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Some extensions beyond the Standard Model propose the existence of nearly degenerate heavy sterile
neutrinos. If kinematically allowed these can be resonantly produced and decay in a cascade to common
final states. The common decay channels lead to mixing of the heavy sterile neutrino states and interference
effects. We implement nonperturbative methods to study the dynamics of the cascade decay to common
final states, which features similarities but also noteworthy differences with the case of neutral meson
mixing. We show that mixing and oscillations among the nearly degenerate sterile neutrinos can be detected
as quantum beats in the distribution of final states produced from their decay. These oscillations would be a
telltale signal of mixing between heavy sterile neutrinos. We study in detail the case of two nearly
degenerate sterile neutrinos produced in the decay of pseudoscalar mesons and decaying into a purely
leptonic “visible” channel: νh → eþe−νa. Possible cosmological implications for the effective number of
neutrinos Neff are discussed.
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I. INTRODUCTION

Many extensions of the Standard Model that propose
explanations of neutrino masses via seesaw-type mecha-
nisms [1–4] predict the existence of heavy “sterile” neu-
trinos, namely, SUð2Þ ×Uð1Þ singlets that mix very weakly
with “active” neutrinos [5–13]. Heavy sterile neutrinos
may play an important role in baryogenesis through lepto-
genesis [14–17] or via neutrino oscillations [18] motivating
several models for leptogenesis which may also yield dark
matter candidates [19,20]. Furthermore, heavy sterile neu-
trinos may contribute to the energy transport during type II
supernovae explosions [21]; their decay may be a source of
early reionization [22]; they have been argued to play an
important role in the thermal history of the early Universe
and to contribute to the cosmological neutrino background
[23]. For a review of the role of sterile neutrinos in
cosmology and astrophysics, see Refs. [20,24–26].
If the mass of the heavy sterile neutrino mh ≲Mπ;K;Mτ,

they can be produced as resonances in the decay of
pseudoscalar mesons (or charged leptons) opening a
window for current and future experimental searches. A
comprehensive study of leptonic and semileptonic weak
decays of heavy sterilelike neutrinos was carried out in
Ref. [27] and extended in Ref. [28], and various exper-
imental studies searching for heavy neutral leptons [29–43]
provide constraints on the values of the mixing matrix
elements between heavy sterile and active neutrinos for a
wide range of masses with stringent bounds within the
mass range 140 MeV ≤ Mh ≤ 500 MeV [40]. Recent
bounds on the mixing matrix elements between active
(light) and sterile (heavy) neutrinos [40,44,45] yield

jUehj2; jUμhj2 ≲ 10−7–10−5 in the mass range 30 MeV≲
mh ≲ 300 MeV. If heavy sterile neutrinos are Majorana,
they can mediate lepton number violating transitions with
jΔlj ¼ 2 motivating further studies of their production and
decay [46–48]. Furthermore, resonant production and
mixing of nearly degenerate heavy sterile neutrinos may
lead to enhanced CP violation and baryogenesis [15–20].
A thorough analysis of production and decay rates and
cross sections of heavy neutral leptons in various mass
regimes is available in Refs. [27,28,46,47,49–54], provid-
ing the theoretical backbone to current and proposed
experimental searches.

A. Motivation and goals

The astrophysical, cosmological and phenomenological
importance of heavy sterile neutrinos and their ubiquitous
place in well-motivated extensions beyond the Standard
Model motivates a series of recent proposals [49–54].
These make a compelling case for rekindling the search
for heavy sterile neutrinos in various current and next
generation experiments.
As pointed out in Refs. [15–20], extensions beyond the

Standard Model that feature nearly degenerate heavy sterile
neutrinos provide mechanisms for resonantly enhanced CP
violation with important consequences for baryogenesis
through leptogenesis. If these nearly degenerate heavy
sterile neutrinos are produced resonantly, they may decay
in a cascade into common channels leading to mixing
[15–17,55]. Mixing and the ensuing time-dependent oscil-
lation phenomena associated with the decay of (nearly)
degenerate states into a common channel is a hallmark of the
dynamics of neutral meson mixing such as K0K̄0, B0B̄0
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The goal of this article is to explore in detail the mixing
of two heavy but nearly degenerate sterile neutrinos as a
consequence of a common decay channel, the concomitant
time-dependent oscillations from their interference and the
observational consequences in the distribution of the decay
products.
Previous discussions of particle mixing focused either on

the self-energy corrections featuring off-diagonal matrix
elements because of common intermediate states [15–17]
or effective Hamiltonian descriptions akin to the case of
neutral meson mixing [55–58].
Our goal is complementary in that we study the complete

time evolution from the decay of an initial unstable state
into channels that include the nearly degenerate heavy
sterile neutrinos, which in turn decay into the final states,
and assess the impact of the interference between the nearly
degenerate states upon the distribution of final states.
For this purpose, we implement a systematic quantum

field theoretical generalization of the Wigner-Weisskopf
approach [59,60] that includes the decay dynamics of the
initial state and the time evolution of the final states. We
consider the case of two nearly degenerate heavy sterile
neutrinos produced from the decay of a pseudoscalar
meson (or a heavy charged lepton) first within a general
framework of cascade decay to common final states, and
then consider the explicit case of a purely leptonic “visible”
decay channel for the heavy sterile neutrinos as a potential
observable in future experiments.
We find that while there are similarities with the case of

neutral meson mixing ðK0K̄0; B0B̄0Þ, there are important
differences primarily as a consequence of the production of
the heavy steriles from the decay of a parent particle (here a
pseudoscalar meson) and also from the decay of the nearly
degenerate heavy neutrinos into the final states.

II. GENERAL FORMULATION

We generalize the framework described in Refs. [59,60]
to describe the production, evolution and decay of two
heavy sterile neutrinos.
Consider a total Hamiltonian H ¼ H0 þHI with H0 the

free field Hamiltonian and

HI ¼ HP þHD þHct; ð2:1Þ

where HP , HD refer generically to the production (P) and
decay (D) interaction vertices, and Hct refers to local
renormalization counterterms.
To be specific, and motivated by current and future

neutrino experiments, we consider the case where sterile
neutrinos are produced in the decay of a charged pseudo-
scalar meson Φ ¼ π, K into a charged lepton α and a
neutrino i where i ¼ a refers to the “activelike” (light) and
i ¼ h to the “sterilelike” heavy neutrinos mass eigenstates,
with

HP ¼ i
FΦ

2

X
α¼e;μ

X
i

Uαi

Z
d3x½Ψ̄lαð~x; tÞγμð1 − γ5Þ

×Ψνið~x; tÞ∂μΦð~x; tÞ� þ H:c:; ð2:2Þ

with

Fπ ¼
ffiffiffi
2

p
GFVudfπ; FK ¼

ffiffiffi
2

p
GFVusfK; ð2:3Þ

where fπ , fK are the corresponding decay constants and
Uαi is the neutrino mixing matrix with i ¼ a, h.
Specifically, the decay interaction vertex HD is taken to

be the usual Standard Model charged current and neutral
current vertices, namely HD ¼ HCC þHNC written in the
neutrino mass basis.
Although we consider these specific production and

decay vertices for the main discussion in this article, the
formulation is more general and applicable for any other
production and decay interaction Hamiltonians beyond the
Standard Model. To make the discussion general, we
consider the case in which HD describes the decay of νh
into a multiparticle final state fXg (νh → fXg).
Let us consider an initial state with one Φ meson of

momentum ~k and the vacuum for the other fields, namely
(to simplify, we use the same notation for the spatial Fourier
transform of a field),

jΨðt ¼ 0Þi ¼ jΦ~ki: ð2:4Þ

Upon time evolution in the Schrödinger picture, this state
evolves into jΨðtÞi obeying

d
dt

jΨðtÞiS ¼ −iðH0 þHIÞjΨðtÞiS: ð2:5Þ

When MΦ > mLα þmνh ;mνh > mX, where mX is the
invariant mass of the multiparticle final state fXg, the
interaction Hamiltonian (2.1) describes the cascade process
depicted in Fig. 1.
We now pass to the interaction picture, wherein

HIðtÞ ¼ eiH0tHIe−iH0t; ð2:6Þ

and the state obeys

i
d
dt

jΨð~k; tÞiI ¼ HIðtÞjΨð~k; tÞiI: ð2:7Þ

Consider that at t ¼ 0 the initial state is the single meson
state of spatial momentum ~k given by (2.4); at any later
time, the state jΨð~k; tÞiI is expanded in the basis jni of
eigenstates of H0, namely
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jΨð~k; tÞiI ¼
X
n

