

qf¼f2
3
;−1

3
g

jqfeBj
β

×
Xþ∞

p¼0

X
s¼�1

Z
dp3

4π2
fβEðp;sÞ

qf þ ln ð1þ e−βðE
ðp;sÞ
qf

þμÞÞ

þ ln ð1þ e−βðE
ðp;sÞ
qf

−μÞÞg: ð2:11Þ

In the rest of this paper, we will use the above effective
potential to study the phase diagram of the magnetized
two-flavor NJL model at finite ðT; μ; eBÞ and for a given
value of κf; f ¼ u; d. To do this, we will follow two
different approaches:
In the first approach, we assume that the value of

κf ¼ αf
2m, appearing in the quark energy dispersion relation

Eðp;sÞ
qf from (2.9), is constant and independent of ðT; μ; eBÞ.

Minimizing the effective potential Ωeff . from (2.11) with
respect to m, we will numerically determine the constituent
quark mass m as a function of ðT; μ; eBÞ and for a fixed
value of κf; f ¼ u; d. In this approach, αf ¼ 2mκf will
depend on ðT; μ; eBÞ only through the constituent mass m.
To fix κ̂, we will follow the method described in Appendix.

Here, two different sets of constant κ̂i ¼ diagðκðiÞu ; κðiÞd Þ,
i ¼ 1; 2 are introduced, which are compatible with the
constituent quark model [see (A10) and (A12)]. To have a
sizable quark AMM, we will use

κð1Þu ¼ 0.29016 GeV−1;

κð1Þd ¼ 0.35986 GeV−1; ð2:12Þ

[see also (A9)]. The second set yields smaller values of
αf; f ¼ u; d,

κð2Þu ¼ 0.00995 GeV−1;

κð2Þd ¼ 0.07975 GeV−1; ð2:13Þ

[see also (A11)]. In Sec. III, we will in particular show, that
once κ̂ in (2.9) is chosen to be κ̂1 from (2.12), the
phenomenon of IMC occurs in the phase diagram of our
two-flavor magnetized NJL model.
In the second approach, we will consider the leading

one-loop correction to the quark (electromagnetic) AMM
at nonzero T and vanishing μ and eB. Let us denote it by
αf ¼ α1-loopf ðT; μ ¼ 0; eB ¼ 0Þ (see below). To determine

the constituent quark mass m, we will insert κf ¼ αf
2m with

αf ¼ α1-loopf into (2.9), and then (2.9) into the one-loop
effective potential (2.11), whose minima will then lead to
T-, μ-, and eB-dependent m.
To determine the one-loop correction α1-loopf , we use the

result presented in [57,58] for thermal QED, and generalize
it to the case of QCD. In [58], the anomalous magnetic
moment of electrons at one- and two-loop orders are
computed at finite T, zero μ and for vanishing eB. Since
in our model the electromagnetic coupling between the
quarks and the external photons is to be considered, the
QED results presented in [58] are directly applicable for our
QCD-like model, including quarks with different flavors
f ¼ u; d. It is enough to multiply the corresponding QED
result with q2f, where qf is the charge of the fth quark
flavor. We therefore have

κfðT; μ; eBÞ ¼
α1-loopf ðT; μ ¼ 0; eB ¼ 0Þ

2mðT; μ; eBÞ ; ð2:14Þ

with the one-loop contribution

α1-loopf ðT; μ ¼ 0; eB ¼ 0Þ ¼ q2fF ðmð0ÞβÞ; ð2:15Þ

for f ¼ u; d. Here, mð0Þ ≡mðT ¼ μ ¼ eB ¼ 0Þ is the
constituent quark mass at zero ðT; μ; eBÞ, and

F ðz; αeÞ ¼
αe
2π

−
2αe
3

�
π

2z2
½1 − CðzÞ� þAðzÞ − BðzÞ

�
;

ð2:16Þ

with αe the electromagnetic fine structure constant, and the
functions A;B and C given by

AðzÞ ¼ 2T
πm

lnð1þ e−zÞ;

BðzÞ ¼
X∞
n¼1

ð−1ÞnEið−nzÞ;

CðzÞ ¼ 6

π

X∞
n¼1

ð−1Þn
n2

e−nz: ð2:17Þ

Here, EiðzÞ is the well-known exponential integral function,
defined by

EiðzÞ ¼ −
Z

∞

−z

e−t

t
dt: ð2:18Þ

Let us notice, that since αe ≪ 1, the one-loop contribution
α1-loopf is indeed the dominant radiative correction. This is
why, the higher order loop corrections will be neglected in
the present paper. Moreover, in order to find the range of
reliability of the linear-in-B ansatz for the quark AMM,
T̂ ¼ κ̂ Q̂ eB from (1.1), with the above listed κ̂s from
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(2.12)–(2.14), the test originally introduced in [51] is to be
performed. To do this, we have to consider the rest energy
of the quarks in the LLL, which is given by

Eð0;1Þ
qu ¼ jm − κuqueBj; Eð0;−1Þ

qd ¼ jm − κdqdeBj;
ð2:19Þ

for up and down quarks. Plugging κf; f ¼ u; d from
(2.12)–(2.14) in the above relation, and looking for the

dependence of Eð0;1Þ
qu =m and Eð0;−1Þ

qd =m on the dimension-
less ratio 2eB=m2, it turns out that the above ansatz T̂ ¼
κ̂ Q̂ eB is reliable up to eB ∼ 1.2 GeV2, in contrast to the
Schwinger original ansatz T̂ ¼ α̂ Q̂ μ0BB in terms of the bare
Bohr magneton μ0B ¼ e

2m0
. In this paper, we will particularly

restrict ourselves to the regime eB ∈ ½0; 0.8� GeV2, which
is within the reliability range of the linear ansatz, and which
turns out to be relevant for the phenomenology of heavy ion
experiments.

III. NUMERICAL RESULTS

The aim of this paper is to study the effect of the quark
AMM on a hot and magnetized quark matter. To this
purpose, the thermodynamic potential of a two-flavor NJL
model is determined in the previous section. It mimics the
thermodynamic properties of quark matter at high temper-
ature, finite density and in the presence of an external
magnetic field. The quantity, α̂ ¼ diagðαu; αdÞ, which is
introduced in the original Lagrangian (2.1) as the coef-
ficient corresponding to the spin-field interaction term
σμνFμν, appears in the quark energy dispersion relation

Eðp;sÞ
qf from (2.9) in the one-loop effective potential (2.11),

essentially in the combination with the constituent quark
mass in κf ¼ αf

2m ; f ¼ u; d. Using (2.11), it is now possible
to determine the thermodynamic properties of the present
quark model, and, in particular, to study various effects of
the quark AMM on hot and magnetized quark matter.
As we have discussed in Sec. I, the most important effect

of the presence of a uniform magnetic field on a system of
charged fermions is the phenomenon of MC of chiral
symmetry breaking. The first signature of the occurrence of
this phenomenon is that the value of the chiral condensate
σ0, and consequently the constituent quark massm ¼ m0 þ
σ0 increase with increasing the strength of the external
magnetic field eB (see [8,9,22] for detailed discussions). To
study the impact of the quark AMM on this specific effect,
we will first determine, in Sec. III A 1, the eB dependence
of m for zero chemical potential, at a fixed temperature and
for three different sets of κ̂. They will be denoted by κ1; κ2
and κ0. Here, κ1 and κ2 correspond to the pair κ̂i ¼
ðκðiÞu ; κðiÞd Þ, i ¼ 1; 2 from (2.12) and (2.13), and, κ0 corre-
sponds to the T-dependent κf given in (2.14). The latter
includes one-loop perturbative correction to the AMM of

quarks and is written as a function of the constituent quark
mass m. We will show that whereas for κ2 and κ0, m
increases with increasing eB, for κ1, it decreases with
increasing eB. Moreover, in the latter case, the eB
dependence of m indicates a first-order phase transition
at certain critical eBc even at T ¼ μ ¼ 0 MeV. This
preliminary, unexpected result can be regarded as an
indication of the phenomenon of IMC. As is shown in
[8,22], the formation of the chiral condensate is suppressed
by increasing temperature. In Sec. III A 2, we will study the
effect of finite temperature onm for zero chemical potential
and various values of eB and κ̂. We will then compare
the corresponding results to κ1; κ2 and κ0, and elaborate on
the difference between the effect of these three different
choices for κ̂.
In Sec. III B, we will then explore the complete phase

portrait of our two-flavor hot and magnetized NJL model.
The effect of external magnetic fields on the nature of phase
transition for κ̂ ¼ 0 GeV−1 is previously studied in
[8,9,22]. It is, in particular, shown that for zero chemical
potential, the critical temperature Tc essentially increases
with increasing eB. This can be regarded as another
indication of the phenomenon of MC. In Sec. III B 1, we
will first study the T − eB phase diagram of our two-flavor
hot and magnetized NJL model for zero and nonzero μ and
for different κ̂. We will, in particular, show that the critical
temperature of the phase transition decrease with increasing
eB once κ̂ is chosen to be κ1. This can be regarded
as another signature of the aforementioned phenomenon
of IMC. In Secs. III B 2 and III B 3, we will then study
the μ − eB and T − eB phase diagrams for various fixed
temperatures and magnetic fields, respectively. We will,
in particular, compare the results for κ1 and κ2 with
κ̂ ¼ 0 GeV−1, previously discussed in [8,22].
In Sec. III C, we will finally study the pressure

anisotropy between the longitudinal and transverse pres-
sures with respect to the direction of the external magnetic
field. Moreover, the eB dependence of the magnetization of
the quark matter will be determined for zero and nonzero
chemical potential, temperature and for κ1; κ2 and κ0.
We will show that whereas κ̂ has essentially no effect on
the pressure anisotropy, larger values of κ̂ leading to sizable
values of the quark AMM, suppress the productMB, where
M is the quark matter magnetization. The relation between
discontinuities appearing in M and the first-order phase
transitions will be also discussed.
To perform the numerical analysis in this section, we will

essentially use the same method as described in [22] and
[8]. In order to determine the constituent quark mass m, we
will numerically solve the gap equation corresponding to
the thermodynamic potential (2.11)

