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Hard-soft-collinear factorization to all orders
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We provide a precise statement of hard-soft-collinear factorization of scattering amplitudes and prove it
to all orders in perturbation theory. Factorization is formulated as the equality at leading power of scattering
amplitudes in QCD with other amplitudes in QCD computed from a product of operator matrix elements.
The equivalence is regulator independent and gauge independent. As the formulation relates amplitudes to
the same amplitudes with additional soft or collinear particles, it includes as special cases the factorization
of soft currents and collinear splitting functions from generic matrix elements, both of which are shown to
be process independent to all orders. We show that the overlapping soft-collinear region is naturally
accounted for by vacuum matrix elements of kinked Wilson lines. Although the proof is self-contained, it
combines techniques developed for the study of pinch surfaces, scattering amplitudes, and effective field

theory.
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I. INTRODUCTION

Factorization is at the heart of any quantitative prediction
using quantum chromodynamics (QCD). Probably the
most familiar type of factorization, which we call hard
factorization, justifies the use of fixed-order perturbation
theory for sufficiently inclusive quantities. It lets us use
perturbative calculations involving partons (quarks and
gluons) to make precise predictions for experimentally
measurable quantities involving color-neutral hadrons. The
intuition for hard factorization is that scattering has a
component which freezes in at short distances and can
only incoherently influence the long-distance components.
For many observables, the long-distance physics can be
integrated over with essentially unit probability. Somewhat
less intuitive, but also logical after a little thought, is the
factorization of infrared-sensitive physics into soft and
collinear components. This soft-collinear factorization can
be anticipated classically, since very-long-distance modes
(soft physics) can only probe the net (color) charge of a
collection of particles traveling in nearly the same direc-
tion. Conversely, energetic collinear particles cannot have
their momentum changed much by low-energy soft modes.
Although the physical picture of hard-soft-collinear fac-
torization is simple, rigorously establishing exactly what it
implies about scattering amplitudes in gauge theories is not.

Factorization has a long history, with an eclectic variety
of approaches yielding a nuanced picture of when and
where factorization should hold, and in what form. In this
paper, we eschew two serious complications: (i) we ignore
nonperturbative effects associated with strong coupling,
discussing only power corrections associated with the
kinematics of massless partons rather than corrections of
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order Agcp/Q and (ii) we avoid configurations where final-
state particles are collinear to initial-state particles. Even
within this limited scope, although much is known, a
precise formulation of factorization in terms of QCD matrix
elements has been lacking. It is the goal of this paper to
provide such a formulation and proof.

As we will review and rederive, the essence of factori-
zation is revealed by studying the infrared (IR) structure of
gauge theories. An obvious necessary condition for an IR
divergence is that some propagators blow up. Sufficient
conditions are quite a bit more complicated. First, the poles
associated with on-shell momenta must be pinched, so that
one cannot just integrate over them [1,2]. Second, the
numerator structure of integrands, which is gauge depen-
dent, can make an integral more or less divergent than the
propagator denominators alone imply. In certain gauges,
such as light-cone gauge, the possible virtual momenta
contributing to the IR singularities—the so-called pinch
surface—turn out to be remarkably simple: all virtual
momenta g# must either be exactly proportional to one
of the external momenta ¢* = ap’ with a > 0 or exactly
vanish, ¢# = 0. A picture of such a surface is often drawn
as a reduced diagram with hard, jet and soft regions [3-5],
similar for example to Eq. (148) below.

Unfortunately, understanding the singular pinch surface,
that is, the topology of exactly zero momentum or exactly
collinear lines, does not immediately translate to a precise
statement of hard factorization or soft-collinear factoriza-
tion. Indeed, descending from the pinch surface to a
statement about finite amplitudes requires a whole new
set of justifications. For example, one must relate the
unphysical power counting of a pinch surface of finite
phase-space volume to the physical power counting of
external momenta. In particular, infrared divergences asso-
ciated with the soft pinch surface (where k& = 0) depend on
whether that surface is approached from a likelike (the soft
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region) or spacelike (the Glauber region) direction. Other
subtleties include avoiding double counting in the soft-
collinear region (the zero bin), restricting the phase space
for real and virtual integrations in the soft function without
reintroducing dependence on the hard scale, and introduc-
ing Wilson lines to restore gauge invariance without
spoiling the leading-power factorization. Despite these
challenges, factorization has been proven at the amplitude
and amplitude-squared level in a number of contexts [6—8].
Factorization formulas for cross sections of certain observ-
ables have been presented [9—16] allowing for resummation
of large logarithms associated with the pinch surface.

In deep-inelastic lepton-hadron scattering (DIS), the
pinch surface is particularly simple. In this case, factori-
zation has been understood since the 1970s and has been
used to compute phenomenologically important quantities,
namely the Dokshitzer-Gribov-Lipatov-Altarelli-Parisi
splitting functions [17-20]. These splitting functions
describe the leading-power behavior of certain amplitudes
when an additional collinear parton is added; they also
provide kernels for the renormalization group evolution of
parton distribution functions (PDFs). In DIS, the splitting
functions and PDF evolution can be rigorously defined
through an operator product expansion (OPE) [21,22],
which has led to their computation at two loops [23,24]
and three loops [25]. The OPE for DIS is possible because
it involves the matrix element of two currents whose
analytic structure in the complex plane is particularly
simple. That the same splitting functions apply for PDF
evolution in some other process, for example the Drell-Yan
process, can occasionally be shown by direct calculation
[26]. However, to show universality of the PDFs more
generally requires a general proof of hard-collinear fac-
torization. Subtleties associated with proton-proton scatter-
ing, where initial-state partons can be collinear to final-state
particles, complicate factorization [27-29]. Needless to say,
showing that the same PDFs apply to any scattering process
(if indeed they do) is an extremely important open question,
beyond the scope of this paper.

An alternative, more pragmatic, approach skips both the
pinch surface and the OPE and simply computes the
diagrams relevant for factorization directly, usually in
dimensionally regularized perturbation theory. Following
this approach, universality of collinear splittings was shown
at one loop by Bern and Chalmers in 1995 [30] by studying
collinear limits of five-point amplitudes in QCD. Hard-
collinear factorization can be written heuristically as

plll;llpm

Mn = Sp(plv-"vpm)'Mn—m (l)
with M,, an n-external-particle matrix element, p/...ph
the external momenta which become collinear, and =
indicating the two sides agree at leading power. The
important point in this formula is that the splitting function
Sp(pi,---, ) has no dependence on any of the
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noncollinear momenta in the process. Formulas like
Eq. (1) and the explicit formulas for Sp(p;, ..., p,,) in d
dimensions are important for precision calculations in
QCD. We will give more-precise operator definitions of
the objects in this equation in Sec. XII A. In 1999, Kosower
proved Eq. (1) at leading color (large N,) to all orders in
perturbation theory [31]. The factorization of IR (soft and
collinear) tree-level amplitudes to all orders was shown in
[32]. Reference [28] has discussed difficulties with Eq. (1)
when initial and final states are collinear. Avoiding such
situations, we will show that Eq. (1) holds to all orders in
QCD, at finite N,. Indeed, hard-collinear factorization is a
corollary of the more general hard-soft-collinear factoriza-
tion formula we prove in this paper.

The factorization of soft emissions from generic matrix
elements is also believed to satisfy a formula similar to
Eq. (1). For example, in the limit that a single soft gluon of
momentum ¢g* becomes soft, tree-level amplitudes factorize
as [33]

q soft

Mn = ey(Q)JZ ’ Mn—l' (2)

The soft current J} is an operator acting in color space. In
2000, Catani and Grazzini proved this formula at one loop,
with an explicit computation of J4, and conjectured that the
formula holds to all orders [34]. In 2013, the soft current
was computed at two loops in [35,36]. These calculations
were all done in dimensional regularization and have
applications in perturbative QCD, such as to the N*LO
Higgs-boson inclusive cross section. As with Eq. (1), our
general factorization formula contains the hard-soft fac-
torization embodied in Eq. (2) as a special case. We prove
this equation to all orders and provide regulator-indepen-
dent and gauge-invariant operator definitions of the objects
involved in Sec. XII B.

Remarkably, a factorization theorem valid at leading
power to all orders in a; is not strictly required for
resummation to all orders in a, of certain leading or
next-to-leading logarithms. For example, by combining
O(ay) collinear splitting functions, O(«,) soft-coherence
effects, and O(a?) Sudakov effects (associated with the
overlapping soft-collinear region), Catani, Marchesini
and Webber derived a powerful coherent-branching algo-
rithm [37]. Coherent branching is the backbone of the
Monte Carlo event generator approach to QCD. It has also
been used for resummation of many observables at the
next-to-leading logarithmic level [37—40]. A related obser-
vation is that QCD simplifies dramatically in the limit that
gluons are strongly ordered in energy [33,41,42], particu-
larly at large N,.. This approximation has led to the
resummation of certain leading logarithms, such as non-
global ones [43,44] which no other method has yet tamed.

A relatively recent approach to factorization is provided
by soft-collinear effective theory (SCET) [29,45-47]. The
idea behind SCET is to hypothesize which IR modes
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contribute to QCD scattering processes and to write fields
in QCD as sums of fields with soft or collinear quantum
numbers corresponding to the hypothesized modes.
Different components are assigned different scaling behav-
ior and the QCD Lagrangian is expanded to leading power
(or beyond). The resulting effective theory has Feynman
rules which are significantly more complicated than those
of QCD. These rules simplify somewhat after a field
redefinition which moves the soft-collinear interactions
from the Lagrangian into the operators. Proofs using the
effective Lagrangian are then carried out under the
assumption that the only modes necessary for the proof
are those in the effective theory. Therefore, proofs of
factorization in SCET must be interpreted with some care.
An advantage of the SCET approach is that with operator
definitions of the various objects, the hard-soft-collinear
decoupling is completely transparent and resummation of
large logarithms can be done through the renormalization
group. This has lead to precise predictions of jet observ-
ables at colliders [48—54]. Another advantage is that the
power counting makes it straightforward, in principle, to go
beyond leading power if desired. On the other hand, the
derivation of SCET has been done in a gauge in which the
physics is quite unintuitive, for example with polarization
vectors which are longitudinally polarized at leading power
(see [55]). SCET removes the soft-collinear double count-
ing by simply not summing over the zero-momentum bin in
the discrete sum over labels. A somewhat simpler formu-
lation of SCET was presented recently by Freedman and
Luke in [56] and connects more directly to the current
work, as discussed in Sec. XIII.

In this paper, we present and prove a factorization
formula for amplitudes in gauge theories, building upon
insights from many of the approaches discussed above. All
of the interesting features of this formula can be seen in the
simpler case of factorization for matrix elements of the
operator O = W |#[Y in scalar QED. There, our formula
reads

(X|0|0) = C(S;;) (Xilp*Wil0)  (Xy|Wia[0)
T oyiwalo)  (0|wiYy[0)
x (X, |YT...Yy|0). 3)

This formula applies to final states (X| which can be
partitioned into N regions of phase space such that the total
momentum P;’ in each region has an invariant mass which
is small compared to its energy. More explicitly, we
demand P; < 2*(P})?, where P) = E; is the energy of
the jet, for some number 4 < 1 which is used as a power-
counting parameter. For such states, the momentum g¢* of
any particle has to be either collinear to one of N lightlike
directions, n%, meaning n; - g < 22¢°, or soft, meaning
q" <2*P). Thus we can write for the final state
(X| = (X,...Xy;X,|, where all the particles with
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momentum collinear to n; are contained in the jet state
(X;| and the particles that are soft are in (X |. This explains
the states in Eq. (3). The Wilson coefficient C(S;;) is a
function only of the Lorentz-invariant combinations S;; =
(P; + P;)* = 2P; - P; of jet momenta P? in each direction;
it does not depend at all on the distribution of energy within
the jet or on the soft momenta and, therefore, it does not
depend on 4. The objects Y; are Wilson lines going from
the origin to infinity in the directions of the jets, and the W;
are Wilson lines in directions t’; only restricted not to point
in a direction close to that of the corresponding jet. We give
more precise definitions of the Wilson lines in Sec. II. The
symbol = in Eq. (3) indicates that any IR-regulated
amplitude or IR-safe observable computed with the two
sides will agree at leading power in A.

Equation (3) implies hard-collinear factorization
[Eq. (1)] and hard-soft factorization [Eq. (2)] as special
cases. For example, if a two-body final state (X| is modified
by adding a soft photon of momentum ¢*, then one can
calculate the effect of this extra emission by taking the ratio
of the right-hand side of Eq. (3) with and without the
emission. Most of the terms drop out of the product, leaving

(¢ (p); alY}Y,|0)
(01Y}Y5/0)

u M

afl P P

=g,T (—2 ——1> +0(g3). (4)
P2-q P14

Jo =

We will give general operator definitions for the splitting
amplitude Sp(py, ...py) and the soft current J and discuss
their universality in Sec. XII after we present the gener-
alization of Eq. (3) to QCD in Sec. XI [see Eq. (207)].
Beyond providing an all-orders proof of Eq. (3), as well as
an operator definition and proof of universality of Sp and J,
we hope that our general method of proof will itself be
useful in future discussions of formal questions on the
structure of perturbative amplitudes. We also hope that our
approach to factorization, and the ensuing discussion of
SCET in Sec. XIII, will help bridge the gap between the
traditional factorization methods in the QCD literature and
those of SCET, as well as provide further insight into the
formulation of SCET by Freedman and Luke in [56].

Equation (3) was derived at tree level in [55], a paper we
will refer to often and hereafter as [FS1]. At tree level, the
Wilson coefficient and the vacuum matrix elements in the
denominators of Eq. (3) are all 1 and the factorization
formula reduces to

tree +
(X|0]0) = (X, [¢*W10).... (Xy| W h|O)(X,|Y]... Yy 0)
(5)
in agreement with the formula from [FS1].

There are two differences between Egs. (3) and (5), both
of which represent important physical effects. First, the
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nontrivial Wilson coefficient in the all-loop formula enables
the factorized expression to reproduce hard-virtual correc-
tions. Using Eq. (3), one can isolate the Wilson coefficient
using a trivial soft sector (X,| = (0| and collinear sectors
with a single particle in each (X;| = (p,[. Then 1 =0
exactly, and

Y <P1|¢:W1‘O> .. <pN‘W}Lv¢|0> <O|YT y |0> ’
(OY]wy [0y~ (O[WY[0) L=t N

This is a statement of purely virtual factorization. Note that,
since 4 = 0 exactly, this is an equality, not just a leading-
power equivalence. The nontrivial content in this definition
is that the right-hand side is IR finite, which we shall prove.
Moreover, we shall prove that the Wilson coefficient is
independent of the states (X;...Xy;X,|, so that Eq. (6)
unambiguously specifies C(s;;) at leading power.

The second difference between tree-level factorization
and all-orders factorization is the denominators in Eq. (3).
These represent a type of zero-bin subtraction for loops.
Recall that for external states which are both soft and
collinear, one is free to put them in (X[ or (X;|—the
factorization formula holds with either choice. However,
since all integrals are taken over R!3, the soft-collinear
region of loop momenta is included in both the soft and
collinear matrix elements in the factorized formula, and
thus their overlap must be removed. The term zero bin
stems from effective theory language, where one (formally)
chops up phase space into a discrete sum over soft and
collinear sectors. The zero bin is the soft-collinear overlap
sector in the sum, which must be subtracted not to double
count [57]. The equivalence between the zero-bin sub-
traction in SCET and dividing by a matrix element of
Wilson lines has been shown in [58].1

Besides the salient differences between the tree-level and
all-orders factorization formulas, there is an important
conceptual subtlety: starting at one loop, both sides of
Eq. (3) are IR divergent. Declaring two infinite quantities
equivalent at leading power is not as absurd as it first
sounds. With an IR regulator it is, of course, perfectly well
defined. Conceptually, one could interpret the leading-
power equivalence 2 in this equation as meaning that
whenever an IR-safe observable is computed by integrating
over an appropriate collection of final states (X|, the two
sides of Eq. (3) produce the same cross section at leading
power in A. For example, a typical IR-safe jet observable is
T= & (>>im? + QE,,): the sum over the jet masses and
the out-of-jet energy. Then % will agree when computed
with either side of Eq. (3) up to corrections subleading in 7.

lConveniently (or misleadingly) when dimensional regulari-
zation is used to control both the UV and IR divergences, the
vacuum matrix elements of Wilson lines are all scaleless and
identically vanish. Thus, the zero-bin subtraction is easy to miss,
as it was in many early SCET papers.
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With this in mind, one can still work at the amplitude level
without an explicit IR regulator.

To be clear, we do not require or expect the IR
divergences on the two sides of Eq. (3) to exactly agree.
Indeed, as soon as real-virtual diagrams contribute, the IR
divergences will not exactly agree. To see this note that the
real-emission graphs computed with Eq. (3) only agree at
leading power and so an IR-divergent virtual graph with a
subleading real emission tacked on will show up on the left-
hand side of Eq. (3) but not on the right-hand side. This
implies that the IR divergences can only precisely agree
when 4 =0 (no emissions), as in Eq. (6).2 However,
subleading-power IR divergences will contribute at sub-
leading power to observables, so the disagreement of
subleading-power IR singularities does not invalidate the
leading-power equivalence in Eq. (3).

Regarding the power counting, our factorization theorem
will be proven at leading power in 4, a small parameter that
only depends on the external momentum in the state (X|.
We do not count powers of anything except the external
momentum in the matrix element under consideration.
When we discuss scaling of virtual momenta near IR-
sensitive regions, we will talk about scaling with x (see
Sec. II), but only to motivate dropping certain loop
amplitudes completely. Our proof actually holds at leading
power in N + 1 separate power-counting parameters, A’
and A, one for each collinear sector and another for the soft.
It will be clear that our proof does not require A. = 4, and
we can therefore derive the factorization theorem (at
simultaneous leading power in all small parameters) for
different types of soft and collinear momentum scalings. As
we discuss in Sec. XIII this implies that our factorization
formula unifies what are considered to be two separate
effective field theories in the literature, namely SCET;
and SCETH

This paper attempts to give some intuition for the
factorization formula rather than simply a proof. We
therefore take our time with the presentation, including
many examples. Section II establishes some of our notation
and reviews some basic concepts. Sections III and IV give
examples. Although the proof does not rely on these two
example sections, the special cases considered illustrate
many of the issues which come up in the proof and are
useful for making some of the abstractions more concrete.
Section V outlines the proof but has no results. The proof
begins in earnest in Sec. VI. In this section we explain how
Feynman diagrams can be written as sums of colored
diagrams with red lines engendering soft sensitivity and
blue lines soft insensitive. This section would be quite short
if not for the examples we include. Section VII proves a set

*One can of course add subleading-power operators to the
right-hand side of Eq. (3) so that subleading IR divergences
cancel. To get all the IR divergences to cancel, one would need an
infinite number of operators and the factorized expression would
be identical to the full theory.
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of lemmas which establish the physical-gauge reduced-
diagram picture manifesting hard factorization. The differ-
ence between our reduced diagrams and reduced diagrams
in the literature (see for example [3-5]) is that our diagrams
correspond to specific functions of finite-external momenta
computed through loop integrals over all of R!-3, while the
traditional reduced diagrams describe only the pinch sur-
face where all virtual momenta are either exactly zero or
exactly proportional to an external momentum. To prove
soft-collinear factorization, we introduce a special gauge
we call factorization gauge in Sec. VIII. The soft-collinear
decoupling proof is given in Sec. IX. The rest of the paper
discusses the generalization to QCD, some special cases,
the QCD splitting functions and soft currents, the con-
nection to SCET, and a brief look forward.

II. PRELIMINARIES

To begin, we establish in this section some of the basic
features of amplitudes we will exploit for factorization. We
first review the importance of soft and collinear momenta.
We then discuss how soft and collinear regions of virtual
momenta can be separated without chopping up the loop
momenta into sectors.

Let us begin with some terminology. We will distinguish
soft divergences from collinear divergences, both of which
are defined in Sec. II B. We refer to IR divergences as either
soft or collinear. We use 4 to power count external momenta,
as discussed in Sec. I A. We use « to power count loop
momenta. The notation p||g is used to denote when two
momenta, either real or virtual, are nearly collinear according
to the appropriate power counting. The notation p « ¢ is
reserved for when two momenta are exactly collinear, that is,
when they are proportional to each other. Following [FS1],
the symbol = indicates that two expressions agree at leading
power in the limit of external particles becoming soft or
collinear in an amplitude. That is, it refers to power counting
in A, not k. More precisely

A
AEB@E:I—F(’)(A). (7)
We also define
A 0

This less restrictive IR equivalence will be used in Sec. IX to
avoid keeping track of modifications of the hard amplitude
along the steps of soft-collinear factorization.

We are often interested not only in whether a loop is IR
divergent, but whether it would be IR divergent if two
external particles were proportional, or if an external
momentum were exactly zero. If this happens, we say
the loop is IR sensitive. An IR-sensitive loop is IR divergent
when A = 0 (though it need not be for 4 > 0). IR sensitivity
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is discussed more in Sec. II B with an example given in
Sec. IV B.

A. Power counting for external momenta

A key observation which makes factorization important
is that soft and collinear momenta dominate cross sections.
At tree level, this is easy to see. Consider a process with
outgoing final-state momenta p’ of zero mass. At tree level,
each intermediate momentum k* must be a linear combi-
nation of external momenta p’: k* = pi + --- + p/. Thus
k* =3, ;p; - pj- Since each p; - p; is positive definite, k>
can only vanish if p/ is exactly proportional to p’; for each i
and j in the sum, or if a p¥ has zero energy. The dominant
regions of phase space where the propagators are large are,
therefore, the regions where momenta are collinear: p;||p;,
or soft: E; < Q, with Q the center-of-mass energy. This is
discussed extensively in [FS1].

We, therefore, focus on final states (X| partitioned into
collinear sectors (X;|...(Xy| and a single soft sector (X,|.
Let m; and E; be the invariant mass and energy, respec-
tively, of the net momentum P} =) .., pj in each
sector, and define A; = m;/E; for the collinear sectors
and A, = E,/Q for the soft sector. We assume 4; < 1 for
every sector, so that the contribution of the state (X| =
(X1]...(Xy|(X,| to a cross section will scale like inverse
powers of all 4;. It is for these states that hard-soft-collinear
factorization holds.