AnðtÞjni: ð2:8Þ

Up to second order in the interaction, the cascade decay
depicted in Fig. 1 is described by the following multi-
particle state:

jΨð~k;tÞiI ¼AΦð~k;tÞjΦ~kiþ
X

α;~q;i¼a;h

Aαi
I ð~k; ~q; tÞjνi;~q;Lα

~k−~q
i

þ
X

α;~q;fXg;f~pgX
AαX
F ð~k; ~q;f~pgX; tÞjLα

~k−~q
;fXgiþ �� � :

ð2:9Þ
For simplicity of notation we do not distinguish between

neutrino and antineutrino; furthermore, the framework
discussed below is general, independent of whether neu-
trinos are Dirac or Majorana.
In the last term in (2.9), the sum over fXg is over all

the decay channels of νh, and for each channel the sum over
f~pgX is over the momenta ~p1; ~p2 � � � of the multiparticle
state fXg constrained so that ~p1 þ ~p2 þ � � � ¼ ~q (see
Fig. 1). There is also an implicit sum over helicity states
of the fermionic fields. The coefficients AΦ; AI; AF are the
amplitudes of the initial, intermediate and final states
respectively, α ¼ e, μ are the charged leptons (we are
considering either π or K decay but τ decay can be
considered along the same lines as described below),
and each α represents a different decay channel for the
pseudoscalar meson Φ. The processes that lead to the state
(2.9) to second order in the interaction(s) are depicted in
Fig. 1; the dots stand for higher order processes, and each
vertex in Fig. 1 corresponds to one power of the couplings
in HI , either at the production or decay vertices.
In what follows, we distinguish the labels for the heavy

sterile neutrinos as h ¼ 1, 2, which should not be confused
with the activelike neutrinos simply labeled as a without
further specification.
Unitary time evolution with the initial condition

AΦð~k; 0Þ ¼ 1 implies

jAΦð~k; tÞj2 þ
X

α;~q;i¼a;h

jAαi
I ð~k; ~q; tÞj2

þ
X

α;~q;fXg;f~pgX
jAαX

F ð~k; ~q; f~pgX; tÞj2 þ � � � ¼ 1; ð2:10Þ

which has been explicitly confirmed in general in Ref. [59]
and in particular for the case of single sterile neutrinos
in Ref. [60].
We introduce the following notation:

EΦ≡EΦðkÞ; Ei
I≡Eαðj~k− ~qjÞþEiðqÞ; i¼a;h; ð2:11Þ

EX
F ≡ Eαðj~k − ~qjÞ þ EX;

EX ≡ EX1
ðp1Þ þ EX2

ðp2Þ þ � � � ; ð2:12Þ

hνi;~q;Lα
~k−~q

jHIðtÞjΦ~ki≡Mαi
P ð~k; ~qÞe−iðEΦ−Ei

IÞt; ð2:13Þ

hLα
~k−~q

; fXgjHIðtÞjνh;~q;Lα
~k−~q

i≡MhX
D ð~k; ~q; ~pÞe−iðEh

I−E
X
FÞt;

ð2:14Þ

where EΦðkÞ, EiðqÞ, Eαðj~k − ~qjÞ are the single-particle
energies for the quanta of the respective fields and EX is the
energy of the multiparticle state with the set of momenta
f~pgX. The matrix elementsMP ,MD refer to production (P)
and decay (D) vertices.
For example, for the specific production vertex described

by (2.2), we find

Mαi
P ð~k; ~q; s; s0Þ ¼ UαiFΦ

Ūα;sð~k − ~qÞγμð1 − γ5ÞVi;s0 ð~qÞkμffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
32VEΦðkÞEαðj~k − ~qjÞEiðqÞ

q ;

i ¼ a; h; ð2:15Þ

where Ūα;sð~k − ~qÞ, Vi;s0 ð~qÞ are the Dirac spinors for the
charged lepton α and neutrino i ¼ a, h, and the labels s, s0

FIG. 1. Decay Φ → Lανa (left) and cascade decay Φ → Lανh → LαfXg (right) where fXg ¼ X1
~p1
X2

~p2
X3

~p3
� � � is a multiparticle

state with ~p1 þ ~p2 þ ~p3 þ � � � ¼ ~q. The dashed lines depict the intermediate two-particle state (I) and the final multiparticle state (F).
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refer to helicity states and will be suppressed in what
follows. If neutrinos are Majorana, it follows that

Vi;s0 ð~qÞ → Uc
i;s0 ð−~qÞ: ð2:16Þ

The counterterm in the interaction Hamiltonian Hct
yields the matrix elements

hνh;~qjHctjνh0;~qi ¼ δEhh0 ¼ δE�
h0h ð2:17Þ

and renormalizes the masses by subtracting the Hermitian
parts of the self-energies as discussed in detail below. The
second equality in (2.17) is a consequence of Hermiticity of
the interaction Hamiltonian.
To simplify notation, we suppress the momentum argu-

ments of the amplitudes, energies and matrix elements; they
are displayed explicitly in the expansion (2.9) and the
definitions (2.11), (2.12), (2.13), and (2.14) respectively.
The time evolution of the amplitudes AΦ, Aαi

I , and AαX
F is

obtained from the Schrödinger equation (2.7) by projecting
onto the Fock states; namely, with the interaction picture
state written as (2.8), it follows that

_AmðtÞ ¼ −i
X
n

hmjHIðtÞjniAnðtÞ

¼ −i
X
n

MmneiðEm−EnÞtAnðtÞ; ð2:18Þ

where we have used that the matrix elements are of the form

hmjHIðtÞjni ¼ eiðEm−EnÞtMmn; Mmn ¼ hmjHIð0Þjni;
ð2:19Þ

and the relevant matrix elements are given by Eqs. (2.13)
and (2.14).
Using Eq. (2.18), we obtain the following equations:

_AΦðtÞ ¼ −i
X
α;~q;a

Mαa
P

�eiðEΦ−Ea
I ÞtAαa

I ðtÞ

− i
X

α;~q;h¼1;2

Mαh
P

�eiðEΦ−Eh
I ÞtAαh

I ðtÞ; AΦð0Þ ¼ 1;

ð2:20Þ
_Aαa
I ðtÞ ¼ −ie−iðEΦ−Ea

I ÞtMαa
P AΦðtÞ; Aαa

I ð0Þ ¼ 0 ðactiveÞ;
ð2:21Þ

_Aαh
I ðtÞ ¼ −ie−iðEΦ−Eh

I ÞtMαh
P AΦðtÞ

− i
X
h0¼1;2

δEhh0eiðEh−Eh0 ÞtAαh0
I ðtÞ

− i
X

fXg;f~pgX
MhX

D
�e−iðEX

F−E
h
I ÞtAαX

F ðtÞ;

Aαh
I ð0Þ ¼ 0; h ¼ 1; 2 ðsterileÞ; ð2:22Þ

_AαX
F ðtÞ ¼ −i

X
h¼1;2

MhX
D eiðEX

F−E
h
I ÞtAαh

I ðtÞ; AαX
F ð0Þ ¼ 0:

ð2:23Þ

The higher order terms in the expansion of the quantum
state represented by the dots in (2.9) lead to higher order
terms in the hierarchy of equations. The label α in AI , AF
refers to the fact that the (charged) lepton α is entangled
with the intermediate neutrino and final state, and the
kinematics of the production and decay depend on its mass.
In Ref. [59] it is shown that truncating the hierarchy at

the order displayed above and solving the coupled set of
equations provides a nonperturbative real time resumma-
tion of Dyson-type self-energy diagrams with self-energy
corrections up to second order in the interactions. In
Appendix A we provide a similar analysis for the case
of mixing considered here and establish a correspondence
with the self-energy treatment in Refs. [15–17].
The three terms on the right-hand side in Eq. (2.22) have

a clear interpretation: the first term describes the buildup
of the amplitude from the decay of the parent meson, the
second term is the counterterm [see Eq. (2.17)] and the third
term describes the decay of the heavy steriles into the final
states.
The solution of the set of equations (2.20)–(2.23)

proceeds from the bottom up. The solution of (2.23) is

AαX
F ðtÞ ¼ −i

Z
t

0

fM1X
D eiðEX

F−E
1
I ÞtAα1

I ðt0Þ

þM2X
D eiðEX

F−E
2
I ÞtAα2

I ðt0Þgdt0: ð2:24Þ

Introducing this solution into Eqs. (2.22), we obtain

_Aα1
I ðtÞ ¼ −ie−iðEΦ−E1

I ÞtMα1
P AΦðtÞ − iδE11Aα1

I ðtÞ
− iδE12eiðE1−E2ÞtAα2

I ðtÞ

−
X

fXg;f~pgX

Z
t

0

fjM1X
D j2e−iðEX

F−E
1
I Þðt−t0ÞAα1

I ðt0Þ

þM1X
D

�M2X
D eiðE1−E2Þte−iðEX

F−E
2
I Þðt−t0ÞAα2

I ðt0Þgdt0;
ð2:25Þ

_Aα2
I ðtÞ ¼ −ie−iðEΦ−E2

I ÞtMα2
P AΦðtÞ − iδE22Aα2

I ðtÞ
− iδE21eiðE2−E1ÞtAα1

I ðtÞ

−
X

fXg;f~pgX

Z
t

0

fjM2X
D j2e−iðEX

F−E
2
I Þðt−t0ÞAα2

I ðt0Þ

þM2X
D

�M1X
D eiðE2−E1Þte−iðEX

F−E
1
I Þðt−t0ÞAα1

I ðt0Þgdt0:
ð2:26Þ

A. The Wigner-Weisskopf approximation

In solving the hierarchy of coupled equations from the
bottom up, we encounter linear integrodifferential
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equations for the coefficients of the general form [see (2.25)
and (2.26)]