∂Ωeffð ~m;T; μ; eBÞ
∂ ~m

����
~m¼m

¼ 0: ð3:1Þ
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Here, m ¼ m0 þ σ0. Our specific choice for free parame-
ters of our model, the ultraviolet (UV) momentum cutoff Λ,
the NJL (chiral) coupling constant G, and the current quark
mass m0, is as follows:

Λ ¼ 0.6643 GeV; G ¼ 4.668 GeV−2; and

m0 ¼ 5 MeV: ð3:2Þ

The numerical integration over p3, appearing in (2.11) will
be performed using a smooth cutoff function

fΛ ¼ 1

1þ expðjpj−ΛA Þ
; ð3:3Þ

for vanishing eB, and

fðp;sÞΛ;B ¼ 1

1þ exp
� ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

p2
3
þjqfeBpj½2pþ1−sξf �

p
−Λ

A

� ; ð3:4Þ

for nonvanishing eB. Here, qf is the electric charge of
the fth quark, p labels the Landau levels, s ¼ �1 stands
for positive and negative spins of the quarks and ξf ¼
sgnðqfeBÞ. Moreover, A is a free parameter, which is
related to the sharpness of the cutoff scheme. As in
[8,9,21,22], A is chosen to be A ¼ 0.05Λ, where the UV
cutoff Λ is given in (3.2). As is described in [25], choosing
smooth cutoff functions (3.4) for nonvanishing magnetic
fields removes unphysical discontinuities, which appear in
many thermodynamical quantities when sharp cutoffs are
used. For large enough A, these discontinuities are replaced
with smooth oscillations.13 It shall also be noticed, that
apart from A, all other free parameters of the NJL model
Λ; G and m0 are to be fixed in such a way that at T ¼
μ ¼ 0 MeV and for vanishing magnetic fields, the con-
stituent quark mass, the pion mass and decay constant are
given by their vacuum values, m ∼ 308, mπ ∼ 139.6, and
fπ ∼ 93.35 MeV, respectively [8,9].
To determine the constituent quark mass m, the global

minima of Ωeff . from (2.11) are to be determined. In the
chiral limit m0 → 0, the χSB is characterized by non-
vanishing chiral condensate σ0, and the chiral symmetry
restored (χSR) phase by σ0 ¼ 0. As it is shown in [8,9,22],
in the limit of vanishing m0 and κ̂, the presence of external
magnetic field induces a first-order phase transition from
the χSB into the χSR phase. Form0 ≠ 0 and κ̂ ¼ 0 GeV−1,
however, we expect a smooth crossover from the chiral χSB,
characterized by σ0 ≠ 0, into the pseudo-chiral symmetry
restored (pχSR) phase, characterized by σ0 ¼ 0 MeV and

m ¼ m0. In Sec. III C, the order of the phase transition for
m0 ≠ 0 and κ̂ ≠ 0 will be elaborated.

A. The T and eB dependence of the constituent
quark mass m

1. The eB dependence of the constituent quark mass m

In Figs. 1 and 2, the eB dependence of the constituent
quark mass m ¼ m0 þ σ0 is demonstrated for κ1, κ2, and κ0
at μ ¼ 0 MeV and at T ¼ 0 (Fig. 1) as well as T ¼
150 MeV (Fig. 2). In Figs. 1(a) and 2(a), the results for
κ1 (red dashed lines) are compared with the corresponding
data to κ2 (black solid lines). The latter is then compared
with the results for κ0 (red dashed lines) in Figs. 1(b)
and 2(b). As it turns out, whereas for κ2 and κ0 the
constituent quark mass m increases with increasing eB,
for κ1 that yields a sizable quark AMM, m abruptly
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FIG. 1 (color online). (a) The eB dependence of quark
constituent massm ¼ m0 þ σ0 is demonstrated for κ1 (red dashed
line) and κ2 (black solid line) at T ¼ μ ¼ 0 MeV. The behavior
of m as a function of eB for κ1 suggests a first-order phase
transition at a critical eBc ∼ 0.623 GeV2. This can be regarded
as a possible signature of the phenomenon of IMC. (b) The eB
dependence of m is compared for κ2 (black solid line) and κ0 (red
dashed line) at T ¼ μ ¼ 0 MeV. The fact that m increases with
increasing eB is related to the phenomenon of MC.

13As is explained in [21], for smaller values of A ¼ 0.001Λ
(quasi-sharp cutoff) instead of smooth oscillations, small
discontinuities appear in the weak magnetic field regime eB≲
0.5 GeV2.
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decreases at a certain critical magnetic field eBc to a value
m ¼ m0.

14 This indicates that once κ̂ is chosen to be κ1, for
μ ¼ 0 MeV a first-order phase transition occurs at this
specific eBc, which is for T ¼ 0 and T ¼ 150 MeV equal
to eBc ∼ 0.623 and eBc ¼ 0.190 GeV2, respectively. As
we have argued above, the fact that m increases with
increasing eB can be regarded as one of the most important
signatures of the phenomenon of MC, which is supposed to
enhance the formation of the quark condensate in the
supercritical regime of NJL coupling G. On the other hand,
by definition, the phenomenon of IMC is related to the
suppression of bound state formation even for large values
of eB. Thus, the fact that m decreases with increasing eB

for κ̂1 ¼ ðκð1Þu ; κð1Þd Þ from (2.12) is related to the phenome-
non of IMC for μ ¼ 0 MeV and T ¼ 0; 150 MeV.
To study the effect of temperature on the aforementioned

critical magnetic field eBc for κ1, the eB dependence of m
is considered in Fig. 3 for three different temperatures,
T1 ¼ 0 (red dashed line), T2 ¼ 120 (black solid line), and
T3 ¼ 150 MeV (blue dashed line). The critical magnetic
fields corresponding to these temperatures are denoted
by C1; C2, and C3. Numerically, they are given by
eBc1 ∼ 0.623 GeV2, eBc2 ∼ 0.285 GeV2 and eBc3∼
0.190 GeV2. It turns out, that eBc decreases with increas-
ing T. This can again be considered as a signature of the
phenomenon of IMC, which seems to occur once the quark
AMM is large enough. Later, we will study the T − eB
phase diagram for μ ¼ 0 MeV and κ1; κ2, and κ0. We will
show, that in contrast to the case of κ2 and κ0, the critical
temperature corresponding to κ1 decreases with increasing
eB (see Fig. 8 for more details).
According to the results from [22], in the chiral limit

m0 → 0, the two-flavor NJL model at finite T and zero μ
and eB exhibits a second-order phase at Tc ∼ 200 MeV,
and for nonvanishing eB, Tc increases with increasing eB
up to Tc ∼ 360 MeV for eB ¼ 0.7 GeV2 [22]. Hence, the
temperature interval T ∈ ½200; 360� MeV can be regarded
as the regime of phase transition of this QCD-like model.
On the other hand, as it is shown in [8], for m0 ≠ 0, the
above-mentioned second-order phase transition turns
into a smooth crossover. In this case the temperature
interval T ∈ ½200; 360� MeV indicates the crossover region
from the χSB into the pχSR phase. In Figs. 4 and 5,
the eB dependence of the constituent quark mass m is
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(a) 0 MeV, T 150 MeV
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FIG. 2 (color online). (a) The eB dependence of quark
constituent massm ¼ m0 þ σ0 is demonstrated for κ1 (red dashed
line) and κ2 (black solid line) at T ¼ 150 MeV and μ ¼ 0 MeV.
As in the T ¼ 0 MeV case of Fig. 1, the behavior of m as a
function of eB for κ1 suggests a first-order phase transition at a
critical eBc ∼ 0.190 GeV2. This is a possible signature of IMC.
(b) The eB dependence of m is compared for κ2 (black solid line)
and κ0 (red dashed line) at T ¼ 150 MeV and μ ¼ 0 MeV.
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FIG. 3 (color online). The eB dependence of the constituent
quark mass m ¼ m0 þ σ0 is demonstrated for μ ¼ 0 MeV and at
different temperatures T1 ¼ 0, T2 ¼ 120, and T3 ¼ 150 MeV.
Here, κ̂ is held fixed to be κ1. The critical magnetic fields
corresponding to Ti, i ¼ 1; 2; 3 MeV are denoted by C1, C2, and
C3, respectively. They are given by eBc1 ¼ 0.623, eBc2 ¼ 0.285,
and eBc3 ¼ 0.190 GeV2. As it turns out, eBc deceases with
increasing T. This is an indication of IMC, that apparently occurs
once the quark AMM is large enough.