B. Power counting for virtual momenta

The soft and collinear regions of phase space are also
important because they lead to IR divergences in loops. IR
divergences come from virtual-particle momenta going on
shell. Let us call loop momenta those being integrated over.
That is, denoting the loop momenta as &/, the loop measure

. ik . . .
is[]; é”k);. Any virtual momentum /# in a Feynman diagram

is a linear combination of loop momenta and external
momenta: [#(k;, p;). Thus, for a virtual propagator to blow
up, the virtual momentum must go on shell, which makes
the loop momentum either soft or collinear to one of the jet
directions. Since we associate infrared divergences with
virtual lines, it is convenient to route the momenta so that
the virtual momentum in question is one of the loop
momenta, k#. We say a given diagram has a soft divergence
associated with k* if it is still divergent when each
component of k* is restricted to be smaller than some
arbitrarily small scale, K2Q, for any x > 0. A collinear
divergence requires the specification of a finite, nonzero
lightlike momentum, p#; the singularity is then present in
any integration region containing p*. We take infrared
divergence to mean either soft or collinear.

A shortcut to determining whether a given integral is IR
divergent is through its scaling behavior, which can be
understood in light-cone coordinates. Given two distinct
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lightlike directions n; and n), we can uniquely decompose
any 4-vector k¥ as

k= kynly + knly + K| 9)

with k| defined by this equation and

(10)

We can then consider rescaling the components by factors
of 0 < k < 1 raised to various powers:

k= kPkynly + k% nly + kK with

a,b>0,a+b>0,c>0. (11)

We require a, b > 0,¢c > 0anda + b > 0, so thatasx — 0
these rescalings zoom in on a possibly singular region. For
example, a,b,c > 0 scales & — 0 (the soft region), whereas
b=0 and a,c >0 scales k* — kpnl (the a-collinear
region). We say an integral is power-counting finite if,
including the measure, it scales like k to a positive power
under a given rescaling of this form.
The purpose of these rescalings is that they are related to
whether or not a diagram is infrared divergent.
Conjecture (power-counting finiteness conjecture).—A
Feynman integral is infrared finite if and only if it scales as a
positive power of x under all possible rescalings in Eq. (11).
That an infrared-finite Feynman integral scales as a
positive power of x for any rescaling is easy to prove: a
convergent integral must have a convergent Riemann sum.
The converse, that scaling implies infrared finiteness, is also
quite logical. We are certainly not aware of any counter-
examples. Nor do we know of a rigorous proof. This
conjecture is assumed to hold in practically every factori-
zation proof, and we assume it too. For a discussion of a
slightly stronger version of this conjecture, see p. 428 of [59].
A convenient simplification is that it is not necessary to
consider all possible values of a, b, c > 0. In determining
the leading power of x with a given scaling, all that matters
is which terms can be dropped with respect to which other
terms—any scaling that drops the same terms gives the
same integrand with the same singularities. Between two
power-counting regions that allow two different terms to be
dropped lies a boundary where both terms must be kept.
Because more terms must be kept on the boundary, if a
boundary region is power-counting finite, then the regions
it bounds must also be power-counting finite. This sim-
plifies the types of power counting we need to consider.
In a given Feynman loop diagram, we always have one
propagator whose denominator is k> (by our choice of
momentum routing). Under the rescaling in Eq. (11),

kK? =2n, - npyk.ky + k3 — k420, - nyk kg, + kK2k3
(12)
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So, if @ + b > 2c, we may drop k,k, in place of k%, and if
a+b < 2c, k% can be dropped with respect to k,k;. We
might also have denominators (k — p,)? for some ph. If p/
is not lightlike, then (k — p,)? ~ p2 ~k°. A more relevant
case is when p is lightlike. Then it makes sense to choose
one of our basis vectors n4 to point along p4. In this case, a
term k- p, - k% - p, may appear in a denominator.
Similarly, k- p, — x’k - p, may appear. Thus there are
four relevant scaling behaviors:

K~k k-p,~kK®  k-py~kK’.

(13)

kakb ~ Ka+b’

In expanding for small x, all we do is drop some of these
when they are smaller than others. If an integral is power-
counting finite when two terms are of comparable size, it is
necessarily power-counting finite when one of them is
dropped. So we can restrict our considerations to scalings
where two (or more) of these terms are comparable.
There are six regions where two of the scalings in
Eq. (13) are equal. These form the lines in Fig. 1. For
example, one of the diagonal lines has a + b = 2¢ so that
k.k, ~ k% and k*> — x*k*. This scaling is special as it
keeps on-shell momenta on shell. In particular, this line
shows the only relevant scalings for external momenta. The
scalings where two lines intersect are the four solid dots. If
an integral is infrared finite at all of these points, it is
automatically infrared finite under any scaling. The points
in the corners come from three scalings being equal and
the center point at a=b =c¢ has k-p,~k-p, and
k.k, ~ k% . The most overlapping region, where all four
scalings are equal, requires a = b = ¢ = 0. This is hard

pa—collinear | 4
/
/ Bk |
2@ — — - L=k ),
AN Y | \
AN
vz .
o\ I Glauber
< \%\ soft s |
; o l / | o
=2 AN / | ZM
¢
A% \ £ =
%, NG !
H/ \'\_{ I
R a
AR \\/\ | py—collinear
/
/ AN l /
X ®

K2~k -pp 9% b

FIG. 1 (color online). Scalings, k ~ (x”, k%, k°), that could give
power-counting IR divergences.
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TABLE I.  Scalings relevant for factorization.

Exponents Conditions Momenta scaling Name
(a,b,c) =(0,0,0) koky ~K3 ~k-p,~k-p, ko~ (1,1,1) Hard
(a,b,c) =(2,0,1) koky, ~ k3 ~ k- p, Kkt~ (1,k%, k) pg-collinear
(a,b,c) =(0,2,1) k.ky, ~ k2l ~k-py ko~ (k% 1,K) pp-collinear
(a,b,c) =(2,2,2) (koky ~K3) & (k- py~ k- pp) ko~ (62, k2, 6%) Soft
(a,b,c) =(2,2,1) K2 ~k-p,~k-p, K~ (K%, K, k) Glauber

scaling which does not tell us about infrared divergences
since it does not zoom in on a possibly singular region. The
point at the origin in Fig. 1, where a = b =0 but ¢ # 0,
also cannot produce infrared divergences since for xk = 0,
k* is off shell. We are also free to choose one of a, b, ¢
arbitrarily if it is not zero; for example, we can set ¢ = 1 by
replacing k by &’ = «!/¢.

Thus, we can restrict the discussion to the scalings listed
in Table L. Of these, hard scaling does not produce infrared
divergences. Soft and collinear scaling both imply
k*> — k?k*. In particular, timelike, spacelike and lightlike
momenta stay timelike, spacelike and lightlike, respec-
tively. Glauber scaling, on the other hand, turns timelike
and lightlike momenta into spacelike momenta as k — 0,
preserving only the spacelike nature.

The set of scalings we need to consider is even smaller
for the processes that have no collinear directions in the
initial state. When there are only final-state particles, for
example in a decay, we know the infrared divergences must
cancel among real and virtual corrections at each order in
a,. The reason infrared finiteness can be proven in this case
is because, by unitarity, a decay is the imaginary part of a
1 - 1 total cross section whose analytic structure is
particularly simple. Not only does infrared finiteness hold,
but there is a one-to-one correspondence between the
momenta producing infrared divergences in real-emission
contributions and the virtual contributions. This is easiest to
see using old-fashioned perturbation theory (see Chap. 13
of [59]). In a real-emission graph with only final-state
particles, all the virtual lines without loop momenta flowing
through them are timelike. As we take 4 — O these timelike
momenta approach the light cone from within, and give rise
to soft and collinear real-emission phase-space singular-
ities. Because these phase-space divergences come from
timelike momenta becoming lightlike, there cannot be any
phase-space singularities with Glauber scaling, which as
k — 0 makes timelike momenta spacelike. Then, by infra-
red finiteness of the total decay rate, there cannot be
Glauber singularities in loop integrals either. We conclude
that, when considering only final-state collinear directions,
only soft and collinear scalings can possibly produce
infrared divergences.

When there are collinear particles in the initial state, we
expect that unitarity-based arguments should still hold,
even if they have not yet been rigorously proven. The

complication is that with collinear particles in the initial
state, the virtual momenta in real-emission graphs can be
spacelike. In particular, a virtual particle with momentum
k= p¥ —p" connecting an initial-state particle of
momenta p# to a final-state particle of momentum p’/
can be spacelike and have Glauber scaling if p# is collinear
to p’#. Thus Glauber scaling is important for forward
scattering. In this paper, we will only have final-state
collinear directions, so we can ignore Glauber scaling. A
technical pinch-analysis proof of the irrelevance of Glauber
scaling for decay processes can be found in Chap. 5 of [60].

We conclude that we only need to consider soft scaling,
and collinear scaling in each relevant direction. If upon
k* — k*k*, an integral scales like « to a positive power, the
integral is not soft divergent. If it scales like x° (it cannot
scale like x to a negative power; see [3] or Lemma 2), there
might be a soft divergence. Collinear divergences are
determined by rescaling k* as

I’lb'k I’lb‘k
- 2t k2
ng-nyp ng-nyp

nl, + kk'| . (14)

If the integral scales like k to a nonpositive power, there is a
potential collinear divergence. Otherwise, the integral is
collinear finite in the n* direction.

In practice, Eq. (14) implies that to find a collinear
divergence associated with the direction p* of an external
momentum, we rescale

d*k — k*d*k,
k2 — K2k2,
k-p -’k p. (15)

If g is another loop momenta, then the scaling depends on
whether ¢ is being consider collinear to p or not:

2
K b K
k‘q_)k_qx{ qllp (16)
For collinear-sensitive power counting (see below), the
same scaling rules apply (depending on whether ¢g||p or
not) if ¢ is a sum of external momenta.
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As an example, consider the one-loop scalar integral:

[— / d*k 1
(2m)* (K +ie)((p1 + k)* + i) ((p2 + k)* + ie)

(17)
with p? = p3 = 0. In the soft limit,
d*k
K (py + k)*(py + k)
ksoft KSd*k
—
K2 (K22p) -k + k4K (k32p, - k + KEP)
d*k
K+ O(x?). (18)

T R2pi k) (2py - k)

Thus there is a potential logarithmic soft divergence in this
integral. In the limit where k|| p;, we choose nf; = p/. Then

&k
K*(p1 4 k)*(pa + k)?
Klip, K*d*k
TR (22p, k1 ) (2p, - k + KD
&k

— 0 2 1
k*(py +k)22P2'kK Ok, (19)

Thus, there is a potential collinear divergence in the p/
direction. By the symmetry of the integral, there is a
potential collinear divergence in the p’ direction as well.
In some cases, an integral does not have a divergence
associated with a specific power counting despite the
integrand scaling like x° (for example, the Glauber scaling
in decay processes). Indeed, one can often deform the
integration contour away from the singularity. If this
deformation cannot be done, the singularity is said to be
pinched. While there is a close connection between our
approach and the results of a pinch analysis, we can
conveniently avoid the discussion of contour deformation
all together. Although we will use strongly that some
diagrams with on-shell internal lines are not soft sensitive,
we will not directly use the Landau equations [1] or their
interpretation by Coleman and Norton [2] in our proof.
Instead, we will show that two expressions agree at leading
power in 4, including both infrared-divergent and infrared-
finite contributions. The connection between infrared
divergences and the leading power in A is through the
notion of infrared sensitivity which we discuss next.

C. Infrared sensitivity

We are often interested not in actually divergent inte-
grals, but in integrals which would be divergent if 1 = 0.
That is, they would scale like x to a nonpositive power if
two external collinear particles were exactly proportional,

PHYSICAL REVIEW D 90, 105020 (2014)

or if a soft external particle had exactly zero momenta. We
generalize the concept of an IR divergence to encompass
such situations by saying that a loop is IR sensitive if it is IR
divergent when 1 = 0. Of course, a loop that is IR divergent
(for any 1) is also IR sensitive. For a loop to be infinite at
A = 0 but finite for 4 # 0, we know A must be acting like an
IR regulator. For example,

1 1
d =In——=-Ink 20
/0 KK—|—/1 7 1 (20)

The equivalent in a real diagram with p|lg might
be In2 = In2tal

When computing probabilities of IR-safe physical
observables we square the amplitude and integrate over
phase space of the external particles. The integration over
phase space encloses the region where 4 = 0; in fact, it is this
region that cancels the IR divergences in virtual loops. Thus,
to preserve IR finiteness of physical observables, we must
treat loops that are IR divergent when 4 = 0 the same as we
do loops that are IR divergent for any A. Therefore, IR
sensitivity is the appropriate concept to use when discussing
loops and emissions together, rather than IR divergence.

When power counting IR-sensitive loops, instead of
setting 4 = 0 and counting powers of x, we can simply
count powers of x and A together. By power counting 4 and
k as of the same order, we ensure that all the terms are kept
that are necessary for the cancellation of IR divergences
between real and virtual particles at leading power of a
physical IR-safe observable.

For the power counting, we only count powers. This
means that we treat InA as being the same order as A°.
Therefore, a logarithmically divergent integral can be of the
same order as a finite integral. Examples are given in
Sec. IV B, where we see that we must treat

1 ~ M ~ log dlvergent' (21)
A

The point is that power suppression really requires an extra

power of A. This is consistent with the leading power of an

IR-safe cumulant reproducing both the constant term and

the terms which are powers of logarithms:

R(as’ﬂ) = f(as) +f1 (as) In4 "i_fZ(asﬂnz/1 +ee (22)

In a perturbative fixed-order or resummed calculation,
certain terms in this expansion are reproduced, but the
leading power factorization formula is capable of repro-
ducing every term in such an expansion.

D. Light-cone gauge

Traditionally, light-cone gauge has been particularly
useful for studying soft-collinear factorization. In light-
cone gauge, the gluon Feynman propagator is
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. T (k)
D () = gab L) 23
() = o0 T 23)
with
R
O e S

where r* is lightlike and its overall scale does not matter.
The propagator numerator I1#(k) satisfies

rﬂH’“’(k) =0 (25)
and

k2

e T (k) = —— 1,
W1 () r-k

(26)
which vanishes as k* — 0.

Equation (26) produces a crucial feature of light-cone
gauge: if k o p, where p# is some lightlike direction, then
p 1" (k) = 0. In particular, near a collinear singularity, a
numerator p - [1(k) gives a suppression factor of k. To be
more explicit, we will often find numerator structures from
virtual gluons of the form p - TI(k) - g for some momenta p
and ¢. To study the limit when k|| p, we use Eq. (14) with
n* = p* and r* generic. Then

p-1(k) - q
r-pk-g+r-qgk-p
=-p-q+
r-k
- -p-q
+p-qr-k+K2p-kr-q—|—Kr-ka_'q—i-Kzr-qk-p
r-k
r-pky-q p-kr-q
= 2 . 27
xR @7

This extra factor of k strongly restricts the type of diagrams
which are collinear sensitive in light-cone gauge; it makes
many graphs finite (or collinear insensitive) which would
be divergent if the numerator structure scaled like x°.

Light-cone gauges are sometimes called physical gauges,
as the ghosts decouple and the propagator numerator is a
sum over physical polarizations when the gluon goes on
shell:

kY + r'k* i2=o B
t > ehkir)en(k;r).

r h—t

(k) = —¢

(28)

Recall that the basis of gluon polarizations € (k;r) is
uniquely specified by a reference vector r* to which the
polarizations are orthogonal, and that the polarizations
satisfy r,¢’, (k; r) = k,€" (k; r) = 0. The factor of k coming
from the numerator of the light-cone gauge propagator in

PHYSICAL REVIEW D 90, 105020 (2014)

Eq. (27) is similar to the extra factor of A1 suppression of
collinear-emission diagrams in generic-r compared to,
say, their scalar field theory counterparts [FS1]. That is,
p - TI(k) ~ k when k|| p can be thought of, via Eq. (28), as a
consequence of the transversality of the polarization vectors,
which implies that p - €(q) ~ A when p||q.

In [FS1], the freedom to choose reference vectors for the
gluon polarizations was used extensively to prove factori-
zation at tree level. There, it was shown that two important
choices of r were

generic-r: rfp; for any j (29)

and

collinear-r: r||p; for some ;. (30)
For example, choosing collinear-r for the polarizations of
the soft gluons and generic-r for the polarizations of the
collinear gluons simplified the disentangling of soft and
collinear radiation.

For loops, we can of course choose r generic (not parallel
to any p;), which we call a generic-light-cone gauge, or we
can choose r|| p; for some p;, which we call collinear-light-
cone gauge. To prove factorization at loop level, however, it
will be helpful to be able to choose light-cone gauges for
the soft-virtual gluons and collinear-virtual gluons sepa-
rately. We introduce a gauge called factorization gauge in
Sec. VIII which provides this flexibility. We will refer to
either light-cone gauge with generic choice of r or
factorization gauge with generic choice of r,. as physical
gauges. This is not quite a standard usage since (i) all light-
cone gauges are usually considered physical and (ii) ghosts
do not completely decouple in factorization gauge (see
Sec. VIII B). Since our definition is morally equivalent to
the usual definition, we do not feel a new term is needed.

E. Wilson lines

Wilson lines describe the radiation produced by a charged
particle moving along a given path in the semiclassical limit.
The semiclassical limit applies when the backreaction of the
radiation on the particle can be neglected, so that the particle
behaves like a source of charge. In particular, this limit holds
when the particle is much more energetic than any of the
radiation, that is, when the radiation is soft. The physical
picture of how Wilson lines arise in the soft and collinear
limits of Yang-Mills theories is discussed in [FS1].

We define a soft Wilson line in the n’; by

Yi(x) —P{exp [ingo dsnj-A(xqusn;)e-wH, (31)

where P denotes path ordering and A, = A;T is the gauge
field in the fundamental representation (Wilson lines in
other representations are a straightforward generalization).
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This Wilson line is outgoing because the position where the
gauge field A, (x) is evaluated goes from x to co along the

7 direction. We write V' ; for Wilson lines for outgoing
particles, and Y; for outgoing antiparticles (as y creates
outgoing quarks and y creates outgoing antiquarks).
Explicitly,

Yi(x) = P{exp {_ig/o dsn; - A(x* + sn.’;)e‘&‘} }

(32)

where P denotes antipath ordering. We will not bother to
discuss incoming Wilson lines in this paper; they are
defined in [FS1].

Wilson lines can be in any representation. For example,
an adjoint Wilson line can be written as

Vi) = {exp[zg/ dsn; - A% (x + sn)) T e~ ]}

PHYSICAL REVIEW D 90, 105020 (2014)

where (Tddj) = i f4¢ are the adjoint-representation group
generators. Since

(T3

2) T? = [T.T°], (34)

fundamental and adjoint Wilson lines are related as
tray  _ yab
Y,TY; =) T, (35)

This identity is occasionally useful to write all of the
Wilson lines for QCD in terms of fundamental and
antifundamental Wilson lines.

From a practical perspective, the most important facts
about Wilson lines for this paper are their Feynman rules
and their gauge-transformation properties. Their Feynman
rules are exactly the eikonal rules, coming from the soft

(33) limit of a QCD interaction:
J
Eokv,u,a !
k—ssoft j
,TEN gt — (k,usal YT |0 (36)
®> :n/j n;-k+ie ey e Y7710)

with the correct ie prescription. Here (k, y; a|Yj-|0> means
the off-shell matrix element for a gluon with polarization
¢"(k) and color a with the polarization vector stripped off.
That Y, gives the eikonal Feynman rules persists at any
order [FS1]. The e*® factors in the Wilson lines are
required to produce the correct ie prescription for the
Feynman rules (see [FS1]).

We denote collinear Wilson lines as W}. They are
mathematically identical to soft Wilson lines but the path
is different. While soft Wilson lines point in the direction of
the particle they represent, collinear Wilson lines point in
some other direction t‘j :

Wi(x) = P{exp [ig A Cdst; (e + sz;)e—“} } (37)

We always take t’; to not be collinear to n’; ,thatis, ;4n;. As
discussed in [FS1] and as we will see here, while soft
Wilson lines account for the soft radiation of a particle,
collinear Wilson lines account for the collinear radiation
from all the other particles.

III. EXAMPLE 1: ONE-LOOP WILSON
COEFFICIENT

The general proof of factorization will be presented
starting in Sec. V. To understand this proof, we first provide

two examples. For the first example, in this section we
discuss factorization for (py, p,|¢*¢$|0) at one-loop order.
This is perhaps the simplest one-loop amplitude for which
factorization holds. What we will show here at one-loop
order is that

3 (p1lp* W,(0) (p2|Wig|0)
- C(S12) + +
(0|YTW,[0) (0|W3Y,|0)

x (0]Y1Y5]0). (38)

(P1, P2l9*910)

where 51, = (p; + p,)?. Note that Eq. (38) is an exact
equality, not a leading-power equivalence, because there
are no particles collinear to each other and no soft particles,
so A = 0. It is also somewhat trivial: it is just a definition of
C(s1»). The nontrivial part is showing that C(s,) is IR
finite. The next example, in Sec. IV, discusses what
happens when one of the sectors has two collinear particles
and provides a nontrivial check on the universality

of C(SIZ>'

A. Overview of graphs

There are five graphs contributing to the left-hand side of
Eq. (38) at one-loop order. Four of them involve only one
leg:
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P b1 p1 P

G = . G = , G = G = (39)
P2 iz P2 Do
and the final diagram connects both legs:
1
G112 = e (40)
P2

For the right-hand side of Eq. (38), there are a number of graphs involving emissions from the collinear Wilson lines W;.
Recall from Eq. (37) that the Wilson lines are defined with a certain direction #'. For simplicity, let us choose #; = 1, = r to
be some random direction not collinear to either p; or p,. Then, if we work in a generic-light-cone gauge with the same
reference vector r#, all of the graphs involving W, precisely vanish. The remaining nonvanishing diagrams are

1 P
(p1|6*|0) = - & = ¢+ G (1)
N ”
3 :
(pa|@]0) = - Cii:;gé — G® 4 “2)
" s

and those involving soft Wilson lines Y;. The diagrams in Eqgs. (41) and (42) precisely agree with those in Eq. (39). Let us
denote the diagrams coming from soft Wilson lines with the subscript soft-sens. So the remaining terms are

and

11 22 12
C(SIZ) —<0|Y1L Y2|0> = ( 12) 1 + Ggoft)—sens + Ggoft)—sens + Ggoft)—sens + O(GZ)
<O|Y[|0> <O|Y2|0> (1 + Gitl)t]‘t)—sens)(l + Gii?t)—sens)
12
= C(SIZ)[I + Giofg—sens + O(az)]’ (43)

where Gigfi_scns is the graph found by contracting ¥; with Y ;. Note that the Feynman rules from the soft Wilson line are

eikonal, so there are no four-point vertices, and therefore, no G,-type graphs. Solving for C(s;,) we find

Cs12) = 1+ Gropsofisens + Oa?). (44)
where
12 12
Gr(lot»)soft—sens = G(IZ) - Giofgsens‘ (45)

(12)
not-soft-sens

Thus, to verify Eq. (38) at one-loop order all we need to show is that G is IR finite.
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B. IR finiteness

The graph of interest is

P1

G(12) _

P2

where [T is given in Eq. (24) in light-cone gauge. The soft
graph from the matrix element of Wilson lines is

12 / Tk —ig*p; - TI(k) - p,
soft-sens (271.)4 (=py -k + ig)(k2 + ie) (p2 -k + ie) '
(47)

Note that Eq. (47) can be obtained from Eq. (46) with the
eikonal approximation. More precisely, we can use the
identity

LI S (O
(p+k)?+ie 2p-k+ie (p+k3?+ie)’

which holds at p? = 0. This identity lets us replace
propagators in the full graph with a sum of eikonal
propagators, plus a correction proportional to k%. It is
similar to the Grammar-Yennie decomposition [61] used
in many factorization proofs in QCD [4,5,62]. Since the
original graph was logarithmically divergent in the soft
limit (k — 0), the k* factors will make the remainder
soft finite. That is, Gflﬁ_)soft_sens =GgU2 — Gg(l)?g_sens is soft
finite.