_AðtÞ þ
Z

t

0

X
~p

jMj2eiðEI−EFÞðt−t0ÞAðt0Þdt0 ¼ IðtÞ; ð2:27Þ

where IðtÞ is an inhomogeneity. These types of equations
can be solved in terms of Laplace transforms (as befits an
initial value problem). In Ref. [59] it is shown that the
solution of the hierarchy of equations via Laplace transform
yields a real time nonperturbative resummation of Dyson-
type self-energy diagrams and a similar proof for the case
of mixing is provided in Appendix A. An alternative but
equivalent method relies on that the matrix elements M
are typically ofOðgÞ where g refers to a generic coupling in
HI [59]. Therefore, in perturbation theory the amplitudes
evolve slowly in time since _A ∝ g2A, suggesting an
expansion in derivatives. This is implemented as follows
[59,60]; consider

W0ðt; t0Þ ¼
X
~p

jMj2
Z

t0

0

dt00e−iðEI−EFÞðt−t00Þ; ð2:28Þ

which has the properties

d
dt0

W0ðt; t0Þ ¼
X
~p

jMj2e−iðEI−EFÞðt−t0Þ ∼Oðg2Þ;

W0ðt; 0Þ ¼ 0 ð2:29Þ

and is the kernel of the integral term in (2.27). An
integration by parts in (2.27) yields

Z
t

0

dt0
d
dt0

W0ðt; t0ÞAðt0Þ

¼ W0ðt; tÞAðtÞ −
Z

t

0

dt0 _Aðt0ÞW0ðt; t0Þ: ð2:30Þ

From the amplitude equations it follows that _A ∝ g2A and
W0 ∝ g2; therefore, the second term on the right-hand side
in (2.30) is ∝ g4 and can be neglected to leading order
Oðg2Þ, which is consistent with the order at which the
hierarchy is truncated. This procedure can be repeated
systematically, producing higher order derivatives, which
are in turn higher order in g2 providing a systematic
quantum field theoretical generalization of the Wigner-
Weisskopf method ubiquitous in the treatment of neutral
meson mixing [56–58].
The Wigner-Weisskopf approximation is the leading

order in the coupling(s) and consists in keeping the first
term in (2.30) and taking the long time limit,

W0ðt; tÞ →
X
~p

jMj2
Z

t→∞

0

eiðEI−EFþiϵÞðt−t00Þdt00

¼ i
X
~p

jMj2
ðEI − EF þ iϵÞ ; ð2:31Þ

where ϵ → 0þ is a convergence factor for the long
time limit.
A more detailed analysis of the long time limit presented

in Refs. [59,61] allows us to extract the contribution from
wave function renormalization; we will not pursue this
contribution here, as it is not directly relevant to the time
evolution and oscillations which are the focus of this study.
In Ref. [59] it is shown explicitly that this approximation

is indeed equivalent to the exact solution via Laplace
transform in the weak coupling and long time limit, where
the Laplace transform is dominated by a narrow Breit-
Wigner resonance in the Dyson-resummed propagator. The
generalization of this equivalence to the case of mixing is
discussed in Appendix A.
In the Wigner-Weisskopf approximation up to second

order in HI , we obtain

_Aα1
I ðtÞ þ iΣ11Aα1

I ðtÞ þ iΣ12Aα2
I ðtÞeiðE1−E2Þt

¼ −ie−iðEΦ−E1
I ÞtMα1

P AΦðtÞ; ð2:32Þ
_Aα2
I ðtÞ þ iΣ22Aα2

I ðtÞ þ iΣ21Aα1
I ðtÞeiðE2−E1Þt

¼ −ie−iðEΦ−E2
I ÞtMα1

P AΦðtÞ: ð2:33Þ

The oscillatory factors e�iðE1−E2Þt in (2.32) and (2.33)
can be absorbed by defining

AhðtÞ≡ e−iEhtAαh
I ðtÞ; h ¼ 1; 2 ð2:34Þ

leading to the following matrix equations for these
amplitudes

d
dt

�
A1ðtÞ
A2ðtÞ

�
þ iH

�
A1ðtÞ
A2ðtÞ

�
¼ −ieiðEα−EΦÞtAΦðtÞ

�
Mα1

P

Mα2
P

�
;

ð2:35Þ
where the “effective Hamiltonian” is

H≡
�
H11 H12

H21 H22

�
¼
�
E1 þ Σ11 Σ12

Σ21 E2 þ Σ22

�
: ð2:36Þ

The right-hand side of (2.35) describes the production
from Φ decay.
The matrix elements are given by

Σ11¼
X

fXg;f~pgX

jM1X
D j2

E1−EXþ iϵ
þδE11≡ΔE11þδE11− i

Γ11

2
;

ð2:37Þ
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Σ22¼
X

fXg;f~pgX

jM2X
D j2

E2−EXþ iϵ
þδE22≡ΔE22þδE22− i

Γ22

2
;

ð2:38Þ

Σ12¼
X

fXg;f~pgX

M1X
D

�M2X
D

E2−EXþ iϵ
þδE12≡ΔE12þδE12− i

Γ12

2
;

ð2:39Þ

Σ21¼
X

fXg;f~pgX

M1X
D M2X

D
�

E1−EXþ iϵ
þδE21≡ΔE21þδE21− i

Γ21

2
;

ð2:40Þ

where

ΔEij ¼
X

fXg;f~pgX
P
�
MiX

D
�MjX

D

Ej − EX

�
ð2:41Þ

and

Γij ¼ 2π
X

fXg;f~pgX
MiX�

D MjX
D δðEj − EXÞ; ð2:42Þ

where we used Eh
I − EX

F ¼ Eh − EX from Eqs. (2.11) and
(2.12). In the expressions above, the sum over fXg refers to
the sum over all decay channels and f~pgX refers to the sum
over the momenta for a fixed channel.
The off-diagonal matrix elements Σ12, Σ21 can be

understood from the fact that the interaction Hamiltonian
has nonvanishing matrix elements between the two sterile
neutrinos and the same final state. For the case of a three-
body common decay channel, the self-energy that mixes νh,
νh0 is depicted in Fig. 2; the imaginary part of this self-
energy yields the widths Γij in Eq. (2.42).
As discussed in Refs. [59,60], the quantum field theo-

retical Wigner-Weisskopf approximation is equivalent
to a Dyson resummation of Feynman diagrams and a
Breit-Wigner approximation (complex pole) of the Dyson-
resummed propagator. This equivalence is discussed in
Appendix A and is confirmed by the results of Ref. [15]
where mixing has been studied in terms of self-energy
corrections obtained fromFeynman diagrams and compared
to the effective Hamiltonian description within a different

context. In particular, the renormalization corrections and
decaywidths are exactly those obtained from aBreit-Wigner
approximation to the full propagator with self-energy
corrections obtained from Feynman diagrams [15].
We emphasize that if the heavy sterile neutrinos are not

exactly degenerate, namely, if E1 ≠ E2 then ΔEij ≠
ðΔEjiÞ�. As a consequence of the Hermiticity of the
counterterm Hamiltonian, it follows that δEij ¼ ðδEjiÞ�;
therefore, the counterterms cannot completely cancel the
real part of the self-energy corrections ΔEij.
It is convenient to introduce the following quantities:

Ē ¼ 1

2
ðE1 þ E2Þ; Δ ¼ 1

2
ðE1 − E2Þ; ð2:43Þ

Σ̄ ¼ 1

2
ðΣ11 þ Σ22Þ; σ ¼ 1

2
ðΣ11 − Σ22Þ; ð2:44Þ

in terms of which the complex eigenvalues of H are

λ� ¼ ðĒþ Σ̄Þ � ½ðΔþ σÞ2 þ Σ12Σ21�12 ≡ E� − i
Γ�

2
;

ð2:45Þ

where E� and Γ� are real corresponding to the energy and
decay width of the propagating modes.
Consider now the eigenvalue problem