14As aforementioned, for nonzero current quark mass m0, m
turns out to be equal tom0 after the transition into the pχSR phase
is occurred.
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demonstrated at T ¼ 220; 280; 330 MeV, for μ ¼ 0 MeV
and different κs in the crossover regime of our model.
Comparing the results for κ1 in Fig. 3 at T < 200 MeV
with the results for κ1 at T > 200 MeV from Fig. 4(a), it
turns out that the first-order phase transition, appearing
at T < 200 MeV, turns into a smooth crossover at T >
200 MeV. As concerns the results for κ2 and κ0, we
observed in Figs. 1(b) and 2(b), that at T < 200 MeV,
m increases with increasing eB. At T > 200 MeV, how-
ever, the situation changes. Whereas for T ¼ 220 MeV, m
increases with increasing eB for both κ2 and κ0 [see the
black circles in Figs. 4(b) and 4(c)], at T ¼ 280 and
T ¼ 330 MeV, m decreases first with eB and then sud-
denly increases for certain critical magnetic fields [see gray
squares for T ¼ 280 MeV and red diamonds for T ¼
330 MeV in Figs. 4(b) and 4(c)]. Comparing the data
for κ2 and κ0 at T ¼ 280 MeV [gray squares in Figs. 4(b)
and 4(c)], it turns out that for κ2, one and for κ0 two critical

magnetic fields exist. They are given by eBc ∼ 0.625 GeV2

for κ2 and eBc1 ∼ 0.33 GeV2 and eBc2 ∼ 0.41 GeV2 for κ0.
This means that in the latter case, the system is first in the
χSB phase, enters at eBc1 the pχSR phase, and reenters the
χSB phase at eBc2 (see Fig. 8 for more detailed analysis of
the phase transitions for different κ̂ and the discussions
related to the phenomenon of reentrance from the χSB into
the pχSR phase). Let us now compare the data correspond-
ing to κ2 and κ0 at T ¼ 330 MeV and μ ¼ 0 MeV in
Figs. 4(b) and 4(c) (red diamonds). It turns out, that for κ2,
m decreases with increasing eB in the whole range
eB ∈ ½0; 0.8� GeV2, while, for κ0, there are two critical
magnetic fields eBc1 ∼ 0.05 GeV2 and eBc2 ∼ 0.6 GeV2.
In other words, for κ0, the quark matter is first in the χSB
phase, enters the pχSR phase, and then reenters the χSB
phase. Our findings in Fig. 8 confirm this conclusion.
In Fig. 5, we compare the eB dependence of m for

different κ̂: κ̂ ¼ 0 GeV−1 (gray circles), κ1 (blue squares),
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FIG. 4 (color online). The eB dependence of the constituent quark mass m ¼ m0 þ σ0 is demonstrated for μ ¼ 0 MeV at different
temperatures, T ¼ 220 (black circles), T ¼ 280 (gray squares), T ¼ 330 MeV (red diamonds), and for κ1 (panel a), κ2 (panel b), and κ0
(panel c). The eB dependence ofm for κ2 and κ0 at T > 200 MeV turns out to be different at T < 200 MeV, demonstrated in Figs. 1 and
2. The data for κ2, μ ¼ 0 MeV, and T ¼ 280 MeV are characterized by a critical eBc ∼ 0.625 GeV2 (panel b), and those for κ0 are
characterized by two critical eBc1 ∼ 0.33, and eBc2 ∼ 0.41 GeV2 (panel c). Similarly, the data for κ0 for μ ¼ 0 MeV, and T ¼ 330 MeV
are characterized by two critical eBc1 ∼ 0.05 and eBc2 ∼ 0.6 GeV2 (panel c). The appearance of two critical eBs is, in particular, an
indication of the phenomenon of reentrance from the pχSR into χSB phase.
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FIG. 5 (color online). The eB dependence of the constituent quark mass m ¼ m0 þ σ0 is demonstrated for μ ¼ 0 MeV, at T ¼ 220

(panel a), T ¼ 280 (panel b), and T ¼ 330 MeV (panel c). The data for different κ̂, including κ̂ ¼ 0 GeV−1 (gray circles), κ1 (blue
squares), κ2 (black diamonds), and κ0 (red triangles), are compared. The difference between the data for κ̂ ¼ 0 GeV−1 and κ0 maximizes
with increasing temperature. The data for κ2 for T ≥ 280 MeV indicate a crossover transition from the χSB into the pχSR phase. The eB
dependence ofm for κ0 at T ¼ 330 MeV and μ ¼ 0 MeV is similar to the case of κ1. The data for κ0 are characterized by a critical magnetic
field eBc ∼ 0.05 GeV2.
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κ2 (black diamonds), κ0 (red triangles), for μ ¼ 0 MeV,
and at T ¼ 220 [Fig. 5(a)], T ¼ 280 [Fig. 5(b)], and
T ¼ 330 MeV [Fig. 5(c)]. We limited ourselves to the
regime eB ∈ ½0; 0.5� GeV2 in order to magnify the differ-
ence in the eB dependence of m, especially for
κ̂ ¼ 0 GeV−1, κ2, and κ0. According to these results, no
difference between the data corresponding to κ̂ ¼ 0 GeV−1
and κ0 occurs as long as T ≲ 250 MeV. On the other hand,
whereas, according to Figs. 1(b) and 2(b), there is no
difference between the data corresponding to κ2 and κ0 at
T ≲ 150 MeV, at T > 200 MeV the eB dependence of m
are different for κ2 and κ0. In particular, it turns out that at
T ¼ 330 MeV, μ ¼ 0 MeV and for κ0, similar to the case of
κ1, m first decreases with increasing eB up to a certain
critical eBc ∼ 0.05 GeV2, then suddenly falls down to a
value m ¼ m0 ¼ 5 MeV. This is again an indication of the
phenomenon of IMC for μ ¼ 0 MeV, at high temperature
T > 280 MeV and eB < 0.15 GeV2. Let us finally notice
that the data for κ2 in Figs. 5(b) and 5(c) indicates a smooth
crossover from the χSB into the pχSR phase in the
regime 220 < T < 360 MeV and eB < 0.55 GeV2 and for
μ ¼ 0 MeV (see also Fig. 8 for more details).

2. The T dependence of the constituent quark mass m

According to the results from Figs. 1–5 for fixed μ, eB,
and κ̂, finite temperature suppresses the formation of the

chiral condensate σ0 (see also [8,22]). Consequently, it is
expected that m decreases with increasing T. In Fig. 6, the
T dependence of the constituent quark mass is demon-
strated for μ ¼ 0 MeV, eB ¼ 0.03 (blue circles), eB ¼
0.15 (gray squares), eB ¼ 0.28 GeV2 (red diamonds) and
different κ1 (panel a), κ2 (panel b), and κ0 (panel c). As it
turns out from the results in Fig. 6(a), whereas for small
values of eB ¼ 0.03 GeV2, m decreases continuously with
increasing T, for larger values of eB ¼ 0.15; 0.28 GeV2, m
decreases with increasing temperature up to a certain
critical temperature Tc, which is Tc ∼ 168 MeV for eB ¼
0.15 GeV2 and Tc ∼ 120 MeV for eB ¼ 0.28 GeV2. This
behavior indicates a first-order phase transition from the χSB
into the pχSR phase for μ ¼ 0 MeV and κ1. Interestingly, the
critical temperature corresponding to this phase transition
decreases with increasing eB, which is, as aforementioned,
another indication of the phenomenon of IMC once κ̂ is large
enough. For κ2 and κ0, the situation is rather different.
According to the results from Fig. 6(b), for κ2, in contrast to
κ1, m decreases smoothly with increasing T for all values
of eB ¼ 0.03; 0.15; 0.28 GeV2. For T-dependent κ0, how-
ever, whereas for eB ¼ 0.03 GeV2 the constituent quark
massm decreases smoothly with increasing T up to a certain
critical temperature Tc ∼ 380 MeV, for eB ¼ 0.15 GeV2

and eB ¼ 0.28 GeV2, discontinuities occurs at critical
temperatures Tc ∼ 272.6 and Tc ∼ 264 MeV, respectively.
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FIG. 6 (color online). The T dependence of the constituent quark mass m ¼ m0 þ σ0 is demonstrated for μ ¼ 0 and T-independent κ1
(panel a), κ2 (panel b), and κ0 (panel c) for eB ¼ 0.03 (blue circles), eB ¼ 0.15 (gray squares), and eB ¼ 0.28 GeV2 (red diamonds).
Discontinuous decreasing of m with increasing T indicates a first-order phase transition from the χSB into the pχSR phase. This occurs,
in particular, for κ1, that leads to a sizable quark AMM.
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FIG. 7 (color online). The T dependence of the constituent quark mass m ¼ m0 þ σ0 is demonstrated for μ ¼ 0 MeV and eB ¼ 0.03
(panel a), eB ¼ 0.15 (panel b), and eB ¼ 0.28 GeV2 (panel c), for κ1 (blue circles), κ2 (gray squares), and κ0 (red diamonds).
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These kind of discontinuities in the T dependence of m are
indications of first-order phase transitions from the χSB into
the pχSR phase.
To compare the data for different κ̂ for fixed μ and eB,

the T dependence of m is plotted in Fig. 7 for μ ¼ 0 MeV
and eB ¼ 0.03 (panel a), eB ¼ 0.15 (panel b), and eB ¼
0.28 GeV2 (panel c) for T-independent κ1 (blue circles), κ2
(gray squares), and κ0 (red triangles). As it turns out, for
small value of eB ¼ 0.03 GeV2, there is almost no differ-
ence between the T dependence of m for κ1; κ2 and κ0, and
the transition from the χSB into the pχSR phase turns out to
be a smooth crossover. In contrast, according to the results
from Figs. 7(b) and 7(c), for μ ¼ 0 MeV and eB ¼ 0.15 as
well as eB ¼ 0.28 GeV2, whereas in the case of κ2, m
decreases smoothly with increasing T, in two other cases of
κ1 and κ0, there exists a certain critical temperature below
which m decreases smoothly and above which m turns out
to be m ¼ m0 (for the values of Tc, see above). This
indicates a first-order phase transition for eB ¼ 0.15 and
eB ¼ 0.28 GeV2. In what follows, we study the full phase
portrait of the two-flavor NJL model for finite ðT; μ; eBÞ
and nonzero κ̂.

