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We provide a precise statement of hard-soft-collinear factorization of scattering amplitudes and prove it
to all orders in perturbation theory. Factorization is formulated as the equality at leading power of scattering
amplitudes in QCD with other amplitudes in QCD computed from a product of operator matrix elements.
The equivalence is regulator independent and gauge independent. As the formulation relates amplitudes to
the same amplitudes with additional soft or collinear particles, it includes as special cases the factorization
of soft currents and collinear splitting functions from generic matrix elements, both of which are shown to
be process independent to all orders. We show that the overlapping soft-collinear region is naturally
accounted for by vacuum matrix elements of kinked Wilson lines. Although the proof is self-contained, it
combines techniques developed for the study of pinch surfaces, scattering amplitudes, and effective field
theory.
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I. INTRODUCTION

Factorization is at the heart of any quantitative prediction
using quantum chromodynamics (QCD). Probably the
most familiar type of factorization, which we call hard
factorization, justifies the use of fixed-order perturbation
theory for sufficiently inclusive quantities. It lets us use
perturbative calculations involving partons (quarks and
gluons) to make precise predictions for experimentally
measurable quantities involving color-neutral hadrons. The
intuition for hard factorization is that scattering has a
component which freezes in at short distances and can
only incoherently influence the long-distance components.
For many observables, the long-distance physics can be
integrated over with essentially unit probability. Somewhat
less intuitive, but also logical after a little thought, is the
factorization of infrared-sensitive physics into soft and
collinear components. This soft-collinear factorization can
be anticipated classically, since very-long-distance modes
(soft physics) can only probe the net (color) charge of a
collection of particles traveling in nearly the same direc-
tion. Conversely, energetic collinear particles cannot have
their momentum changed much by low-energy soft modes.
Although the physical picture of hard-soft-collinear fac-
torization is simple, rigorously establishing exactly what it
implies about scattering amplitudes in gauge theories is not.
Factorization has a long history, with an eclectic variety

of approaches yielding a nuanced picture of when and
where factorization should hold, and in what form. In this
paper, we eschew two serious complications: (i) we ignore
nonperturbative effects associated with strong coupling,
discussing only power corrections associated with the
kinematics of massless partons rather than corrections of

orderΛQCD=Q and (ii) we avoid configurations where final-
state particles are collinear to initial-state particles. Even
within this limited scope, although much is known, a
precise formulation of factorization in terms of QCDmatrix
elements has been lacking. It is the goal of this paper to
provide such a formulation and proof.
As we will review and rederive, the essence of factori-

zation is revealed by studying the infrared (IR) structure of
gauge theories. An obvious necessary condition for an IR
divergence is that some propagators blow up. Sufficient
conditions are quite a bit more complicated. First, the poles
associated with on-shell momenta must be pinched, so that
one cannot just integrate over them [1,2]. Second, the
numerator structure of integrands, which is gauge depen-
dent, can make an integral more or less divergent than the
propagator denominators alone imply. In certain gauges,
such as light-cone gauge, the possible virtual momenta
contributing to the IR singularities—the so-called pinch
surface—turn out to be remarkably simple: all virtual
momenta qμ must either be exactly proportional to one
of the external momenta qμ ¼ αpμ

i with α ≥ 0 or exactly
vanish, qμ ¼ 0. A picture of such a surface is often drawn
as a reduced diagram with hard, jet and soft regions [3–5],
similar for example to Eq. (148) below.
Unfortunately, understanding the singular pinch surface,

that is, the topology of exactly zero momentum or exactly
collinear lines, does not immediately translate to a precise
statement of hard factorization or soft-collinear factoriza-
tion. Indeed, descending from the pinch surface to a
statement about finite amplitudes requires a whole new
set of justifications. For example, one must relate the
unphysical power counting of a pinch surface of finite
phase-space volume to the physical power counting of
external momenta. In particular, infrared divergences asso-
ciated with the soft pinch surface (where kμ ¼ 0) depend on
whether that surface is approached from a likelike (the soft
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region) or spacelike (the Glauber region) direction. Other
subtleties include avoiding double counting in the soft-
collinear region (the zero bin), restricting the phase space
for real and virtual integrations in the soft function without
reintroducing dependence on the hard scale, and introduc-
ing Wilson lines to restore gauge invariance without
spoiling the leading-power factorization. Despite these
challenges, factorization has been proven at the amplitude
and amplitude-squared level in a number of contexts [6–8].
Factorization formulas for cross sections of certain observ-
ables have been presented [9–16] allowing for resummation
of large logarithms associated with the pinch surface.
In deep-inelastic lepton-hadron scattering (DIS), the