H

�
α�1
α�2

�
¼ λ�

�
α�1
α�2

�
ð2:46Þ

and the matrices

U−1 ¼
�
αþ1 α−1
αþ2 α−2

�
; U ¼ 1

ðαþ1 α−2 −αþ2 α
−
1 Þ
�

α−2 −α−1
−αþ2 αþ1

�
ð2:47Þ

from which it follows that

UHU−1 ¼
�
λþ 0

0 λ−

�
: ð2:48Þ

Therefore, defining�
A1ðtÞ
A2ðtÞ

�
¼ U−1

�
VþðtÞ
V−ðtÞ

�
ð2:49Þ

and right multiplying (2.35) by U and using (2.48), we find

d
dt

�
VþðtÞ
V−ðtÞ

�
þ i

�
λþ 0

0 λ−

��
VþðtÞ
V−ðtÞ

�

¼ −ieiðEα−EΦÞtAΦðtÞ
� eMαþ

PeMα−
P

�
; V�ð0Þ ¼ 0 ð2:50ÞFIG. 2. Self-energy that mixes νh, νh0 for the case of a common

three-body decay channel νh; νh0 → X1X2X3.
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with

� eMαþ
PeMα−
P

�
¼ U

�
Mα1

P

Mα2
P

�
: ð2:51Þ

The solutions are

V�ðtÞ ¼ −i eMα�
P e−iλ

�t
Z

t

0

eiðλ�þEα−EΦÞt0AΦðt0Þdt0; ð2:52Þ

and from the relation (2.49) we obtain

A1ðtÞ ¼ αþ1 V
þðtÞ þ α−1V

−ðtÞ;
A2ðtÞ ¼ αþ2 V

þðtÞ þ α−2V
−ðtÞ: ð2:53Þ

Full expressions for the products α�j eMα�
P are given in

Appendix B where it is recognized that these products are
independent of the normalization of the eigenvectors of H.
The solution of (2.21) is

Aαa
I ðtÞ ¼ −iMαa�

P

Z
t

0

e−iðEΦ−Ea
I Þt0AΦðt0Þdt0: ð2:54Þ

We now insert the solutions (2.53) and (2.54) into the
evolution equation for AΦðtÞ (2.20); using the definitions
(2.12) and (2.34) we find

_AΦðtÞ ¼ −
X
α;~q

Z
t

0

fMαþ
P
eMαþ

P e−iðλþþEα−EΦÞðt−t0Þ

þMα−
P
eMα−

P e−iðλ−þEα−EΦÞðt−t0ÞgAΦðt0Þdt0

−
X
α;~q;a

Z
t

0

fjMαa
P j2e−iðEaþEα−EΦÞðt−t0ÞAΦðt0Þgdt0;

ð2:55Þ

where

M̄α�
P ¼ α�1 M

α1�
P þ α�2 M

α2�
P : ð2:56Þ

The first line in Eq. (2.55) is the contribution from the
intermediate heavy sterile states, and the second line is the
contribution from the active neutrinos.
Implementing the Wigner-Weisskopf approximation and

taking the long time limit (no convergence factor is needed
in the first sum because λ� feature a negative imaginary
part arising from the decay of the intermediate state) this
evolution equation simplifies to

_AΦðtÞ þ iEΦAΦðtÞ ¼ 0; AΦð0Þ ¼ 1; ð2:57Þ

where

EΦ≡ΔEΦ− i
ΓΦ

2
¼
X
α;~q;a

jMαa
P j2

EΦ−Ea−Eαþ iϵ

þ
X
α;~q

�
M̄αþ

P
eMαþ

P

ðEΦ−Eα−Eþþ i
2
ΓþÞþ

M̄α−
P
eMα−

P

ðEΦ−Eα−E−þ i
2
Γ−Þ
�

ð2:58Þ

with ΔEΦ and ΓΦ real, leading to

AΦðtÞ ¼ e−iΔEΦte−
ΓΦ
2
t: ð2:59Þ

ΔEΦ will be absorbed into a renormalization of the single
meson energy, namely EΦ þ ΔEΦ → EΦ (from now on, EΦ
denotes the renormalized single-particle energy), and ΓΦ is
the total decay width of the parent meson.
It only remains to introduce the result (2.59) into

(2.52) to obtain the time evolution of all the amplitudes.
We find

V�ðtÞ ¼ eMα�
P

½e−iðEΦ−Eα−i
ΓΦ
2
Þt − e−iðE�−iΓ�

2
Þt�

½EΦ − Eα − E� − i
2
ðΓΦ − Γ�Þ� : ð2:60Þ

Using the definition (2.34) and inserting the results
(2.53) and (2.60) into (2.23), we find for the final state
amplitude

AX
FðtÞ ¼

ðαþ1 eMαþ
P M1X

D þ αþ2 eMαþ
P M2X

D Þ
½EΦ − Eα − Eþ − i

2
ðΓΦ − ΓþÞ�

×
�½e−iðEΦ−EX

F−i
ΓΦ
2
Þt − 1�

½EΦ − EX
F − i ΓΦ

2
� −

½e−iðEþ−EX−iΓþ
2
Þt − 1�

½Eþ − EX − i Γ
þ
2
�

�

þ ðα−1 eMα−
P M1X

D þ α−2 eMα−
P M2X

D Þ
½EΦ − Eα − E− − i

2
ðΓΦ − Γ−Þ�

×
�½e−iðEΦ−EX

F−i
ΓΦ
2
Þt − 1�

½EΦ − EX
F − i ΓΦ

2
� −

½e−iðE−−EX−iΓ−
2
Þt − 1�

½E− − EX − i Γ
−

2
�
�
:

ð2:61Þ

In the probability of detecting the final state jAX
FðtÞj2, the

interference between the terms with e−iðE�−iΓ�
2
Þt leads to

oscillations. These will be studied in Sec. III below.
Going back to the Schrödinger picture with jΨðtÞiS ¼

e−iH0tjΨðtÞiI we obtain
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jΨð~k;tÞiS ¼ e−iEΦte−
ΓΦ
2
tjΦ~ki

þ
X
α;~q;a

e−iE
α
I tAαa

I ð~k; ~q; tÞjνa;~q;Lα
~k−~q

i

þ
X
α;~q;h

e−iEαtAhð~k; ~q; tÞjνh;~q;Lα
~k−~q

i

þ
X

α;~q;fXg;f~pgX
e−iE

X
FtAαX

F ð~k; ~q;f~pgX; tÞjLα
~k−~q

;fXgi

þ �� � : ð2:62Þ

Using the result (2.53) and the definition (2.34) we note
that we can write in the second term in (2.62)X

h¼1;2

AhðtÞjνhi ¼ VþðtÞjνþi þ V−ðtÞjν−i;

jν�i ¼ α�1 jν1i þ α�2 jν2i: ð2:63Þ

Namely, the states jν�i are coherent superpositions of the
mass eigenstates of the unperturbed Hamiltonian. In
particular, under the assumption that ΓΦ ≫ Γ�, it follows
that for time scales 1=ΓΦ ≪ t≲ 1=Γ�,

V�ðtÞ ¼ C�e−iE
�te−Γ

�t; ð2:64Þ

where the normalization constants

C� ¼ −
eMα�

P

½EΦ − Eα − E� − i
2
ðΓΦ − Γ�Þ� ð2:65Þ

reflect the Lorentzian distribution from the decay of the
parent meson. However, because H is non-Hermitian,
the states jν�i are not orthogonal, namely hνþjν−i ¼
ðαþ1 Þ�ðα−1 Þ þ ðαþ2 Þ�ðα−2 Þ ≠ 0.

B. Comparison to neutral meson mixing

The evolution equations for the amplitudes of the
intermediate state (2.35) in terms of an effective
Hamiltonian (2.36) are similar to the case of neutral meson
mixing but with noteworthy differences:

(i) The inhomogeneity on the right-hand side of (2.35)
describes the production of the intermediate state
from the decay of the initial state. In the description
of neutral meson mixing, the production stage is
not included but the initial state is assumed to be
a linear superposition of the unperturbed neutral
mesons (K0, K̄0, B0, B̄0 etc.), and the equivalent of
Eq. (2.35) is homogeneous. Since the amplitude
AΦðtÞ → 0 for t ≫ 1=ΓΦ, the production contribu-
tion vanishes and Eq. (2.35) becomes homogeneous
describing an initial value problem for the ampli-
tudes for time scales t ≫ 1=ΓΦ; therefore, one would
conclude that for t ≫ 1=ΓΦ the two cases are similar.
However, it is clear from the expressions (2.60) that

in this limit, the amplitudes for the heavy sterile
neutrinos are not determined from arbitrary initial
conditions, but are determined by the Lorentzian
distribution function that results from the decay of
the parent particle. This is manifest in the prefactors
C� in (2.64) which are given by (2.65) as a direct
consequence of production of sterile neutrinos from
the decay process; in other words, these coefficients
are a manifestation of the “memory” of the initial
state and of the decay dynamics of the parent meson.