B. The phase portrait of hot and magnetized two-flavor
NJL model for nonvanishing κ̂

1. The T-eB phase diagram for various μ and κ̂

In Fig. 8, the T-eB phase diagram of a hot and
magnetized two-flavor NJL model is presented for
μ ¼ 0 MeV, constant κ1; κ2 and T-, μ-, and eB-dependent

κ0. The black and dark blue solid lines denote smooth
crossover for κ1 and κ2, respectively, and the gray, green
and light blue dashed lines the first-order phase transitions
for κ1; κ2, and κ0, respectively. The starting points of the
first-order phase transitions are denoted by C1 (for κ1) and
C2 (for κ2). As aforementioned, for nonzero m0, the χSB
phase is characterized by σ0 ≠ 0, and the pχSR phase by
σ0 ¼ 0 MeV and m ¼ m0. Hence, by definition, the
regimes below the critical lines denote the χSB phases
and the regimes above them, the pχSR phases. To compare
the effect of different choices for κ̂, let us first consider
the transition curve for κ1. Starting from eB ¼ 0 GeV2, the
model exhibits a smooth crossover in the interval eB ∈
½0; 0.12� GeV2 (see the black solid line). As it turns out, the
crossover temperatures15 decrease with increasing eB from
Tc∼195.4MeV for eB ¼ 0 GeV2 to Tc ∼ 181 MeV for
eB ¼ 0.12 GeV2. The end point of the crossover transition
line is denoted in Fig. 8 by C1. For larger values of
eB ∈ ½0.12; 0.623� GeV2, a first-order phase transition
occurs (gray dashed line). The critical temperatures for
this first-order phase transition decrease with increasing eB.
This result confirms our findings from Figs. 1–7. Let us
notice, e.g., that for T ¼ 0 MeV, the point eB∼0.623GeV2

on the eB axis, is the same eBc1 appearing in Fig. 3 for κ1 at
T ¼ μ ¼ 0 MeV. The fact that, for κ1, Tc decreases with
increasing eB is related to the phenomenon of IMC. This is
in contrast to what happens for κ2. Here, as it turns out, the
critical temperature essentially increases with increasing eB
in the interval eB ∈ ½0; 0.8� GeV2. First, in the regime
eB ∈ ½0; 0.478� GeV2, the system exhibits a smooth cross-
over from the χSB into the pχSR phase (blue solid line).
At a certain critical temperature T ¼ 240 MeV and mag-
netic field eB ¼ 0.478 GeV2, denoted by C2, the crossover
transition line turns into a first-order transition line in the
regime eB ∈ ½0.478; 0.8� GeV2 (green dashed line). Let us
notice at this stage, that, according to our arguments in
[8,9,21,22], the regime eB > 0.5 GeV2 is the regime of
LLL dominance. In this regime, in the most cases which we
have considered in this paper, the constituent quark massm
as well as the critical temperature Tc monotonically
increase with increasing eB. As concerns the T-eB phase
diagram for κ0 (light blue dashed line). As it turns out, Tc
decreases with increasing eB in the regime eB ∈ ½0.02;
0.24� GeV2, exhibits some oscillations in the regime eB ∈
½0.25; 0.37� GeV2 and increases monotonically in the
regime eB ∈ ½0.37; 0.8� GeV2. Hence, an IMC is followed
first by some oscillations and then the MC. Moreover, for
κ0, the transition from the χSB into the pχSB phase is of
first-order in the whole regime eB ∈ ½0.02; 0.8� GeV2

(light blue dashed line).
For κ0, because of this special shape of the first-order

transition line, another interesting effect occurs. To describe

1

'

2

C1

C2

0.0 0.2 0.4 0.6 0.8
0

100

200

300

400

eB GeV2

T
c

M
eV

0 MeV

FIG. 8 (color online). The T-eB phase diagram of a hot and
magnetized two-flavor NJL model is presented for μ ¼ 0 MeV,
κ1; κ2, and κ0. The black (for κ1) and dark blue (for κ2) solid lines
denote the smooth crossovers, and the gray, green and light blue
dashed lines the first-order phase transitions for κ1; κ2, and κ0,
respectively. The starting points of the first-order transition lines
are denoted by C1 (for κ1) and C2 (for κ2). The phenomenon of
IMC occurs for κ1 in eB ∈ ½0; 0.65� GeV2 and κ0 in the interval
eB ∈ ½0; 0.25� GeV2. For κ0, the dHvA oscillations in the regime
eB ∈ ½0; 0.5� GeV2 lead to the phenomenon of reentrance from
the χSB into the pχSR phase.

15In the present paper, the crossover temperature Tcr is defined
by mðTcr; μ; eBÞ ≤ e−1mðT ¼ 0; μ; eBÞ.
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this effect, let us assume the temperature to be
T ∼ 300 MeV. In this case, starting from eB ¼ 0 GeV2,
the system is first in the χSB phase, then for eB ∼ 0.1 GeV2

a first-order phase transition into the pχSR phase occurs.
With increasing the strength of the magnetic field up to
eB ∼ 0.55 GeV2, the system remains in this phase, and
then reenters the χSB phase for eB > 0.55 GeV2 phase.
The same phenomenon occurs for all T ≳ 300 MeV. Let us
notice, that the phenomenon of reentrance has been
previously observed for nonvanishing μ and vanishing κ̂
for the same hot and magnetized two-flavor NJL model, as
considered in the present paper [22] (see also Figs. 9(a) and
9(b) for μ ¼ 280 and T ∼ 90 MeV). The results from
Fig. 8 show, that for κ0, the same phenomenon occurs also
for μ ¼ 0 MeV. We believe that this phenomenon, as well
as the observed oscillations in the eB dependence of m
appearing in Figs. 1, 2, and 5, are essentially related
to the dHvA [23] in the weak magnetic field regime
eB ∈ ½0.2; 0.5� GeV2. These effect had been also studied
in [21,22,24,25] and most recently in [26]. It occurs
whenever Landau levels pass the quark Fermi level. As
it turns out, the dHvA oscillations are weakened, once the
system enters the LLL dominant regime eB > 0.5 GeV2.
The IMC phenomena exhibited in the eB dependence of

the critical line TcðBÞ for κ1 and μ ¼ 0 MeV from Fig. 8, is
also observed in lattice QCD simulations for vanishing μ
and κ̂ (i.e., vanishing quark AMM), as discussed in Sec. I
[28]. In what follows, a qualitative comparison between our
results and the lattice QCD results will be presented. In
particular, we will focus on the reliability of the relation

TcðeB; κ̂Þ ∝ mðeB; T ¼ μ ¼ 0; κ̂Þ ð3:5Þ
for vanishing and nonvanishing κ̂ ¼ fκ1; κ2; κ0g. To do this,
it is crucial to notice that the relation (3.5) is only valid for
very strong magnetic fields, when the LLL approximation
is justified (for the analytical derivation of this relation in
the LLL dominant regime of NJL-like models, see, e.g.,
[61] or more recently [50]). In effective models, which are
characterized by a cutoff parameter Λ, the regime of LLL

dominance is determined from ⌊ Λ2

jqfeBj ⌋ ¼ 0, as is discussed

in [8] for the case of vanishing κ̂. Here, ⌊a⌋ is the greatest
integer less than or equal to a. Assuming that the above
relation (3.5) is valid for eB≳ 0.5 GeV2, lattice QCD
simulations for vanishing κ̂ already contradict it (see [28]
for more details). As concerns the case of nonvanishing
κ̂, a comparison between mðeB; T ¼ μ ¼ 0; κ̂Þ from the
plots presented in Fig. 1(b) and TcðeB; κ̂Þ from Fig. 8
shows that for κ̂ ¼ fκ2; κ0g the proportionality (3.5) holds
in the strong magnetic field regime; as it turns out,
mðeB; T ¼ μ ¼ 0; κ2Þ and mðeB; T ¼ μ ¼ 0; κ0Þ increase
monotonically with increasing eB for eB≳ 0.5 GeV2 [see
Fig. 1(b)], and similarly, TcðeB; κ2Þ and TcðeB; κ0Þ from
Fig. 8 exhibit also the same behavior. For κ1, leading to
large values of nonperturbative quark AMM, the situation
is different. In Table I, we have presented the numerical
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FIG. 9 (color online). The T-eB phase diagram of a hot and magnetized two-flavor NJL model is presented for μ1 ¼ 0, μ2 ¼ 150,
μ3 ¼ 280 MeV and κ̂ ¼ 0 GeV−1 (panel a), κ1 (panel b), and κ2 (panel c). Blue solid lines denote the smooth crossovers from the χSB into
the pχSR phase, and gray dashed lines, the first-order phase transitions. The starting points of the first-order transition lines are denoted by
Ci; i ¼ 1; 2; 3 corresponding to μi; i ¼ 1; 2; 3. For κ1, the phenomenon of IMC occurs for eB ∈ ½0; 0.65� GeV2. For κ̂ ¼ 0 GeV−1 and κ2,
the dHvA oscillations in the regime of weak magnetic fields lead to the phenomenon of reentrance from χSB into pχSR phase.