pinch surface is particularly simple. In this case, factori-
zation has been understood since the 1970s and has been
used to compute phenomenologically important quantities,
namely the Dokshitzer-Gribov-Lipatov-Altarelli-Parisi
splitting functions [17–20]. These splitting functions
describe the leading-power behavior of certain amplitudes
when an additional collinear parton is added; they also
provide kernels for the renormalization group evolution of
parton distribution functions (PDFs). In DIS, the splitting
functions and PDF evolution can be rigorously defined
through an operator product expansion (OPE) [21,22],
which has led to their computation at two loops [23,24]
and three loops [25]. The OPE for DIS is possible because
it involves the matrix element of two currents whose
analytic structure in the complex plane is particularly
simple. That the same splitting functions apply for PDF
evolution in some other process, for example the Drell-Yan
process, can occasionally be shown by direct calculation
[26]. However, to show universality of the PDFs more
generally requires a general proof of hard-collinear fac-
torization. Subtleties associated with proton-proton scatter-
ing, where initial-state partons can be collinear to final-state
particles, complicate factorization [27–29]. Needless to say,
showing that the same PDFs apply to any scattering process
(if indeed they do) is an extremely important open question,
beyond the scope of this paper.
An alternative, more pragmatic, approach skips both the

pinch surface and the OPE and simply computes the
diagrams relevant for factorization directly, usually in
dimensionally regularized perturbation theory. Following
this approach, universality of collinear splittings was shown
at one loop by Bern and Chalmers in 1995 [30] by studying
collinear limits of five-point amplitudes in QCD. Hard-
collinear factorization can be written heuristically as

Mn ≅
p1∥���∥pm

Spðp1;…; pmÞ ·Mn−m ð1Þ

with Mn an n-external-particle matrix element, pμ
1…pμ

m

the external momenta which become collinear, and ≅
indicating the two sides agree at leading power. The
important point in this formula is that the splitting function
Spðp1;…; pmÞ has no dependence on any of the

noncollinear momenta in the process. Formulas like
Eq. (1) and the explicit formulas for Spðp1;…; pmÞ in d
dimensions are important for precision calculations in
QCD. We will give more-precise operator definitions of
the objects in this equation in Sec. XII A. In 1999, Kosower
proved Eq. (1) at leading color (large Nc) to all orders in
perturbation theory [31]. The factorization of IR (soft and
collinear) tree-level amplitudes to all orders was shown in
[32]. Reference [28] has discussed difficulties with Eq. (1)
when initial and final states are collinear. Avoiding such
situations, we will show that Eq. (1) holds to all orders in
QCD, at finite Nc. Indeed, hard-collinear factorization is a
corollary of the more general hard-soft-collinear factoriza-
tion formula we prove in this paper.
The factorization of soft emissions from generic matrix

elements is also believed to satisfy a formula similar to
Eq. (1). For example, in the limit that a single soft gluon of
momentum qμ becomes soft, tree-level amplitudes factorize
as [33]

Mn ≅
q soft

ϵμðqÞJμa ·Mn−1: ð2Þ

The soft current Jμa is an operator acting in color space. In
2000, Catani and Grazzini proved this formula at one loop,
with an explicit computation of Jμa, and conjectured that the
formula holds to all orders [34]. In 2013, the soft current
was computed at two loops in [35,36]. These calculations
were all done in dimensional regularization and have
applications in perturbative QCD, such as to the N3LO
Higgs-boson inclusive cross section. As with Eq. (1), our
general factorization formula contains the hard-soft fac-
torization embodied in Eq. (2) as a special case. We prove
this equation to all orders and provide regulator-indepen-
dent and gauge-invariant operator definitions of the objects
involved in Sec. XII B.
Remarkably, a factorization theorem valid at leading