The probability for finding a particular mode �
after the decay of the parent meson for t ≫ 1=ΓΦ is

j eMα�
P j2e−Γ�t

½EΦ − Eα − E��2 þ ½ðΓΦ − Γ�Þ=2�2 : ð2:66Þ

Namely, the exponential decay factor multiplies a
Lorentzian probability distribution of decay prod-
ucts. The difference in the decay widths in the
denominator has a simple interpretation: ΓΦ de-
scribes the rate at which the sterile neutrinos are
produced, whereas Γ� are the rate at which they
decay into the final states so that the effective
production rate is ΓΦ − Γ�.

(ii) Unlike the neutral meson case under the assumption
of CPT symmetry, the diagonal entries in the
matrices (2.41) and (2.42) are not the same. This
is because the sterile neutrinos in the intermediate
state are not exactly degenerate. As a consequence
of this nondegeneracy, it also follows that
ΔEij ≠ ΔE�

ji; Γij ≠ Γ�
ji, unlike the case of neutral

meson mixing. Therefore, as mentioned above, the
counterterms δEij obeying the Hermiticity condition
cannot completely cancel the self-energy corrections
ΔEij. In the case of neutral meson mixing, the
unperturbed (bare) masses of the meson and anti-
meson are the same; hence, the denominators in
ΔE12,ΔE21 are the same andΔEij is Hermitian [56].
Indeed the original derivation in [56] manifestly uses
that the meson and antimeson have the same (un-
perturbed) energy (mass). Allowing for different
energies and following the derivation in [56], the
results for ΔEij obtained above follow directly.

(iii) The time-dependent prefactors V�ðtÞ are given by

(2.60); the first term ∝ e−iðEΦ−Eα−i
ΓΦ
2
Þt is a direct

consequence of the production of sterile neutrinos
via the decay of the pseudoscalar meson and can be
traced to the right-hand side of Eq. (2.35). If ΓΦ ≫
Γ� and for t ≫ 1=ΓΦ, it follows that V�ðtÞ ∝
e−iðE�−iΓ�

2
Þt which is the usual time evolution ob-

tained from the effective Hamiltonian in the Wigner-
Weisskopf approximation for neutral meson mixing
[56–58]. This is in agreement with the results of
Ref. [59] wherein it was observed that if the decay
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rate of the parent particle is much larger than that of
the intermediate resonant state, the time evolution
proceeds sequentially: the decay of the parent
particle leads to the formation of the intermediate
state on a time scale much shorter than the lifetime
of the intermediate resonant state; its amplitude
grows initially from the production dynamics and
decays on a longer time scale.

III. OSCILLATIONS IN THE DETECTION
OF DECAY PRODUCTS

Oscillations in the decay products are observationally
relevant on macroscopic scales when the heavy sterile
neutrinos are nearly degenerate, namely when E1 þ E2 ≫
jE1 − E2j. In this limit there are two important cases to
consider.

(i) jE1 − E2j ≫ Σij: Since Σij ∝ g2 where g is a typical
weak coupling in the interaction Hamiltonian, we
find up to second order in couplings

λþ ¼ E1 þ Σ11 þOðg4Þ; λ− ¼ E2 þ Σ22 þOðg4Þ:
ð3:1Þ

The counterterms can be chosen to cancel the real
parts of the self-energy so that E1;2 are the fully
renormalized (real) energies and to leading order in
the couplings for this case we find

λþ ¼ E1 −
i
2
Γ11; λ− ¼ E2 −

i
2
Γ22: ð3:2Þ

(ii) jE1 − E2j≲ Σij: In this case the full expression
for λ� are given by (2.45) and we can set E1;2 →
Ē ¼ ðE1 þ E2Þ=2 to leading order in the self-
energies (2.37)–(2.40). Neglecting terms of
Oðg2jΔj=Ē≲ g4Þ, we find

λþ − λ− ¼ 2½ðΔþ σÞ2 þ Σ12Σ21�12 ∝ Oðg2Þ; ð3:3Þ

where

ΔEij ¼
X

fXg;f~pgX
P
�
MiX�

D MjX
D

Ē − EX

�
ð3:4Þ

and

Γij ¼ 2π
X

fXg;f~pgX
MiX�

D MjX
D δðĒ − EXÞ; ð3:5Þ

with the corollary that ðΔEijÞ� ¼ ΔEji; ðΓijÞ� ¼ Γji.
Because the counterterms obey the Hermiticity
conditions [see (2.17)] in this case we implement
the “on-shell” renormalization scheme following
[15] and request that

ΔEij þ δEij ¼ 0; ð3:6Þ

where ΔEij are given by (3.4).
The probability of finding a particular final state X at

time t is given by jAαX
F ðtÞj2. Consider the visible decay of

the heavy sterile neutrinos to the common decay channel
fXg ¼ eþe−νa, namely νh1;h2 → eþe−νa where νa is an
active neutrino. The number of eþe− pairs in this state is
given by (suppressing the appropriate quantum numbers)

hΨðtÞjb†ebed†edejΨðtÞi ¼ jAαeþe−νa
F ðtÞj2; ð3:7Þ

and the total number of eþe− pairs in this particular decay
channel is

Neþe−ðtÞ ¼
X
f~pgX

jAαeþe−νa
F ðtÞj2: ð3:8Þ

The amplitude AαX
F ðtÞ (2.61) clearly indicates that jAαX

F ðtÞj2
features oscillatory contributions from the interference
between the terms with e�iE�t. These interference terms
will be manifest over macroscopic distances if the real part
of the eigenvalues E� are nearly degenerate. Since the self-
energies are perturbative, from the expressions (2.45) it is
clear that near degeneracy of E1;2 implies near degeneracy
of E�. It is convenient to define

Ē ¼ 1

2
ðEþ þ E−Þ; δ ¼ 1

2
ðEþ − E−Þ;

Γ̄ ¼ 1

2
ðΓþ þ Γ−Þ ¼ 1

2
ðΓ11 þ Γ22Þ; ð3:9Þ

with δ ≪ Ē. Writing Aαeþe−νa
F ðtÞ≡ AþðtÞ þ A−ðtÞ and

assuming that the matrix elements are smooth functions
of the energy so that to leading order we can evaluate them
at the average energy Ē thereby neglecting terms of
Oðδ=ĒÞ, we find

ðAþðtÞÞ�A−ðtÞ ¼ τþτ−
4π2δðĒ þ Eα − EΦÞδðĒ − EXÞ

½ΓΦ þ Γ̄þ 2iδ�½Γ̄ − i2δ�
× ½1 − e2iδte−Γ̄t�; ð3:10Þ

where

τ� ¼ ðα�1 eMα�
P M1X

D þ α�2 eMα�
P M2X

D Þ: ð3:11Þ

The details of the calculation are given in Appendix C.
Integration over the final state phase space pX and over Ē

yields the overall energy-momentum conservation and
fixes the average Ē ¼ EΦ − Eα.
These oscillations in the probability of decay products

are akin to “quantum beats” in the photodetection proba-
bility of radiative decays in multilevel atomic systems [62],
and a similar phenomenon has been discussed in Ref. [63]
within a different context.
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In the nearly degenerate case, after imposing the on-shell
renormalization condition [15] (3.6), we find

Σij ¼ −i
Γij

2
ð3:12Þ

and

λ� ≡ E� −
i
2
Γ� ¼ Ē −

i
2
ðΓ11 þ Γ22Þ

�
��

Δ −
i
2
ðΓ11 − Γ22Þ

�
2

−
1

4
jΓ12j2

�
1=2

: ð3:13Þ

These are general results in the nearly degenerate case.

