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A simple expression for calculating the interparticle potential energy concerning D-dimensional
electromagnetic models is obtained via Feynman path integral. This prescription converts the hard task of
computing this potential into a trivial algebraic exercise. Since this method is equivalent to that based on the
merging of quantummechanics (to leading order, i.e., in the first Born approximation) with the nonrelativistic
limit of quantum field theory, and keeping in mind that the latter relies basically on the computation of the
nonrelativistic Feynman amplitude (MNR), a trivial expression for calculating MNR is obtained from the
alluded prescription as an added bonus. To test the efficacy and simplicity of the method, D-dimensional
interparticle potential energy is found for awell-known extension of the standardmodel in which themassless
electrodynamics Uð1ÞQED is coupled to a hidden sector Uð1Þh, as well as Lee-Wick electrodynamics.
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I. INTRODUCTION

Now and again new electromagnetic models appear in
the literature. The reasons for studying these systems are
many and of different kinds: (i) to control the ultraviolet
(UV) divergences that are generally present in the electro-
magnetic models [1–23]; (ii) to obtain a system where a
pointlike charge has a finite self-energy (Born-Infeld
electrodynamics is a case in point [24–37]); (iii) to find
a system that, besides having a pointlike charge with finite
self-energy, also exhibits the feature of birefringence (the
logarithmic electrodynamics is an example of this fact
[38]); (iv) to analyze Lorentz-violating models [39–50];
and so on.
Nevertheless, as is well known, these electromagnetic

models must reproduce the Coulomb potential energy in

the nonrelativistic limit plus a correction to the aforemen-
tioned energy. Accordingly, it is of fundamental importance
to have an easy method for finding the alluded potential so
that its behavior at low energies can be analyzed promptly
and efficiently.
There are, of course, many powerful methods in the

literature for obtaining this potential in the nonrelativistic
limit. Unfortunately, all these methods require excessive
algebraic computations and, as a consequence, are time-
consuming processes.
Our main aim here is to devise a method in which the

above mentioned hurdles can be overcome, or at least
reduced to a minimum. To accomplish this, we shall build
out in Sec. II a prescription for getting the interparticle
potential energy concerning D-dimensional electromag-
netic models based on a Feynman path integral. The main
ingredient of the method is a “propagator” in momentum
space found by discarding all terms of the usual Feynman
propagator in momentum space that are orthogonal to the
external conserved currents, and making afterward k0 ¼ 0,
where kμ is the momentum of the exchanged particle.
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In Sec. III, a straightforward expression for calculating
the nonrelativistic Feynman amplitude (MNR)—the key
point of the method for obtaining the D-dimensional
potential based on the marriage between quantum mechan-
ics and the nonrelativistic limit of quantum field theory—is
found as a byproduct of our prescription.
To test our method, we shall compute in Secs. IV and V,

respectively, the D-dimensional interparticle potential
energy for (i) a well-known extension of the standard
model in which the massless electrodynamics Uð1ÞQED
is coupled to a hidden sector Uð1Þh [51–55], and
(ii) Lee-Wick electrodynamics [1,2].
Finally, in Sec. VI, we present our conclusions.
We use natural units throughout, and our Minkowski

metric is diag(1;−1;…;−1).

II. SIMPLE PRESCRIPTION FOR COMPUTING
THE D-DIMENSIONAL INTERPARTICLE

POTENTIAL ENERGY FOR ELECTROMAGENTIC
MODELS

It is well known that the generating functional for the
connected Feynman diagrams WDðJÞ is related to the
generating functional for a free electromagnetic theory
ZDðJÞ by ZDðJÞ ¼ eiWDðJÞ [56,57], where

WDðJÞ ¼ −
1

2

ZZ
dDxdDyJμðxÞDμνðx − yÞJνðyÞ: ð1Þ

Here JμðxÞ and Dμνðx − yÞ are, respectively, the external
conserved current and the propagator.
Now, bearing in mind that

Dμνðx − yÞ ¼
Z

dDk
ð2πÞD eikðx−yÞDμνðkÞ;

JμðkÞ ¼
Z

dDxe−ikxJμðxÞ;

we promptly obtain

WDðJÞ ¼ −
1

2

Z
dDk
ð2πÞD JμðkÞ�DμνðkÞJνðkÞ;

which can be written as

WDðJÞ ¼ −
1

2

Z
dDk
ð2πÞD JμðkÞ�PμνðkÞJνðkÞ; ð2Þ

where PμνðkÞ is the “propagator” in momentum space
obtained by neglecting all terms of the usual Feynman
propagator in momentum space that are orthogonal to the
external conserved currents.