To see collinear finiteness, we will show that in a
generic-light-cone gauge both G('?) and Gi}jg_sens are
separately collinear finite. Consider the case k*||p/.
Then under collinear rescaling k> — x?k*> and k- p; —
K’k - p,. If we ignore the numerator in Eq. (46), the
diagram would scale like x° and be logarithmically
divergent. For the scaling of the numerator, we note that
we are exactly in the situation where Eq. (27) applies.
That is,

r-pik,-p
prTI(K) - py = ELP2 L 0() (49)
for a generic choice of light-cone gauge reference vector
r*. This extra factor of x makes the G('2 convergent
when k||p,. A similar analysis for k||p, shows that G('?)
is completely collinear finite. The same argument shows

(12) . . _ (12)
that Gy ;... is collinear finite, and therefore G, fisens

has no IR singularities and Eq. (38) is verified at one-
loop order.

2 d4l€ (2]91 — k)a iHaﬁ(l{> (2p2 + k)ﬁ
th = —g I R R 5 (46)
(2m)* (p1 — k)2 +ic k2 +ie (pa+ k)2 +ic
[
For the IR-finite contribution from Gm) which

. - o not—sloft—sens’
contributes to the Wilson coefficient, we introduce the

diagrammatic notation

P1
= 1+G" +0(a?). (50

not-soft-sens.
P2

This is a type of reduced diagram we call hard. A hard
diagram is IR finite, but relevant at leading power.

C. Explicit result and t;‘ independence

To calculate the Wilson coefficient, rather than scalar
QED, we consider the more phenomenologically relevant
case of a vector current decaying to a gg pair, where
O = yy*y. For this case, the factorization formula states

(p1|lwW,|0)* <P2|W;W|0>ﬂ
(0]YTW,]0) (0|W}Y,|0)
x (0|Y]Y,]0). (51)

(P Palwr"w|0) = C(s12)74

where a and f# are Dirac spin indices. To calculate the
Wilson coefficient, it is easiest to use Feynman gauge rather
than light-cone gauge, where all of the Wilson line self-
interactions vanish. In pure dimensional regularization, all
of the diagrams from the factorized expression are scaleless
and exactly vanish. The Wilson coefficient is therefore
given by G!'? with the  and % terms dropped (the UV

divergences are removed with MS counterterms and the IR
cancel in the matching). The Wilson coefficient then comes
out to [48,63-65]

2

a 7’ —,uz —U
= 1 _ P 1 2 _ 1 2 .
C(s12) ype (8 5 +1In I +3In S12> + O(a*)

(52)

The Wilson coefficient result is independent of both the IR
regulator and the collinear Wilson line directions # and 7.

To see the # and #; independence more nontrivially and
the importance of the zero-bin subtraction, one must use an
IR regulator other than dimensional regularization.
Following [57] on the zero-bin subtraction in SCET (where
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more details are given) we consider adding an off-shellness
regulator. The differences between our approach and SCET
are that (i) we use an operator definition of the zero-bin
subtraction; (ii) we do not have separate soft and collinear
modes: all interactions are those in full QCD; and (iii) we
allow for the collinear Wilson lines to point in arbitrary
directions #. These differences are all minor, and the results
can essentially be drawn from Egs. (65)-(70) of [57] with
small modifications.

We can decompose any momentum into light-cone
coordinates using the directions in the soft and collinear
Wilson lines, 7/ and #:

The off-shellness regulator keeps n; - p; > 0 even if p; «
ny as in the external state. Thus
|

b1

PHYSICAL REVIEW D 90, 105020 (2014)

2

% = (ny - p1)(ti - p1) > 0. (54)
ny 'tl

p

We could also have decomposed with respect to n%, and 7.
If we perform the calculation in 4 — 2¢ dimensions, ¢ will
regulate the UV and soft divergences, with the collinear
divergences cut off by the off-shellness.

First, consider the self-energy graphs on the external
legs. These are trivially identical on both sides of Eq. (51)
(with any regulator) and thus they can be ignored in the
matching. Although this is also true in label SCET, it is not
trivially true, since the Feynman rules for collinear fields
are different from full theory fields.

For the remaining graphs, we present only the double-
logarithmic terms for simplicity, since these manifest all the
interesting cancellation. On the left-hand side of Eq. (51),
the only full-theory graph needed is

2 2
«Q
G2 — o 2 —oyHu C’F—Slnﬂlnpl , (55)
2T S12 512
p2
where 2 means equal at double-logarithmic order.
The graphs needed in the factorized expression are the soft Wilson line graph:
1\ DL a, [ 2 2 —ptsp —#51
(0Y,Y,]0)=—-C —{——|——1 + In? ) (56)
v "an gy fuv  PiP3 P3Py
the collinear graphs, without the leg corrections:
, 2 2 2 2 2 2
<p1|y7W1|0>D:L—acFﬂ{— S P, e R (———) In—* } (57)
4r EUVER  ER TP —P1 fIR  Euv I - pi
. 2 2 2 2
<p2|W£1//|O>%—CF&{— ——Ih—5-1 2"4—2—1— (———) In—* }U, (58)
4r | €uvERr R P> —P3 €R  Euv Iy P2
and the zero-bin subtractions:
A 1 2 2 1 2
7, = —u(0]y[w, |0y 2, & ( - > ( it L ) (59)
N, 4m \er  €uv/ \Euv —Di I P
N 1 DL . a, [ 2 2 1 /42 U
Zy = —tr(0|W1Y,|0)=C —“(———)(——i—ln——ln . 60
PN, OIw21210) "an\ew  euv) \euy -p3 Ly pa (0)
I
This notation and normalization for the zero-bin Therefore,

subtraction will be explained in Secs. XI and XIII.
Note that the appearance of the hard scales ¢, - p; and
1, - p, is illusory—using Eq. (54), one can express Z,
and Z, in terms of the off-shellnesses n;-p; and
n, - p, alone.

WO a2 2
21 4 2 ’
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(P2|Wiw|0)
Z,
2 2 2
D:L_CF&{_Z___M_z 2 - } (62)
4 ey fuv —Pj —p2

These equations show that each collinear sector is inde-
pendent of the Wilson line directions z’; and is only p;-
collinear sensitive as evidenced by the cancellation of the
&R poles.

Putting everything together up to one loop we find

y (p1|Wr|0)* <P2|W;‘l/|0>ﬂ
KA Z,

(0[Y]7,[0)
oL sz”uCF&
iy,

2 2 2
x {—z—m" +In?
&gy fuv T2 —S12

(63)
Comparing to the full-QCD matrix element shown in
Eq. (55), we see that, to double-logarithmic order, the

IR divergences in the full theory and factorized expression
exactly agree.

IV. EXAMPLE 2: TWO COLLINEAR PARTICLES

As the next illustrative example, we consider a state
with two particles in one jet. That is, we consider
(p1,q; p2|d* $|0), for which the factorization formula reads

~ <P1’ CI|¢*W1|O> <P2|W;¢|O>
= C(Slz) t +
(O[Y1W4]0)  {0|W,Y,|0)
x (0]Y]Y,]0), (64)

(1> q; p2|¢* $10)

$8EL 84

contribute to the right-hand side through (p,¢q|¢*|0).

<p11 Q| ¢* |0>Lree <p2| (b ‘0>1-100p =

contribute identically on both sides of Eq. (64).

2 2
+21n lnlzl}.
T
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where Pj=p+¢", P = p5 and S, = (P, + P,)* = Q%
In this case, the two sides are not equal, but equal at
leading power in A, where 1 = P2/Q?. We also must show
that the Wilson coefficient C(S;,) is the same function
computed with minimal collinear sectors, as in the
previous section. This example will illustrate the role
played by real-emission and IR-sensitive graphs in
factorization.

A. Overview of graphs

In this example, since we have an external photon, we
must choose a reference vector for its polarization. It is
natural to choose the same generic-r reference vector as in
the light-cone-gauge photon propagator. So r,e(q) =
q,€"(q) = 0. These constraints define the polarization
vectors that are consistent with generic-light-cone gauge

completely:

o ROl v e

e (q:r) =V2 o] and €T (q;r) ﬁ(rq)’ (65)
where we use the spinor-helicity formalism to ease the
discussion of the dependence on the reference vector r of
amplitudes. Our conventions for the spinor-helicity for-
malism are given in [FS1]; however, we will not need
any details of the spinor-helicity formalism in this paper
as everything we need concerning polarization vectors
will be taken from [FS1]. We also choose ¢, =, = r for
the collinear Wilson lines to decouple them completely.
Thus we can set W; = W, =1 in this example.

As in the previous example, many graphs contribute to
both the left-hand side and right-hand side of Eq. (64). In
particular, all graphs involving one leg only in the full
theory matrix element, such as

(66)

such as

Cross

Also trivially factorizing terms,

q

(67)

The remaining graphs from the left-hand side of Eq. (64) either have a loop connecting the two legs and the emission

coming off either the p; leg:
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q
p1
G(12),a = 7 G(12),b =
P2

PHYSICAL REVIEW D 90, 105020 (2014)

q q
p1 p1
12
,  GUe (68)
P2 P2

or they have the emission coming off of the p, leg with the loop anywhere:

P P p1 p1
FJq
, , 7, . (69)
q
P2 D2 D2 D2

With generic reference vectors, the twelve graphs in
Eq. (69) are power suppressed compared to the graphs
where the emission comes off of the p; leg. Indeed,
graphs which contribute at leading power must have a
factor of —~/1 2, as does G124, The graphs with the
emission comlng from the p, leg have instead FNJLO
factors which are subleading power. The fact that non-
self-collinear emissions are power suppressed in generic-
light-cone gauge was discussed elaborately in [FS1]. This
result holds at loop level as well, simply because in
generic-light-cone gauge a non-self-collinear emission
can never have an enhanced propagator. We will come
back to the general discussion in the next section and
focus, for now, on the one-loop example at hand. The
|

(01Y,'Y2 [0)

result is that we do not need to consider the graphs in
Eq. (69) at leading power.

Note that the power suppression in A holds whether or
not the graphs are IR finite. Although power counting
something infinite may seem bizarre, one should keep in
mind that the IR divergences in loops are always ultimately
canceled by phase-space integrals in computing IR-safe
observables. Thus, power-suppressed IR divergences trans-
late to power-suppressed finite contributions, which is why
we can drop them.

The remaining graphs contributing to the right-hand side
of Eq. (64) come from the tree-level real emission multi-
plied by the Wilson coefficient and soft-Wilson-line terms
at one-loop order:

1-loop

(p124] & 10}y % {c<sm> <

(12

where Gnot soft-sens’

section.

0 Yy |0) (0] Y2 [0)

not-soft-sens.

(0 YTY2 0) + G2 } , (70)

defined in Eq. (45), comes from the calculation of the one-loop Wilson coefficient in the previous

[
What we will now show is that the (0| Y;Yz |0) term in Eq. (70) reproduces the sum of the soft limits of G1'2)¢ or G(12)-?

(12)

not-soft-sens

at leading power, the G

term reproduces the nonsoft part of G!!

2)-a at leading power, and both GU2)-¢ and the

nonsoft part of G('2% are power suppressed, hence proving Eq. (64) at one-loop order.

B. The graph G(12)¢

Writing out the Feynman rules, we find

d*k (2 2g — k) -I(k) - (2 k
G(lZ)a_gpl € igz/ 4(Plj‘ q )2 (k) (P22+ )‘ (71)
pi-q 2z)*  K(p2+k)*(p1+q—k)
As in the previous example, we will write this graph as
a (12).a (12).a
G<12)’ = Gsoft sens + Gnol soft-sens’ (72)
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where the soft-sensitive part is found by dropping terms which are subleading in « after the rescaling k* — x*k*. We draw
the soft limit with the soft photon colored red and with a long wavelength. That is,

q
P1

2ig* (p1 + q) - (k) - po

1E = G(lZ),a =g

soft-sens.

P2

This graph is not IR divergent, but it is IR sensitive.
Because (p; + q)* ~ 4%, in taking the soft limit, we did not
drop 2(p; + q) - k in favor of (p; + ¢g)?. Doing so would
have assumed a certain order of limits, essentially k¥ < 4,
which would lead to inconsistent results. More precisely, if
we were to integrate over the phase space of ¢ to produce an
IR-safe cross section, the region where ¢ - p; ~ 0 must be
treated independently of the region of & ~ 0 in the loop
integral. That is, the only way for the order of integration of
the loop and phase-space integrals to not matter is if we
keep both terms.

Now, since we keep (p; + ¢)* > 0 the loop integral is
not soft divergent. This is clear from counting powers of «

12).
as k" — k?k¥, which gives Ggoﬁ>sem - K‘Gioﬂ)_s(éns. However,

if (p; + ¢q)* = 0, the loop scales like x° and is logarithmi-
cally soft divergent. Thus, for (p; + ¢)? ~ 4> with 1 small,
A acts like an IR cutoff. We, therefore, have that

G(12),a

soft-sens " ugz InA. (74)

B

This singular-A dependence must be reproduced by the
factorized expression, as the Wilson coefficient is A inde-
pendent. On the other hand, the nonsoft part of the loop,

|

Gglo?n soft-sens. <P17p2) = —g M x G

b1-q

(12)
where Gnol soft-sens

previous section. (12)a
Therefore, the graph Gnot soft-sens

term in brackets in Eq. (70).

e / A4k
D1-q (2m)* k2 (p2 k+ if) ((Pl +q)* —

. (73
2(p1 +q) - k +ie) 7

|
Gr(li)f?;gft-sens = G12)a _ Gg(l)fzt)_'szns, is free of soft divergences,
even at A =0 (except for the prefactor, of course). This
follows from the eikonal substitution in Eq. (48) which adds
additional powers of k* to the nonsoft part.

Both the soft and nonsoft parts of the loop are also

collinear finite in generic-light-cone gauge. This holds for

(12) . ..
otsoftsens Was collinear finite in

in generic-light-cone gauge, the
numerator of G('2)¢ is suppressed when k becomes collinear
to p; or p, as in Egs. (26) and (27). Thus, G!'?)“ is collinear

finite [even when (p; + ¢)? = 0], implying that G[(mt >soft sens

is IR insensitive (collinear and soft insensitive) since
G(12),a

the exact same reason that G
the previous section:

notsoft-sens N1as the soft sensitivity subtracted off.
(12).a

Because the loop integral in G, s sens 15 IR finite even
when (p; + ¢)> = 0, we can expand it in powers of 1 in the
integrand, and only keep the leading term. The leading term
in this expansion corresponds to treating P{ = p/ + ¢* as
being lightlike. Performing this expansion on G'2-¢ and

(12),a
Gsoft—sens

(12)
Gsoft sens?

loops are the same, so is their difference Gfm)soﬁ sens- hatis,

shows that they reduce to the integrals in G('?) and
respectively, from the previous section. Since both

p1
1-

—

oop

not-soft-sens. (P17p2) = (75)

P2

(p1, p2) was the IR-finite and A-independent one-loop contribution to the Wilson coefficient found in the

from the left-hand side of Eq. (64) is reproduced by the factorized expression in the last

C. The graph G2

We now analyze the second diagram that seems to break collinear factorization in Eq. (68), namely

(k) - (2p, + k) (py — k) - €

GUIDb = g3 / d*k (2p; —k)-
(2x)* K2(pa+k)*(p1 —k)*(p1 + g — k)?

(76)
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The soft limit of this graph, again keeping the IR-sensitive parts, is

q
p1

ig® p1 - 11(k) - po

d*k
12)
Tk — Gioft -sens. _2gp1 6/(

0 even with

This graph is soft divergent, scaling as «
(p1 +¢q)*#0, and thus it must be reproduced in the
factorized expression.

Next, we will show that G( 2):b

notsoft-sens 5 1s colhnear sensitive,

but power suppressed compared to Gnot eofisens+ TISt, to see
that GU'?)* is collinear finite at finite (p, + ¢)?, we note
that for (p, + q)* positive and fixed, the (p, + g — k)?
propagator cannot go on shell when other propagators do,
so the loop is not more singular than G2-¢, As with
G2 it would be collinear divergent for k|| p; or k|| p, but
for the fact that the numerator vanishes by Egs. (26) and
(27) which causes the integral to be collinear finite
for (p 4 q)* #0.

Now, if (p; + ¢)*> = 0, then the integral would be p-
collinear divergent (though it remains p,-collinear finite).
This can be seen by taking p; « ¢ in which case k* scales
like

K~ kO + K2 ph + kK (78)

and so GU'2* in Eq. (76) scales like

G(12),c =

1 . (77
2m)t k2py - kpy -k ((pr +q)? = 2(p1 +q) - k)
KK
G(12 /d4kK' m K'O, (79)
where we wused that d*k~«*, (2p; —k)-TI(k)

(2py + k) ~k, k-€e~xk, and (p, + k)* ~ k. We thus see
that G2 is logarithmically p,-collinear divergent. We
have made all of these arguments for GU'2)?, but they apply
also )to Giofgslens and hence to Gflof coftsens - Then given that
Gnot eoftsens 18 completely IR finite when (p; + q)* # 0 but
logarithmically p,-collinear divergent when (p; +¢)> =0,

we must have that it scales like

GU2»

not-soft-sens

~gIn[(p;+q)*]~gmi  (80)

for small A. This is power suppressed compared to, say,
E(a 8’75) which scales like A7!. Thus, we can drop

Grot! soft sens at leading power.

D. The graph G12)<

Finally, we have the graph with the scalar-QED four-
point vertex

- TI(k) - (292 + k)

P2

We will show that this graph is completely power sup-
pressed.

To see if there are soft divergences, we look at the soft
limit of G(12)-¢, First, note that if (p, + ¢)* # 0, then G(12)-€
would be finite in the soft limit, as can be seen by counting
powers of the soft momentum in the integrand which gives
d*k/k®. On the other hand, for (p; + ¢)> = 0, the inte-
grand of G('2¢ becomes d*k/k* signaling a logarithmic
divergence. Thus, we must have that, in the soft region of
the integral,

3
G128 B3 1n(p, + g)2 ~ ¢ In 22 <<% (82)

Hence, in the soft limit, G2 is power suppressed.

4 [ d'k
= —2ig 42 L)2 — k)2
(2m)* k2 (p2 + k)2 (pr +q — k)

1)

We have seen that G('2)< is power suppressed in the soft
limit. Next, we will now show that the same is true for the
collinear limits of the integral, meaning that the entire graph
G2 is a power correction in our factorization formula.
We start by showing that G2 is p,-collinear finite in
generic-light-cone gauge. This holds for the same reason as
for the other collinear-finite graphs: were it not for the
numerator, G('2¢ would be logarithmically p,-collinear
divergent. However, when k becomes collinear to p,, TT(k)
becomes the polarization sum of photons in the p, direction
which is transverse to p,. Hence II(k)- (2p, +k) = 0
when k|| p,. These are the words that describe Egs. (26) and
(27). Hence, GU'?)¢ is p,-collinear finite.

G2 is also p;-collinear finite, but only when
(p1 +q)* # 0. This can be seen by power counting the
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denominator, as k becomes collinear to p;. For (p;+
q)* = 0, the denominator of G(!)¢ causes it to be logarith-
mically divergent, but in this case the numerator does not
vanish as k|| p, since I1(k) is not transverse to e. That is,

k-er
11, (k) = —
€ /41/() €, + ok

“——¢, forkllpillg. (83)

where we used that r - € = 0. Thus, when k|| p; the numerator
of GU2)¢ looks like p, - € which does not vanish. Since
G12)< is collinear finite for (p; +¢)> #0 and has a
logarithmic divergence for k||p, when (p; + ¢)*> = 0, we
conclude that in the k||p; region of the integral

G( (12),0,

not- soft sens. boft—sens. -

‘We also showed that G( 2)a

not-soft-sens

q
P1
= Tk
P2

PHYSICAL REVIEW D 90, 105020 (2014)
(12),cPr-coll s s 9
G ~ @hn(p,+q9)P*~g i< R (84)

Thus, the entire integral in G(!?< is power suppressed
compared to the leading-power matrix element g 1‘2 ~

E. Putting it together

We have shown that most of the contributions to Eq. (64)
agree identically on both sides. The ones that do not are
G2 GU2):b and G2 in Eq. (68) for the left-hand s1de
and Eq. (70) for the right-hand side. Of these, G(12)
power suppressed, as is the nonsoft part of G(m'b. Thus the
nontrivial leading-power diagrams are

q
D1
12)b o~ o (85)
D2

soft-sens. —

reproduces the contribution from the Wilson coefficient in Eq. (70). Thus what remains is

to show that the contribution connecting the two soft Wilson lines in the factorized expression agrees with Ggoﬂ wens T

Gl12)b

soft-sens
Let us define a lightlike directions n*

at leading power. We do this by direct calculation.
= (1.1;), such that p¥ =17,

- p;n’, and then

G2a | G2 _/ d*k 2igp; - € [(pl +q) TI(k) - py  py-TI(k) 'Pz}
sofsens - olsens 27)* 2 py - k((p1 + q)* =2(p1 + q) - k) P9 pi-k
d*k  12ig’n, -TI(k) - pop) - € [’_11 (p1+4q) 120, - pyny -k 7y - pypy 'CI}
Q27)* Kpy-k(pi-g—(pi+q) k)| pi-q p1-k pi-kpi-gq

i93P1 'H(k) *papr1 €

N / d*k
) (r)*k2p,y - k(py-q—

(p1+4q)-k)

[(p1+Q)'k_ P19 ]
P1-qpi-k  pi-gpi-k

=9

The first term is the tree-level term in (py, g|¢*|0) and the
[
second term is the loop integral (0] YITYQ o) where the

photon propagates between the Wilson lines. This is
exactly equal to the rest of the factorized expression
by Eq. (70).