IV. AN EXAMPLE: THE VISIBLE DECAY
CHANNEL νh → eþe−νa

We now study the specific example of two nearly
degenerate heavy sterile neutrinos with a common purely
leptonic visible decay channel: νh; νh0 → eþe−νa via a
charged and/or neutral current vertex, with a an activelike
neutrino [27].
In the Fermi limit the self-energy diagram that describes

this common decay channel is shown in Fig. 3.
Adapting the results from Ref. [27] and neglecting

corrections of order jE1 − E2j=ðE1 þ E2Þ ≪ 1, we find

Γijðνh → eþe−νaÞ ¼
G2

FM̄h
6

192π3Ē
H
�
m2

e

M̄2
h

�
UehiU

�
ehj

;

M̄h ¼
1

2
ðmh1 þmh2Þ; ð4:1Þ

where [27]

HðxÞ ¼ ð1 − 4x2Þ12ð1 − 14x − 2x2 − 12x3Þ

þ 24x2ð1 − x2Þ ln 1þ ð1 − 4x2Þ12
1 − ð1 − 4x2Þ12 ; ð4:2Þ

and to leading order we have replaced Ē → Ē. Neglecting
me it follows that1

Γijðνh → eþe−νaÞ

≃ 3.5 ×

�
M̄h

100 MeV

�
5
�UehiU

�
ehj

10−5

��
M̄h

Ē

�
s−1; ð4:3Þ

with an extra factor of 2 if νh is a Majorana neutrino.
Imposing the on-shell renormalization condition (3.6),

we find the effective Hamiltonian

H¼
 
E1− i

2
Γ11ðνh→eþe−νaÞ − i

2
Γ12ðνh→eþe−νaÞ

− i
2
Γ�
12ðνh→eþe−νaÞ E2− i

2
Γ22ðνh→eþe−νaÞ

!
:

ð4:4Þ

Because the decay width is suppressed by the small
neutrino mixing matrix elements, the decay vertices are
expected to be displaced far from the production vertices
and the space-time evolution of the sterile neutrinos
becomes important. In Ref. [60] these aspects were studied
within the context of a single sterile neutrino but the results
are straightforwardly adapted to the present study. To
address the space-time evolution, a wave packet description
is necessary and it is discussed in detail in Ref. [60] for the
case of a single sterile neutrino in a cascade decay.
Consider now the nearly degenerate sterile neutrinos
propagating as wave packets with nearly equal group
velocities

vg ¼ p̄�=Ē; ð4:5Þ

where we have approximated Ē ≃ Ē to leading order in
weak coupling and p̄� is the value of the momentum
determined by energy-momentum conservation at the
production vertex for a sterile neutrino of average energy
Ē ¼ EΦ − Eα . For pseudoscalar meson decaying at rest,

vg ¼
½λð1; δα; δ̄hÞ�12
ð1þ δ̄h − δαÞ

; ð4:6Þ

where

λðx; y; zÞ ¼ x2 þ y2 þ z2 − 2xy − 2xz − 2yz;

δα ¼
m2

Lα

M2
Φ

; δ̄h ¼
M̄h

2

M2
Φ

: ð4:7Þ

Consider a detector a distance Ld from the production
vertex and fiducial length ΔLd, so that jEþ − E−jΔLd=
vg ≪ 1, Γ̄ΔLd=vg ≪ 1, then the oscillatory contribution to
the number of events detected within the fiducial length
simplifies; namely, the last term in (3.10) becomes (see
Ref. [60] for details)

½1 − e2iδte−Γ̄t�
½Γ̄ − i2δ� → e2iδLd=vge−Γ̄Ld=vgΔLd: ð4:8Þ

Namely, after the phase space integrations, the number of
eþe− pairs detected within the distance ΔLd a distance Ld
away from the production region is

FIG. 3. Self-energy with eþe−νa in the intermediate state
mixing νh, νh0 in the Fermi limit.

1The factor Ē=M̄h is the average Lorentz factor.
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Neþe−ðtÞjosc ¼ N e2iδLd=vge−Γ̄Ld=vgΔLd;

δ ¼ 1

2
ðEþ − E−Þ; Γ̄ ¼ 1

2
ðΓþ þ Γ−Þ; ð4:9Þ

where N is the normalization factor arising from the phase
space integrations and

2δ ¼ Re½ðE1 − E2 − iðΓ11 − Γ22ÞÞ2 − jΓ12j2�1=2;

Γ̄ ¼ 1

2
ðΓ11 þ Γ22Þ; ð4:10Þ

with Γij given by Eq. (4.1). This result for Γ̄ follows from
that in (4.9) and (3.13).

A. Coherence aspects

The oscillatory behavior arising from the interference
terms between the two nearly degenerate eigenstates bears
many similarities with the case of oscillation and mixing of
active neutrinos, but with noteworthy differences.
Oscillations in the decay products will be observed

provided that jEþ − E−j≳ Γ̄; otherwise, the interference
term damps out before any oscillation can occur.
Furthermore, the result for the interference term (3.10)
has been obtained under the assumption that the difference
in energies of correct eigenstates jEþ − E−j cannot be
discriminated by the measurement. This is manifest in the
derivation of Eqs. (C11) and (C9) in Appendix C leading
to the result (3.10) which is obtained as a distribution
integrated over a density of states (detector) that is
insensitive to the energy difference. If the detector (final
density of states) can discriminate between the energy
eigenstates with a resolution smaller than the widths, the
narrow width approximation to each Lorentzian yields a
product ∝ δðE − δÞδðE þ δÞ which vanishes and the inter-
ference and quantum beats will be suppressed as the
measurement is effectively projecting on a particular
energy eigenstate. This is similar to the case of active
neutrino oscillations when the neutrino mass eigenstates are
produced in the decay of a parent meson whose decay
width determines the energy resolution as analyzed in
Refs. [53,64] and discussed further in Ref. [65].
The analysis leading to the result (4.9) made use of a

wave packet description of the space-time evolution. The
two different eigenstates with E� feature slightly different
group velocities which result in that the corresponding
wave packets slowly drift away from each other. Coherence
leading to oscillatory interference is maintained provided
these wave packets have a substantial overlap, which
requires that jvþg − v−g jLd ≪ σ where σ is the width of
the individual wave packets. This is similar to the case of
oscillations of active neutrinos and has been analyzed in
detail in Ref. [65] to which the reader is referred for further
discussion. A detailed analysis of possible decoherence
effects requires a firm assessment of the energies and
energy differences as well as an estimate of the width of the

wave packets, which is ultimately determined by character-
istic localization length scale of the parent particle and
determined by the experimental setup.

V. CONCLUSIONS, POSSIBLE COSMOLOGICAL
IMPLICATIONS AND FURTHER QUESTIONS

Motivated by their astrophysical, cosmological and phe-
nomenological relevance, their important place in compelling
extensions beyond the Standard Model and recent proposals
to search for heavy neutral leptons, we have studied the
production, propagation and decay of nearly degenerate
heavy sterile neutrinos with common decay channels.
We have implemented a nonperturbative field theoretical

systematic generalization of the Wigner-Weisskopf theory
ubiquitous in the study of neutral meson mixing, here
extended to include both the production and the decay into
the full dynamics for the general case of sterile neutrinos
with a common decay channel. Mixing between them is a
consequence of a common set of intermediate states which
lead to off-diagonal terms in the self-energies. Within the
Wigner-Weisskopf description, mixing is manifest in off-
diagonal terms in the effective Hamiltonian that describes
the time evolution of the amplitudes for the sterile neutrino
states.
Our study has focused on heavy sterile neutrinos

produced by pseudoscalar meson decay, as this is one
important avenue for possible study in current and future
neutrino experiments, however the method may be straight-
forwardly generalized to alternative production reactions.
While the dynamical evolution features similarities with

the cases of neutral meson mixing, there are noteworthy
differences primarily as a consequence of including the
dynamics of the production and decay in the treatment.
Although the framework is general, we considered the

case of a visible leptonic common decay channel νh; νh0 →
eþe−νa (a is an active neutrino), as an explicit example of
experimental relevance and obtained the (nearly degenerate)
complex energies. Interference between the “mass eigen-
states” are manifest in damped oscillations in the eþe−
distribution function akin to the quantum beat phenomenon
in the radiative decay of multilevel atoms.
In combination with a wave packet description, we

obtained the oscillatory contribution to the number of
eþe− pairs within a detector of length ΔLd placed at a
distance Ld from the production region.
These oscillations in the decay products would be a

telltale signature of mixing between heavy neutral leptons.

A. Possible cosmological implications

The decay width of the propagating modes [see
Eq. (4.3)] suggests that sterile neutrinos in the mass range
Mh ∼ 100 MeV and with jUehj2 ≲ 10−7–10−5 feature a
lifetime ranging from a few seconds to a few minutes
depending on the strength of the mixing matrix elements. If
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these sterile neutrinos are produced from pion decay shortly
after the QCD (hadronization) transition (at ≃10μs;
T ≃ 150 MeV), they may decay into eþe−νa several
minutes after the freeze-out of active neutrinos. In this
case the active neutrinos from decay are “injected” into the
cosmic neutrino background with a nonequilibrium dis-
tribution function and cannot thermalize after neutrino
freeze-out. These extra nonthermal neutrinos would not
contribute to big bang nucleosynthesis (BBN) as they are
produced well after the time scale for BBN, butmaymodify
the effective number of relativistic neutrinos, Neff , with a
nonequilibrium distribution function.
While the results obtained here yield insights into this

possibility, the formulation introduced in this article is not
directly applicable to the cosmological case which requires
the time evolution of a density matrix instead of an initial
single-particle state. Furthermore the production of sterile
neutrinos must be studied within the quantum kinetics from
pion decay in the thermal medium and freeze-out of the
distribution function when the pion abundance becomes
suppressed as the temperature decreases during the
cosmological expansion. This study will be reported
elsewhere [66].