From (2), we then get

WDðJÞ ¼ −
1

2

Z
dDk

ð2πÞD−1

�
δðk0ÞTPμνðkÞ

ZZ
dD−1x

× dD−1yeik·ðy−xÞJμðxÞJνðyÞ
�
; ð3Þ

where the time interval T is produced by the factor
R
dx0.

Simple algebraic manipulations, on the other hand,
reduce (3) to the form

WDðJÞ ¼ −T
Z

dD−1k
ð2πÞD−1 PμνðkÞΔμνðkÞ; ð4Þ

where PμνðkÞ≡ PμνðkÞjk0¼0, and

ΔμνðkÞ ¼
ZZ

dD−1xdd−1yeik·ðy−xÞ
JμðxÞJνðyÞ

2
: ð5Þ

Now, in the specific case of two charges Q1 and Q2

located, respectively, at a1 and a2, the current assumes the
form

JμðxÞ ¼ ημo½Q1δ
D−1ðx − a1Þ þQ2δ

D−1ðx − a2Þ�: ð6Þ

Therefore,

ΔμνðkÞ ¼ Q1Q2eik·rημ0ην0; ð7Þ

where r ¼ a2 − a1, and

WDðJÞ ¼ −T
Q1Q2

ð2πÞD−1

Z
dD−1keik·rP00ðkÞ: ð8Þ

On the other hand,

ZDðJÞ ¼< 0je−iHDT j0 >¼ e−iEDT; ð9Þ

which implies that

ED ¼ −
WDðJÞ

T
: ð10Þ

As a consequence, the D-dimensional potential energy
can be computed through the straightforward expression

EDðrÞ ¼
Q1Q2

ð2πÞD−1

Z
dD−1keik·rP00ðkÞ: ð11Þ

We remark that this expression, mutatis mutandis, can be
easily extended to scalar and tensorial models.
We call attention to the fact that Zee [57] has utilized

Eq. (1) to show that the electromagnetic force between like
charges is repulsive.
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III. FINDING MNR FROM OUR PRESCRIPTION

Obviously, the calculations made via Feynman diagrams
must coincide in the nonrelativistic limit with those coming
from quantum mechanics, where the interaction between
particles is described by a potential energy ED. Our goal
here is to compare the cross sections for the interaction of
two particles obtained, respectively, using first quantum
mechanics and afterward the nonrelativistic limit of quan-
tum field theory, in order to find an expression for
computing the potential energy ED experienced by them.
We begin by recalling a very known expression from

quantum mechanics, i.e., the formula for the elastic
scattering cross section (to leading order, i.e., in the first
Born approximation) for a particle of mass m in the
potential ED:

dσ
dΩ

¼ jfðθÞj2; ð12Þ

where

fðθÞ ¼ −
m
2π

Z
dD−1re−ik

0·rEDðrÞeik·r: ð13Þ

Here, θ is the scattering angle, k the incident moment, and
k0 the outgoing moment (jkj ¼ jk0j, since we are consid-
ering an elastic process).
Let us then make a comparison of this result with that

obtained through the relativistic formalism. For the sake of
clarity, we shall consider the scattering of a nonrelativistic
particle of momentum k and mass m, with jkj ≪ m, off a
heavy target A, with mass MA ≫ m. We can imagine, for
instance, an electron being scattered by an atom. Since
jkj ≪ m ≪ MA, the recoil of the atom can be neglected. In
this discussion we shall consider only elastic scattering. Let
us assume also that the incident particle and the particle A
interact via the exchange of a massless or massive boson.
Now, assuming that MA is much larger than the electron

energy, the elastic cross section is given by

dσ
dΩ

¼ 1

64π2M2
A
jMj2; ð14Þ

where M is the Feynman amplitude for the process at
hand. Denoting, in turn, the Feynman amplitude in the
nonrelativistic limit by MNR, we get [58]

M ¼ ð2mÞð2MAÞMNR; ð15Þ

which allows us to rewrite (14) in the form

dσ
dΩ

¼
�
m
2π

�
2

jMNRj2: ð16Þ

From (12) and (16), we find

MNR ¼
Z

dD−1rEDeiq·r; ð17Þ

where q ¼ k0 − k is the exchanged momentum. Note that
the phase of (17) was chosen in such a way that a repulsive
force (positive potential) corresponds to a positive MNR.
Accordingly,