This completes the check that the sum of the one-loop
diagrams on both sides of Eq. (64) agree atleading power and
that the Wilson coefficients are the same and IR insensitive.

V. OUTLINE OF ALL-ORDERS PROOF

In the previous two sections, we checked special cases of
the factorization formula at one-loop order by matching
diagrams. This approach is not sustainable for an all-orders
proof. Moreover, even when two diagrams are identical on

pro€_ ., [ d%k ng-TI(k)-n,
X ig i .
-q (27)* k*ny - kny - k

(86)

[
both sides, dropping them from consideration somewhat
obscures the physics of factorization. For example, the
loops in Eq. (66) have both soft and nonsoft parts, but it was
easier not to separate them when matching them loop for
loop with those in (py, g|¢*|0)(p,|@|0). If we had sepa-
rated the soft and nonsoft parts, we would have found that
the sum of the nonsoft parts of the graphs in Eq. (66) is

exactly (py, g|¢*|0)/(0|Y[|0) and the soft parts are exactly
<0| YlT Y, \O) where the contraction indicates the photon

connects only to ¥ T Both these approaches are equivalent,
but in the latter we see that all of the soft physics is
contained in (0Y]Y,[0); (py,q|#*|0)/(0|Y]|0) is soft
insensitive.

105020-18



HARD-SOFT-COLLINEAR FACTORIZATION TO ALL ORDERS

Proving soft-collinear factorization in general, will

involve four steps:

(1) Write each diagram contributing to the matrix
element in the full theory as a sum of colored
diagrams where each virtual gluon can either con-
tribute to a soft singularity, in which case we call it
soft sensitive (and draw it with a long-wavelength

|

physical
gauges
(X1 X X[ O]0) = Z
diagrams

We call the topology indicated on the right-hand side the
reduced diagram. It has the following properties:

(a) Each colored diagram in the sum corresponds to
a precise Feynman integral, with loop momenta
integrated over all of R!-3. Note that our reduced
diagrams are different from those used in [3-5],
which are pictures representing the pinch sur-
face, not computable functions.

(b) The “jet” amplitudes labeled J; are soft insensi-
tive and collinear sensitive only in their own, p;
directions. That is, there are no pj-collinear
sensitivities in the J; jet amplitudes for i # j.

(c) All soft sensitivity comes from virtual gluons in
(or connecting to) the “soft” amplitude.

(d) The blue ball in the center is called the “hard”
amplitude. It is infrared insensitive (IR finite for
any A and, hence, independent of A at leading
power). It only depends on the net collinear
momenta coming in from each direction and no
soft particles or red lines connect to it. This
property will establish that the Wilson coeffi-
cient in the factorization theorem is independent
of the external state, as is expected in an operator
product expansion.

(3) Examine factorization gauge, which gives the flex-
ibility needed for an efficient proof of soft-collinear
decoupling. Although ghosts do not decouple com-
pletely, we show that they do not contribute new IR
sensitivities and do not affect the reduced diagram
in Eq. (87).

(4) Using factorization gauge, show that the soft gluons
can be disentangled from the nonsoft gluons. This
step follows quite naturally from the proof of tree-
level disentangling in [FS1]. In the process, show
that the factorized reduced diagrams are exactly

PHYSICAL REVIEW D 90, 105020 (2014)

red line), or it cannot, in which case we call it soft
insensitive (and draw it with a blue line).

(2) Drop diagrams which cannot contribute at leading
power and identify finite diagrams. Doing this in
physical gauges lets us write the full-theory matrix
element as the sum of colored diagrams with a
restricted topology in the following way:

87)

reproduced by gauge-invariant matrix elements in
the factorization formula.

As with the one-loop examples above, we will prove
these steps in a more-or-less gauge-theory-independent
way, using QCD and scalar QED for examples. In this
approach, technical details specific to QCD, such as color
structures, become mostly notational. These are discussed
in Sec. XI.

VI. STEP 1: COLORING (SEPARATING
SOFT SENSITIVITIES)

The first step is to separate the soft-sensitive physics
from that which is soft insensitive. As in the examples, we
define soft sensitive to mean either that a loop has a power-
counting soft divergence or that it would have one for
kinematic configurations corresponding to 4 = 0.

Soft sensitivity is a property that each virtual particle
may have. We want to write each Feynman diagram as the
sum of what we call colored diagrams where the color of
each virtual line in a colored diagram indicates if it is soft
sensitive or not. We have already seen examples of this
separation at one loop: in Sec. III the soft-sensitive version
of the graph G2 in Eq. (46) was explicitly given as

Gg(l)?t)_sens in Eq. (47), and it was shown that the not-soft-

singular part G2 = G2 G was soft finite.
The same was done with G('2%? in Sec. IV.

Beyond one loop, it is not possible to split each diagram
into one soft-sensitive and one soft-insensitive piece, since
all of the loops are tangled up in a generic graph. More
generally, we would like to expand in each virtual
momenta. The only complication is that all the virtual
momenta are not independent and so the expansion has to
be done iteratively. These iterations can be done algorithmi-
cally, starting from the most soft-sensitive graphs, as we
now explain. Section VI A gives the algorithm, which is
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perhaps easiest to understand through the examples in
Secs. VIB-VID.

A. Decomposition into colored diagrams

Consider sets Q = {#4, ¢4, ...} of virtual momenta in a
particular Feynman diagram G which can all go to #% =0
simultaneously. For a given set Q, we can expand the
integrand to leading order around £ = 0 for all the £ € Q
simultaneously. We want to do this very carefully, dropping
only terms which must be small when # = 0. For example,
if p# is an external collinear momentum, then we can drop
I? compared to [; - p. We do not want to drop /' compared
to any external soft momentum, or to any other virtual
momentum ¢4 which go soft simultaneously with #%. We
also drop [; - p; compared to (p; + p,)* for two collinear
momenta pf and pf, if and only if p{ and p’ are in different
collinear sectors. If they are in the same sector, then we
allow that (p; + p,)*> ~ A2 can be arbitrarily small.

Let us call the leading term in the expansion according to
this procedure the soft limit of the set € in G and denote it
by Gs(q)- The soft limit defined in this way allows us to see
if a set Q is soft sensitive simply by looking at the scaling of
Gs(q) (or equivalently of G) under &% — k*¢% for all
£ € Q. By not dropping soft momenta compared to terms
which could possibly vanish for certain external momenta,
we are effectively taking the leading power of k at A = 0.
Taking the soft limit in this way implies that

lim G = lim Ggq). (88)

Q—soft Q—soft

so that G — Gg(q) is automatically less singular than G in
the limit that all the £/ € Q go soft. The limit in Eq. (88)
means restricting the integration regions to balls around the
point where each momenta in €2 vanish and taking the limit
where those balls have vanishing size. The point of taking
the soft limit S(Q) is that, since infrared divergences in
gauge theories are at most logarithmic [at least in physical
gauges, as we will show in the log lemma (Lemma 2)], the
difference G — Gg(q) cannot be soft sensitive in this
Q — soft limit.

That all the momenta in a set € can go soft together does
not imply that G is soft sensitive in this limit. Let {€;}
enumerate all the possible sets € which do have a soft
sensitivity in their simultaneous soft limit. Note that which
sets are in {Q;} is gauge dependent, and we will be
concerned primarily with ; in generic-light-cone gauge.
Consider first the largest sets {Qi,, }, defined as those sets
Q; which are not proper subsets of any other ;’s. Now take
the soft limit and define

GQ = GS(Qi ) (89)

i
‘max ‘max

Here, Gq: refers to a particular integral, for each i, derived
from an expansion of the integrand of the original Feynman
diagram integral, G. We represent it as a diagram with the
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same topology as G in which we color all the lines in Q/
red and color blue all the lines not in /.. The blue lines
cannot give rise to a soft singularity because we have
already taken the maximal soft limit in Gg by con-
struction (this will be shown in Lemma 1 below).

Next, take the sets {Q/.}, defined as being the next
largest proper subsets of any of the Qi ,,’s whose simulta-
neous soft limit engenders a soft sensitivity. Each Q/,, may
be a subset of multiple Q.. Then subtract off from the soft
limit of Q/.,, all of the Gg;  for which it is a subset:

GQj = (G - Z Ggénax> I (90)
(942 ) 5@
As before, we represent G,; as a diagram with the lines in
Q! colored red, and all other lines colored blue to show
that they cannot give rise to a soft sensitivity due to the
subtraction. ‘
This procedure can be iterated, with subsets of &/, and
so on. In each step, we take subsets Q/,, of the Qf,,’s of a
given size and subtract off G for every subset € of the

Qs for which Q/, is a subset:

Gy, = <G— > GQ>S( . (91)

J
Q0 Qep)

'step

‘step

Eventually, all of the possible sets of soft-singular lines are
exhausted. In particular, in the last step, €, is the empty
set. This is a subset of all the other sets, so we have

G =G+ Y _Ga. (92)
Q

Atevery stage G, is drawn as the graph G but with the lines
in Q colored red and those not in Q colored blue. Thus the
full graph becomes the sum of colored graphs.

After this procedure, each colored graph represents a
particular integral which can have a soft singularity or soft
sensitivity only when any of the red lines become soft, but
never when any of the blue lines become soft. In
other words:

Lemma 1 (soft-insensitivity lemma).—Soft sensitivities
cannot come from the soft region of any set of blue lines.

Proof.—We prove this by induction on the number of
blue lines in a colored graph, Gq. The first step is to show
the result for graphs with the fewest number of blue lines,
namely Gq__ . Indeed, the only way for a line £y & Qax
to be able to give a soft sensitivity in G but not in the
simultaneous limit Q. U &}, — soft is if the limit is
forbidden by momentum conservation. But then
limg, _ 1Ggq,  Will vanish since the limit where Q,,, —
soft has already been taken. So the lemma holds for graphs
with the least number of blue lines, Ggmx.
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Now, suppose it is true for any colored graph with n or
fewer blue lines and consider a colored graph with n + 1
blue lines, Go. Now consider the most general limit where
some subset @ of blue lines goes soft. We must show that
lim,,_, i Gq 1s finite.

By definition

= (0-5),

T20

=Gsi) — Z (Gr)s@) — Z (Gr)sq)

T2Qw<Y T2QwZY

(93)

where the sets T are soft-sensitive sets. In the w — soft
limit, the last term would involve the soft limit of at least
one blue line in a colored graph with n or fewer blue lines
which must be finite by the induction hypothesis combined
with the fact that

wl_igéft(GT)S(Q) = ((Gx)s@)sw) = ((Gr)siaua))s(w)-
(94)

Therefore, the soft limit we are interested in simplifies to

lim Go = lim {GS(Q) - > (GT)S(Q)} + finite.

w—>soft —soft
@ TOQUw

(95)

Now, if Q U w€Qi,, for some i, the term in square
brackets in Eq. (95) is finite because, in that case, the sum is
empty and the soft limit of Q followed by @ does not give
rise to a soft sensitivity in the first term by momentum
conservation (the same argument given in the first-induc-
tion step). If Eq. (95) is finite, we are done with the proof,
so assume Q U @ C Q! . for some i. Consequently, there
exists a soft-sensitive set I' that is the next smallest set
containing Q U @ for which S(Q U w) = S(I'). Therefore,
using Eq. (94), we have

lim Go = lim (G - Gp —

w—>soft w—soft

> Gy + finite
TOQUw, YT#I'

(96)

def ..
= lim |:G5(r) - Gsm) + Z(GT)S(F)

i
w—soft or

- > (GT)S(D} + finite. (97)
T2OQUw, Y#T

Now we can split the last sum into
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Y Gr=)Gr+ > Gr (98)

T2QUw, Y#T Tor T2QUw. Y2

Then, canceling the first four terms we are left with

1imﬁGQ =- hmﬁ (Gy)g(r) + finite.  (99)

TO2QUw, Y 2T

Finally, either I' = Q U w, in which case the above sum
is empty and lim,,_,;Gq is finite, or the @ — soft limit
forces other lines in I'\ (Q U w) to go soft along with those
in w. The latter case means that for every term in the above
sum, lim,,_ Gy involves taking a blue line soft which
gives a finite result by the induction hypothesis. Thus,
lim,,_,iGq 1s always finite. m

This algorithm may make more sense after a few
explicit examples. We have already seen how to separate
the soft-sensitive and soft-insensitive parts of graphs at
one-loop order in Secs. III and IV, so we move directly to
the more complicated two-loop examples. The first two
examples in Secs. VIB and VIC outline the basics of the
coloring algorithm, having only a single maximal soft-
sensitive set. The example in Sec. VID has multiple
Qi ..’s as well as a discussion about symmetry factors of
the colored graphs.

It is also worth pointing out that this separation into
red and blue lines is similar to the zero-bin subtraction
discussed in [57]. Our blue lines correspond to the
propagation of degrees of freedom that can be collinear
sensitive but cannot be soft sensitive. This is imple-
mented by recursively subtracting off the soft-sensitive
limits from the full-theory graphs. In SCET, collinear
fields are defined by summing over discrete labels on
momentum space with the label pointing to zero momen-
tum—known as the zero bin—removed. In practice the
discrete sum is always turned into an integral and the
zero bin is subtracted off. This procedure calls for a soft
subtraction for every single collinear line, irrespective of
whether or not the line is soft sensitive, but otherwise is
similar to our subtraction for the blue lines. Therefore,
the SCET-familiar reader could think of our blue lines as
a cleaner version of the collinear lines of SCET. In any
case, our blue lines are still too complicated to use in
practice; by the end, our factorization theorem will be
formulated entirely in terms of full-theory Feynman rules
with the subtraction procedure implemented by dividing
by simple matrix elements of Wilson lines.

In a colored diagram, every line is either soft sensitive
(red) or soft insensitive (blue). We sometimes draw soft-
insensitive lines as black lines if no expansion is done
(for example with external lines). All black lines in the
following should technically be drawn blue.
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B. Example one: Tangled two-loop
Consider the following graph in scalar QED:

P

L k(2 + k1)2(p1 — k)2 k3 (p1 — k)2 (p1 — K1 — ka)?

P2 (100)

ky 1

)

where we have dropped constant prefactors and the integration measure d*k;d*k, is left implicit. In Feynman gauge (or
other covariant gauges), the gauge-dependent I1(k;) factors count as order 1. Then, this graph has a soft singularity when
both photons go soft, or when either one goes soft and the other goes collinear. Note that the virtual scalars can never give
rise to a soft sensitivity by helicity conservation, which can easily be checked by power counting, say, the (p; — k,) — soft
limit.

Our first step is to write down the soft-singular graph with the most soft lines. This is done by expanding the integrand as
if both virtual-photon momenta k; and k, were soft, giving

P
kg T

D2
GQmax = Tkl =

(k1) -y

p1 - 1(ks) - 1

kips - ki(—p1 - k1)

P2

Note that we have not dropped either soft momentum with
respect to the other. Also, Go  is clearly soft divergent
when both k; and k, vanish.

Now we would like to write down the part of G that is
soft divergent when only one of the photons goes soft (and
the other goes collinear). To do this, we expand one of the
virtual momentum as if it were soft and leave the other one
general. That is, for k; soft we have

G _/Pz'n(kl)'(m—kz)
Q. B
kipy - ki(=py - ky)
(2p1 = ko) - Tl(ky) - (2py = k)
X 3 2 3
k3(p1 —k2)*(p1 — k)

- ( Qnm)S(kl)‘

(102)

With this definition, G ‘ is clearly finite when k, goes
soft because we have subtracted that limit off in the form
of (Gaq,, )s(,)- Similarly, we define the k,-soft-singular
graph as

Lo / (2p2 + ki) - TI(ky) - 2p1 — ki)
e K12(py + k1)*(p1 = ky)?

o pr—ky) TM(ky) -2py
k%(—Pl “ky)(p1 — kl)z

(Ga,, sk, (103)

101
k3(—=p1 - ko) (—p1 - (k1 + k2)) (oD

which is, again, finite in the limit where k; goes soft
because of the subtraction.
Finally, we have the remainder of the graph, given by

G = 6 —Gq,, — Ga

max next

- Ggﬁe“ . ( 104)

It is easy to see that Gy, is finite in any limit @ — soft for
o C {ky, k,}, for example,

lim G = (G = Gq,, )su,) — (Gay )s,) + finite

ky—soft next

=Gq_ — Gq_ + finite = finite, (105)

where we used the definition of G, that (Goi )s,) =
Gq and that (Gg: )sy,) is finite.

We can now draw these four integrals as separate
graphs by denoting which internal lines are taken soft
by a longer-wavelength red line and the other lines that

are made soft insensitive by the subtraction are drawn
blue. That is,
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V4 p
ks ' ks m ko 1 ' ko n
covariant
Gﬂmax = Th GQ}xext = Th GQ?lext = th GlaSt - T ( gauges >
D2 P2 P2 D2

(106)

and the sum of these four graphs is trivially equal to the original graph G.

We reiterate that in these modified graphs, only the red, long-wavelength lines can have soft singularities. Each blue line
is made soft insensitive by subtracting from the original graph all of the graphs with that line red. In our example, Go was
subtracted off in Egs. (102) and (103) to ensure that the blue line in both G, and G, is soft insensitive and all three of
Gq, .- Go, and G, were subtracted off in Eq. (104) in order to make both of the blue lines in G, soft insensitive.

In deriving the decomposition in Eq. (106), no scaling of the numerators was used. Thus this decomposition holds in
covariant gauges, such as Feynman gauge, where there is no extra numerator suppression. In physical gauges, such as
generic-light-cone gauge, the set of colored graphs is different. As will be discussed in detail in Sec. VII in a physical gauge,
there is no singularity when k, goes soft and k; does not, so €2, is not a possible set with a soft sensitivity. Thus, in a physical
gauge, Go and Ggq, are defined as above and G, = G — G — Gg,. So, the colored-graph decomposition of G in a
physical gauge is given by the sum of only three graphs:

ko 1 P1 ko D1 ko 1 21
physical
G = th G = th o Glast = th : (107)
nex gauges
P2 P2 P2

Thus the soft-singular graph with the largest number of

C. Example two: Two loops, three gluons soft propagators in it is

Consider now a slightly more complicated example, the
QCD graph:

Hop,.o = Hs({ky ko)) = (109)
(108)

The algebraic expression for Hg  is found by taking the
integrand of H and expanding as if k; and k, were soft but

For this graph, when all three gluons go soft, there are nine
powers of soft momenta in the denominator from the
propagators, one in the numerator from the three-point
vertex, and eight from the d*k;d*k, integration measure.
The result is an overall logarithmic divergence (in covariant
or physical gauges). This is the soft singularity with the
highest number propagators that are simultaneously going
soft.

of the same order, as was done in Eq. (101).

There are no singularities with only two gluons going
soft since momentum conservation will not allow two of the
gluons to go soft without the third being soft as well. Thus,
the soft-singular configurations with the next largest
number of soft internal lines are those with one of the
gluons going soft. In covariant gauges there is a singularity
when any of the gluons go soft:

<covariant)
Hy = (110)
next gauges
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and their algebraic expressions are given by taking the soft limit of one of the gluons and subtracting off (Hg_ ) S(ky) to
ensure that the other gluons cannot be soft singular. That is,

H'Q"nexl (H HQmax)‘S(k) l - 1,2, and Hchxl - (H_Hgmax)s(kl_kz)' (111)
Finally, the soft-insensitive graph is given by
covariant
e Hlast e H—HQmax —HQ1 —HQZ —HQS . (1]2)
next next next gauges

Thus we have the decomposition

+

LLEd

covariant
). (113)
gauges

Every graph has its soft sensitivities manifest, since none of the blue lines admit a soft sensitivity by construction.

We will see in Sec. VII that in physical gauges Q2. and Q}, are soft insensitive. Thus, Hg__

above, but Hp: —and Hga
colored dlagram expansion’ in physical gauges is then

D. Example three: Soft-gluon decoherence

For our final example, we consider a graph that does not
have a unique maximal set of soft lines that contribute to a
soft sensitivity:

(115)

Because of momentum conservation, there is no way for all
the gluons to go soft in the loops; at least a single
continuous line of nonsoft momentum must flow through
the graph. This means that there are multiple maximally
soft-sensitive sets of different sizes.

First we define the soft graphs with the maximal sets of
soft-sensitive lines:

Io, = %@m = Is({ta5,001),  (116)

do not exist, thereby modifying the definition of H,i to Hy, = “H - HQ

are defined as
- HQI [. The

cand Hegi

physmal) . .

gauges

Ios,, = = Isqe, ey,  (118)

Iog,, = = Isqesy- (119)
The algebraic expressions for these graphs are found by
taking the soft limit of the relevant virtual momenta in /.
Note that although no subtraction is performed, none of the
blue lines can give rise to soft sensitivities due to mo-
mentum  conservation.  Although Iq =l and
I = Ig . these graphs are generated by expanding
in different nonoverlapping regions of the virtual momen-
tum phase space in the original integral /. Thus they
correspond to separate colored graphs. This separation
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foreshadows the separation of QCD gluons into soft (red)
and collinear (blue) gluons in the factorized expression.

Now, take the next largest subsets that admit a soft
sensitivity, /., and define the corresponding colored
graph via the subtraction procedure. In every case, the sets
Qlexe = {¢;} have a single soft line:

Iy (120)

B <I - E 1 Qi >
‘next max
i EQ S(;)

1}23 =

next

PHYSICAL REVIEW D 90, 105020 (2014)
and define the last graph as

(121)

5 4
I]ast = I - : : IQ{;CM - : : IQinax :
=1 i=1

We draw these graphs by coloring every line that has a soft
limit taken red and the other lines blue:

_[Qﬁext = (122)
Iog,, = (123)
Tast = ¢ (124)

The blue lines either have a soft subtraction or are soft finite by momentum conservation.
It is easy to check that no blue lines can give rise to a soft sensitivity. To be explicit, we check that this is the case for [},
in the limit where #; goes soft. First note that only /¢ ooz, and Io: ~can have a soft singularity in the #; — 0 limit

because only these graphs have a red ¢, line. Thus,

next

lim/, = lim | — 1 -1 -1 finite
/120 last ‘ _)0[ Q! Q2x Qfm] +

=Isie) — U =1, — 1oy sy = Uaz,)sie,) = (ay, )s(e,) + finite

— finite.