B. Further questions

In this study we focused on understanding the interfer-
ence effects between the nearly degenerate sterile neutrinos
and their manifestation in the decay products within a
general framework.
We did not consider specifically either CP-violating

transitions, or jΔlj ¼ 2 transitions in the case of Majorana
neutrinos. As pointed out in Refs. [15,16,19,20], CP
violation may be resonantly enhanced in the case of nearly
degenerate heavy sterile neutrinos; furthermore, lepton
violating transitions are suppressed in the case of small
(Majorana) neutrino masses but may be enhanced by heavy
sterile neutrinos in intermediate states. Of particular interest
would be possible oscillations in jΔlj ¼ 2 transitions.
Furthermore, a complete assessment of the probability of
detection requires us to consider specific cases for the
production reaction as well as the decay interaction vertex.
These determine the explicit form of the matrix elements,
the coefficients α�1;2 in the superposition (2.63), the nor-
malization of the Lorentzian distribution in the coefficients
C� in (2.65) and ultimately the overall normalization factor
N in the final expression (4.9). All of these aspects merit
further study, which will be reported elsewhere.

ACKNOWLEDGMENTS

The author acknowledges partial support from Grant
No. NSF-PHY-1202227.

APPENDIX A: EQUIVALENCE WITH
DYSON-RESUMMED PROPAGATORS

In the Schrödinger picture the full quantum state is

jΨð~k;tÞiS¼CΦð~k;tÞjΦ~kiþ
X

α;~q;i¼a;h

Cαi
I ð~k; ~q;tÞjνi;~q;Lα

~k−~q
i

þ
X

α;~q;fXg;f~pgX
CαX
F ð~k; ~q;f~pgX;tÞjLα

~k−~q
;fXgiþ��� ;

ðA1Þ

where the coefficients in this expression and those of (2.9)
are related by

CΦð~k; tÞ ¼ e−iEΦtAΦð~k; tÞ;
Cαi
I ð~k; ~q; tÞ ¼ e−iE

i
ItAαi

I ð~k; ~q; tÞ
CαX
F ð~k; ~q; f~pgX; tÞ ¼ e−iE

X
FtAαX

F ð~k; ~q; f~pgX; tÞ: ðA2Þ

The state (A1) obeys the Schrödinger equation

i
d
dt

jΨð~k; tÞiS ¼ −iðH0 þHIÞjΨð~k; tÞiS: ðA3Þ

The equations for the coefficients are obtained by projec-
tion in a similar fashion as in Sec. II, with the same notation
as in Sec. II [see Eqs. (2.11)–(2.14)], and neglecting the
momenta arguments in the coefficients, we obtain

_CΦðtÞ ¼ −iEϕCΦðtÞ − i
X
α;~q;a

Mαa�
P Cαa

I ðtÞ

− i
X

α;~q;h¼1;2

Mαh�
P Cαh

I ðtÞ; CΦð0Þ ¼ 1; ðA4Þ

_Cαa
I ðtÞ ¼ −iEa

I C
αa
I ðtÞ − iMαa

P CΦðtÞ; Cαa
I ð0Þ ¼ 0; ðA5Þ

_Cαh
I ðtÞ¼−iEh

I C
αh
I ðtÞ− iMαh

P CΦðtÞ− i
X
h0¼1;2

δEhh0Cαh0
I ðtÞ

− i
X

fXg;f~pgX
MhX�

D CαX
F ðtÞ; Cαh

I ð0Þ¼ 0; h¼ 1;2;

ðA6Þ
_CαX
F ðtÞ ¼ −iEX

FC
αX
F ðtÞ − i

X
h¼1;2

MhX
D Cαh

I ðtÞ; CαX
F ð0Þ ¼ 0:

ðA7Þ
This hierarchy of coupled differential equations becomes a
set of coupled algebraic equations by Laplace transform.
Defining

eCðsÞ ¼ Z ∞

0

e−stCðtÞdt ðA8Þ

for all the coefficients, we find beginning from the bottom
up
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eCαX
F ðsÞ ¼ −i

½M1X
D
eCα1
I ðsÞ þM2X

D
eCα2
I ðsÞ�

sþ iEX
F

: ðA9Þ

Introducing this solution into the Laplace transform of
Eqs. (A6), we find"
sþ iE1

I þ ieΣ11ðsÞ ieΣ12ðsÞ
ieΣ21ðsÞ sþ iE1

I þ ieΣ22ðsÞ

#� eCα1
I ðsÞeCα2
I ðsÞ

�

¼ −ieCΦðsÞ
�
Mα1

P

Mα2
P

�
; ðA10Þ

where

ieΣijðsÞ ¼
X

fXg;f~pgX

MiX
D

�MjX
D

sþ iEX
F

þ iδEij: ðA11Þ

The first term in eΣijðsÞ corresponds to the intermediate
states fXg. Figure 2 shows the self-energy for the case of a
common three-body decay channel.
The solution of the set of Eqs. (A10) is given by� eCα1

I ðsÞeCα2
I ðsÞ

�
¼ −ieGðsÞ�Mα1

P

Mα2
P

�eCΦðsÞ; ðA12Þ

where

eGðsÞ ¼ 1

DðsÞ

"
sþ iE1

I þ ieΣ22ðsÞ −ieΣ12ðsÞ
−ieΣ21ðsÞ sþ iE1

I þ ieΣ11ðsÞ

#
ðA13Þ

with

DðsÞ ¼ ½ðsþ iE1
I þ ieΣ11ðsÞÞðsþ iE2

I þ ieΣ22ðsÞÞ
− eΣ12ðsÞeΣ21ðsÞ�: ðA14Þ

For the amplitudes corresponding to the active neutrinos,
we find for their Laplace transform

eCαa
I ðsÞ ¼ −i

Mαa
P

sþ iEa
I

eCΦðsÞ: ðA15Þ

Introducing (A12) and (A15) into the Laplace transform of
(A4), we find

eCΦðsÞ ¼
1

sþ iEΦ þ iΣΦðsÞ
; ðA16Þ

where

ΣΦðsÞ ¼ ΣðaÞ
Φ ðsÞ þ ΣðsÞ

Φ ðsÞ ðA17Þ

with

ΣðaÞ
Φ ðsÞ ¼ −i

X
α;~q;a

jMαa
P j2

sþ iEa
I
; ðA18Þ

and

ΣðsÞ
Φ ðsÞ ¼ −i

X
α;~q

ðMα1
P

�;Mα2
P

�ÞeGðsÞ�Mα1
P

Mα2
P

�
ðA19Þ

are the contributions to theΦ self-energy from the active (a)
and sterile (s) neutrinos. This latter contribution highlights
the nature of the resonant heavy neutrino states because
GðsÞ includes the self-energy corrections in the mixed
heavy neutrino propagator.
The time evolution is obtained from the anti-Laplace

transform, namely, for all the amplitudes

CðtÞ ¼
Z
C
esteCðsÞ ds

2πi
; ðA20Þ

where C is the Bromwich contour running parallel to
the imaginary axis in the complex s plane to the right of
all the singularities of eCðsÞ. Decaying states are described
by complex poles in eCðsÞ with a negative real part;
therefore, along the Bromwich contour s ¼ iωþ ϵ with
−∞ ≤ ω ≤ ∞, ϵ → 0þ and

CðtÞ ¼
Z

∞

−∞
eiωteCðs ¼ iωþ ϵÞ dω

2π
: ðA21Þ

In perturbation theory, eCΦðs ¼ iωþ ϵÞ features a complex
pole near ω ∼ −EΦ. Writing to leading order

ΣΦðs ¼ −iEϕ þ ϵÞ ¼ ΔEΦ − i
ΓΦ

2
; ðA22Þ

it follows that eCΦðs ¼ iωþ ϵÞ near this pole is of the Breit-
Wigner form2

eCΦðs ¼ iωþ ϵÞ≃ −
i

ωþ ER
Φ − i ΓΦ

2

;

ER
Φ ¼ EΦ þ ΔEΦ ðA23Þ

and

CΦðtÞ ¼ e−iE
R
Φte−

ΓΦ
2
t: ðA24Þ

From the convolution theorem for Laplace transforms, we
find

2Again we neglect wave function renormalization.
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�
Cα1
I ðtÞ