ED ¼ 1

ð2πÞD−1

Z
MNReiq·rdD−1q: ð18Þ

It is worth noting that in the case of two identical fermions,
the matrix elementMNR that appears in (18) is just that part
of the covariant matrix element which corresponds to direct
scattering, since the use of antisymmetric wave functions in
nonrelativistic wave mechanics automatically takes care of
the contributions due to exchange scattering [59].
Now, since to leading order the methods developed in

Secs. II and III are equivalent, we come to the conclusion
that

MNR ¼ Q1Q2P00: ð19Þ

Therefore, our prescription yields an added bonus: a
trivial expression for computing MNR.
We point out that formula (18) was used to justify the

Coulomb law from QED in the early days of this theory. In
the seminal book by Sakurai [59], for instance, the
Coulomb potential is found from (18). It is also obtained
using the same formula in the excellent and up-to-date book
by Maggiore [58]. Gupta and Radford [60], on the other
hand, derived the Coulomb potential from the scattering
operator using the techniques of standard field theory. It is
important to remember that prior to Möller’s work, G. Breit
had already worked out all the correction terms to the
Coulomb potential using essentially classical arguments
and applied them to the He atom. In [61–63], we can find
interesting results deduced by the mentioned author in the
beginning of the quantum electrodynamics era.

IV. D-DIMENSIONAL POTENTIAL FOR AN
EXTENSION OF THE STANDARD MODEL IN
WHICH THE MASSLESS ELECTROMAGNETIC

Uð1ÞQED IS COUPLED TOAHIDDEN-SECTORUð1Þh
Most standard extensions of the standard model, in

particular the ones based on string theory, often involve
a hidden sector—a set of degrees of freedom very weakly
coupled to standard-model particles. On the other hand, an
interesting model for studying the massive hidden-sector
photons is based on the assumption that the low-energy
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dynamics contains, in addition to the familiar massless
electromagnetic Uð1ÞQED, another hidden-sector Uð1Þh
under which all standard-model particles have zero charge.
These two U(1) gauge groups at low energies can be
described by the renormalizable Lagrangian [51–55]

L ¼ −
1

4
F2
μν −

1

4
B2
μν −

1

2
χFμνBμν þ

1

2
m2BμBμ

þ JμðAÞAμ þ JμðBÞBμ; ð20Þ

where Fμν is the field strength tensor for the usual
electromagnetism Uð1ÞQED gauge field Aμ, Bμν is the field
strength for the hidden-sector Uð1Þh field Bμ, and JμðAÞ and
JμðBÞ are the respective currents. The first two terms are the
standard kinetic terms for the photon and hidden-sector
photon fields, in that order, while the third term, a so-called
kinetic mixing, corresponds to a nondiagonal kinetic term.
For the sake of positiveness of the energy, the χ parameter
must be such that jχj < 1. It is worth noting that kinetic
mixing arises generally both in field theoretic [64,65] as
well as in string theoretic [66–69] setups, and typical
predicted values for this parameter range between 10−16

and 10−4. The second-to-last term in the above Lagrangian
accounts for a possible mass of the paraphoton. The
purpose of analyzing this model here is to investigate the
impact of paraphotons [Uð1Þh] on physical observables. To
accomplish this task, we shall work out the D-dimensional
interparticle potential energy between the charges using the
prescription previously mentioned.
To begin with, we shall write the first four terms in

Lagrangian (20) in terms of the usual vector projection

operators θμν ¼ ημν −
kμkν
k2 and ωμν ¼ kμkν

k2 . In the Lorentz
gauge ðLgf ¼ − 1

2λ ð∂μAμÞ2Þ, the mentioned terms assume
the following form in momentum space:

L1 þ L2 þ L3;

where

L1 ¼
1

2
AμK

μν
1 Aν

¼ 1

2
Aμ

�
−k2θμν −

k2

λ
ωμν

�
Aν;

L2 ¼
1

2
BμK

μν
3 Bν

¼ 1

2
Bμ½ðm2 − k2Þθμν þm2ωμν�Bν;

L3 ¼ AμK
μν
2 Bν

¼ Aμ½−χk2θμν�Bν:

Now we gather together Aμ and Bν in a doublet

Θμ ¼
�
Aμ

Bμ

�
;

which greatly facilitates the computation of the propaga-
tors. As a result, (20) can be rewritten in the form

L ¼ 1

2
~ΘμKμνΘν þ ~JμΘμ;

where

Kμν ¼
�
Kμν

1 Kμν
2

Kμν
2 Kμν

3

�

and

Jμ ¼
� JμðAÞ
JμðBÞ

�
:

After lengthy algebraic calculations, we are able to read
off the operator K−1

μν :