power to all orders in αs is not strictly required for
resummation to all orders in αs of certain leading or
next-to-leading logarithms. For example, by combining
OðαsÞ collinear splitting functions, OðαsÞ soft-coherence
effects, and Oðα2sÞ Sudakov effects (associated with the
overlapping soft-collinear region), Catani, Marchesini
and Webber derived a powerful coherent-branching algo-
rithm [37]. Coherent branching is the backbone of the
Monte Carlo event generator approach to QCD. It has also
been used for resummation of many observables at the
next-to-leading logarithmic level [37–40]. A related obser-
vation is that QCD simplifies dramatically in the limit that
gluons are strongly ordered in energy [33,41,42], particu-
larly at large Nc. This approximation has led to the
resummation of certain leading logarithms, such as non-
global ones [43,44] which no other method has yet tamed.
A relatively recent approach to factorization is provided

by soft-collinear effective theory (SCET) [29,45–47]. The
idea behind SCET is to hypothesize which IR modes
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contribute to QCD scattering processes and to write fields
in QCD as sums of fields with soft or collinear quantum
numbers corresponding to the hypothesized modes.
Different components are assigned different scaling behav-
ior and the QCD Lagrangian is expanded to leading power
(or beyond). The resulting effective theory has Feynman
rules which are significantly more complicated than those
of QCD. These rules simplify somewhat after a field
redefinition which moves the soft-collinear interactions
from the Lagrangian into the operators. Proofs using the
effective Lagrangian are then carried out under the
assumption that the only modes necessary for the proof
are those in the effective theory. Therefore, proofs of
factorization in SCET must be interpreted with some care.
An advantage of the SCET approach is that with operator
definitions of the various objects, the hard-soft-collinear
decoupling is completely transparent and resummation of
large logarithms can be done through the renormalization
group. This has lead to precise predictions of jet observ-
ables at colliders [48–54]. Another advantage is that the
power counting makes it straightforward, in principle, to go
beyond leading power if desired. On the other hand, the
derivation of SCET has been done in a gauge in which the
physics is quite unintuitive, for example with polarization
vectors which are longitudinally polarized at leading power
(see [55]). SCET removes the soft-collinear double count-
ing by simply not summing over the zero-momentum bin in
the discrete sum over labels. A somewhat simpler formu-
lation of SCET was presented recently by Freedman and
Luke in [56] and connects more directly to the current
work, as discussed in Sec. XIII.
In this paper, we present and prove a factorization

formula for amplitudes in gauge theories, building upon
insights from many of the approaches discussed above. All
of the interesting features of this formula can be seen in the
simpler case of factorization for matrix elements of the
operator O ¼ 1

ðN=2Þ! jϕjN in scalar QED. There, our formula
reads

hXjOj0i ≅ CðSijÞ
hX1jϕ⋆W1j0i
h0jY†

1W1j0i
� � � hXN jW†

Nϕj0i
h0jW†

NYN j0i
× hXsjY†

1…YN j0i: ð3Þ

This formula applies to final states hXj which can be
partitioned into N regions of phase space such that the total
momentum Pμ

j in each region has an invariant mass which
is small compared to its energy. More explicitly, we
demand P2

j < λ2ðP0
jÞ2, where P0

j ¼ Ej is the energy of
the jet, for some number λ ≪ 1 which is used as a power-
counting parameter. For such states, the momentum qμ of
any particle has to be either collinear to one of N lightlike
directions, nμj , meaning nj · q < λ2q0, or soft, meaning
q0 < λ2P0

j . Thus we can write for the final state
hXj ¼ hX1…XN ;Xsj, where all the particles with

momentum collinear to nj are contained in the jet state
hXjj and the particles that are soft are in hXsj. This explains
the states in Eq. (3). The Wilson coefficient CðSijÞ is a
function only of the Lorentz-invariant combinations Sij ≡
ðPi þ PjÞ2 ≅ 2Pi · Pj of jet momenta Pμ

j in each direction;
it does not depend at all on the distribution of energy within
the jet or on the soft momenta and, therefore, it does not
depend on λ. The objects Yj are Wilson lines going from
the origin to infinity in the directions of the jets, and theWj
are Wilson lines in directions tμj only restricted not to point
in a direction close to that of the corresponding jet. We give
more precise definitions of the Wilson lines in Sec. II. The
symbol ≅ in Eq. (3) indicates that any IR-regulated
amplitude or IR-safe observable computed with the two
sides will agree at leading power in λ.
Equation (3) implies hard-collinear factorization