Cα2
I ðtÞ

�
¼ −i

Z
t

0

Gðt − t0Þ
�
Mα1

P

Mα2
P

�
CΦðt0Þdt0; ðA25Þ

where

GðtÞ ¼
Z

∞

−∞
eGðωÞeiωt dω

2π
;

eGðωÞ≡ eGðs ¼ iωþ ϵÞ: ðA26Þ

To simplify notation, we define

E11ðωÞ≡ E1 þ Eα þ eΣ11ðωÞ;
E22ðωÞ≡ E1 þ Eα þ eΣ22ðωÞ; ðA27Þ

E12ðωÞ≡ eΣ12ðωÞ; E21ðωÞ≡ eΣ21ðωÞ; ðA28Þ

with

eΣijðωÞ≡ eΣijðs ¼ iωþ ϵÞ: ðA29Þ

It follows that the analytic continuation

eGðωÞ ¼ −
1

½ω − ωþðωÞ�½ω − ω−ðωÞ�

×

�
ωþ E22ðωÞ −E12ðωÞ
−E21ðωÞ ωþ E11ðωÞ

�
; ðA30Þ

where

ω�ðωÞ ¼ −
1

2
fðE11ðωÞ þ E22ðωÞÞ � ½ðE11ðωÞ − E22ðωÞÞ2

þ 4E12ðωÞE21ðωÞ�1=2g: ðA31Þ

The propagator eGðωÞ features (simple) complex poles at

ω ¼ ω�ðωÞ: ðA32Þ

These self-consistent conditions can be solved perturba-
tively. Again there are two cases:

(i) jE1 − E2j ≫ eΣijðE1;2Þ for which we find that

ωþ ¼ −E11ðE1
I Þ ¼ −½λþ þ Eα�;

ω− ¼ −E22ðE2
I Þ ¼ −½λ− þ Eα�; ðA33Þ

where λ� is given by (3.2).
(ii) jE1 − E2j≲ eΣijðĒÞ: In this case we can set ω ¼

Ēþ Eα in the arguments of the self-energies to
leading order Oðg2Þ, and again we find

ωþ ¼ −½λþ þ Eα�; ω− ¼ −½λ− þ Eα�; ðA34Þ

where in this case λ� are given by (2.45) with E1;2 →
Ē in the arguments of the self-energies.

In both cases, straightforward contour integration finally
yields

GðtÞ ¼ e−iEαt

λþ − λ−

�
e−iλ

þt
�
λþ − E22 E12

E21 ωþ λþ − E11

�
þ e−iλ

−t

�
λ− − E22 E12

E21 λ− − E11

��
; ðA35Þ

where the Eij are the same as in (2.36) with E1;2 → Ē in the
self-energies. With the result (A24), it is now straight-
forward to find the coefficients Cα1

I ðtÞ, Cα2
I ðtÞ from

Eq. (A25). Using the results of Appendix B we confirm
the Wigner-Weisskopf result (2.53) with (2.60) to leading
order, thereby establishing that the Wigner-Weisskopf
approximation is indeed equivalent to the Dyson resum-
mation of the propagators in terms of the self-energy. This
is a nonperturbative result that generalizes the simpler case
analyzed in Ref. [59] and establishes the relation to the field
theoretical propagator approach studied in Ref. [15].

APPENDIX B: USEFUL IDENTITIES

The eigenvalue equation (2.46)�
H11 H12

H21 H22

��
α�1
α�2

�
¼ λ�

�
α�1
α�2

�
; ðB1Þ

we obtain

λ� ¼ 1

2
fðH11 þH22Þ � ½ðH11 −H22Þ2 þ 4H12H21�1=2g;

ðB2Þ
from which it follows that

λ− −H11 ¼ −ðλþ −H22Þ ðB3Þ

and

λþ −H11

λ− −H11

¼ λ− −H22

λþ −H22

; ðB4Þ

along with the ratios

α−1
α−2

¼ λ− −H22

H21

;
αþ2
αþ1

¼ λþ −H11

H12

: ðB5Þ

With these results, after straightforward algebra we find
the following identities:

αþ1 eMαþ
P ¼ ðλþ −H22ÞMα1

P þH12Mα2
P

λþ − λ−
; ðB6Þ

α−1 eMα−
P ¼ −

ðλ− −H22ÞMα1
P þH12Mα2

P

λþ − λ−
; ðB7Þ
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αþ2 eMαþ
P ¼ ðλþ −H11ÞMα2

P þH21Mα1
P

λþ − λ−
; ðB8Þ

α−2 eMα−
P ¼ −

ðλ− −H11ÞMα2
P þH21Mα1

P

λþ − λ−
: ðB9Þ

The important aspect is that these products are independent
of the normalization of α�1;2.

APPENDIX C: DERIVATION OF EQ. (3.10)

AF
XðtÞ given by (2.61) can be written in obvious notation

as AþðtÞ þ A−ðtÞ corresponding to the first and second
lines in (2.61). The interference terms are

ðAþðtÞÞ�A−ðtÞ þ c:c: ðC1Þ
To simplify notation, we introduce the auxiliary

quantities

τ� ¼ ðα�1 eMα�
P M1X

D þ α�2 eMα�
P M2X

D Þ ðC2Þ
and

E ¼ Ē þ Eα − EΦ; η ¼ EX
F − EΦ; Δ�

γ ¼ ΓΦ − Γ�;

ðC3Þ
where Ē, δ have been defined in Eq. (3.9). The interference
term ðAþðtÞÞ�A−ðtÞ is given by

ðAþðtÞÞ�A−ðtÞ ¼ τþτ−

ðE þ δ − i Δ
þ
γ

2
ÞðE − δþ i Δ

−
γ

2
Þ

× fð1Þ þ ð2Þ þ ð3Þ þ ð4Þg; ðC4Þ
where

ð1Þ ¼ ðe−iηte−ΓΦ
2
t − 1Þ

ðη − i ΓΦ
2
Þ

ðeiηte−ΓΦ
2
t − 1Þ

ðηþ i ΓΦ
2
Þ ; ðC5Þ

ð2Þ ¼ ðe−iðη−EÞteiδte−Γþ
2
t − 1Þ

ðη − E − δ − i Γ
þ
2
Þ

ðeiðη−EÞteiδte−Γ−
2
t − 1Þ

ðη − E þ δþ i Γ
−

2
Þ ; ðC6Þ

ð3Þ ¼ −
ðe−iηte−ΓΦ

2
t − 1Þ

ðη − i ΓΦ
2
Þ

ðeiðη−EÞteiδte−Γ−
2
t − 1Þ

ðη − E þ δþ i Γ
−

2
Þ ; ðC7Þ

ð4Þ ¼ −
ðe−iðη−EÞteiδte−Γþ

2
t − 1Þ

ðη − E − δ − i Γ
þ
2
Þ

ðeiηte−ΓΦ
2
t − 1Þ

ðηþ i ΓΦ
2
Þ : ðC8Þ

Out of these four contributions, it is only contribution (2)
that survives at long time with an oscillatory behavior on
long time scales, (1) does not feature oscillatory interfer-
ence and (3),(4) feature rapidly varying phases e�iEt but not
interference terms and decay on time scales 1=ΓΦ.

The denominators in (2) feature resonances at E� ≃ EX

precisely when the heavy sterile neutrinos (the correct
eigenstates) can decay into the common channel. In the
narrow width limit, these resonant denominators become
energy-conserving delta functions. We can obtain the
coefficient functions of these delta functions by integrating
in the complex η plane and extracting the residues at the
complex poles. In the nearly degenerate limit, Ē ≫ δ, and
Eq. (C6) is understood as a distribution that is integrated
over a density of states that is insensitive to the energy
difference δ and we find

ð2Þ ¼ 2π

Γ̄
½1 − e2iδte−Γ̄t�

½1 − i 2δΓ̄ �
δðη − EÞ: ðC9Þ

Similarly, in the narrow-width limit and in the nearly
degenerate case, the product

1

ðE þ δ − i Δ
þ
γ

2
ÞðE − δþ i Δ

−
γ

2
Þ
∝ δðEÞ: ðC10Þ

To find the proportionality factor, we integrate in the
complex E plane extracting the residues at the complex
poles and find this product (as a distribution integrated over
smooth density of states that is insensitive to the energy
difference δ) with the result

1

ðE þ δ − i Δ
þ
γ

2
ÞðE − δþ i Δ

−
γ

2
Þ
¼ 2πδðEÞ

ΓΦ þ Γ̄þ 2iδ
: ðC11Þ

This result can be easily understood as follows: in the
narrow-width limit,

1

ðE þ δ − i Δ
þ
γ

2
ÞðE − δþ i Δ

−
γ

2
Þ

¼ 1

−2δþ iðΓΦ þ Γ̄Þ
�
iπððδðE þ δÞ þ ðδðE − δÞÞ

þ P
�

1

ðE þ δÞ −
1

ðE − δÞ
��

: ðC12Þ

Upon integrating over a density of final states that is
insensitive to the energy difference δ, the result (C11)
above follows. The same analysis applies to the result (C9).
Therefore, the final result for the interference term is

ðAþðtÞÞ�A−ðtÞ ¼ τþτ−
2πδðĒ þ Eα − EΦÞ
½ΓΦ þ Γ̄þ 2iδ�

2πδðĒ − EXÞ
½Γ̄ − 2iδ�

× ½1 − e2iδte−Γ̄t�: ðC13Þ
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