K−1
μν ¼

�
aμν ≡ hAμAνi bμν ≡ hAμBνi
bμν ≡ hAμBνi cμν ≡ hBμBνi

�
;

where

aμν ¼
k2 −m2

k4χ2 þ k2ðm2 − k2Þ θμν −
λ

k2
ωμν;

bμν ¼ −
χ

m2 − k2ð1 − χ2Þ θμν;

cμν ¼
θμν

m2 − k2ð1 − χ2Þ þ
ωμν

m2
:

From Sec. II, we come to the conclusion that

ED ¼ 1

2T

ZZ
dDxdDyJμðxÞK−1

μν ðx − yÞJνðyÞ: ð21Þ

Consequently,

ED ¼ EI þ 2EII þ EIII;

where
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EI ¼
1

2T

ZZ
dDxdDyJμðAÞðxÞaμνðx − yÞJνðAÞðyÞ;

EII ¼
1

2T

ZZ
dDxdDyJμðAÞðxÞbμνðx − yÞJνðBÞðyÞ;

EIII ¼
1

2T

ZZ
dDxdDyJμðBÞðxÞcμνðx − yÞJνðBÞðyÞ:

It is straightforward to show, on the other hand, that the
above expressions can be rewritten as

EI ¼
Z

dD−1k
ð2πÞD−1 P

ðaÞ
μν ðkÞΔμν

ðaÞðkÞ;

EII ¼
Z

dD−1k
ð2πÞD−1 P

ðbÞ
μν ðkÞΔμν

ðbÞðkÞ;

EIII ¼
Z

dD−1k
ð2πÞD−1 P

ðcÞ
μν ðkÞΔμν

ðcÞðkÞ;

where PðaÞ
μν ðkÞ, PðbÞ

μν ðkÞ, and PðcÞ
μν ðkÞ are the “propagators”

in momentum space found by getting rid of all terms of the
corresponding Feynman propagators

aμνðkÞ; bμνðkÞ; cμνðkÞ

in this order that are orthogonal to the conserved currents,
and afterward making k0 ¼ 0 in all of them. The Δμν

ðiÞ,
i ¼ a; b; c, in turn, are defined as follows:

Δμν
ðaÞðkÞ ¼

ZZ
dD−1xdD−1yeik·ðy−xÞ

JμðAÞðxÞJνðAÞðyÞ
2

;

Δμν
ðbÞðkÞ ¼

ZZ
dD−1xdD−1yeik·ðy−xÞ

JμðAÞðxÞJνðBÞðyÞ
2

;

Δμν
ðcÞðkÞ ¼

ZZ
dD−1xdD−1yeik·ðy−xÞ

JμðBÞðxÞJνðBÞðyÞ
2

:

If the currents are expressed as

JμðAÞðxÞ ¼ ημ0½σ1δD−1ðx − a1Þ þ σ2δ
D−1ðx − a2Þ�;

JμðBÞðyÞ ¼ ημ0½ρ1δD−1ðy − a1Þ þ ρ2δ
D−1ðy − a2Þ�;

we get immediately

EIðrÞ ¼
σ1σ2
ð2πD−1

Z
dD−1keik·rPðaÞ

00 ðkÞ

¼ σ1σ2
ð2πÞD−1

Z
dD−1keik·r

�
1

k2
þ χ2

1 − χ2
1

k2 þM2

�
;

EIIðrÞ ¼
σ1ρ2 þ σ2ρ1

2

1

ð2πÞD−1

Z
dD−1keik·rPðbÞ

00 ðkÞ

¼ χ

χ2 − 1

σ1ρ2 þ σ2ρ1
2ð2πÞD−1

Z
dD−1keik·r

1

k2 þM2
;

EIIIðrÞ ¼
ρ1ρ2

ð2πÞD−1

Z
dD−1keik·rPðcÞ

00 ðkÞ

¼ ρ1ρ2
1 − χ2

1

ð2πÞD−1

Z
dD−1keik·r

1

k2 þM2
:

Here M2 ≡ m2

1−χ2.
Carrying out the previous integrals, we arrive at the

conclusion that for D > 3,

ED ¼ σ1σ2
ð2πÞD−1

2

2
D−5
2 ΓðD−3

2
Þ

rD−3

þ 1

ð2πÞD−1
2

�
σ1σ2χ

2

1 − χ2
þ χðσ1ρ2 þ σ2ρ1Þ

χ2 − 1

þ ρ1ρ2
1 − χ2

��
M
r

�D−3
2

KD−3
2
ðMrÞ; ð22Þ

whereas for D ¼ 3,

E3 ¼ −
σ1σ2
2π

ln
r
r0

þ 1

2π

�
σ1σ2χ

2

1 − χ2
þ χðσ1ρ2 þ σ2ρ1Þ

χ2 − 1

þ ρ1ρ2
1 − χ2

�
K0ðMrÞ; ð23Þ

where Γ is the gamma function, Kν is the modified Bessel
function of the second order of the order ν, and r0 is an
infrared regulator.
We remark that we could have reshuffled the Aμ and Bμ

fields by diagonalizing the matrix K in the kinetic term of
(20) [65],

K ¼
�
1 χ

χ 1

�
;

by means of an orthogonal transformation. By doing that,
we could rescale the new vector fields by the factorsffiffiffiffiffiffiffiffiffiffiffi
1� χ

p
, and as a result we would end up with a basis of

new fields with canonical kinetic terms. However, this
would yield new mass-mixing terms amongst the vector
fields of the new field basis, and nondiagonal propagators
would appear anyhow, mixing the reshuffled fields. That is
the reason why we have opted to work with the Aμ and
Bμ fields with a mixing kinetic term as given in the
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Lagrangian (20). Indeed, this can be easily seen if we
follow the steps described below.
First of all, we rewrite (20) in the form

L ¼ 1

2
~ΘμK□θμνΘν þ

1

2
~ΘμM2Θμ þ ~ΘμJμ;

where

M2 ¼
�
0 0

0 m2

�
:

Now, if R is the SOð2Þ matrix that diagonalizes K, then

RK ~R ¼ Kd;

where

Kd ¼
�
1þ jχj 0

0 1 − jχj

�
;

0 < jχj < 1:

On the other hand, by considering 0 < χ < 1, we
promptly obtain

R ¼
�

cos θ sin θ

− sin θ cos θ

�
;

with θ ¼ π
4
, which allows us to bring the Lagrangian into

the form

L ¼ 1

2
~ΛμKd□θμνΛν þ

1

2
~Λμ

~M2Λμ þ ~ΛμJ
μ
Λ;

with RΘμ ¼ Λμ;
~M2 ¼ RM2 ~R; JΛ ¼ RJ.

In order to absorb the K
1
2

d matrix, we define the Λμ

field as

K
1
2

dΛμ ¼ Σμ;

so that

L ¼ 1

2
~Σμ□ΘμνΣν þ

1

2
~Σμμ

2Σμ þ ~ΣμJ
μ
Σ;

with

JΣ ≡K
−1
2

d JΛ; μ2 ≡K
−1
2

d
~M2K

−1
2

d ;

where

μ2 ¼
�
0 0

0 m2

1−χ2

�
:

At this point, the parameter χ has been moved into new
(symmetric) mass matrix, μ2. We can then conclude by
understanding that we could work with the more physical
basis of fields—namely, the one given by Σμ—for which
we have the canonical kinetic term and a diagonal mass
matrix. It is worth noting that with this field parametriza-
tion, the χ parameter moves from the kinetic term into the
mass spectrum and the coupling to the external fields. For
the sake of our computations to attain the interparticle
potential, both field bases, Θμ and Σμ, are perfectly
equivalent. The propagators, in both bases, exhibit exactly
the same poles: 0 and m2

1−χ2, which are the physical masses in
the spectrum.
Let us then return to the subject we were discussing

before this digression. Keeping in mind that KνðrÞ ∼ffiffi
π
2

p
e−rffiffi
r

p ð1þOð1rÞÞ for r ⟶ ∞, we clearly see that (22)
and (23) reproduce asymptotically the Coulomb potential
energy.
Since the model we are analyzing was originally built up

in a four-dimensional spacetime, for the sake of complete-
ness we display below the expression for the potential
energy for D ¼ 4:

E4 ¼
σ1σ2
4π

1

r
þ 1

4π

�
σ1σ2χ

2

1 − χ2
þ χðσ1ρ2 þ σ2ρ1Þ

χ2 − 1

þ ρ1ρ2
1 − χ2

�
e−Mr

r
: ð24Þ

Suppose now that we consider the model (20), with
JμðAÞ ¼ JμðBÞ ¼ 0, in the limit of a very heavy B field, i.e.,
m ≫ mγ , where mγ is the photon mass. If we are bound to
energies ≪ m, we can integrate over Bμ in order to obtain
an effective model for the Aμ field. This can be done via the
path-integral formulation of the generating functional
related to the alluded model. Shifting the Bμ field through
the expression

Bμ ¼ B̂μ −
1

□þm2
ημν∂αFαν; ð25Þ

and performing afterward the Gaussian integration over this
field, we arrive at the following effective Lagrangian for Aμ:

Leff ¼ −
1

4
F2
μν þ

χ2

4
Fμν

□

□þm2
Fμν: ð26Þ

We are now ready to compute the D-dimensional
interparticle potential energy through the prescription
developed in Sec. II.
In the Lorentz gauge, the propagator in momentum space

concerning (26) reads
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DμνðkÞ ¼
�
−

1

k2
þ χ2

χ2 − 1

1

k2 −M2

�
θμν −

λ

k2
ωμν;

where M2 ≡ m2

1−χ2.
Thus,

P00ðkÞ ¼
1

k2
−

χ2

χ2 − 1

1

k2 þM2
: ð27Þ

As a result, the D-dimensional interparticle potential
energy for the interaction of two static charges σ1 and σ2 is
given for D > 3 by

EDðrÞ ¼
σ1σ2
ð2πÞD−1

2

�
2
D−5
2 ΓðD−3

2
Þ

rD−3

−
χ2

χ2 − 1

�
M
r

�D−3
2

KD−3
2
ðMrÞ

�
; ð28Þ

while for D ¼ 3,

E3ðrÞ ¼ −
σ1σ2
2π

�
ln

r
r0

þ χ2

χ2 − 1
K0ðMrÞ

�
: ð29Þ

Both (28) and (29) can obviously be obtained from (22)
and (23) by making ρ1 ¼ ρ2 ¼ 0 in the aforementioned
equations. On the other hand, if we make ρ1 ¼ ρ2 ¼ 0 in
(24), the resulting equation reproduces that found in
Ref. [70].

V. ED FOR LEE-WICK ELECTRODYNAMICS

D-dimensional higher-derivative models are the object of
intensive research currently. The motivation for studying
these systems lies in the fact that higher derivatives have
been used frequently as a powerful mechanism to tame the
wild UV divergences that are commonly found in relevant
physical models. For instance, in the early 1970s, Lee and
Wick (LW) claimed that they have found a finite version of
QED [1,2]; nevertheless, the model they have put forward
is affected by a severe problem: the presence of degrees of
freedom associated with a nonpositive norm on the Hilbert
space. To remedy this difficulty, these authors adopted
ad hoc modifications for the analytic continuation of the
amplitudes [2]. In summary, we may say that LW work
consists essentially in the introduction of Pauli-Villars,
wrong-sign propagator fields as physical degrees of free-
dom, which leads to amplitudes that are better behaved in
the UV and render the logarithmically divergent QED
finite. Recently, the LW theories have enjoyed a revival
of interest owed to the introduction of non-Abelian LW
gauge theories by Grinstein, O’Connell, and Wise [71,72].
Their model, usually referred to as the LW standard model,
is naturally free of quadratic divergences, thus providing an
alternative way to the solution of the hierarchy problem.
Although the LW model is nonunitary in the framework of

the usual quantum field theory, this does not imply that that
it must be rejected. Indeed, higher-order systems can be
utilized as effective field models at familiar scales [73]. It is
worth noting that, in this sense, many interesting studies
related to LW electrodynamics have recently been done
[3–23]. Accordingly, owing to the great interest this
electrodynamics has aroused in the literature, we shall
study the role played by higher derivatives in this model via
the analysis of its D-dimensional interparticle potential
energy.
LW theory is defined by the Lagrangian

L ¼ −
1

4
F2
μν −

1

4m2
Fμν□Fμν;

where m (> 0) is a parameter with mass dimension. The
propagator related to this theory in the Lorentz gauge can in
turn be written in momentum space as

Dμν ¼
m2

k2ðk2 −m2Þ θμν −
λ

k2
ωμν: ð30Þ

Consequently,

P00ðkÞ ¼
1

k2
−

1

k2 þm2
: ð31Þ

As a result, the potential energy for the interaction of two
pointlike chargesQ1 andQ2 located, respectively, at a1 and
a2 can be computed through the expression

EDðrÞ ¼
Q1Q2

ð2πÞD−1

�Z
dD−1k
k2

eik·r −
Z

dD−1k
k2 þm2

eik·r
�
:

It follows, then, that for D ≠ 3,

EDðrÞ ¼
Q1Q2

ð2πÞD−1
2

�
2
D−5
2 ΓðD−3

2
Þ

rD−3

−
�
m
r

�D−3
2

KD−3
2
ðmrÞ

�
; ð32Þ

whereas for D ¼ 3,

E3ðrÞ ¼ −
Q1Q2

2π

�
ln

r
r0

þ K0ðmrÞ
�
: ð33Þ

Both (32) and (33) agree with Ref. [3].
Taking into account that KνðrÞ ∼

ffiffi
π
2

p
e−rffiffi
r

p ð1þOð1rÞÞ for

r ⟶ ∞, it is straightforward to see that (32) and (33)
agree asymptotically with the Coulomb potential energy.
We analyze in the following the small-distance behavior

of the potential energy, considering the two possible
situations: D ≠ 3 and D ¼ 3.
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A. D ≠ 3

Here we have to take into account whether ν∉N
or ν ∈ N.
In the first case, i.e., ν∉N, for z → 0,

KνðzÞ ∼
1

2

�
ΓðνÞ

�
2

z

�
ν
�
1þ z2

4ð1 − νÞ þ
z4

32ð1 − νÞ

×
1

ð2 − νÞ þ � � �
�
þ Γð−νÞ

�
z
2

�
ν
�
1þ z2

4ðνþ 1Þ

þ z4

32ðνþ 1Þðνþ 2Þ þ � � �
��

;

which implies that D ¼ 2 or 3 < D < 5. Therefore, if D is
an even number, there exist only two models that are finite
at r ¼ 0: LW electrodynamics in two or four dimensions.
These systems are renormalizable, and their potential
energies at r ¼ 0 are equal to

E2ðr ¼ 0Þ ¼ −
Q1Q2

2m
;E4ðr ¼ 0Þ ¼ Q1Q2m

4π
:

On the other hand, if ν ∈ N,

KνðzÞ ¼ ð−1Þν−1 ln
�
z
2

��
z
2

�
νX∞
k¼0

ðz
2
Þ2k

k!ðkþ νÞ!

þ 1

2

�
2

z

�
νXν−1
k¼0

ð−1Þkðν − k − 1Þ!
k!

�
z
2

�
2k

þ ð−1Þν
2

�
z
2

�
νX∞
k¼0

ψðkþ 1Þ þ ψðkþ νþ 1Þ
k!ðkþ νÞ!

×
�
z
2

�
2k
;

where ψðzÞ≡ d
dz lnΓðzÞ is the psi function. Unfortunately,

ifD is an odd number, the corresponding system is singular
at r ¼ 0.

B. D ¼ 3

In this case, the potential energy is finite at r ¼ 0 and
equal to

E3ðr ¼ 0Þ ¼ Q1Q2

2π
lnðmr0Þ:

C. Summary

In short, we may say that for D ¼ 2, D ¼ 3, and D ¼ 4,
the higher derivatives present in the model are able to tame
the wild divergences of the LW electrodynamics at the
origin; unluckily, for D > 4, these higher derivatives are
unable to control the mentioned divergences.

VI. FINAL REMARKS

We have developed a trivial prescription for computing
the potential energy for D-dimensional electromagnetic
models. The essential part of the method consists in finding
the “propagator” PμνðkÞ, which is a quite straightforward
calculation. The potential energy can then be easily
computed via the expression

EDðrÞ ¼
Q1Q2

ð2πÞD−1

Z
dD−1eik·rkP00ðkÞ:

This prescription can also be utilized to find ED for the
interaction of two static scalar charges σ1 and σ2, as well as
for the interaction of two static masses M1 and M2. In the
former case,

EDðrÞ ¼
σ1σ2

ð2πÞD−1

Z
dD−1eik·rkPðkÞ;

while in the latter one,

EDðrÞ ¼
M1M2

ð2πÞD−1 κD

Z
dD−1eik·rkP00;00ðkÞ;

where κD is the D-dimensional Einstein constant [74].
We have also shown how to generalize the method at

hand for the case of a doublet of currents. In essence, all we
have to do in this case is to compute PðiÞ

μν ðkÞ; i ¼ 1; 2; 3; 4.
On the other hand, we have obtained a trivial expression

for calculating the Feynman amplitude in the nonrelativistic
limit (MNR), as a side effect of our prescription. If we
appeal to orthodox methods to make this calculation, we
are frequently faced with time-consuming work, particu-
larly in processes mediated by gravitons. We illustrate the
efficacy and simplicity of the prescription through two
examples: LW electrodynamics and higher-derivative
gravity.
In the first case,MNR for the interaction of two electrons

(each one with charge −e ðe > 0Þ) is given by [see
Eq. (31)]

MNR ¼ e2
�
1

k2
−

1

k2 þm2

�
:

As far as higher-derivative gravity is concerned, whose
appropriate Lagrangian for computing the propagator is

L ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ð−1ÞD−1g

q �
2R
κ2

þ α

2
R2 þ β

2
R2
μν

�
;

where κ2 ¼ 4πκD, it can be shown that [74]
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P00;00ðkÞ ¼
3 −D
D − 1

1

k2
þD − 2

D − 1

1

k2 þm2
2

−
1

ðD − 1ÞðD − 2Þ
1

k2 þm2
0

;

where m2
2 ≡ − 4

βκ2
; m2

0 ≡ 4ðD−2Þ
κ2½4αðD−1ÞþDβ�.