Finally, note that all of the colored graphs in the decomposition of [ are equal to another colored graph except for / o,

and I, That is,

4 5
=2 Joj D Toj,,, + T
i=1 j=1

2xm+2xm+2x>@m (125)
+2X>@m+>ﬁ@ﬁv+>ﬂ€§?ﬂ
|

In the graphs that are doubled, the coloring breaks the Z,
symmetry of the original graph, /. Because of this sym-
metry, I gets a symmetry factor of 1/2. In the graphs where
the coloring breaks the symmetry, the factors of 2 directly
cancel this factor of 1/2. In the graphs where the coloring

preserves the symmetry, no factor of 2 results and the
original symmetry factor of / is preserved. Thus, the final
integrals have exactly the symmetry factor corresponding
to the symmetries of the colored graphs. It is easy to see that
this happens quite generally, as expected in an effective
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theory where the red and blue lines are distinguishable
particles.

VII. STEP 2: REDUCED DIAGRAMS

At this point, we have a procedure for writing any
Feynman graph as a sum of graphs each of which has all its
lines marked as either soft sensitive (red) or soft insensitive
(blue). As discussed in some of the examples, the coloring
is gauge dependent. The coloring also does not indicate if a
graph is collinear sensitive. In this section we prove a set of
lemmas that determine which graphs can be soft or
collinear sensitive. The lemmas in Sec. VII A are very
general. They apply to QCD Feynman diagrams, indepen-
dent of the coloring. Conclusions about collinear sensitiv-
ity, for example, apply equally well to soft-sensitive and
soft-insensitive lines. The lemmas in Secs. VII B and VII C
are more specific to the colored diagrams. Taken together,
the lemmas imply a simplified reduced-diagram structure
which encapsulates hard factorization and facilitates soft-
collinear factorization.

Our reduced diagrams are very similar to the reduced
diagrams describing the pinch surfaces [3-5]. Indeed, our
reduced diagrams include the singular momenta defining
this surface (k* = 0 or k¥ = ap* for some external p*) but
also have a precise expression as integrals (with singular
and nonsingular parts) derived from the full Feynman
diagrams as described in the previous section.

Recall that we define physical gauges as either light-cone
gauge, with a generic choice of reference vector, or
factorization gauge (see Sec. VIII) with generic r.. Our
physical gauges also have generic reference vectors for the
polarizations of external collinear particles. In the literature,
physical gauges often refers more generally to any gauge
whose propagator-numerator corresponds to a sum over
physical polarizations, including axial gauges. We will not
need to consider such a generality.

To be clear, although we do not say so explicitly in the
formulation of each lemma, all the lemmas in this section
are only proven to hold in physical gauges. Most of them in
fact do not hold in Feynman gauge, which plays no role in
our proof.

A. Finding the IR sensitivities

We now discuss how to locate the IR sensitivities in
graphs. IR sensitivity is a delicate thing. One IR-insensitive

J
k,p,a ] "
p,5,b p s c - _2295 Tb(: 685" pllf’

where a,b and ¢ are color indices and s and s’ are
helicities (the wave functions of the nonsoft particles
are included). This result holds if the nonsoft lines
represent particles of any spin [66]; in particular, these

for k soft and p on-shell and not soft,
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line can contaminate a whole subdiagram, removing its IR
sensitivity. This fact formalized in the zombie lemma
(Lemma 5). However, Lemma 5 requires the proof of
the log lemma (Lemma 2), which states that IR sensitivities
in graphs are at most logarithmic. Other facts that will be
necessary to determine where IR sensitivities lie in QCD
graphs are also proven in the process of showing Lemma 2.

Our first step is to prove that in physical gauges, IR
sensitivities are at most logarithmic.

Lemma 2 (log lemma).—According to the power count-
ing discussed in Sec. II, in physical gauges any Feynman
diagram in QCD (or any other renormalizable theory with
only gauge interactions) scales at worst like k* with a > 0.
Thus IR divergences are at most logarithmic.

This fact has been known for decades [3]. We reproduce
the proof here for completeness and to facilitate the proofs
of Lemmas 4-9.

Although we will not discuss covariant gauges much, it
is also known that in Feynman gauge, individual diagrams
can have divergences more severe than logarithmic [62].
These power divergences provide an obstruction to using
reduced diagrams for a transparent picture of hard factori-
zation. Of course, the power divergences cancel in a gauge-
invariant sum over diagrams, but this cancellation is of little
use in a diagram-by-diagram analysis. Light-cone gauge
with nongeneric choices of reference vectors also does not
lead to the same simple reduced-diagram picture.

The two lemmas that will be proven during the proof of
Lemma 2 are

Lemma 3 (collinear lemma)—Consider two lines of a
given diagram. If the lines cannot become collinear due to
momentum conservation or if they give rise to a k suppression
when they do become collinear, then a virtual particle
connecting between them cannot be collinear sensitive.

Lemma 4 (four-point lemma).—There are no diagrams
with soft-sensitive gluons attaching to soft-insensitive lines
through a four-point vertex.

Proof of Lemmas 2—4.—We will focus on proving the
log lemma (Lemma 2), and mention the other two lemmas
as they come up.

Before getting into the proof, we will need to establish
the form of the various vertices in the theory in the limit
where all of the particles involved are soft or collinear.
First, as discussed in [FS1], the three-point vertex involving
a soft gauge boson has the following limiting behavior:

(126)

|

lines can be gluons. Similarly, the all-collinear vertex
with at least one gauge boson is proportional to the
momentum flowing through the vertex, by Lorentz
invariance:
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q; P

4% X pl“o(ql‘7

P

forp|lq. (127)

Again, this is true irrespective of the spin of the particles in
the straight lines and only when the lines are on shell.

Now for the proof; we prove the log lemma (Lemma 2)
by induction on the number of loops. Tree-level diagrams
trivially scale like k%, so Lemma 2 holds for n = 0. Then
suppose it holds for n —1 loops and consider adding
another loop. We will consider all possible ways to add
a loop using three- and four-point vertices.

For massless particles, propagators blow up when virtual
lines are either soft or collinear. Let us begin with the soft
case. According to the power-counting rules in Sec. II,
when the new line goes soft the measure associated with a
soft line power counts as d*k ~ x® and the denominator of
the propagator of the soft line counts as k% ~ x*. If the soft
line connects via three-point vertices to two lines of
momentum p/ and p5, then the new loop adds two more

PHYSICAL REVIEW D 90, 105020 (2014)

propagators with denominators (p; + k)* for i = 1, 2. If p
is off shell, this scales like x; if p’i‘ is on shell and not soft,
it scales like p; - k ~ k%; and if p is soft, it scales like *.
The numerator of the propagators, combined with the three-
point vertices, power count the same as p; + k. If p¥ is not
soft, then p; + k ~ «°; if p/' is soft, then p; + k ~ x*. Thus
when p¥ is off shell, the numerator and denominator
combine to x¥; if p’i‘ is on shell but not soft, they combine
to k°/k? ~x72 and if p/ is soft, they combine to
k% /xk* ~ k2. The worst scaling is therefore when p/ is
on shell, and then

P,"’k D)

——— ~k% for p? =0
(pi + k) b

(either soft or not soft).
(128)

Thus, adding a soft loop with three-point vertices only
gives an enhancement if both lines it connects to are on
shell, in which case the new loop power counts as

soft or collinear

on top of the original loop’s power counting.

(129)

To be more precise, the lines with momenta p; and p, which connect to the soft momenta k and go on shell do not have to
directly connect to k. Even if there are some loops in the graph, as long as there are lines which go on shell and connect to k
there will still be an enhancement. We can simply think of these loops as producing a composite vertex:

4 1 p1+k

po+k g1 11 .

soft or collinear

k2 (p1 +k)? (po — k)2

— — — ~ K. 130
Kkt K2 K2 (130)

Since there are no extra complications with such composite vertices, we will leave the composite case implicit in this proof.

Next suppose the new loop with the soft momentum connects via at least one four-point vertex. This happens by the new
gluon connecting to a three-point vertex in the n — 1 loop graph. Again, the only way to get an enhancement is if the lines it
connects to are on shell. Because of the four-point vertex, the additional loop adds only two propagators rather than three.
The new propagator denominators are k> and (p; + k)?. The n — 1-loop graph had a three-point vertex, with either all three
momenta collinear or one of them soft. Using Eqs. (126) and (127), we see that the original three-point vertex gave a
contribution to the numerator of the graph of the form

k, soft coll
oc p 1" (k) ~ K° or L—Oﬂ—p<1 x p 1" (q) ~ &, for p || q (131)
co p, coll 7 coll

whereas, when we add the loop with the four-point vertex, this becomes
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soft

coll col]

PHYSICAL REVIEW D 90, 105020 (2014)

witorcoll oc g gP? ~ kY. (132)

Thus, there is a possible additional k! from killing the numerator suppression if the original graph had an all-collinear three-
point vertex. So, connecting a soft loop to a collinear line via a four-point vertex adds a loop that power counts either as

I p+k  _ 11 _
4 1 8 1
k2 (p1 + k)2 et Tn (139
or as
1 p+k 11
4 8 2
ke~ T (134

collinear

In both cases, the new graph scales like a higher power of «
than the graph it modified. By the same argument, adding a
soft loop that connects to a collinear line on each end via a
four-point vertex will be (even more) IR finite. By the
induction hypothesis, the rest of the graph scales at worst like
¥, so any time we add a four-point vertex with both soft and
collinear momentum flowing through it, we get a x=!'
scaling. Thus, we see that there cannot be a soft sensitivity
when a soft gluon attaches to nonsoft gluons through a four-
point vertex. This proves the four-point lemma (Lemma 4).

When all the relevant lines go soft, the four-point
vertices can contribute at leading power. To see this,

soft soft

1 p+Ek  _
4]{? 2
K2y + k)2

consider the case where the soft loop connects to all-
soft lines through a four-point vertex and assume for
now that the other end connects via a three-point
vertex. This case is just like the previous discussion
in that the new loop adds only two new propagators of
the form k> and (p; + k)~ and kills some of the
suppression coming from the original three-point vertex
that became a four-point vertex. However, in the all-
soft case, the three-point vertex suppression is a power
of the soft momenta, which goes like x? instead of
k from the collinear case, so the new loop power
counts as

(135)

Similarly, if the new soft loop connects to all-soft lines via a four-point vertex on both ends, we only add one propagator, but

we kill two x2-suppressed numerators, giving

soft soft

(136)
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Thus four-point vertices involving all soft lines must be
included. We have now exhausted all possible ways of
adding a loop that can go soft and we have found that they
all add a power counting of x* for a > 0 to the original
graph. This proves the log lemma as far as soft scaling
alone is concerned.

Now consider adding a line that can have a collinear
sensitivity. As in the soft case, there are a number of ways
that this can take place and we will systematically consider
each possibility. For the diagram to possibly be IR
divergent the momentum in the line must be going collinear
to the momenta of the lines it connects to on at least one
end. Let us suppose first that it is not also collinear to the

|

d'q R

q, coll

coll coll

AR
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line it connects to on the other end. Adding a line like this
introduces two new on-shell propagators if it connects to
the line to which it is collinear with a three-point vertex, and
only a single on-shell propagator if it connects with a four-
point vertex. In the first case, the all-collinear three-point
vertex will be proportional to the momentum flowing
through it, as in Eq. (127), and this will give a suppression
when contracted with any of the propagators (or external
polarization vectors) it connects to. This is because, in
physical gauges, the propagator numerators are equal to the
polarization-vector sum when the momentum in a propa-
gator goes on shell. Thus, p,I1*(q) ~k for p|lg and
we have

, 101
~ KR —F—FK ~ R.

137
2 2 (137

If the all-collinear vertex is a four-point vertex, then we only get one new collinear propagator. However, going from an all-
collinear three-point vertex to a four-point vertex kills the suppression that we just discussed, so we have

1

q, coll 3
coll coll q
Finally, if the four-point vertex has a soft line connecting to
it, it will give a finite loop due to Eq. (133). We conclude
that unless the new line is collinear to the momenta on both
ends, and in particular that all the relevant lines are on shell,
the new diagram will have additional x suppression
compared to the n — 1 loop graph.

Combining Eqgs. (137) and (138), we conclude that
whenever a particle travels between two lines that could
not originally go collinear, or that is xk-suppressed if they do

|

coll

dq—=k

coll 1 1 1
: dg— — —p,II
ﬁ 10 +q)? p? P

41 -1
~ K —2li ~ K.
K

-1 (138)

[

become collinear, the resulting loop is x-suppressed, and
therefore, collinear insensitive. This proves the collinear
lemma (Lemma 3).

It remains to show that when the momenta are all on shell,
the overall scaling is at worst k”. We have shown this already
for soft singularities. So consider the remaining case when the
new line goes collinear to all of the lines to which it connects. If
both vertices are three-point, we get three collinear propa-
gators and two k-suppressed products in the numerator:

1 11
~ /{4———H}K/ ~ HO.

"(q)py R (139)

If only one of the vertices is a three-point vertex, then adding the loop adds two propagators, one x-suppressed product in the
numerator due to the all-collinear three-point vertex, and one x enhancement due to the removal of one of the original all-
collinear three-point vertices. Thus, graphs with one three-point and one four-point vertex power count as

coll

f o L1 )
: d " (q) k= ~ K
coll q ¢® (p+q)? Py (a)

11
= ket~ KD

5 (140)
K* K

Finally, if the added loop connects on both ends to all-collinear four-point vertices, then only one collinear propagator is
added, but two three-point vertices are removed causing two additional k! enhancements:

coll 1

d4q 1

J— Hi
coll 2
coll q

_ .,
o 4 1,1 0

(141)

So, all possible additional loops that involve all-collinear vertices power count as ° and are logarithmically collinear

singular.
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We have shown that any possible addition of a loop
power counts as k“ for a > 0. Therefore, by induction,
every graph in physical gauges power counts like «* for
a > 0 and is at most logarithmically divergent. This proves
Lemma 2. u

Now, let us define the term subdiagram to mean a part of
a larger diagram that could be cut out with an arbitrarily
shaped (possibly 3D) cookie cutter. A subdiagram is
considered as a function of the generic (not necessarily
on-shell) momenta of the lines that the cookie cutter
cut. These lines are considered to be external lines of
the subdiagram, though they may have been internal in the
original graph. Internal lines in a subdiagram are the
complement of external lines.

With this definition, we can now make a useful
observation about how IR-insensitive lines scale with «
to establish how IR-insensitive graphs can infect any line
they come in contact with, making it also IR insensitive.
This observation is encapsulated by the following lemma.

Lemma 5 (zombie lemma)—Consider adding a new
internal line L to a subdiagram with no IR-sensitive lines.
If at least one end of L attaches to an internal line of the
original subdiagram, then L is IR insensitive.

Proof.—Since no line in the subdiagram is IR sensitive,
in any soft or collinear limit the subdiagram scales like x“
for some a > 0. First, consider whether the line L can have
a soft sensitivity. When L becomes soft, it produces a loop
that scales like k° at most. However, this only happens if the
lines it connects to are on shell (or it produces an on-shell
line elsewhere in the subdiagram). By assumption, one of
these lines is an internal line from the original subdiagram,
so there is a corresponding k¢ suppression from the rest of
the subdiagram. Thus, overall the subdiagram is still soft
insensitive and so is the line L. That L cannot be collinear
sensitive follows directly from the collinear lemma
(Lemma 3). Thus L is IR insensitive and the lemma is
proven. (]

B. IR insensitivity of the hard amplitude

Two immediate consequences of the above lemmas
completely characterize the hard amplitude.

Lemma 6 (hard-blue lemma).—Any all-blue 1PI sub-
diagram containing the hard-scattering vertex is IR
insensitive.

Proof—Any 1PI subdiagram that contains the hard-
scattering vertex must have momenta from two different
collinear sectors piping through it. Consequently, there
must be a line L that connects between two lines that
cannot simultaneously become collinear by momentum
conservation. The collinear lemma (Lemma 3) then
implies that L is not collinear sensitive. Since L is blue
(by hypothesis), it is soft insensitive as well, and hence
IR insensitive. Now, starting with the one-loop graph
containing L, we can build up the rest of the 1PI
subdiagram by adding new lines (inserting vacuum loops
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in the middle of L is allowed). Whenever a new line
connects to L, or to the network of lines previously
connected to L, it is IR insensitive by the zombie lemma
(Lemma 5). Alternatively, a new line might connect to
external lines of the subdiagram. If it connects two in the
same sector, the graph cannot be 1PIL. If it connects two
in different sectors, the new line is IR insensitive for the
same reason L is, and we can replace L by this new line
to continue our argument. Thus every line in the 1PI
subdiagram is IR insensitive, as was to be shown. =

Lemma 7 (hard-red lemma).—Red lines cannot connect
to internal lines of an all-blue 1PI subdiagram containing
the hard-scattering vertex.

Proof—Any all-blue 1PI subdiagram containing the
hard vertex is IR insensitive by the hard-blue lemma
(Lemma 6). Any line connecting to an internal line of this
subdiagram must also be IR insensitive, by the zombie
lemma (Lemma 5). Since red lines are soft sensitive, by
definition, these lines cannot be red. ]

These two lemmas explain why some colored graphs are
absent in physical gauges. For example, as discussed in
Sec. VIC, the diagrams

@ and @ (142)

are IR (in particular, soft) insensitive in generic-light-cone
gauge and therefore, absent from the colored-graph decom-
position. The diagrams

@ , @é and @@ (143)

are present because the first two are IR divergent and the
third is the IR-finite “last” graph in the decomposition.
Note that the second diagram in Eq. (143) does not satisfy
the hypothesis of the hard-blue lemma (Lemma 6) because
without the red line, it is not a 1PI graph containing the hard
vertex.

C. Power-suppressed colored graphs

So far, we have only characterized where the IR
sensitivities are. Some diagrams, despite being IR sensitive,
contribute only at subleading power and can be dropped
from a leading-power factorization theorem. We have
already seen an example of subleading diagrams in
Sec. IV. There, in particular in Egs. (75) and (80), we
found that for ¢||p;,
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q q

and ~1In\. (144)

Tk

ﬁ
2
> =

P2 P2

In this example, the soft-insensitive loop in the first graph is
IR finite, so the A~' comes from the tree-level splitting on
|

In0 In A\

~ — ~ —

In each case, the graphs are divergent without the emission.
In particular, the loop in the second graph cannot eat the
emission.

The generalization of this example is embodied in the
following lemma.

Lemma 8 (loop-emission lemma).—Any diagram with an
IR-insensitive 1PI subdiagram that has a real emission
attached to an internal leg is power suppressed compared to
a corresponding diagram where the emission comes off of
an external leg.

Proof.—An IR-insensitive subdiagram that is 1PI has at
least one overall power of suppression when approaching
the soft and collinear limits. That is, it scales like k¢ for
some a > 0. Suppose some line in the loop has momenta
q + k in it, where ¢ is the external momenta and k is the
loop momenta. Adding an external collinear emission
connecting inside the loop gives an additional propagator
with momentum p + g+ k with p the new external
momenta. Since (p + ¢)* ~ A%, when k goes collinear to
g, this propagator scales like

i i
(ptal+2(p+aq) kted 2Zre

(146)

In physical gauges, the vertex contracted with the polarization
gives (p + 2g + 2k) - € ~ A+ k when all of these momenta
are collinear. The net effect is therefore K’z‘ijz. So if, of n

emissions, m are inside the loop, the diagram scales like

U [t (AR 34 m2a _ 1
n—m kK A2+ i 2 ﬁ, m<a yL
(147)

Thus the diagrams with any number of collinear emissions
coming from within the loop are power suppressed com-
pared to the diagram with m = 0, where all the emissions
are outside the loop.
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external leg. In the second graph, the loop is tangled with
the emission. At 4 = 0, the graph would be divergent, but
for A > 0 it is not. Thus the graph scales like InA < 47!,
The second graph is therefore subleading compared to the
first and can be dropped. In a sense, the IR-insensitive loop
eats the enhancement of the real emission. This is to be
contrasted with IR-sensitive loops which do not eat
emissions. For example,

In A

and ~ — (145)

|

Soft emissions are similar. Adding a soft emission to an IR-
insensitive subdiagram gives (4> + x*)~! for the propagator,
as before but now (p + k + ¢) - € ~ 1 since although k and ¢
are soft, p is not. Thus each new emission from within the loop
gives (4> + x*)~! compared to A=2 from outside the loop and
becomes suppressed upon integration as above.

Thus, for either soft or collinear emissions, emissions
coming out of an IR-finite loop (or an IR-finite, 1PI
subdiagram) are power suppressed and can be dropped
at leading power. m

A final lemma finishes the required ingredients for the
advertised reduced diagram picture.

Lemma 9 (self-collinear lemma).—Graphs where a
collinear gluon is emitted from a leg to which it cannot
be collinear near an IR sensitivity are power suppressed
compared to graphs where the gluon can be collinear to the
leg it is emitted from near an IR sensitivity.

Proof-—This lemma was proven for tree-level graphs in
[FS1], using that self-collinear emissions have an enhanced
propagator compared to non-self-collinear ones. The subdia-
gram to which a collinear emission is connected must be IR
sensitive, by the previous lemma (Lemma 8) and, therefore,
cannot connect to 1 PI subdiagram containing the hard vertex
with only blue lines, by the hard-blue lemma (Lemma 6).
Thus the subdiagram to which the emission is connected can
only contain external momenta associated with a single
collinear sector before the emission is added. Thus, near an
IR sensitivity all of the propagators in the subdiagram are
either soft or collinear to the same direction and the lemma
follows from the same reason it did at tree level. [

That completes the lemmas. As a reminder, all of these
lemmas hold in physical gauges, as defined at the begin-
ning of this section, and are generally violated in Feynman
or other covariant gauges.

D. General reduced diagram

With these lemmas we have all of the rules required to
reduce the most general graphs that contribute to N-jet-like
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scattering in a physical gauge. We first expand the
various loop momenta and soft external momenta in
their soft limit to write a diagram as a sum of colored
diagrams with soft-sensitive virtual particles and soft-
insensitive ones. The lemmas guide the coloring; by
indicating where the soft sensitivities can be, they
indicate which red or blue lines can have associated
collinear sensitivities and which colored diagrams are
power suppressed (even if IR sensitive) compared to
other diagrams with the same external states at the same
order in perturbation theory.

To draw the physical-gauge reduced diagram, first note
that the hard-blue lemma (Lemma 6) tells us that each
diagram has an IR-insensitive core, given by the largest-
possible 1PI subdiagram containing the hard vertex which
has only blue lines. By the loop-emission lemma (Lemma
8), no real emissions can come out of this core. Thus the

|

physical
gauges

(X1 Xy X0 = Y

diagrams

This reduced diagram has all the properties claimed in
Sec. V. We call the sum over soft-insensitive (blue) 1PI
subdiagrams involving the hard vertex the hard amplitude
and the sum of all soft-insensitive (blue) corrections to each
external leg the jet amplitude. All of the soft-sensitive (red)
lines are in the soft amplitude, which is not necessarily
connected. Note that these are amplitudes, in contrast to the
common use of hard jet and soft functions to refer to
squares of the amplitudes. This reduced diagram displays
hard factorization. We have not yet shown how the jet and
soft amplitudes can be disentangled which requires soft-
collinear factorization.