TABLE I. The eB dependence ofmð1Þ ¼ mðeB; T ¼ μ ¼ 0; κ1Þ
from Fig. 1(a) is compared with the eB dependence of Tð1Þ

c ¼
TcðeB; κ1Þ from Fig. 8 for eB ≥ 0.5 GeV2. As it turns out,
the relation (3.5) is contradicted in the regime 0.54 ≤ eB <
0.623 GeV2, where the phenomenon of IMC occurs.

eB in GeV2 mð1Þ in MeV Tð1Þ
c in MeV

0.5 440 56
0.51 448 57
0.52 456 57.5
0.53 464 57.8
0.54 471 57.6
0.55 478 57
0.56 484 56
0.57 491 55
0.58 497 52
0.59 502 49
0.60 508 45
0.61 513 39
0.62 518 27
0.622 520 19
0.623 5 0
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results for mð1Þ ≡mðeB; T ¼ μ ¼ 0; κ1Þ from Fig. 1(a) and

Tð1Þ
c ≡ TcðeB; κ1Þ from Fig. 8 for eB ≥ 0.5 GeV2. As it

turns out, whereas mð1Þ increases first in the regime 0.5 ≤
eB < 0.623 GeV2 and the suddenly decreases for eBc ¼
0.623 GeV2 to its bare value m0 ¼ 5 MeV, the critical

temperature Tð1Þ
c first increases for 0.5 ≤ eB ≤ 0.53 GeV2,

and then decreases in the regime 0.54 ≤ eB < 0.623 GeV2.
The relation (3.5) is therefore contradicted for κ1 in the
regime 0.54 ≤ eB < 0.623 GeV2. This seems to be quali-
tatively in line with the lattice QCD simulations for
vanishing κ̂ in the same magnetic field regime, and,
regardless to the value of κ̂, seems also to be valid whenever
the phenomenon of IMC occurs.16

To compare the results for vanishing μ fromFig. 8with the
results for nonvanishing μ, the T-eB phase diagram of hot
and magnetized NJL model is demonstrated in Fig. 9 for
different κ̂ ¼ 0 GeV−1 (panel a), κ1 (panel b), and κ2 (panel
c) and for μ1 ¼ 0, μ2 ¼ 150, and μ3 ¼ 280 MeV. Solid lines
denote the crossover transition lines, and dashed lines the
first-order phase transitions from χSB into pχSR phase.
Let us first consider Fig. 9(a). We observe, that for
κ̂ ¼ 0 GeV−1 the crossover transition temperature decreases
with increasingμ. The aforementioneddHvAoscillations are
stronger for larger μ and disappear in the LLL dominant
regime eB≳ 0.5 GeV2. In this regime, Tc increases with
increasing eB. This can be regarded as a signature of MC,
especially in the LLL dominant regime. For κ1, however, Tc
decreases with increasing eB. Moreover, whereas for μ1 ¼ 0
and μ2 ¼ 150 MeV the crossover transitions in the weak
magnetic field regime turn into first-order transition lines,
for μ3 ¼ 280 MeV only a crossover transition occurs in
the regime eB ∈ ½0; 0.155� GeV2. The critical points
corresponding to μi; i ¼ 1; 2 are denoted by Ci; i ¼ 1; 2.
They are given by C1¼ð0.12GeV2;181MeVÞ, and
C2 ¼ ð0.12 GeV2; 157 MeVÞ. As in the case of
κ̂ ¼ 0 GeV−1, Tc decreases with increasing μ for each
fixed eB (see also the T-μ phase diagram from Fig. 11).
Let us now compare the results for κ2 from Fig. 9(c) with
those for κ̂ ¼ 0 GeV−1 from Fig. 9(a). We observe that
although the eB dependence of Tc for κ2, is in general
similar to the case with κ̂ ¼ 0 GeV−1, but for κ2,
the crossover transitions, appearing for κ̂ ¼ 0 GeV−1 in
the whole range of eB ∈ ½0; 0.8� GeV2 and for all
μi; i ¼ 1; 2; 3, turn into a first-order phase transitions in
the LLL dominant regime eB≳ 0.5 GeV2. The critical

points corresponding to μi; i ¼ 1; 2; 3 are given by C1 ¼
ð0.478 GeV2; 240 MeVÞ, C2 ¼ ð0.48 GeV2; 215 MeVÞ
and C3 ¼ ð0.485 GeV2; 112 MeVÞ. Similar to the case
of κ̂ ¼ 0 GeV−1, the aforementioned phenomenon of
reentrance from χSB into pχSR phase occurs also in the
case κ2, in particular, for μ ¼ 280 MeV. Moreover, no
dHvA oscillations occur in the LLL dominant regime.

2. The μ-eB phase diagram for various T and κ̂

In Fig. 10, the μ-eB phase diagram of a hot and
magnetized two-flavor NJL model is presented for
T1 ¼ 0, T2 ¼ 120 MeV, as well as for κ̂ ¼ 0 GeV−1 (panel
a), κ1 (panel b), and κ2 (panel c). The black and blue solid
lines denote the smooth crossovers for T1 and T2, respec-
tively, and the gray dashed lines the first-order phase
transitions from the χSB phase (the region below the
critical lines) into the pχSR phase (the region above the
critical lines). The starting points of the first-order phase
transitions are denoted by Ci; i ¼ 1; 2 for Ti; i ¼ 1; 2.
As it turns out, for κ̂ ¼ 0 GeV−1, crossover transitions
occur in the whole regime of eB ∈ ½0; 0.8� GeV2. In
contrast, for κ1 and κ2, crossover transitions occur up to
certain critical points Ci; i ¼ 1; 2 and then with increasing
eB, they turn into first-order phase transitions. These
critical points for κ1 and T1 ¼ 0, as well as T2 ¼
120 MeV are, C1 ¼ ð0.15 GeV2; 261 MeVÞ and C2 ¼
ð0.13 GeV2; 219 MeVÞ [see Fig. 10(b)]. For κ2 and
T1 ¼ 0, as well as T2 ¼ 120 MeV they are given by C1 ¼
ð0.44 GeV2; 296 MeVÞ and C2 ¼ð0.48GeV2;274MeVÞ,
respectively [see Fig. 10(c)]. Here, similar to the T-eB phase
diagrams, for κ1 the critical chemical potential μc decreases
with increasing eB [see Fig. 10(b)]. We conclude therefore
that once the quark AMM is sizable enough an inverse
magnetic catalysis occurs. Keeping eB fixed, μc decreases
with increasing T for all values of κ̂ ≠ 0 (see also the T-μ
phase diagram in Fig. 11). According to the results from
Figs. 10(a) and 10(c), for κ̂ ¼ 0 GeV−1 and κ2, the afore-
mentioned dHvA oscillations lead to the phenomenon of
reentrance in the regime μ ∈ ½285; 335� MeV and μ ∈
½260; 330� MeV for T1 ¼ 0 MeV and κ̂ ¼ 0 GeV−1 and
κ2, respectively. For T2 ¼ 120 MeV, these regimes are given
by μ ∈ ½245; 270� MeV for κ̂ ¼ 0 GeV−1 and μ ∈
½240; 265� MeV for κ2.

3. The T-μ phase diagram for various eB and κ̂

In Fig. 11, the T-μ phase diagram of a hot and
magnetized two-flavor NJL model is presented for eB1 ¼
0.03 (blue lines), eB2 ¼ 0.28 (black lines), and eB3 ¼
0.48 GeV2 (gray lines) for κ̂ ¼ 0 GeV−1 [Fig. 11(a)], κ1
[Fig. 11(b)] and κ2 [Fig. 11(c)]. The solid (dashed) lines
denote the crossover (first-order) transitions. The starting
points for first-order transition lines are denoted with C
(red dots).
The T-μ phase portrait of a two-flavor magnetized

NJL model with vanishing quark AMM was already

16The quantitative comparison with the lattice data from [28] is
beyond the scope of the present paper. To do this, we shall take
the lattice data of TcðeBÞ for granted, and fix κ̂ (presumably as a
function of the magnetic field) in such a way that they can be
reproduced. This will be postponed to future publications. Let us
only notice at this stage that similar comparison has been already
made in [41], where an appropriate eB-dependent coupling
constant for a magnetized Polyakov-loop extended NJL model
is considered in such a way, that lattice data are reproduced.
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demonstrated in [22] for various fixed eB. In [22], in
contrast to the case discussed in the present paper, the bare
quark mass m0 was chosen to be zero. Thus, the free
parameters of the model were different from the ones given
in the present paper [see (3.2)]. The critical lines presented
in the T-μ phase portraits of [22] exhibited, in contrast to
the critical lines presented in Fig. 11(a), both crossover and
first-order transitions, so that certain critical points had
been emerged in the T-μ phase space for κ̂ ¼ 0 GeV−1 and
various eB, and, by increasing the value of eB, it was
shifted to higher temperatures and smaller chemical poten-
tials (MC). A comparison of the results presented in [22]
with the results demonstrated in Fig. 11(a) for κ̂ ¼
0 GeV−1 shows that obviously the type of the phase
transitions and the appearance as well as the position of
the critical point are strongly affected by the choice of the
free parameters of effective models; as is demonstrated in
Fig. 11(a), in contrast to the results presented [22], for all
values of eBi; i ¼ 1; 2; 3 only crossover transitions occur.