[Eq. (1)] and hard-soft factorization [Eq. (2)] as special
cases. For example, if a two-body final state hXj is modified
by adding a soft photon of momentum qμ, then one can
calculate the effect of this extra emission by taking the ratio
of the right-hand side of Eq. (3) with and without the
emission. Most of the terms drop out of the product, leaving

Jμa ¼ hϵμðpÞ; ajY†
1Y2j0i

h0jY†
1Y2j0i

¼ gsTa

�
pμ
2

p2 · q
−

pμ
1

p1 · q

�
þOðg3sÞ: ð4Þ

We will give general operator definitions for the splitting
amplitude Spðp1;…pNÞ and the soft current J and discuss
their universality in Sec. XII after we present the gener-
alization of Eq. (3) to QCD in Sec. XI [see Eq. (207)].
Beyond providing an all-orders proof of Eq. (3), as well as
an operator definition and proof of universality of Sp and J,
we hope that our general method of proof will itself be
useful in future discussions of formal questions on the
structure of perturbative amplitudes. We also hope that our
approach to factorization, and the ensuing discussion of
SCET in Sec. XIII, will help bridge the gap between the
traditional factorization methods in the QCD literature and
those of SCET, as well as provide further insight into the
formulation of SCET by Freedman and Luke in [56].
Equation (3) was derived at tree level in [55], a paper we

will refer to often and hereafter as [FS1]. At tree level, the
Wilson coefficient and the vacuum matrix elements in the
denominators of Eq. (3) are all 1 and the factorization
formula reduces to

hXjOj0i≅treehX1jϕ⋆W1j0i…hXN jW†
Nϕj0ihXsjY†

1…YN j0i
ð5Þ

in agreement with the formula from [FS1].
There are two differences between Eqs. (3) and (5), both

of which represent important physical effects. First, the
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nontrivial Wilson coefficient in the all-loop formula enables
the factorized expression to reproduce hard-virtual correc-
tions. Using Eq. (3), one can isolate the Wilson coefficient
using a trivial soft sector hXsj ¼ h0j and collinear sectors
with a single particle in each hXjj ¼ hpjj. Then λ ¼ 0
exactly, and

CðsijÞ ¼
hp1…pN jOj0i

hp1jϕ⋆W1j0i
h0jY†

1
W1j0i � � �

hpN jW†
Nϕj0i

h0jW†
NYN j0i h0jY

†
1…YN j0i

: ð6Þ

This is a statement of purely virtual factorization. Note that,
since λ ¼ 0 exactly, this is an equality, not just a leading-
power equivalence. The nontrivial content in this definition
is that the right-hand side is IR finite, which we shall prove.
Moreover, we shall prove that the Wilson coefficient is
independent of the states hX1…XN ;Xsj, so that Eq. (6)
unambiguously specifies CðsijÞ at leading power.
The second difference between tree-level factorization

and all-orders factorization is the denominators in Eq. (3).
These represent a type of zero-bin subtraction for loops.
Recall that for external states which are both soft and
collinear, one is free to put them in hXsj or hXjj—the
factorization formula holds with either choice. However,
since all integrals are taken over R1;3, the soft-collinear
region of loop momenta is included in both the soft and
collinear matrix elements in the factorized formula, and
thus their overlap must be removed. The term zero bin
stems from effective theory language, where one (formally)
chops up phase space into a discrete sum over soft and
collinear sectors. The zero bin is the soft-collinear overlap
sector in the sum, which must be subtracted not to double
count [57]. The equivalence between the zero-bin sub-
traction in SCET and dividing by a matrix element of
Wilson lines has been shown in [58].1

Besides the salient differences between the tree-level and
all-orders factorization formulas, there is an important
conceptual subtlety: starting at one loop, both sides of
Eq. (3) are IR divergent. Declaring two infinite quantities
equivalent at leading power is not as absurd as it first
sounds. With an IR regulator it is, of course, perfectly well
defined. Conceptually, one could interpret the leading-
power equivalence ≅ in this equation as meaning that
whenever an IR-safe observable is computed by integrating
over an appropriate collection of final states hXj, the two
sides of Eq. (3) produce the same cross section at leading
power in λ. For example, a typical IR-safe jet observable is
τ ¼ 1

Q2 ð
P

im
2
i þQEoutÞ: the sum over the jet masses and

the out-of-jet energy. Then dσ
dτ will agree when computed

with either side of Eq. (3) up to corrections subleading in τ.