In generic light-cone gauge, where there are no ghosts,
every line in or exiting S is soft sensitive and is colored red.
Because all the lines entering S are soft sensitive, no
momenta within S can be dropped with respect to any other
momenta. Thus, there is no expansion done by the coloring
algorithm applied to S and the loops within S are given by
the full-QCD Feynman rules. The lines leaving S connect-
ing to the J; blobs have been expanded and have eikonal
interactions with the J; blob. As we will see in the next
section, in factorization gauge, there are ghosts in the S
blob. Ghosts are always IR insensitive, and thus they
should be colored blue. Since the ghosts are blue without
any expansion, the S blob still contains all the unmodified
loops of full QCD. In summary, in any physical gauge, the
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hard core connects to the rest of the diagram only through a
single line in each sector.

Now let us temporarily ignore red lines. Then there are
only collinear singularities. By the collinear lemma
(Lemma 3), it is impossible for any IR-sensitive graph
to involve external momenta from two different collinear
sectors. Thus, outside of the IR-insensitive core, the only
collinear-sensitive subdiagrams are self-energy-type cor-
rections to each sector. No blue lines go between sectors, or
they would remove the IR sensitivity, by Lemma 6, and
should have been included in the core. Moreover, all
collinear emissions come from self-collinear sectors, by
the self-collinear lemma (Lemma 9). Now add the red lines
back in. These lines can connect anywhere, except to the
IR-insensitive core by Lemma 7.

We have therefore shown that any colored diagram can
be drawn as

(148)

[

S amplitude connects to the rest of the diagram through
soft-sensitive (red) lines with eikonal interactions and all
the internal loops of S are the same as in full QCD.
Before moving on to soft-collinear factorization, we
pause to discuss the physically rich structure of the reduced
diagram in Eq. (148). The hard factorization displayed here
is a consequence of the geometrical property that the jet and
soft subdiagrams attach to the hard subdiagram by a single
line. Moreover, near the IR sensitivities in the loops, this
line is almost on shell and carries the net momentum of the
jet. The hard subdiagram is therefore a completely inde-
pendent process that depends only on a single net momen-
tum and the overall quantum numbers for each collinear
sector. Since the hard subdiagram has a smooth 4 — 0 limit,
it is completely insensitive to corrections of order A;
namely, it is completely insensitive to the distribution of
collinear momenta among the external states (X, ...Xy; X,/
The IR finiteness of the hard amplitude arises because, in
physical gauges, there are additional suppression factors
from numerators in regions where the virtual particles go on
shell. Since the hard amplitude is IR insensitive, all the
dynamics it encapsulates takes place at short distance. Only
distances of order (Ax)y = (P;-P;)”"/? are relevant.
Since the hard diagram communicates with the rest of
the process only through the single lines which are off shell
by of order 4, these interactions take place at distances
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(Ax); ~2"'(Ax), away from the hard core. The sub-
sequent nonsoft (i.e. collinear) interactions take place
around (Ax),, but in different directions. These collinear
particles can then only communicate with each other
through the exchange of long-wavelength modes, at dis-
tances of order (Ax)g = A7(Ax)y. The single particle in
each sector coming out of the hard vertex corresponds to
the single partons in hard matrix elements which can be
calculated first and then either showered through a
Monte Carlo event generator or convolved against analytic
jet and soft functions in an inclusive calculation.

It is important to note that the intuitive picture drawn in
Eq. (148) is only valid in physical gauges, such as generic-
light-cone gauge. In Feynman gauge or non-generic-light-
cone gauges with enhanced polarization vectors, Eq. (148)
is totally destroyed and the factorization becomes com-
pletely opaque [62]. Although this seems like an esoteric
point, these unphysical gauges are often used in discussions
of factorization, such as in the original formulation of
SCET [29,45]. For more discussion of this point see [FS1].

VIII. STEP 3: FACTORIZATION GAUGE

We saw in the previous section that generic-light-cone
gauge limits the types of diagrams which can contribute at
leading power. Let us temporarily imagine restricting the
region of integration of the loop momenta so that the soft-
sensitive lines are forced to be soft and the soft-insensitive
lines are forced to be collinear to some direction (instead of
integrating them over R!3 like we should). Then each
reduced diagram would just be some integrals over soft
and collinear particles with the same topologies as discussed
in [FS1], and it seems like the same proof of soft-collinear
decoupling would apply nearly unchanged. However, [FS1]
made heavy use of the freedom to choose different reference
vectors for different external particles. In particular, a
different reference vector r’; is chosen for each distinct
collinear sector as well as another, , for the soft sector. For
this to work at loop level, we need to be able to choose the
reference vector for a light-cone-gauge propagator to depend
on the direction that the virtual gluon is going. We call a
gauge with this flexibility factorization gauge. Factorization
gauge is critical to our proof and will be useful even when
the virtual phase space is unrestricted over R!-3.

This section introduces factorization gauge. In factori-
zation gauge, ghosts do not completely decouple, as they
do in light-cone gauge. However, we will show that ghosts
do not give rise to additional IR sensitivities. The next
section will use factorization gauge to rigorously prove
soft-collinear factorization, following essentially the same
procedure as in [FSI1].

A. Definition

We would like to be able to choose a different light-cone-
gauge reference vector for each sector in the reduced
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diagram, which is the loop-level equivalent of choosing
different reference vectors for the polarizations of each
sector which was done in [FS1]. That is, we would like to
choose a gauge such that the numerator of the gluon
propagator is given by

(k)R + 7 (k)R

(k) = —g 149
() =g+ T (149)
with
r,  ksoft,
(k) =3 7, klp;, (150)
ry, otherwise.

We assume 7, r’; and r to be lightlike and take r§ and r’; as
the reference vectors for polarizations of soft and collinear
external gluons, respectively. Given that for loop momenta
k being soft or collinear is equivalent to —k being the same,
we will further define

(k) = r(=k), (151)

so we only need to specify r* for positive-energy momenta.
In practice, we will only use two different reference vectors:
r; = r¢ forall j and rj, = r§. Although our arguments will
only use the freedom to choose r,. and r, separately, we
define factorization gauge with the full N 4 2 different
reference-vector choices since this is consistent with our
freedom to choose the reference vectors for the external
gluons separately.3

To be concrete, we can make Eq. (150) precise by
chopping up phase space. For example, we can draw a
Euclidean ball of size 4>Q around k = 0 for the soft region,
draw cones of angle A around each jet region, and let
everything else count as hard. The precise partitioning will
not matter for the proof of factorization.

Note that both soft-sensitive and soft-insensitive gluons
have unrestricted momenta. For example, soft-sensitive
(red) lines can be collinear or hard in which case their
propagator has r; or r;,. Factorization gauge does not assign
a different reference vector to different lines in the reduced
diagram (which would not be gauge invariant). The assign-
ment of reference vector is based only on the gluons’
momentum, which is a legitimate gauge choice.

To implement this gauge choice into the Lagrangian, we
can use the following nonlocal gauge fixing term:

Loi(x) = —%(rﬂ(iamz (x))? (152)

and then take & — oo. This gives a Faddeev-Popov deter-
minant of

3Light—cone gauges with different (constant) reference vectors
for different sectors have appeared in the SCET literature [67].
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1 .
det <— r(io) - DadJ)
9
= /DCDE exp <—i/d4x5“(r(i8) -D“”)c”). (153)
Therefore, the ghosts couple to gluons via

2 a

k— 4
TOOOO, oc g f*rt(p). (54
C 1 A
A
AN

Thus, the vertex Feynman rule depends on r#(p) with p*
the momentum of the ghost.
The gluon propagator is
i 5ab
= (k)
k? 4 ie

a, (b b7 v (1 5 5)
7000000000
with T1# (k) given in Eq. (149) which satisfies (for lightlike
™)
r, (k)" (k) = 0. (156)
Recall that in light-cone gauge (where r* is constant),
although the ghost-gluon vertex is still proportional to *,
any graph where a ghost couples to a virtual gluon is zero,
due to Eq. (156). If #* is also the reference vector of the
external polarizations, then the ghosts completely decouple
diagram by diagram (for a different choice of external
reference vector, individual diagrams with ghosts may not
vanish but their sum must due to the Ward identity, which
guarantees reference-vector independence). In factorization
gauge, when a gluon of momentum & couples to a ghost of
momentum p, where r(k) # r(p), the vertex will not be
orthogonal to the gluon propagator or polarization. Thus,
ghosts do not completely decouple in factorization gauge.
Nevertheless, ghosts play a very small role in factorization,
as we now show.

B. Ghosts decoupling

Although ghosts do not completely decouple, we will
now show that ghosts cannot give rise to IR sensitivities. In
particular, this means that ghost lines can never be red and
can only contribute IR-insensitive loops internal to the
hard, jet and soft blobs of Eq. (148).

The fact that ghost loops do not give rise to IR sen-
sitivities can be anticipated using unitarity. Independent of
the gauge choice, we are always free to choose different
reference vectors for the polarizations of external gluons in
different IR sectors (as was extensively used in [FS1]). By
unitarity, these on-shell soft and collinear gluons should be
in one-to-one correspondence with cuts of loops near IR
singularities. We then expect that in a gauge consistent with
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choosing different reference vectors for different IR sectors
(i.e. factorization gauge) ghosts should not exist in IR-
sensitive loops, since the ghosts cannot exist as external
particles.

Ghosts cannot be part of IR-sensitive loops because near
the IR-sensitive regions of integration, factorization gauge
looks like a regular light-cone gauge in which ghosts
decouple. That is, because the sum of soft momenta is
soft and the sum of collinear momenta (to a single
direction) is collinear, the all-soft and all-collinear ghost-
ghost-gluon vertices vanish when contracted with the gluon
propagator or external polarization exactly as they do in
light-cone gauge. Therefore, ghosts will only modify the
internal structure of the hard, jet and soft blobs by adding to
them IR-insensitive loops.

What other types of vertices can give rise to IR
sensitivities? Momentum conservation rules out the pos-
sibility of vertices with off-shell and two collinear momenta
or off-shell and a soft and collinear momentum. The
collinear lemma (Lemma 3) says that a vertex with an
off-shell momentum and two-hard on-shell momenta that
are not collinear to each other cannot give rise to an IR
sensitivity. So, we only need to consider ghost loops with
singularities where the vertices in the loop have mixed-on-
shell momenta. There are then two possibilities:

(1) Collinear ghost/soft ghost/collinear gluon, such as in

P p+k  p+k
m ------- > m (157)
i \
soft  soft

where p is a collinear and k and k" are soft.
(2) Collinear ghost/collinear ghost/soft gluon,

P p+k

........ )....... .......)........
C%soft

with p collinear and k soft.

In situations of the first type, one of the vertices is
proportional to (k" — k) and the other vertex to r(p + k).
The (k' — k) is not orthogonal to the collinear-gluon
propagator IT"(p), because k and &’ are soft, so this vertex
will not vanish. However, these nonvanishing vertices are
always accompanied with the other vertex which is propor-
tional to 7 (p + k) which is equal to r#(p) since p||p + k,
and r#(p) is orthogonal to IT*(p). Hence graphs with
segments like in Eq. (157) always vanish near the singu-
larity. A vertex of the second type, Eq. (158), does not
automatically vanish on its own, since r*(p) # r*(k).
However, since there are no external ghosts, a ghost with
a collinear momentum can only give rise to an IR
sensitivity if it came from a gluon with collinear momen-
tum. Thus there must be a vertex of the first type

(158)
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somewhere in the graph making the graph vanish in the IR-
sensitive region of the ghost.

That being said, we are not arguing that the soft gluon in
Eq. (158) cannot give rise to a soft sensitivity irrespective of
the ghost momentum; we are only showing that the ghost
lines themselves cannot give rise to IR sensitivities when
they go on shell. For example, we could have the following
soft-sensitive graphs:

[ (159)

In both cases, the integrand vanishes when the red gluon(s)
go soft and the ghost goes soft or collinear. However,
when the ghost is off shell, the red gluon(s) can go soft
giving rise to a soft sensitivity of the same form as from the
corresponding graphs where the ghost loop is contracted to
a point.

The most important point that we use from this section is
that ghost lines cannot be soft sensitive (red). Since we can
treat ghosts as blue lines, any 1PI-blue subdiagrams that
contain the hard vertex are IR insensitive by the hard-blue
lemma (Lemma 6), irrespective of whether or not they
contain ghosts. Furthermore, the loop-emission lemma
(Lemma 8) tells us that such subdiagrams do not have
external emissions connecting to them. Hence, the reduced-
diagram picture in Eq. (148) is unchanged in factorization
gauge, except for the fact that now the hard, jet and soft
amplitudes may contain IR-insensitive ghost loops.

IX. STEP 4: SOFT-COLLINEAR FACTORIZATION

The all-orders proof of soft-collinear factorization can
now be built upon the skeleton of the tree-level proof from
[FS1]. This is made possible by factorization gauge, in
particular, our ability to choose a different reference vector
for (real and virtual) soft momenta, r,, and for (real and
virtual) collinear momenta, » e We will choose all of the r j’s
to be a particular generic direction r, not collinear to any of
|

E Gpure red =

where the sum over all possible diagrams of this topology is
implicit. This equality holds in any gauge.

It is not hard to prove Eq. (160) directly. The Wilson
lines YJI exactly give the eikonal Feynman rules, so doing
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the collinear sectors; we call this the generic-r, choice. For
the soft reference vector we will go back and forth between
choosing r, in a particular collinear direction and ry
generic, building up elements of soft-collinear factorization
as we go. We take r;, = r, for simplicity.

Before getting started, it is worth noting how coloring
works in matrix elements involving Wilson lines. One
should color these diagrams just as with diagrams involv-
ing only local fields. Since emissions from Wilson lines
already have eikonal vertices, they are exactly equal to
their leading expansion in the soft limit. Thus, in matrix
elements involving only Wilson lines, such as (O|Y} W;|0),
all the lines are red. These lines interact with each other
through an S blob just like in Eq. (148). In matrix
elements involving Wilson lines and fields, on the other
hand, such as (0|¢*W,|0), there can be both blue and
red lines. As discussed in the previous section, in
factorization gauge, the S blob can also have blue lines
if there are ghosts just like in the non-Wilson line matrix
elements.

Although we use scalar QED notation, operators in QCD
look similar, with extra gauge and spin indices floating
around. As far as hard-soft-collinear factorization is con-
cerned, the differences between scalar QED and QCD are
almost entirely notational. Thus we postpone the presen-
tation of QCD matrix elements until Sec. XI.

A. Soft and collinear factorization separately

To begin, consider diagrams which only have red lines
connecting to bare collinear sectors and call them G e req-
Recall that diagrams with red lines are derived from full
theory diagrams by expanding to leading order around
the limit where the momenta in all the red lines are small.
This expansion is the same as the eikonal expansion.
Equivalently we can expand by taking all the nonsoft lines
infinitely hard. This infinite-hard limit removes the dynam-
ics from the nonsoft lines, making them appear as classical
sources which can be represented with Wilson lines. Thus,
the sum of graphs of the form Gpyeeq gives matrix
elements of Wilson lines:

= (X,|Y{ - Yn0), (160)

the contraction combinatorics just like in [FS1], we see that
the sum of the red lines connecting to the collinear ones
is the same as the red lines connected to the soft Wilson
lines. Since the S blob gives all-possible QCD interactions
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(including ghosts in factorization gauge), we exactly get the
matrix element of Wilson lines in Eq. (160) to all-
loop order.

For Eq. (160) to work the symmetry factors in the
original uncolored loops must turn into the symmetry
factors of the red loops. This is not hard to check. As
discussed in Sec. VI D, for every symmetry of an uncolored
graph that is broken by the coloring, there are exactly as
many different-but-equivalent soft sensitivities. So the
symmetry factors work out correctly.

Pure collinear factorization is harder to discuss using
colored diagrams. While diagrams with the maximal number
of red lines are reproduced from a simple gauge-invariant
Wilson line structure, diagrams with the maximal number of
blue lines do not have any special simplifying property.
Indeed, the Feynman rules for blue lines are a mess since
they are given by differences between full QCD Feynman
rules and eikonal Feynman rules. Moreover, graphs with all
red lines are just as collinear sensitive as graphs with all
blue lines.

Instead, it is perhaps useful to consider the following
rather trivial diagrammatic identity, forgetting about the
coloring altogether:

= (X[ ¢7[0) - - (Xn|00), (161)

where, again, a sum over diagrams of the topology shown is
implicit. In this equation, the right-hand side is simply the
sum over all graphs in scalar QCD with only self-energy
corrections to each collinear sector. We saw such a structure
emerge from the reduced diagram picture. Recall from the
hard-blue lemma (Lemma 6) that when a gluon connects
between two different collinear sectors, there is no collinear
sensitivity associated with it. Thus the diagrams on the right
give the maximally collinear sensitive contributions to an
amplitude at each order in perturbation theory in physical
gauges.

B. Soft-collinear factorization with a single
collinear sector

We have seen that the sum of all graphs with the only red
lines connecting to naked collinear sectors is reproduced by
a matrix element of Wilson lines, as in Eq. (160), and that
the self-energy-type corrections to a single collinear sector
are given by matrix elements of fields, as in Eq. (161). To
prove soft-collinear factorization, the next step, as in [FS1],
is to factorize amplitudes containing both soft sensitivity
and collinear sensitivity in one direction.

Let us define G 7,@s as the sum of all colored diagrams
that, when the red lines are removed, have collinear
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sensitivity to the j direction and no collinear sensitivity
to any other direction. These are diagrams with any type of
red or blue self-energy corrections to the j leg, any number
of blue lines in the hard vertex, and any number of red lines
connecting the j sector to other sectors. These diagrams all
have the form

Gres = (162)

That G; gs is a sum of such diagrams is left implicit. The J;
blob means all possible soft-insensitive loops (only blue
lines) consistent with the external emissions in (X| and the
S blob means all-possible graphs with only red lines (soft-
sensitive lines or soft external lines) coming out. Note that
the restriction that J; have only blue lines is only a
convention. It does not restrict the relevant subdiagrams,
since any red self-energy contributions are simply absorbed
into S. The S blob does not have to be 1PI, planar or even
connected.

It is not hard to write down an operator definition of
G,j®s. As long is r. is generic

any rs
en. T,

gen. r¢
(Xj X YooY [0) 2 Gres  (163)
There is an implicit choice of H in this equation. The Y;
Wilson lines for i # j provide the eikonal interactions
between the red lines and the i # j collinear sectors. The ¢*
allows for any possible self-energy-type graphs in the j
sector. Although the left-hand side is gauge invariant, in
unphysical gauges (such as Feynman gauge or factorization
gauge with a nongeneric r.|[p;), there will be collinear-
sensitive diagrams with gluons going between different
Wilson lines, or between a Wilson line and the j sector. The
hard-blue lemma (Lemma 6), which guarantees that such
lines are only soft sensitive, critically uses that a physical
gauge was chosen in the collinear-sensitive region.

Now we will show that in factorization gauge with r;, =
ry = p; there are no soft-sensitive graphs in G 1,®5 with lines
connecting the S blob to the J; blob. This is the loop-level
version of the tree-level result that when r; = p; any graph
with soft external lines connecting to the p;-collinear sector
is power suppressed. At tree level, the decoupling happens
because the eikonal vertex gives a factor of p; - €(r,) which
is power suppressed when r, = p;. Atloop level, we need to
show that all the relevant graphs have a similar structure and
are therefore similarly power suppressed.

Although there is no restriction that red lines have soft
momenta—in general, red lines are integrated over all of
R'3—there is a restriction that red lines do have to be soft
sensitive. Their soft sensitivity is inherent in the coloring,
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as discussed in Sec. VI. Thus, consider the soft-sensitive
region of a subdiagram with red gluon emerging from the
jet blob. It looks like

Stk {ps}ire,resmh) = (164)

where all the indices are suppressed except the Lorentz
index on the soft line. Here, S# is a function of the
momentum k, the external-collinear momentum {p;}
and the reference vectors associated with our gauge choice;
that is, we imagine having done all of the loops in the
collinear blob J;. We now state a simple lemma pertaining
to which Lorentz structures can carry the p index in S¥.

Lemma 10 (soft-attachment lemma).—When r, = ry,
the soft sensitivity can only come from the term in
§*(k; {p;}, s, 7j, 7)) proportional to p’.

Proof—The  first step is to show that
SH(k; {pj},rs,rj,rh) has no term proportional to r’; at
leading power. The only way to get an r’]’ term in $* is from
the soft line connecting to a line that goes collinear to the
Jj-jet direction. However then, the leading power soft vertex
is eikonal, namely, proportional to p/ instead of r/ as
discussed in Eq. (126) (as discussed in Sec. VIII B, the soft
gluon cannot connect to a collinear ghost). So any terms
proportional to r’]’ are « suppressed near the collinear
sensitivity. Then, when the collinear region is integrated
over, the x-suppressed integrals give a finite value propor-
tional to the volume of the collinear region, namely, 4 to
some positive power. Thus r’; terms are power suppressed
in loops and trees alike.

Now, since the r’]‘ term is power suppressed, we are left
with § = 4, k* and p’; . However, when the red line is
contracted with a soft propagator or a soft external
polarization, any term proportional to 7% vanishes exactly
and any term proportional to k# will be suppressed in k. So
these terms cannot contribute to a soft sensitivity in the red
line. This proves the lemma. =

|

most physical gauges

In most physical gauges, there are blue self-energy
bubbles in the J; blob, red self-energy bubbles attaching
to the J; blob, as well as red lines leaving this blob and
connecting to the other legs and to external-soft emis-
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Therefore, if we make the nongeneric choice r, =
rp = pj, which we call collinear r, there will be no soft
sensitivities connecting to the j-collinear sector. We state
this as a lemma.

Lemma 11 (collinear-ry lemma).—There are no soft-
sensitive (red) lines connecting to the j-collinear sector in
factorization gauge in collinear-r, (5 = rj = p’).