Let us notice that the results from Fig. 11(a) are
compatible with the ones demonstrated in Fig. 9(a) for
κ̂ ¼ 0 GeV−1, because, as expected from the results in
Figs. 9, for a fixed value of eB, the critical temperature of
the chiral phase transition decreases with increasing μ.
Different values of κ̂ do not essentially change this specific
feature. A comparison between Fig. 11(a) and Fig. 11(c)
shows that although in both cases for a fixed value of μ,
the critical temperatures increase with increasing eB (MC),
but the critical line of eB3 ¼ 0.48 GeV2 for κ2, for instance,
displays, in contrast to the same critical line for κ̂ ¼
0 GeV−1, both types of transitions [compare the gray critical
line in Fig. 11(c) with the gray line in Fig. 11(a)]: For κ2 and
eB3 ¼ 0.48 GeV2, there are two regions where first-order
phase transitions (dashed gray lines) occur (at high T and
small μ as well as at low T and high μ), and, in between, i.e.,
for moderate T and μ, the magnetized quark matter exhibits a
crossover transition (solid gray line) from the pχSB phase
into the pχSR phase. Denoting the end/starting points of the
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FIG. 10 (color online). The μ-eB phase diagram of a hot and magnetized two-flavor NJL model is presented for T1 ¼ 0,
T2 ¼ 120 MeV, and κ̂ ¼ 0 GeV−1 (panel a), κ1 (panel b), and κ2 (panel c). The black and blue solid lines denote the smooth
crossovers from the χSB into the pχSR phase, and gray dashed lines, the first-order phase transitions. The starting points of the
first-order transition lines are denoted by Ci; i ¼ 1; 2 corresponding to Ti; i ¼ 1; 2. For κ1, the phenomenon of IMC for
eB ∈ ½0; 0.65� GeV2. For κ̂ ¼ 0 GeV−1 and κ2, the dHvA oscillations in the regime of weak magnetic fields lead to the phenomenon
of reentrance from χSB into pχSR phase.
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FIG. 11 (color online). The T-μ phase diagram of a hot and magnetized two-flavor NJL model is presented for eB1 ¼ 0.03 (blue lines),
eB2 ¼ 0.28 (black lines), and eB3 ¼ 0.48 GeV2 (gray lines) for κ̂ ¼ 0 GeV−1 (panel a), κ1 (panel b), and κ2 (panel c). In panel b, the
critical line for eB ¼ 0.15 GeV2 is also plotted (green dashed and solid lines). The solid (dashed) lines denote the crossover (first-order)
transitions. The starting (end) points for first-order transition lines are denoted with C (red dots). In the case of κ1 the critical point
appearing for eB ¼ 0.15 GeV2 is shifted to low temperature and large values of chemical potential.
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first-order phase transitions with Ci ¼ ðμðiÞc ; TðiÞ
c Þ; i ¼ 1; 2

(red dots), we therefore have two critical points for κ2 and
eB3 ¼ 0.48 GeV2. These are given by C1 ¼ ð92; 233Þ
and C2 ¼ ð290; 86Þ MeV.
As concerns the case of κ1 from Fig. 11(b), it turns out

that, in contrast to the cases of κ̂ ¼ 0 GeV−1 and κ2 from
Figs. 11(a) and 11(c), for fixed μ, the critical temperatures
decrease with increasing eB (IMC). Moreover, by compar-
ing the phase portraits of Figs. 11(a) and 11(c) with the
phase portrait of Fig. 11(b), it turns out that the crossover
transitions for eB2 ¼ 0.28 and eB3 ¼ 0.48 GeV2 in the
cases of κ̂ ¼ 0 GeV−1 and κ2, turn into a first-order phase
transition for κ1 and the same eBs, and, as a consequence of
IMC for κ1, the pχSB phase is shifted to the region with
lower temperatures and lower chemical potentials [compare
the dashed black and gray lines in Fig. 11(b) with the solid
black and gray lines in Figs. 11(a) and 11(c)]. These results
confirm our findings in Figs. 8, 9(b), and 10(b), and can be
regarded as one of the main indications of the effect of large
nonperturbative quark AMM on QCD phase diagram. To
answer whether a critical point emerges for κ1, we have
plotted the critical line for eB ¼ 0.15 GeV2, as a typical
example [see the green dashed and solid lines in Fig. 11(b)].
As it turns out, a critical point emerges at C ¼ ðμc; TcÞ ¼
ð270; 33Þ MeV at the end of a first-order transition line [see
the green dashed line in Fig. 11(b)]. This latter result is also
compatible with the results presented in Fig. 9(b).

C. The pressure anisotropy and magnetization
of quark matter for nonvanishing κ̂

Nonvanishing magnetic fields break the Lorentz invari-
ance, and induce certain anisotropies in the pressure of a
hot and magnetized quark matter with respect to the
direction of the background field. The eB dependence of
pressure of a hot and magnetized quark matter for vanish-
ing and nonvanishing κ̂ has been already demonstrated in
[51,52,62], where the effect of the quark AMM in the
strong magnetic field regime eB > m2

0 is compared with the
weak-field AMM by Schwinger [54]. The anisotropy in

the pressure of hot and magnetized QCD is also inves-
tigated recently in [32] in the framework of lattice gauge
theory. Let us denote the longitudinal and transverse
pressures with respect to the direction of the magnetic field
by p∥ and p⊥. According to [52,62], they are defined by

p∥ ≡ −Ωmin
eff ðm;T; μ; eBÞ − B2

2
;

p⊥ ≡ −Ωmin
eff ðm;T; μ; eBÞ − B2

2
þ BH; ð3:6Þ

where Ωmin
eff ðm;T; μ; eBÞ is the value of Ωeff from (2.11),

evaluated at the minimum of the effective potential and
B2=2 is the classical magnetic energy. Moreover, B and
H ≡ B −M are the external and induced magnetic fields,
respectively. Here, M is the magnetization of the quark
matter, defined by [21]

M ≡ −e
∂Ωeffð ~m;T; μ; eBÞ

∂ðeBÞ
����
~m¼m

: ð3:7Þ

In what follows, we are, in particular, interested in the
effect of different sets of κ̂ on the eB dependence of p∥; p⊥
and on the product MB.
In Fig. 12, the longitudinal and transverse pressures, p∥

(black solid curves) and p⊥ (red dashed curves) are plotted
as functions of eB for T ¼ 120 MeV, μ ¼ 0 MeV and κ1
(panel a), κ2 (panel b) as well as κ0 (panel c).

17 Similar to the
results presented in [51], p∥ (p⊥) decreases (increases) with
increasing eB. As it turns out, different choices of κ̂ do not
significantly affect the final results for the eB dependence of
anisotropic pressures. Let us notice at this stage, that there is
indeed an ambiguity in determining the longitudinal and
transverse pressures in the literature. In [63], for instance, the
Maxwell term B2=2 is not considered neither in the effective
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FIG. 12 (color online). The longitudinal (black solid lines) and transverse (red dashed lines) pressures of a two-flavor NJL model,
p∥ and p⊥, are demonstrated as a function of eB for T ¼ 120 MeV, μ ¼ 0 MeV and κ1 (panel a) and κ2 (panel b), as well as κ0 (panel c).
As it turns out, the longitudinal (transverse) pressure decreases (increases) with increasing eB. Different choices for κ̂ do not
significantly affect this specific feature.

17In Fig. 12, the anisotropic pressures from (3.6) are slightly
modified by p∥ ¼ −Ωmin

eff − e−2b2=2 and p⊥ ¼ −Ωmin
eff þ e−2b2=

2 − ~Mb with b≡ eB and ~M ≡ e−1M. Here, e2 is replaced by
e2 ¼ 4παe, with αe ¼ 1=137 the electromagnetic fine structure
constant.
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potential, nor in the definitions of p∥ and p⊥. In [52,62],
however, whereas the Maxwell term is not included in the
effective potential Ωeff , it is included in the definitions (3.6)
of anisotropic pressures.18 To define a measure for the
splitting of p∥ and p⊥ for nonvanishing eB, we define
the splitting coefficient Δs for a fixed ðT�; μ�Þ as [62]

ΔsðB;T�; μ�Þ≡
����p∥ðB;T�; μ�Þ − p⊥ðB;T�; μ�Þj

pð0;T�; μ�Þ
����; ð3:8Þ

where pð0;T�; μ�Þ is the pressure at fixed ðT�; μ�Þ and for
vanishing magnetic field. In Fig. 13(a), Δs is plotted as a
function of eB at fixed temperature T ¼ 120 MeV and for
vanishing chemical potential. The results for κ1; κ2 and κ0 are
denoted by red squares, empty diamonds and gray circles,
respectively. As it turns out, Δs increases with increasing
magnetic field eB, as expected [62]. This specific feature is,
in particular, not affected by different choices for κ̂. Small
deviations, up to maximum 0.4% occur only in the strong
field regime, and increase with increasing eB. In comparison
with κ̂ ¼ 0 GeV−1, the same maximum deviation occurs is
in the strong-field regime, and as it turns out nonvanishing κ̂
has a negative effect on Δs, especially in the strong-field
regime. The same observation is also made in [11].
Another useful quantity that quantifies the relation

between p∥ and p⊥ is Δp, [11]

ΔpðB;T�; μ�Þ≡
����p⊥ðB;T�; μ�Þ
p∥ðB;T�; μ�Þ

����; ð3:9Þ

where ðT�; μ�Þ are fixed temperature and chemical poten-
tial. As it turns out from Fig. 13(b), Δp has a minimum for
a certain eBmin ¼ 0.04 GeV2, and then increases and has
a maximum for another eBmax ¼ 0.08 GeV2. It then
decreases to values Δp ∼ 1. Almost no differences occurs
between different κ̂s. Let us notice, that eBmin and eBmax
are related to the specific magnetic fields, where p⊥ and p∥
almost vanish. As it turns out, eBmin ≠ eBmax. This tiny
difference is not visible in Fig. 12. The thermodynamical
properties of p⊥=p∥, a quantity similar to Δp from (3.9),
are considered in [11]. Here, the effect of AMM of neutrons
and protons is studied on the bulk properties of a mag-
netized Fermi gas. It is shown that the AMM of protons and
neutrons enhance the pressure anisotropy, that arises from
the presence of constant background magnetic fields. As
concerns the effect of the quark AMM on Δs and Δp, no
such effect is observed in Fig. 13. In what follows, we will
show that although both parallel and perpendicular pres-
sures, as well as the pressure anisotropy remain (almost)
unaffected by the inclusion of a large nonperturbative quark
AMM, the magnetization of quark matter is strongly
affected by it.
The pressure anisotropy has various effects on astro-

physics of dense stellar objects [62,63] and the experiments
of heavy ion collisions [32]. In [26,30,32], for instance,
the magnetization of quark matter M is determined as a
function of temperature. In [32] is shown that in the vicinity
of the chiral transition point, the magnetization M is
positive, and therefore hot and dense QCD at transition
point exhibits a paramagnetic response. It is further shown,
that the paramagnetic behavior of QCD matter affects the
phenomenology of heavy ion collision, and in particular,
has “significant impact on the value of elliptic flow v2.”
In Fig. 14(a), the product of the magnetization M and the
magnetic field strength B is plotted for our hot and dense

0.0 0.2 0.4 0.6 0.8

eB GeV2

s

T 120 MeV, 0 MeV

' const
2 const
1 const

0.0 0.2 0.4 0.6 0.8
eB GeV2

p

T 120 MeV, 0 MeV

' const
2 const
1 const

(b)

(a)

0

50

100

150

200

0

1

2

3

4

5

6

7

FIG. 13 (color online). The quantities Δs and Δp, defined in
(3.8) and (3.9), are plotted as functions of eB, at T ¼ 120 MeV
and for μ ¼ 0 MeV as well as κ1 (red squares), κ2 (empty
diamonds), and κ0 (gray circles). Different choices of κ̂s have no
significant effect on the eB dependence of Δs and Δp.