With this in mind, one can still work at the amplitude level
without an explicit IR regulator.
To be clear, we do not require or expect the IR

divergences on the two sides of Eq. (3) to exactly agree.
Indeed, as soon as real-virtual diagrams contribute, the IR
divergences will not exactly agree. To see this note that the
real-emission graphs computed with Eq. (3) only agree at
leading power and so an IR-divergent virtual graph with a
subleading real emission tacked on will show up on the left-
hand side of Eq. (3) but not on the right-hand side. This
implies that the IR divergences can only precisely agree
when λ ¼ 0 (no emissions), as in Eq. (6).2 However,
subleading-power IR divergences will contribute at sub-
leading power to observables, so the disagreement of
subleading-power IR singularities does not invalidate the
leading-power equivalence in Eq. (3).
Regarding the power counting, our factorization theorem

will be proven at leading power in λ, a small parameter that
only depends on the external momentum in the state hXj.
We do not count powers of anything except the external
momentum in the matrix element under consideration.
When we discuss scaling of virtual momenta near IR-
sensitive regions, we will talk about scaling with κ (see
Sec. II), but only to motivate dropping certain loop
amplitudes completely. Our proof actually holds at leading
power in N þ 1 separate power-counting parameters, λic
and λs, one for each collinear sector and another for the soft.
It will be clear that our proof does not require λic ¼ λs, and
we can therefore derive the factorization theorem (at
simultaneous leading power in all small parameters) for
different types of soft and collinear momentum scalings. As
we discuss in Sec. XIII this implies that our factorization
formula unifies what are considered to be two separate
effective field theories in the literature, namely SCETI
and SCETII.
This paper attempts to give some intuition for the

factorization formula rather than simply a proof. We
therefore take our time with the presentation, including
many examples. Section II establishes some of our notation
and reviews some basic concepts. Sections III and IV give
examples. Although the proof does not rely on these two
example sections, the special cases considered illustrate
many of the issues which come up in the proof and are
useful for making some of the abstractions more concrete.
Section V outlines the proof but has no results. The proof
begins in earnest in Sec. VI. In this section we explain how
Feynman diagrams can be written as sums of colored
diagrams with red lines engendering soft sensitivity and
blue lines soft insensitive. This section would be quite short
if not for the examples we include. Section VII proves a set

1Conveniently (or misleadingly) when dimensional regulari-
zation is used to control both the UV and IR divergences, the
vacuum matrix elements of Wilson lines are all scaleless and
identically vanish. Thus, the zero-bin subtraction is easy to miss,
as it was in many early SCET papers.

2One can of course add subleading-power operators to the
right-hand side of Eq. (3) so that subleading IR divergences
cancel. To get all the IR divergences to cancel, one would need an
infinite number of operators and the factorized expression would
be identical to the full theory.
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of lemmas which establish the physical-gauge reduced-
diagram picture manifesting hard factorization. The differ-
ence between our reduced diagrams and reduced diagrams
in the literature (see for example [3–5]) is that our diagrams
correspond to specific functions of finite-external momenta
computed through loop integrals over all of R1;3, while the
traditional reduced diagrams describe only the pinch sur-
face where all virtual momenta are either exactly zero or
exactly proportional to an external momentum. To prove
soft-collinear factorization, we introduce a special gauge
we call factorization gauge in Sec. VIII. The soft-collinear
decoupling proof is given in Sec. IX. The rest of the paper
discusses the generalization to QCD, some special cases,
the QCD splitting functions and soft currents, the con-
nection to SCET, and a brief look forward.

II. PRELIMINARIES

To begin, we establish in this section some of the basic
features of amplitudes we will exploit for factorization. We
first review the importance of soft and collinear momenta.
We then discuss how soft and collinear regions of virtual
momenta can be separated without chopping up the loop
momenta into sectors.
Let us begin with some terminology. We will distinguish

soft divergences from collinear divergences, both of which
are defined in Sec. II B. We refer to IR divergences as either
soft or collinear. We use λ to power count external momenta,
as discussed in Sec. II A. We use κ to power count loop
momenta. The notation p∥q is used to denote when two
momenta, either real or virtual, are nearly collinear according
to the appropriate power counting. The notation p ∝ q is
reserved for when two momenta are exactly collinear, that is,
when they are proportional to each other. Following [FS1],
the symbol ≅ indicates that two expressions agree at leading
power in the limit of external particles becoming soft or
collinear in an amplitude. That is, it refers to power counting
in λ, not κ. More precisely