Proof.-—The result is easy to see for a single soft line by
Lemma 10, since when r; = p; any soft propagator or
external polarization vector will be orthogonal to p’; . Now
suppose we have many lines connecting to the j-collinear
sector. Working our way inwards towards the hard vertex,
the outermost line must be soft insensitive by the argument
for a single line, since it does not depend on the momentum
of the other potentially soft lines. If the outermost-red line
connects to a different collinear sector, then by the hard-
blue lemma (Lemma 6) the rest of the lines must be blue
and IR insensitive or, if any of the other lines are external-
soft emissions, the whole graph is power suppressed by
loop-emission lemma (Lemma 8). So the lemma is proved
in this case. On the other hand, if the outermost line
connects back to the j-collinear sector, because it is soft
insensitive, it will just contribute to the blue-collinear blob
and we can start the argument over again starting from the
next-outermost line. In this way, we see that no soft-
sensitive (red) lines can connect to the j-collinear sector in
collinear r,. m

For the rest of this paper we will take all of the collinear-
reference vectors, {r;}, to be the same generic direction r..,
that is not collinear to any of the collinear sectors.
Furthermore, we will always take r;, = r,. Neither of these
choices is necessary, but they simplify the discussion. We
have shown that if one chooses r; = p; there are actually
no red lines connecting to the J; blob in Eq. (162). This
means that no expansion was done to the integrals in the J;
blob and therefore the J; blob is exactly the same as in the
full theory. Thus the set of relevant colored graphs
contributing to G, s is somewhat different in generic-
light-cone gauge from factorization gauge with ry = p;:

full theory lines

(165)

[« J/
-~

factorization gauge with rs=p;#r.

I

sions. However, in factorization gauge with r§ = p’; , the
J; blob is unmodified from full QCD and no red lines
connect to it. The H, J and S blobs are all different in the
two cases.
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Now, since there are no soft-sensitive lines connecting to the J; blob when r; = p;, the amplitude from summing all the
relevant graphs is closely related to the amplitude from a product of Wilson lines, as in Sec. IX A. More precisely,

full theory lines

Ts =Pj
gen. ¢

= C({n-Fi})x

full theory lines

><<Xs\Y1T'~'3G—119+1-~~YN|0>, (166)

where P¥ is the net collinear momentum in the j sector, r} is the lightlike direction of the i sector and C({n; - P;}) is an IR-

finite function of n; - P; for i # j.

A subtle point is that C({n; - P;}) does not have to equal the sum of the graphs in the hard amplitude H(P;, k;) evaluated
at k’l‘ = 0 for all the soft loop momenta. To see where the difference comes from, recall that the H blob is IR insensitive, so it
is finite when any of the momentum from the red lines goes soft. Thus, we can write

H(P;, k;) S(ki,n;) = H(P;,0)

{ki} {k:}

This allows us to extract the loops over the soft-sensitive
red lines, S(k;,n;), from the soft-insensitive loops,
H(P;, k;). Since the soft-sensitive loops are at most
logarithmically divergent by the log lemma (Lemma 2),
the second term is finite because H(P;. k;) — H(P;,0)
vanishes when the k; — 0. Thus, we can pull out an overall
IR-insensitive power series, C({n; - P;}), times the pure-
eikonal loops which are identically given by the matrix
element of Wilson lines shown in Eq. (166). Now, the
second term on the right-hand side of Eq. (167) could either
be power suppressed (for example, if the k; — 0 limit in
question is tangled with a soft emission by Lemma 8), or it
could be some IR-finite integral multiplying a lower-order
IR-sensitive contribution from the soft Wilson line matrix
element. Thus, C({n; - P;}) is not equal to H(P;,0) in
general. Instead, it is some IR-insensitive power series in
the perturbative coupling that starts at 1. Despite the
difference, C({n; - P;}), like H(P;,0), only depends on
the net momenta in each collinear sector. The difference is
from the subtraction terms on the right-hand side of
Eq. (167) which is subleading power when tangled with
external emissions, by Lemma 8.

Now, combining Egs. (163), (165) and (166), and that,
since the J; blob contains no red lines it is simply all the
corrections to the j sector in full QCD, we have

(X ;s X,|Y]...0*...Yy|0)

rs=Pj
genre

= C({n; - P (X1 |0) (X, |Y].. Y, Yy Yy [0).
(168)

In other words, r; = p; lets us disentangle a field from the
product of Wilson lines.

Stk [ (P, k) = (P, 0) S5m).

(167)

. . +
C. Bootstrapping in Y] and W;

At this point, following [FS1], we want to insert Y]I into
Y? .Y Y. .Yy in Eq. (168) to make it gauge invariant.
Recall that at tree-level choosing r, = p; for the external
soft particles forces Yj- to contribute only power-suppressed

terms. When loops are involved, it is not quite that simple,
since the red lines are not restricted to be soft. Indeed, self-
contractions in Y; (self-energy graphs on the j leg) are
collinear sensitive, since in the collinear-sensitive region
the gluon propagator has the collinear reference vector r,
instead of ry. Thus it is true at tree level but not at loop level

. . F . .
that inserting ¥; only gives a power-suppressed modifica-
tion in collinear r.

When r; = p;, contractions of Y;- with the other Y;’s are

soft insensitive by the collinear-r; lemma (Lemma 11) and
must be blue. Then, by the hard-blue lemma (Lemma 6), we
know that any contractions of Y jT with the other Y,;’s are IR
insensitive in physical gauges, as are any 1PI subdiagrams
containing such contractions. So when r; = p;, the only
new IR sensitivities that arise from adding in the Y ; are the
collinear sensitivities in new self-energy-type corrections to
the p; sector, namely from purely self-contractions of the
Y; operator. The sum of the purely self-contractions of Y]T- is
trivially given by (0| Yj. |0). Therefore, if we not only add the
Y; into the product of Y‘{...Yj_l Yjii...Yy but also divide
by (0|Y ;|O>, the new collinear-sensitive contributions from
Y; will be completely removed, and this addition does not
change the IR sensitivities.

The net effect of adding Yj. to the product of Wilson lines

and dividing by (0]Y j|0> is not nothing. There are graphs
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from this modification with gluons going between Y]I and
one of the other legs. These contributions are soft insensi-
tive (in factorization gauge with ry =r,) and collinear
insensitive (since they connect different legs, by Lemma 6),
and thus they are IR insensitive. Using the same procedure
as outlined in Eq. (167), we can absorb the IR-insensitive
difference into a modification of the Wilson coefficient,
which means that Eq. (168) becomes

(X X |Y]...p*...Yx|0)
rg=, [7

B o i (X YT YN 0)
C'({n; - P;})(X;|#*]0 >—<0|Yj.|o>

for some new IR-insensitive function C'({n; - P;}).

This is the second time we find two objects with the same
leading-power IR sensitivities differing by an IR-insensi-
tive set of loops. Rather than modifying the Wilson
coefficient C({n; - P;}) in each step for the IR-insensitive
part, let us 1ntroduce the symbol 2 to mean that the IR
sensitivities on both sides agree at leading power. For
example, with this notation, Eq. (169) becomes

rs=pj

X,|YT...Yy|0
* ..YN|0>g§ R < S| 1 N| >

(0[Y7}|0)
(170)

(X5 X Y] g (X;|#*|0)

An 2 equivalence implies that a = equivalence holds if
some IR-finite Wilson coefficient, C({P; - P;}), is multi-
plied on one side. That is,

A
A =R B‘:’EEC(SU) (171)
for some IR-insensitive function C(S;;), where
Slj = (Pl +Pj)2'
X ¢*W 0) gen. rc
M =R <X]| ¢* |0> ‘
<0| Y; VVJ |O> blue only

where the J; blob has only blue lines. We use this result
below to strlp the red lines off of a general matrix element.

Let us pause briefly to give an interpretation of
<0|Y;Wj|0>. Note that (X;[¢*W;|0) has both collinear
and soft sensitivities, but (X;|¢*W,[0)/ <O|Y;Wj|0> has
only blue lines so it is soft insensitive. Thus <O|Y;Wj|0) is
subtracting off the contribution which is both soft and
collinear sensitive. Dividing by it implements the subtrac-
tion procedure known as the zero-bin subtraction in SCET.
We will discuss this further in Sec. XIII where we contrast
our matrix-element definition with that used in the SCET
literature.

= W = soft insensitive,

PHYSICAL REVIEW D 90, 105020 (2014)

Next, we show that collinear Wilson lines can be added
without changing the IR structure. Recall that collinear
Wilson lines W; have the same definition as soft Wilson
lines Y, but whlle the Y; point along the jet direction p;,
the W; lines point in some direction #; which is only
restricted not to be collinear to p;. In light -cone gauge, if
we choose 7; = r, then W; simply decouples since the
gluons all have W1 (k) —0 for any k and W; =1
effectively. In factorization gauge with r, = p; and £
and r. generic, the Wilson lines do not decouple com-
pletely. However, it is still true that

rs=pj

(Xl W;[0) s (X;4*]0)

orwo - %o 7

This is true for exactly the same reason that we could
bootstrap Y into Eq. (169): when r, = p;, any lines
connecting to ¢* and Yj’ are blue by Lemma 11. This
means, by Lemma 6, that the only new IR sensitivities
introduced on the left-hand side of Eq. (172) are those
coming from purely self-contractions of W; which cancel
in the ratio, proving Eq. (172).

Now, since no red lines can connect to ¢* or to Y; when
ry = pj, the right-hand side of Eq. (172) must be soft
insensitive. This implies that the left-hand side is soft
insensitive too. Since the left-hand side is gauge invariant, it
is soft insensitive in any gauge. In other words,
<Xj|¢*Wj|0>/<0|Y;Wj|O> contains only blue lines.
Moreover, these all-blue-line graphs cannot come from
<0|Y';Wj\0> or (X;|W;|0) since these matrix elements,
involving Wilson lines only, always have red lines attach-
ing to the Wilson lines (with an arbitrary S blob connecting
them). Thus the blue lines can come from (X;[¢*|0) or
from contractions between W; and ¢*. However, blue
contractions between W; and qb* are IR insensitive by the
hard-blue lemma (Lemma 6). Therefore, we have

(173)

Returning to Eq. (172), if we combine it with Eq. (170),
we find

(X X,|Y]...¢"...Yy|0)
(Xjl9*W;|0)

=IR
(0]Ytw ;o)

x (X, |YT..vyl0).  (174)

Although we only showed this IR equivalence in collinear
ry (r¢ =r, = pj, generic r.) since both sides of this
equation are gauge invariant, it must hold for any choice
of ry or r. and more generally in any gauge (including
Feynman gauge). Thus, Eq. (174) is not restricted to a
particular gauge.
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Note that Eq. (174) holds for any number of soft Wilson
lines. As a special case, when there are two sectors

(X;l¢*W;|0)

(X3 X[ Y;|0) = ;
! (0]YW;[0)

x (XS|Y;YZ-|O), (175)

which holds for any i and ;.

D. Sprig of thyme

Equation (174) [or more simply, Eq. (175)] establishes
soft-collinear factorization for a single nonminimal
|

D

perms on j

On the left-hand side, the usual J; blob is defined to have
only blue (soft-insensitive) 11nes and to have all such
lines summed over and their integrals evaluated. We are
considering diagrams which have n generically off-shell
red lines attaching to this J; blob. In a full diagram the
red lines can be closed 1nt0 a loop, contracted with
polarizations for external soft particles, or connect to a J
blob in another sector (not shown); we simply slice them
close to their attachment to the J; blob and treat them as
off shell. The ) s on; Means the sum over permuta-
tions of all possible ways of connecting the red lines to
J; blob on the left-hand side. The right side has these
same red lines now connecting to a Y * Wilson line; the
Yj on the right-hand side is meant to be taken at the
same order as the number of red lines on the left, as
indicated by the |,.

Equation (176) is the loop-level equivalent of the tree-
level Eq. (94) in [FS1]. It shows that red lines can be
stripped off of arbitrarily complicated jet amplitudes, like
leaves off a sprig of thyme, independent of where those red
lines connect in the rest of the diagram.

Proof of Eq. (176) sprig of thyme.—We will prove
Eq. (176) by induction on the number of red lines n leaving

(Xj; k0" Y 0)

gen. ¢
o~
—IR
1 red
perrns on j
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collinear sector. When multiple sectors are nonminimal,
we clearly cannot choose r; = p; for all j simultaneously
to repeat the above derivation. However, since Eq. (174) is
gauge independent, this is not necessary, as we will see.

When 7§ is not collinear to p’;, Eq. (174) still holds, since
it is gauge invariant. For generic choices of r, there are soft-
sensitive diagrams with red lines connecting to the J; blob
contributing to Eq. (174). Although there is no diagram-by-
diagram correspondence in Eq. (174), the sum of diagrams
with a J; blob and a fixed number 7 of red lines attaching to
it do correspond. In fact, as we will now show,

gen. ¢
[

(X 0" W5 10)

. (176)
(0] YW 0 /

=IR .
n red

the J; blob. The key, as in [FS1], is to cancel all diagrams
Wthh contribute to both sides of Eq. (176) but have fewer
than n red lines attaching to the J; blob using Eq. (175) and
the induction hypothesis. The remaining diagrams will
have all n red lines connecting to the J; blob so that
Eq. (176) follows from Eq. (175).To avoid the notational
quagmire of an algebraic induction proof as was done in
[FS1], in this paper we take a diagrammatic approach.

To begin note that both sides of Eq. (175) can be
decomposed into colored diagrams. We will thus consider
all of the blue diagrams in Eq. (175) with a fixed number of
red lines emerging from the J; blob.

n = 0.—With no red lines coming out of Y]T this Wilson
line is simply 1 and Eq. (176) follows from Eq. (173)
exactly:

gen. ¢
o~
—IR

n = 1.—Consider Eq. (175) with one red end attached
anywhere. Since there is only one red end attached, the red
line must be part of (X;| = (k|. Then the left-hand side of
Eq. (175), at this order, is given by

(X[ ¢*W; 10)

- (177)
(0] YW |0)

(178)

On the right-hand side of Eq. (175) the red line can only come from one of the Wilson lines in (k| YTY :|0) (since the other

factor is all blue), so

(v o)

1red

_ (X;|p*W;|0)
(0[y;w;|0)

(k1Y 10 req + (K[Yi10)] rea)- (179)

By Eq. (175), Egs. (178) and (179) are equal. By Eq. (177), the second term on the right-hand sides of Egs. (178) and (179)

are separately equal. This leaves
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gen. re (X[ g3 W; {0)
—IR

x (k| Y10 . 180
Oy, [0) (k[Y10)] (180)

We can now strip off the polarization vector (the contraction with the external state) because the vertex Feynman rule is the
same for a red line in a loop connecting to another sector or for a real emission, as discussed in Eq. (126) and also in the soft-
attachment lemma (Lemma 10). Thus, Eq. (180) establishes Eq. (176) for n = 1.

n = 2.—At n = 2, if the red lines are all external, Eq. (175) gives

> DY
perms on j perms on j perms on 4 (181)

gen. T X *W 0)
~ # ((kl,kleTY 10) )
(0 Y;'W;[0)

2 red

Using Eq. (177), the . on; terms cancel term by term with the O(g ?) contractions of the external states with the Y
Wilson line. The middle term cancels with the O(g) contractions of the external states with the ¥; and Y operators using the
previous induction step, Eq. (180). We are left with

3 gen e (X[ ¢*W; [0)

~ x (K1, ko| Y7 |0)
(0] YW |0) !

(182)

2 red'

perms on j

This and the previous case are almost identical to the tree-level proof since there are as many external emissions as orders, 7.
That is, there are no red loops and we simply cancel off emissions off of the i # j sector term by term using the previous
induction hypotheses.

If the red lines are in a loop, then all cases where the red lines do not both come off the j line still cancel by the previous
induction steps (which already have the polarization vectors stripped off). Thus, after canceling these terms off in Eq. (175),

we are left with
s (X, 6W10) oy
— 2 (0lY.']0 . 183
) @% T AT (183)

perms on ]

The indicated contraction is superfluous, since (0|Y ; |0) only has red lines and we are restricting it to only two red vertices.
The combination of Eqgs. (182) and (183) means that Eq. (176) holds for n = 2.

Arbitrary n.—It should now be clear how the induction step works: at every step, all of the diagrams in Eq. (175) cancel
except those with all of the red lines on the jth sector. That is, using all of the previous induction steps, this cancellation
occurs between all of the contractions of the Wilson lines except those that only involve Y]T. After canceling the terms off,
we are left with the result for any n. Hence, Eq. (176) is proved. [

E. Final steps

Equation (176) implies that we can strip red lines off sector by sector of the general reduced diagram in
Eq. (148):

(184)
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Once the red lines are stripped off of every collinear sector, they connect from the soft Wilson lines, through the S blob, to
the external emissions. The S blob gives all possible interactions with the full QCD Lagrangian Feynman rules, so the red
lines are exactly described by the matrix element (X,|YT...Yy|0) in QCD. Thus,

any rg
gen. rc
~

(X1| oW1 0)

(185)

(Xy|Whe0)

-

(0] {1 |0)

. X (X, Y vy |0).

O WLYx]0) = ~ g

~
blue only, Ji

The braces describe which parts of the reduced diagram the
indicated quantities reproduce, in physical gauges. Since
both sides are gauge invariant, this factorization formula
holds in any gauge, even covariant ones.

This completes the proof of hard-soft-collinear factori-
zation. To clean things up, we can drop the 2 sign in
favor of the leading-power equality, =, by adding in the
Wilson coefficient. At every stage that we have dropped
IR-insensitive loops, they have not contained external
emissions by Lemma 8, so the Wilson coefficient is still
independent of the states (X ;| and (X,| and only depends on
the net momentum in each collinear sector [using the
procedure of Eq. (167)]. Therefore, we have our final
factorization formula:

(X;... Xn; X,]O]0)
(X|¢*W,]0)

Bl oiwio)

(Xv|W3e10)
(0w} Y y0)

12

(X,|YT...Yy]0).

(186)

X. GENERAL SCATTERING AMPLITUDES

So far, we have discussed factorization for matrix
elements of local operators. None of the arguments given
to derive the structure of the reduced diagram in Eq. (148)
actually require the scattering to be mediated by a single
operator. In calculating a general scattering matrix element,
any line that cannot go on shell cannot be IR sensitive. Thus
off-shell lines can be included in the hard amplitude of the
reduced diagram and absorbed into the Wilson coefficient.

For example, we have already shown that matrix
elements for the operator |¢|> between the vacuum and
final states (X3X4; X,| factorize as

~ ~ ~ red only, S
blue only, Jn

[

(X3X4; X, |9p* $]0)

(X5]* W5|0) (X4 Wig|O)
(0]YiW5|0) (0| W}¥,]0)

= Clyp(S3) (X,|¥iy,)0),

(187)

where S, = (P3 + P4)* and Cj,p(S3) = 1 at tree level.
Let us compare this to yy — ¢¢* in scalar QED. At tree
level, three diagrams contribute:

Pa
pr 2
+ (188)
D2, D3

Because of the off-shell lines, this amplitude cannot be
written exactly as the matrix element of a local operator. On
the other hand, since the lines are off shell, we can still
factorize the amplitude for yy — (X3X,; X,| as

(X3X4: X, |e"(p1):€"(p2))
(X3]¢p" W30) (X4 Wig|0)
(0[Y3W3]0) (0|W}Y,]0)

20Hv

(189)

with
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_ 2 (2py = 1) (p5 = 2p%)

o (Sif) =
gy (p1— pa)?
2 o M v _DpY

at tree level.

At higher orders, the Wilson coefficients C . and C .
will get different radiative corrections, but the jet and soft
sectors of the factorized processes are identical. The all-
orders definitions of the Wilson coefficients are

(¢, p3; §*, p4ld* $|0)

Crl0) = (191)
|| - - r
<¢’p3‘¢ W;‘O) <¢ 71)4|VV d,‘o) §
(0[Y3Ws30) <0|W1Yj\0> (0]Y3Y4]0)
and
¢’p ;¢*,p ¥ P ;el/ p
€ 1 (Q) = P PP (P g

(¢h.p3l¢p* W3 0) (¢*.pa| W,l0)

s
0lYIw;]0)  (0|w]Y4l0) <0|Y3Y4|0>

In either case, the Wilson coefficient only depends on the
type of scattering and not on distribution of soft and
collinear radiation in the external states (X3X,; X|. Thus,
we see that the factorization arguments given in this paper
apply to any type of scattering process in any gauge theory
as long as the external states contain only soft and collinear
degrees of freedom.

Factorization holds with identical arguments when there
are collinear particles in the initial state, with the only
change that the Wilson lines become incoming (see [FS1]).
The situation where particles in the initial state are collinear
to particles in the final state are explicitly excluded from our
|
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formulation. In particular, general hadron-hadron scattering
is not described if there are spectator partons with signifi-
cant energy. The formula does apply to the special case of
threshold hadron-hadron scattering, where the partonic
center of mass is close to the machine energy so the
spectator partons are necessarily soft. Expanding around
this limit has proved useful in both total-cross-section
calculations [68,69] and jet shape calculations at hadron
colliders [11,12,50,51,70,71].

XI. QCD

All of the arguments in the proof of hard-soft-collinear
factorization are completely general. They apply to any
renormalizable Abelian or non-Abelian gauge theory with
any matter content. The change in going from scalar QED
to QCD essentially amounts to pinpointing where the color
indices go. We will use /; for fundamental color indices and
a, b, ... for adjoint indices, with i and j still denoting jet
directions.

A. Jet amplitudes

To add in the color contractions, we trace back through
the soft-collinear factorization discussion, replacing scalars
with quarks. Equation (173) becomes

— (X.| ¢ |0)" .
@»08}2— (X;]v10) S

Here the & color index comes from the net color of the state
(X;| that exits the jet blob on the left. Now, recall that in
factorization gauge with r; = p; no soft sensitive lines can
attach to the j-collinear sector, which led to Egs. (172) and
(173). In QCD these equations become

(193)

Ts =pj ) Wh ) W'h
gen. re — 1 gen. rc — 1%
GRS (X010 || TR (X6, [0) ] . (194)
01y} |o) 01y W5 10)
|
One can think of W; as bringing color /' in from infinity to  and therefore
the origin along the 7; direction. Now the vacuum is gauge - .
invariant, so B BRI (X;| W, 10) (196)
—IR c T .
oS- tr (0] VW, 10)

U 1 /
(O]YTW |0y = N—tr<0|Yjo|o>5hh (195)

>

perms on j

with the N, factor implicitly absorbed into the Wilson
coefficient (by the definition of 2). Pulling n gluons out
of the soft Wilson line gives a series of 7% matrices which
multiply through to convert 4’ to h. The color indices on the

Similarly, the sprig-of-thyme equation, Eq. (176), for a
quark jet becomes

7 h'
genre (X[ W [0)
—IR
tr (0] Y;'W; [0)

)h/h

(]

(197)

n

[
soft Wilson line represent a matrix which transforms the
color coming out of the hard process due to the soft
radiation. It is, of course, highly nontrivial that the color
within the jet is manipulated only by y and W; and the
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color of the soft radiation is manipulated only by Y, with
the two not interacting. It is also true, since the soft
radiation only senses the net color charge of the collinear
radiation. This follows from our proof because in r; = p;
the soft radiation comes from everywhere else in the event
(which has the opposite color charge as the jet). All of the
manipulations we did to prove soft-collinear factorization

|

D

perms on j

where tr6? = d(adj) = N2 — 1 is again dropped. Note that
adjoint Wilson lines are not themselves Hermitian, despite
the fact that the adjoint representation is real. Conjugating a
path-ordered Wilson lines reverses the order of the ma-
trices. Thus, the correct relation between an adjoint Wilson
line and its conjugate is (J7)% = YPa.