18Let us notice at this stage, that because ofm independence of
the Maxwell term, its presence or absence does not affect the
values of constituent quark masses, that arise by minimizing Ωeff .
This is why we decided to remove the Maxwell term − 1

4
FμνFμν

from (2.1), and consequently B2=2 from (2.2), (2.5) and (2.11).
However, having in mind that this term has to be considered in the
full thermodynamical potential, we have added it to Ωmin

eff in the
definitions of p∥ and p⊥ from (3.6).
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NJL model at T ¼ μ ¼ 0 and for κ̂ ¼ 0 GeV−1 (black
circles), κ1 (red squares), κ2 (gray diamonds), and κ0 (empty
triangles). As it turns out, the results for κ1 have significant
difference with the results corresponding to κ̂ ¼ 0 GeV−1,
κ2 and κ0. As expected, at T ¼ 0 MeV, there is no differ-
ence between the eB dependence of MB for κ̂ ¼ 0 GeV−1
and κ0. The difference between the data for κ̂ ¼ 0 GeV−1
and κ2 becomes only significant in the LLL dominant
regime eB > 0.5 GeV2. In this regime, as expected, the
dHvA oscillations arising in the regime eB < 0.5 GeV2

weaken, and MB monotonically increases with increasing
eB. These oscillations are also previously observed in
[21,25]. The discontinuity arising in the data for κ1 at eB ¼
0.623 GeV2 (red squares), is related to the first-order phase
transition from the χSB into the pχSR phase, demonstrated
in Fig. 8. The latter leads also to a discontinuity in the eB
dependence of the constituent quark mass exactly for eB ¼
0.623 GeV2 [see Fig. 1(a)]. In Figs. 14(b) and (c), the
dimensionless quantity MB=μ4 is plotted as a function of
2eB=μ2 at T ¼ 0 MeV and μ ¼ 150 MeV [Fig. 14(b)] and
μ ¼ 280 MeV [Fig. 14(c)] as well as different κ̂s. Black
circles, red squares and gray diamonds denote the results
for κ̂ ¼ 0 GeV−1, κ1 and κ2, respectively. This dependence
is also studied in [51] in the regime 2eB=μ2 ∈ ½0; 1� for
μ ¼ 300 MeV. Similar to the results of μ ¼ 0 MeV, the
difference between κ̂ ¼ 0 GeV−1 and κ2 increases with
increasing eB. Except in the regime of weak magnetic field
eB≲ 0.17 GeV2 (2eB=μ2 ≲ 15 for μ ¼ 150 MeV), and
eB≲ 0.08 GeV2 (2eB=μ2≲2 for μ¼ 280MeV), MB=μ4

for κ1 is smaller than the data for κ̂ ¼ 0 GeV−1 and κ2.
According to the T-eB phase diagram for μ ¼ 280 MeV in
Fig. 9, we expect discontinuities in the eB dependence of
MB=μ4 in the regime 0.34 < eB ≤ 0.39 GeV2 (8.7≲
2eB=μ2 ≤ 10) for κ̂ ¼ 0 GeV−1, eB≃ 0.155 GeV2

(2eB=μ2 ∼ 3.95) for κ1 and 0.3 < eB ≤ 0.4 GeV2 (7.7 <
2eB=μ2 ≤ 10.2) for κ2. We conclude that discontinuities in
the eB dependence ofMB orMB=μ4 as functions of eB are
related, as expected, to first-order chiral phase transitions at
certain magnetic fields and for fixed values of T and μ.

IV. CONCLUDING REMARKS

In recent years, there were a number of attempts to
explore the effect of the quark AMM on the phase diagram
of QCD at finite temperature, chemical potential and in the
presence of uniform magnetic fields [11,50–52]. Following
the method used in [11], we have studied, in the present
paper, the effects of the (effective) quark AMM on the
thermodynamic properties of the constituent quark massm,
and on the full phase portrait of a two-flavor magnetized
NJL model at finite T and μ. The quark AMM is introduced
via an additional minimal coupling term, âσμνFμν, in the
Lagrangian density of the NJL model [54]. The coefficient
â, defined by â ¼ Q̂ α̂ μB, includes the nonperturbative
(effective) Bohr magneton μB ¼ e

2m, and is herewith, a
function of the constituent quark mass, and receives
ðT; μ; eBÞ corrections. As it turns out, âσμνFμν leads to
an additional term proportional to Tf ¼ κfqfeB in the
quark energy dispersion relation (2.9). In the above
expression, f ¼ u; d stands for up (u) and down (d) quark
flavors, and the dimensionful coupling κf is defined by
κf ¼ αf

2m, with αf related to the deviation of the Landé g
factor from 2. Our aim was, in particular, to study the
effects of constant as well as T-, μ-, and eB-dependent
effective coupling κf on the thermodynamic behavior of m,
as well as on the phase portrait of the hot, dense and
magnetized quark matter, described by our model. To this
purpose, three different sets for the effective coupling κf are
chosen. To do this, we used the method presented in Sec. II
and Appendix [see (2.12)–(2.14)]. The dependence of the
constituent quark mass m on T; μ, and eB was then
determined for each fixed κf in Sec. III A (see Figs. 1–7).
Here, we have explicitly described the signatures related to
the phenomena of MC and IMC.We have further shown that
for large enough κf, even in the regime of strong magnetic
fields, the eB dependence of m is strongly affected by the
phenomenon of IMC. Then, using the one-loop effective
potential Ωeff from (2.11) in terms of κf, we have explored
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FIG. 14 (color online). (a) The product of the magnetizationM and the magnetic field strength B of a two-flavor NJL model is plotted
at T ¼ μ ¼ 0 MeV, and for κ̂ ¼ 0 GeV−1 (black circles), κ1 (red squares), κ2 (gray diamonds) and κ0 (empty triangles). (b) and (c) The
dimensionless quantity MB=μ4 is plotted as a function of 2eB=μ2 at T ¼ 0 MeV, μ ¼ 120 MeV (panel b) and μ ¼ 280 MeV (panel c)
as well as for κ̂ ¼ 0 GeV−1 (black circles), κ1 (red squares), and κ2 (gray diamonds).
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the complete phase portrait of the model in the parameter
space T; μ; eB, and κf (see Sec. III B). We have shown, that
for large enough κf and mainly in the regime of weak
magnetic fields eB < 0.5 GeV2, the critical temperature Tc
and critical chemical potential μc decrease with increasing
eB. This is related to the phenomenon of IMC. Moreover, it
is shown that in certain regimes of the parameter space, the
phenomenon of reentrance of chiral symmetry broken phase
occurs, mainly as a consequence of dHvA oscillations [23].
Also, the order of the phase transition turns out to be affected
by κf (see Figs. 8–11). In Sec. III C, the pressure anisotropy
of the quark matter in the longitudinal and transverse
directions with respect to the magnetic field is considered.
We have shown that different choices of κf have any
significant effect on the pressure anisotropies, demonstrated
in Fig. 12, and on Δs and Δp, as quantitative measures for
these anisotropies (see Fig. 13). In Fig. 14, the eB depend-
ence of the product of the field strength and the magneti-
zation is demonstrated. We have shown that for large enough
κf, this product becomes smaller than for the cases of
κ̂ ¼ 0 GeV−1 and small κf, but the magnetization is always
positive. According to [32], this is believed to be an
indication of paramagnetic behavior of the hot and magnet-
ized quark matter, especially in the vicinity of the phase
transition point.
To what extent the inclusion of large nonperturbative

quark AMM in more sophisticated models, such as
magnetized Polyakov-loop NJL (PNJL) model or
Polyakov-loop linear-sigma (PLSM) model, would affect
the critical temperature and the order of confinement/
deconfinement phase transition is an open question, which
shall be investigated in the future; one of the interesting
phenomena that occurs by considering a new order param-
eter corresponding to the confinement/deconfinement
phase transition (Polyakov loop) is the appearance of a
new phase in the T-eB phase diagram of magnetized
Polyakov-loop extended effective models, where the
deconfined quark matter is in the χSB phase. As is shown,
e.g., in [64], the main reason for the appearance of this new
phase in a magnetized PLSM model is the eB dependence
of the critical temperature corresponding to χSB, TχSB

c , and
the critical temperature corresponding to confinement/
deconfinement phase transition, Tconf