Accordingly, for the interaction of two masses M1 and
M2, we promptly find that

MNR ¼ M1M2κD

�
−
D − 3

D − 2

1

k2
þD − 2

D − 1

1

k2 þm2
2

−
1

ðD − 1ÞðD − 2Þ
1

k2 þm2
0

�
:

We point out that it is very hard work to calculate, via
traditional methods, the nonrelativistic Feynman amplitude
related to this specific example.
Summarizing, we may say that in comparison with the

conventional methods, our prescription presents the follow-
ing advantages:

(i) The computations are easier to perform in the
context of our method.

(ii) Our prescription provides, as an added bonus, the
nonrelativistic Feynman amplitude in a straightfor-
ward way.

(iii) Our method can be used for finding the interparticle
potential energy for models with a doublet of
currents. In addition, if one of the two fields of the
system is a very heavy one, we can find the effective
model concerning the remaining field by simply
reducing to zero the charges related to the current
concerning the heavy field. In other words, there is no
need of shifting the heavy field and performing
afterward the Gaussian integration over this field
in order to arrive at the effective field model.

To conclude, we comment on a recent proposed experi-
ment to search for extra hidden-sector Uð1Þ gauge bosons
with small kinetic mixing χ with ordinary photons [75].
The setup consists in putting a sensitive magnetometer
inside a superconducting shielding, which is in turn placed
inside a strong magnetic field. The authors of the proposed
experiment argued that photo-hidden-sector photon-photon
oscillations would allow the magnetic field to leak into the
shielding volume and register on the magnetometer. For
this purpose, they considered the Lagrangian

L ¼ −
1

4
F2
μν −

1

4
B2
μν −

χ

2
FμνBμν þ

1

2
m2BμBμ

þMLon
2

2
AμAμ; ð34Þ

where MLon is the London mass—i.e., the mass the photon
acquires inside the superconductor. Since in vacuum
MLon ¼ 0, (34) reduces to (20) in the absence of currents.

Owing to the special relevance of this experiment, it is
important to analyze the stability of the above scenario.
Following the same steps that have led to (26), we get

Leff ¼
1

2
Aμ

�
k4ð1 − χ2Þ − k2ðM2

Lon þm2Þ þM2
Lonm

2

m2 − k2
θμν

þM2
Lonλ − k2

λ
ωμν

�
Aν: ð35Þ

Therefore, the propagator associated with (35) is given by

DμνðkÞ ¼
1

ð1 − χ2Þ
1

ðM2
2 −M2

1Þ
�
M2

1 −m2

k2 −M2
1

−
M2

2 −m2

k2 −M2
2

�
θμν

þ λ

λM2
Lon − k2

ωμν; ð36Þ

where

M2
1 ¼

ðm2 þM2
LonÞ½1þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 − 4m2M2

Lonð1−χ2Þ
ðm2þM2

LonÞ2

r
�

2ð1 − χ2Þ ;

M2
2 ¼

ðm2 þM2
LonÞ½1 −

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 − 4m2M2

Lonð1−χ2Þ
ðm2þM2

LonÞ2

r
�

2ð1 − χ2Þ :

Consequently,

P00ðkÞ ¼
1

ð1 − χ2Þ
1

ðM2
2 −M2

1Þ
�
M2

2 −m2

k2 þM2
2

−
M2

1 −m2

k2 þM2
1

�
:

Thus, the potential energy for D ¼ 4 reads

E4ðrÞ ¼
σ1σ2

4πð1 − χ2ÞðM2
2 −M2

1Þ
�
ðM2

2 −m2Þ e
−M2r

r

− ðM2
1 −m2Þ e

−M1r

r

�
: ð37Þ

Now, if we make ρ1 ¼ ρ2 ¼ 0 in (24), we get

E4ðrÞ ¼
σ1σ2
4π

�
1

r
þ χ2

1 − χ2
e−Mr

r

�
: ð38Þ

Thence, for MLon ¼ 0, (37) reduces to (38).
Last but not least, we call attention to the interesting fact

that inside a superconductor box, the model at hand
describes precisely a screening phase [See (37)].
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