Although Aj ij is the obvious adjoint version of W ;,
it is somewhat jarring to see an operator with a raw gauge
field instead of covariant derivatives. Of course, since any
matrix element of a color-singlet operator will satisfy the
Ward identity, any factorized expression containing Ay will
also satisfy the Ward identity. It is nevertheless sometimes
useful to rewrite the gluon jet function in terms of covariant
derivatives.

If the original operator has Ay, in a covariant derivative in
the fundamental representation, such as O = Ay, then Ay
will come accompanied by a 7. Thus there will be a 77,

|

gen-r.
~
—IR

>

perms on j

Jet amplitudes in this form are occasionally useful since
they manifest gauge invariance and only have Wilson lines
in the fundamental representation.

B. Example factorization formulas

To write down the factorization formula in QCD for
some process, we simply combine copies of Eqs. (197) and
(200) for each quark or gluon jet direction and contract the

|

(X1 X2X3; X, Dy |0) = C(S;)rh

gen-r¢
~

(X W [0)" (X |AMWV;10) (X5 | Wiy |0)"
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used only gauge invariance and that in the soft limit, gluon
emissions are reproduced by the matrix element of a path-
ordered Wilson line (a fact both well known and proven in
[ES1]).

The sprig of thyme for gluon jets is similar but involves
adjoint Wilson lines, }J; and W); defined in Eq. (33). The
equivalent of Eq. (197) with adjoint vector fields is

(X1 AW [0)!
tr (0] YW, 10)

x (V)"

(198)

—IR
n

contracted with the @ index in (198), with 4 and #’
contracted elsewhere in the factorized expression. Now,

using Y T°Y; = yabTb as in Bq. (35), (Y7)% = Y4 and
tr[T9T") = TF5“b we find
Wb (Yiybers = Web (Y, TPY),,

= T[T TPV (Y, TV )

= TFe[TW,TPWi(Y;T°Y ). (199)

Since the Ward identity must be satisfied in any process we
consider, replacing A, — 0, gives zero. Thus, we can
replace ig,Adtr[TW; 7" Wi = w[WiD,W,T*). Therefore,
converting the denommator with s1rmlar manlpulatlons to
those in Eq. (199) and absorbing ig, into the Wilson
coefficient, we can write

tr (X;| WD, Ww;T"|0)

: : (v,7'Y])
tr (0| Wi (Y; 7Y, YW, |0)

(200)

hh'

|
loose soft-Wilson lines with the soft-sector final state. For
example, a vector boson decaying to three jets can be
mediated by a hard-scattering operator of the form

O =yDy. (201)

The associated factorization formula is,
notation,

in gluon-jet

(XY V3T Y5(0)""

or, representing the gluons with covariant derivatives,

P (0]Y{W410) tr(0]YIW;0) tr(0|W}Y;3|0)

(202)
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(X, [gW |0y

PHYSICAL REVIEW D 90, 105020 (2014)

r(X2|WJD,WaT l0) (X3 Wiy}

(X1 X, X3; X, [wDw|0) = C(S;)7"

where a and f are Dirac spin indices, a and b are adjoint
color indices and h; are fundamental color indices. To
reduce clutter, the N, and N2 — 1 factors from the traces
have been absorbed into the Wilson coefficient; to put them
back one only needs to divide each zero bin by the
dimension of the representation of that sector.

There may be multiple operators contributing to a single
hard process. For example, in ud — ud scattering, there are
two relevant hard operators [72]:

O, = (@Ty*u)(dTy"d), O, = (ay*u)(dy'd), (204)

where the parentheses indicate color contractions. For
ud — ud at tree level in QCD, only a single-gluon
exchange is relevant and so O, is not. At one loop and
beyond, both operators are important to correctly reproduce
the hard scattering. As in this paper we have avoided
configurations where incoming and outgoing partons can
be collinear, the factorization formula has only been shown
to hold in threshold kinematical regimes where there is no
phase space for hard initial-state radiation to end up in the
|

Mo =M (p1+pr—= X3+ X4+ X))
Xa[@raWal0)= (| Whyra [0)E2 (X5 W5 |0)5 (py [ Wiy |0) =

P w(0]YTW,|0) w(O|WS(Y,TPY)W,T?|0) tw(0|W]Ys]0)
X (X[ Y]V, TY]Y5(0) P,

(203)

|
final state [11,12,50,51,70,71]. Alternatively, one could
think of the factorization formula in this case mediating a
decay, like h — itudd rather than a scattering process.
Factorization for four-parton scattering was also studied
in [7].

To study ud — ud near threshold is helpful to have
somewhat more general notation. Labeling the hard partons
as 1, 2, 3, and 4, the relevant operators are

Omr = (44T 17,0'q2) (@ Ty T qy). (205)
Here, I indexes the color structure (T =T7“ or T, = 1),
and T and T” index the helicity [e.g. T =1 =P, =
P, =1(1—ys)]. Helicity and flavor are preserved in
QCD, so the helicity of the u fixes the helicity of the .
There are thus eight relevant operators, since / = 1,2, " =
+ and I = +. Each set of helicities has a separate
factorization, but the color structures can mix.

So the matrix element for a four-quark-jet decay factor-
izes as

>y CL(S;; <
2 LS9 olyTwalo

where W; and Y, are incoming Wilson lines (see [FS1]).
Note that we only write explicitly the color and spin
indices of the partons which emerge from the hard
scattering. There are many implicit color and spin indices
in the states (X;| and (X,|. These colors and spins are
important when computing scattering amplitudes but are

(0| W37, 0)
x (X (VST Yo)"" (YT, ¥ )" [0),

w{O]YiW3[0) {0 W]7,10)

(206)

usually summed over in computing resummed distribu-
tions.

C. QCD factorization formula

In summary, a general factorization formula in QCD can
be written as

XAg WO GAW 0 (X W0y

My = ch,{i}(sij) X -
1

(0] Y] W;|0)
X (X[ (YT (VT et (ThY ) |0),

wOVWi0)  w(0|W;Y,0)

(207)

where the =+ indexes the helicities. The /; indices are contracted within the soft Wilson line matrix element, while the /; and

a; indices contract with the colors of the jets.
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XII. SPLITTING FUNCTIONS AND
SOFT CURRENTS

One application of factorization is that it can provide
gauge-invariant and regulator-independent definitions of
the collinear-sensitive or soft-sensitive parts of scattering
amplitudes. Such definitions may be useful in perturbative
QCD calculations if they help simplify or clarify the
structure of the infrared divergences. We therefore consider
the soft and collinear limits of our formulas separately,
deriving definitions of splitting functions and soft currents
and thereby proving their universality.

A. Splitting functions

Suppose we have a state (X°| = (X9...X%; X9| contain-
ing soft and collinear particles and a matrix element M, for
producing that state. We want to know how M, is modified
into M by the addition of extra collinear particles to the
J-collinear sector, turning (X9] into (X[, while leaving the
net momenta in the j sector unmodified at leading power
Pl P?" . Let us write the modified matrix element
formally as some operator acting on the original matrix
element

M =Sp - M,. (208)
The distribution of the soft radiation in (X?| is completely
independent of the splitting. The only modification from
the addition of collinear particles to <X?| is in the matrix
element associated with the j-collinear sector.

The factorization formulas for M, and M are almost
identical. The relevant parts of the factorization formulas
are

J
rest»

*T w(oyiw;jo)

A

M + ' Mrést' (209)
(0¥ W;[0)

112

Now, the spin of each collinear sector, that is, the helicity of
the nearly on-shell particle coming out of the hard vertex, in
M must be the same as in M, for the two to be related. So
let us fix this helicity £ and drop the spin indices. Then we
can write

(X;lgw ;|0)"

SP(X"XQ)W Il r————
e (X0l W;|0)"

(210)

The notation here indicates that the splitting functions are
operators in color space. Note that the zero-bin subtractions
from the denominator of the general factorization formula
have dropped out. These denominators are 1 in dimensional
regularization, but here we see that they play no role with

PHYSICAL REVIEW D 90, 105020 (2014)

any regulator. As we will see, this is also true for soft
currents.

To convert Eq. (210) into something more practical, let
us work out a simple example, following Sec. 9.1 of [FS1].
We take (X°| to have a single right-handed antiquark in it
with momentum P* and color h: (X°| = (i1, (P)|. In terms
of spinor helicities, this state is [P and at tree level

MgR = [PM?est]' (211)
We take (X| to have a right-handed antiquark of momentum
p' = zP* and a single gluon with momentum g¢# =
(1 — z)P* with color a and helicity =+. If the gluon helicity
is —, the modified amplitude is (see [FS1])

MhaR— — gsﬁ Z
lqp] V1 -2

Thus the tree-level splitting function for a — helicity
gluon is

[PT§, ML, (212)

g V2 oz

larl VT -z
For a + helicity gluon, the tree-level splitting function is
also extractable from [FS1]:

T.

- (213)

Spr-(p.q) =

i _ \/E 2z a
Spi(p.q) = 9 (o) (\/1—? +VI- z> e, (214)

These splitting functions can be calculated to higher order
using Eq. (210).
The gluon splitting functions are similar:

(X |WAW,[0)°
(X9|WA,W;[0)"

Sp#(X;, X§)* = (215)

The universality of Eqs. (210) and (215) to all orders for
any process is proven by our factorization theorem.

B. Soft currents

The equivalent of splitting functions for soft radiation are
often called soft currents [33]. Extracting their matrix-
element definition from the general factorization formula
proceeds in the same way as for collinear splittings.

Suppose we have a state (X°| = (X9...X%; X9| contain-
ing soft and collinear particles and a matrix element
M, for producing that state. We want to know how M,
is modified into M by the addition of extra soft particles
(X;|]. The modified matrix element can be formally
written as

M=J-M,, (216)
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where J is an operator acting in color space. Isolating the
part of the factorization formula involving soft radiation, it
follows that

_ (X,|¥i..T,
(xoy!...T,

.Y ]0)
Y x]0)

(217)

Here I indexes the color structures of the relevant
operators.

J has implicit indices which also act on the color of the
particles in (X;...Xy|. It is standard to write J as a
function of color-charge operators T} which act in color
space as the SU(3) generator in the representation of net
color flowing in direction j. This representation is of
course the same as the representation of the Y; Wilson
line. When using color-charge operators, one never needs
to perform a color sum, and so there is, trivially, no
dependence of J on the color structure /. That the matrix
element for soft emission only depends on the net color in
each collinear sector, and not how that color is distributed,
is a nontrivial consequence of factorization. It was proven
to one loop by direct computation in [34], and now we
have shown that it holds to all orders in g,, for an
arbitrarily complicated collinear sector and any number
of hard particles.

In the simplest case, (X| = (0| and (X,| has only one
gluon, with momentum ¢, polarization ¢”(g) and color a.
Then J = eﬂJ’;. At tree level, J is

m H

p.
J”(O):gs T J s
; "pj-q

(218)

where T; is the color-charge operator in the j direction. To
be more concrete, if there is only a quark and antiquark jet,
then

_{e"(p):alY1Y,|0)"™"
ahtt Catr(0|Y]Y,|0)

u u
= g,T%, <P1 P >+
Pi-q DP2q
The h and K’ color
(Xl W1 [0)" (X, Wiy |0)".
In dimensional regularization in 4 — 2¢ dimensions, with
outgoing particles only, the one-loop current is [34]

J =7

(219)
indices act on

the jets,

1 103(1—e)2(1+e¢)
16722 T'(1-2¢)

/4 H :

. pi Pj —4zpi-p; |

X ifape Tf’TC-< - )[ .
b; "\pirq pi-a) 12(pi-a)(p;-q)

(220)

J) = —
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In calculating this current, Catani and Grazzini were
able to prove that it is independent of the momenta and
color-flow of the process at one loop. As noted above,
our proof generalizes this observation to all orders. Of
course, the factorization formula does not help in
actually calculating the soft current in dimensional
regularization. The current for one soft gluon emission
at two loops can be found in [35,36].

Another familiar result that can be deduced from our
all-orders definition of the soft current is that of Abelian
exponentiation. Namely, that in an Abelian gauge
theory, the soft current is exact at tree level. This
follows simply from the fact that in an Abelian theory,
the contraction of a Wilson line with the external state
can be pulled out of the rest of the matrix element.
Since the Wilson lines are exponentials, pulling out a
contraction leaves behind the same Wilson line (just like
taking a derivative), so that, to all orders in perturbation
theory,

. {alY]..Yy|0)  (0]Y]...Yy[0)

Abelian ¥ - T Z |Y |O tree
(O[Y]...YN|0)  (0]Y;...Yy|0) “=
N "

= ZQJ U (221)

= g

where Q; is the QED charge: Q; = e if it comes from a Y JT

and Q; = —e if it comes from a Y;. Gauge invariance

implies that 33, 0; =0

XIII. EFFECTIVE FIELD THEORY

In this paper, our emphasis has been on factorization
in QCD at the amplitude level. In our view, working at
the amplitude level, rather than at the amplitude-squared
level as is often done, makes some elements of fac-
torization more transparent. It also elucidates some
aspects of SCET.

Consider Eq. (207), which we have proven to leading
power in A. Let us assign particles in each collinear
sector (X;| the quantum number j € {1,...,N} and each
particle in (X,| the quantum number s. Let us also write
an effective Lagrangian that is N + 1 copies of the QCD
Lagrangian

eff soft + Z ‘C

with fields in each sector only creating and annihilating
states with the appropriate quantum numbers. Then we can
combine the numerator matrix elements in Eq. (207) into a
single matrix element in a trivial way.

For example, with two collinear sectors, the factorization
formula becomes

(222)
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(X1 Xo; X, [wry*w|0)
i Wy

= Ol o,
:
) tr<0|WVg§Z|2o> /N, Ozs (223)
if computed with an effective Lagrangian
Legr = Lo + L1 + L. (224)

The Wilson coefficient C, depends only on the net
momenta P| and P} in each sector, not on the detailed
distribution of momenta in (X;X,; X,|. Since C, depends
on the hard-scattering operator and not the states, it is a
legitimate Wilson coefficient from matching onto an
effective field theory.

It is possible to clean up the effective field theory
operator a little. Let us define

. 1
Z; = —tr(0|W}Y;|0).
N,

(225)
For other color representations, Z; is defined similarly with
the Wilson lines in the appropriate representation and N,
replaced by dimension of the representation. The Z; factors
are both UV and IR divergent. They are, however, indepen-
dent of A and any momenta in the process. That is, for given
UVand IR regulators, they are power series in a,. Thus, they
can play the role of a kind of field-strength renormalization
for jets. Indeed, it is natural to define jet fields as

1

== Wiy, 226
xi=5Wiw (226)

i

These composite fields are gauge invariant (up to a global
rotation associated with the net color charge of the jet) and
are soft insensitive and collinear sensitive only in the i
direction. In terms of the jet fields, Eq. (223) becomes
simply

gy = G Y (Yara). (227)
which is a valid leading-power matching equation in an
effective theory describing dijetlike states because the
Wilson coefficient is IR insensitive and independent of
which external states are used to compute it. Of course, this
matching must be done within the régime of validity of the
effective theory, which in this case is justified by the
factoriélzation theorem that is proved for N-jet-like final
states.

*See [73] for an interesting discussion of how this matching
equation can break down when certain initial states are used to
perform the matching.
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The effective theory that naturally arises from our
factorization formula is very different from the traditional
formulation of SCET. Consequently, had we started from
the traditional formulation of SCET and derived a factori-
zation formula, it would look very different from the one
we have proven. In particular, the Lagrangian and Feynman
rules would not be those of full QCD and would not give
rise to an all-orders full-QCD definition of the soft current
and splitting functions.

Transitioning to the effective field theory language is
particularly useful when discussing subleading power
corrections in A. Recent progress has been made toward
describing collider-physics observables at subleading
power using the formulation of SCET discussed in this
section [74].

In [FS1], the tree-level version of this formulation of
SCET (without the vacuum-matrix element denominators)
was shown to be equivalent to that discussed by Freedman
and Luke [56]. However, with the all-loop factorization
theorem in hand we naturally see arise an all-orders
matrix-element definition of the zero-bin subtraction (similar
to what was shown in [75,76]). In Freedman and Luke’s
approach to SCET, the zero bin is subtracted off using an ad
hoc procedure applied on an integral-by-integral basis that
essentially comes from mimicking the procedure of the
traditional approach to SCET [57]. In the traditional
approach, the zero-bin subtraction arises naturally from
the SCET Lagrangian. It instructs us to apply a soft
subtraction to every single collinear line in each
Feynman diagram. This is arguably a more complicated
algorithm than dividing by a single gauge-invariant color-
coherent vacuum matrix element, as in our factorization
formula.

Before moving on, we point out that our factorization
formula is derived with fixed external states that come
designated as soft or collinear. This was the goal of our
paper. For particles which power count as soft or collinear,
the factorization theorem holds if they are put in either sector.
However, to perform phase-space integrals in the factorized
expression without chopping up phase space, it would be
convenient not to place a hard cutoff between sectors. To
achieve this, in the language of Sec. VI, the algorithm in
Sec. VI A would need to be modified to color external-
collinear particles blue or red. Then when calculating cross
sections, we would be able to integrate the collinear states
over their entire phase space, including the soft region. Our
expectation is that this would be a simple step using the tools
at our disposal and would give a zero bin of the form of the
eikonal-cross-section subtraction used in the QCD literature
(see the discussion in [58,77]). However, this is outside the
goal of our paper and we leave it for future work.

Another feature of our approach to factorization is that
we did not have to choose the power counting of the soft
emissions to be the same as that of the collinear emissions.
For example, we could have used a separate A, and A,:
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ktsofte=k* ~ A2Q
q°. p° ~ 0.

and ¢"||p'<=q-p~21-0%
(228)

The factorization theorem holds at leading power in both A
and A.. In fact, one could even take a different 4. in each
sector. Taking 4, = A. = 4 and transitioning to an effective
theory implies the factorization theorem that is appropriate
to what is referred to as SCET] in the literature. If we take
instead 12 = A, = /, the factorization theorem still holds.
This power counting is equivalent kg ~ (4,4,4) and
Geon ~ (A2,1,4) in light-cone coordinates, which in the
SCET literature is considered to be a different effective
field theory, known as SCETy;. The traditional derivation of
SCET}; involves rather involved intermediary matching
through SCETj [78]. The factorization theorem presented
in this paper is general enough to unify these two SCETs
into a single framework.

XIV. CONCLUSIONS

In this paper we have formulated and proven to all orders
in perturbation theory a precise statement of factorization
for scattering amplitudes in QCD, given in Eq. (207).
This formula applies to states with N well-separated jets
with any number collinear particles in each jet, (X;| for
j=1,...,N, and any amount of soft radiation in any
direction, (X|. Suppressing color and spin indices, the
formula for quark jets reads

(X |gW,|0)

C(P;
( )tr<0|YIW1|0>

(Xn| Wiy 0)
tr(0[ W} ¥ 0)
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(X,|Y7]...Yy]0),
(229)

where |i) is, say, some uncolored initial state and C(P;) is
an IR-finite function depending only on the net momenta in
each sector PY. The symbol = means equality at leading
power in A, a physical power-counting parameter that
constrains only the external momenta in the amplitude.
The factorization formula actually holds to leading power
in different power-counting parameters A, and A/ in each
sector. It also holds if there are collinear particles in the
initial state, as long as no initial-state and final-state
particles are collinear to each other.

The proof of Eq. (229) was broken into two steps, which
essentially correspond to hard factorization and soft-
collinear factorization. The first step was to determine
the structure of the possible graphs that contribute to each
type of infrared sensitivity (soft or j-collinear) in the matrix
element. The structure of the diagrams relevant at leading
power are encoded in the reduced diagram [see Eq. (148)],
which represents hard factorization in physical gauges.
This reduced diagram is similar to reduced diagrams used
in the literature to represent the pinch surface. Indeed,
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our derivation of hard factorization exploits essentially
the same observations as these traditional approaches.
However, the reduced diagrams traditionally used in the
literature are usually defined only for momenta which are
exactly & = (0,0, 0,0) or exact proportional to one of the
external momenta. In contrast, our reduced diagram rep-
resents a precise set of Feynman integrals, defined for all
values of external and loop momenta with rules that
describe how they are to be calculated. This generalization
of the reduced diagram allows for a clean transition to an
amplitude-level factorization formula.

The second step in the proof is to factorize the soft-
sensitive from the collinear-sensitive contributions to
matrix elements. This step builds upon the reduced diagram
picture and coloring rules which established hard factori-
zation. The all-orders proof of soft-collinear factorization
uses the same logic as was used in [FS1] for the tree-level
proof. In particular, the use of different reference-vector
choices used in [FS1] is critical also at loop level. For loops,
the reference-vector flexibility must be generalized to
momentum-dependent light-cone-gauge reference-vector
choices. We call a gauge with this flexibility factorization
gauge. Within factorization gauge, different choices for the
reference vector in the soft region slosh the soft sensitivities
around among different colored diagrams within the
reduced diagram structure. This lets us see how soft
sensitivities factorize from collinear sensitivities for any
value of the soft and collinear power-counting parameters
As and A.. Once appropriate Wilson lines are added, the
final factorization formula is gauge invariant and applies
even in covariant gauges like Feynman gauge.

There are many practical applications of factorization,
from the universality of splitting functions and soft currents
in QCD [20,26,30,31,34], to regulating infrared divergen-
ces in fixed-order calculations [32,79-82], to the compu-
tation of resummed distributions in jet substructure
[51,53,54,83,84]. For example, having gauge-invariant
and regulator-independent definitions for objects which
contain universal soft or collinear singularities may be
useful as the basis of subtractions for fixed-order calcu-
lations in QCD. In many cases, assuming factorization is
enough for phenomenological purposes. Having a rigorous
proof of factorization of course puts many approximations
on firmer footing. But it may also point the way to
understanding subtleties of where factorization may break
down, such as in the context of forward scattering
[27,28,73,85] or nonglobal logarithms [43,44,86-93]. In
both of these cases, our expectation is not that the
factorization theorem proven in this paper will immediately
resolve the confusions. Instead, we envisage that the
physical picture on which the factorization is based, with
an intuitive reduced diagram picture and matrix-element
zero-bin subtractions, should be a practical scaffold on
which to build a more sophisticated and nuanced picture of
factorization in scattering amplitudes.
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