c . In this model, for
vanishing quark AMM, TχSB

c ðBÞ increases with increasing
eB, while Tconf

c ðBÞ decreases. This opens a possibility for
the appearance of the aforementioned new deconfined but
χSB phase. For vanishing quark AMM, the phenomenon of
IMC, observed in lattice QCD simulations changes this
picture in the sense that if both TχSB

c ðBÞ and Tconf
c ðBÞ

decreases with increasing eB, the region in the T-eB phase
space, where the new phase may exist, shrinks. To answer
to the question whether this new phase survives the
inclusion of large nonperturbative quark AMM in a
magnetized Polyakov-loop extended effective model, it
is crucial to determine the behavior of Tconf

c as a function of

eB in these kind of models including the quark AMM.
Other extensions to the model considered in the present
paper are also thinkable. As it is shown in [65] the inclusion
of β equilibrium and isospin asymmetry in a magnetized
NJL model affect the order of the phase transition, and
consequently shift the position of the critical point in a T-μ
phase diagram. Similarly, according to [66], the addition of
a strong enough vector interaction to the magnetized NJL
Lagrangian strongly affects the order of phase transitions,
the softness of the equation of state and the position of the
critical point in a T-μ phase diagram (vector repulsion). All
these would have, for instance, astrophysical implications,
would affect the structure of compact stellar objects [66],
and might also be interesting for the physics of HICs.
It would be interesting to study the interplay between the
effects occurring by considering large nonperturbative
quark AMMs and the effects induced by the presence of
the above listed extensions to magnetized NJL-like models,
including isospin-asymmetry, different inhomogeneities, β
equilibrium, strangeness and additional vector channels in
the NJL-like models. We postpone these interesting studies
to future publications.
Let us notice at this stage, that the method used in the

present paper to introduce the quark AMM is different from
the method presented in [50]. Here, starting from a one-
flavor magnetized NJL model with an appropriate tensor
channel, a mechanism for the dynamical generation of the
quark AMM in the LLL is presented. It is also shown that
the scalar and tensor couplings of the NJL model become
anisotropic, and receive longitudinal and transverse com-
ponents with respect to the direction of the magnetic field.
For constant anisotropic couplings, in the subcritical
regime, the phenomenon of IMC does not occur. In a
subsequent paper [48], however, the authors consider the
running of these couplings as a function of eB, and show
that because of a certain antiscreening effect, induced by
quarks that are confined by the magnetic fields to the LLL,
the critical temperature of the χSB decreases with increas-
ing the magnetic field strength. This is believed to be a
natural explanation for the phenomenon of IMC, that arises
originally in a number of model calculations [17,22], in the
framework of gauge/gravity duality [16], and from an ab
initio lattice QCD simulation at finite T and eB [28].
Let us also notice that the linear-in-B ansatz, used in the

present paper, is different from the one which is used in
[51,52]. Here, the Schwinger term is defined to be propor-
tional to the Bohr magneton μ0B ¼ e

2m0
in terms of the

current (bare) quark mass m0, in contrast to our approach,
described above. Thus far, the inconsistencies from the
Schwinger linear-in-B ansatz in the weak-magnetic field
approximation, described in [51,52], are not expected to
occur in our approach. Moreover, in contrast to the previous
approaches, we have considered the contributions of all
Landau levels, and neither restricted ourselves to LLL [50],
nor to one-loop approximation in the LLL, as in [51,52].
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Apart from the aforementioned extensions. there are
many possibilities to improve the approach presented in
this paper. As we have argued in Sec. II, the coefficient κf
and the constituent quark mass m are closely entangled.
In other words, it is not possible to determine one of them
without determining the other one. The reason is indeed
formulated in [50], where it is stated that since one and the
same symmetry is broken by the quark AMM and the chiral
condensate, nothing can guarantee a vanishing AMM, once
the chiral symmetry is broken by a nonvanishing chiral
condensate. In the present paper, using a method compat-
ible with the constituent quark model, we have fixed κf and
determined m. This method can gradually be improved.
The main idea is to determine κf from the relation κf ¼
1
2m ðmIf − 1Þ, where If for up and down quarks are given in

(A8). Instead of fixing m with the phenomenologically
reliableM ¼ 420 andM ¼ 340 MeV, as it is performed in
the present paper, we can replace it, e.g., by
m0ðTÞ≡mðT; μ�; eB�; κ̂ ¼ 0Þ, where μ� and eB� are fixed
values of chemical potential and magnetic field. We then
obtain

κuðT; μ�; eB�Þ ¼ 1

2m0ðTÞ
�
m0ðTÞ
0.338

− 1

�
;

for up quarks, and

κdðT; μ�; eB�Þ ¼ 1

2m0ðTÞ
�
m0ðTÞ
0.322

− 1

�
;

for down quarks. Plugging these relations into (2.9), and
the latter into Ωeffðm0ðTÞ;T; μ�; eB�Þ, and eventually
looking for the global minima of the resulting expression,
a new set of constituent quark mass arises, which replaces
the data demonstrated in Fig. 6, for instance. The same
procedure may be repeated for the sets ðT�; μ; eB�Þ or
ðT�; μ�; eBÞ, where the fixed values of T; μ, and eB are
denoted by the superscript “star.” It would be interesting to
look for the phenomenon of MC and IMC in this frame-
work. We will report about the results of this new approach
in the a future publication.
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APPENDIX: DETERMINATION OF κ̂ USING THE
CONSTITUENT QUARK MODEL

Let us consider a system including up and down quarks
in the presence of a uniform magnetic field B. The spin
magnetic moment μ̂ of this system is given by

μ̂ ¼ gQ̂μ̂Bs: ðA1Þ

Here, g ¼ 2ð1þ α̂Þ is the Landé g-factor, with α̂ denoting
its anomalous contribution. In our two-flavor NJL model
α̂ ¼ diagðαu; αdÞ and Q̂ ¼ diagðqu; qdÞ are 2 × 2 diagonal
matrices, including the anomalous magnetic moment
αf; f ¼ u; d and electric charge qf; f ¼ u; d of the up
and down quarks. Moreover, s ¼ 1

2
τ is the quark spin

angular momentum of the quarks, and μ̂B ¼ diagðμuB; μdBÞ
with μfB ¼ e

2Mf
; f ¼ u; d, the nonperturbative (effective)

Bohr magneton in the flavor space, which is given in
terms of the (bare) electric charge e, as well as the up and
down quark constituent (effective) masses Mu and Md,
arising in the mass matrix M̂ ¼ diagðMu;MdÞ. Here, τ are
the three Pauli matrices. Using (A1), and assuming that
the magnetic field B is directed in the third direction, the
fth matrix element of the third component of μ̂, μ̂3 ¼
diagðμu; μdÞ, is given by

μf ¼
qfe

2Mf
ð1þ αfÞσ3: ðA2Þ

Here, σ3 ¼ diagðþ1;−1Þ is the third Pauli matrix. The
eigenvalues of μf in the spinor space are therefore given by
μf ¼ qfe

2Mf
ð1þ αfÞs with s ¼ �1 and f ¼ u; d. Using this

expression, we can define the following positive ratio

If ≡ Mf

1þ αf
¼ μN

μf
qfmp; ðA3Þ

which turns out to be a phenomenologically relevant
quantity [56]. Here, mp ∼ 0.938 GeV the proton mass,
and μN ≡ e

2mp
the nuclear magneton, whose phenomeno-

logical values are fixed by experiments. Using at this stage,

μp ∼ 2.79μN; μn ∼ −1.91μN; ðA4Þ

for the magnetic moment of proton (neutron) μp (μn), and
their relationship to the magnetic moment of up and down
quarks, μu and μd,

μp ¼ 1

3
ð4μu − μdÞ; μn ¼

1

3
ð4μd − μuÞ; ðA5Þ

that yield
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μu ¼
1

5
ð4μp þ μnÞ; μd ¼

1

5
ð4μn þ μpÞ; ðA6Þ

we obtain

μu ∼ 1.852μN; μd ∼ −0.972μN: ðA7Þ

Using these data, the ratio If ¼ μN
μf
qfmp for f ¼ u; d is

fixed to be

Iu ∼ 0.338 GeV; Id ∼ 0.322 GeV: ðA8Þ

Same results are also reported in [56]. The above phe-
nomenological values for If; f ¼ u; d can be used to
determine phenomenological values for αf; f ¼ u; d

through If ¼ Mf

1þαf
from (A3). In order to have a sizable

quark AMM, we choose Mu ¼ Md ¼ 0.420 GeV for the
quark (effective) constituent mass Mf; f ¼ u; d [56].
We arrive at

αu ∼ 0.242; αd ∼ 0.304; ðA9Þ

which satisfy the condition αu − αd ≃ 0.05. The latter
guarantees the isospin symmetry [56]. Plugging (A9) into

the relation κf ¼ αf
2Mf

from (2.9), and choosingMu ¼ Md ¼
0.420 GeV, we obtain

κu ∼ 0.290; κd ∼ 0.360 GeV−1; ðA10Þ

[see also (2.12)]. Choosing, on the other hand,Mu ¼ Md ¼
0.340 GeV, and following the same steps as above, we
obtain

αu ∼ 0.006; αd ∼ 0.056; ðA11Þ

which lead to

κu ∼ 0.009; κd ∼ 0.080 GeV−1; ðA12Þ

[see also (2.13)]. As described in Sec. II, in the present
work, κ̂, appearing explicitly in the quark energy dispersion
relation (2.9) is fixed by (A10) and (A12) [see (2.12) and
(2.13)]. The T-, μ-, and eB-dependent constituent quark
mass are then determined by plugging this dispersion
relation into the thermodynamic potential (2.11), and
minimizing it appropriately. We have shown that for κ̂1
from (A10), leading to large α̂ from (A9), the phenomenon
of IMC occurs.
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