A ≅ B⇔
A
B
¼ 1þOðλÞ: ð7Þ

We also define

A ≅IR B⇔
A
B
¼ Oðλ0Þ: ð8Þ

This less restrictive IR equivalence will be used in Sec. IX to
avoid keeping track of modifications of the hard amplitude
along the steps of soft-collinear factorization.
We are often interested not only in whether a loop is IR

divergent, but whether it would be IR divergent if two
external particles were proportional, or if an external
momentum were exactly zero. If this happens, we say
the loop is IR sensitive. An IR-sensitive loop is IR divergent
when λ ¼ 0 (though it need not be for λ > 0). IR sensitivity

is discussed more in Sec. II B with an example given in
Sec. IV B.

A. Power counting for external momenta

A key observation which makes factorization important
is that soft and collinear momenta dominate cross sections.
At tree level, this is easy to see. Consider a process with
outgoing final-state momenta pμ

i of zero mass. At tree level,
each intermediate momentum kμ must be a linear combi-
nation of external momenta pμ

i : k
μ ¼ pμ

1 þ � � � þ pμ
n. Thus

k2 ¼ P
i;jpi · pj. Since each pi · pj is positive definite, k2

can only vanish if pμ
i is exactly proportional to p

μ
j for each i

and j in the sum, or if a pμ
i has zero energy. The dominant

regions of phase space where the propagators are large are,
therefore, the regions where momenta are collinear: pi∥pj,
or soft: Ei ≪ Q, with Q the center-of-mass energy. This is
discussed extensively in [FS1].
We, therefore, focus on final states hXj partitioned into

collinear sectors hX1j…hXN j and a single soft sector hXsj.
Let mi and Ei be the invariant mass and energy, respec-
tively, of the net momentum Pμ

i ¼
P

sectori p
μ
j in each

sector, and define λi ¼ mi=Ei for the collinear sectors
and λs ¼ Es=Q for the soft sector. We assume λi ≪ 1 for
every sector, so that the contribution of the state hXj ¼
hX1j…hXN jhXsj to a cross section will scale like inverse
powers of all λi. It is for these states that hard-soft-collinear
factorization holds.

B. Power counting for virtual momenta

The soft and collinear regions of phase space are also
important because they lead to IR divergences in loops. IR
divergences come from virtual-particle momenta going on
shell. Let us call loop momenta those being integrated over.
That is, denoting the loop momenta as kμi , the loop measure

is
Q

i
d4ki
ð2πÞ4. Any virtual momentum lμ in a Feynman diagram

is a linear combination of loop momenta and external
momenta: lμðki; piÞ. Thus, for a virtual propagator to blow
up, the virtual momentum must go on shell, which makes
the loop momentum either soft or collinear to one of the jet
directions. Since we associate infrared divergences with
virtual lines, it is convenient to route the momenta so that
the virtual momentum in question is one of the loop
momenta, kμ. We say a given diagram has a soft divergence
associated with kμ if it is still divergent when each
component of kμ is restricted to be smaller than some
arbitrarily small scale, κ2Q, for any κ > 0. A collinear
divergence requires the specification of a finite, nonzero
lightlike momentum, pμ; the singularity is then present in
any integration region containing pμ. We take infrared
divergence to mean either soft or collinear.
A shortcut to determining whether a given integral is IR

divergent is through its scaling behavior, which can be
understood in light-cone coordinates. Given two distinct
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lightlike directions nμa and nμb, we can uniquely decompose
any 4-vector kμ as

kμ ¼ kbn
μ
a þ kan

μ
b þ kμ⊥ ð9Þ

with kμ⊥ defined by this equation and

ka ¼
na · k
na · nb

; kb ¼
nb · k
na · nb

: ð10Þ

We can then consider rescaling the components by factors
of 0 < κ < 1 raised to various powers:

kμ → κbkbn
μ
a þ κakan

μ
b þ κckμ⊥ with

a; b ≥ 0; aþ b > 0; c > 0: ð11Þ

We require a; b ≥ 0, c > 0 and aþ b > 0, so that as κ → 0
these rescalings zoom in on a possibly singular region. For
example, a;b;c>0 scales kμ → 0 (the soft region), whereas
b ¼ 0 and a; c > 0 scales kμ → kbn

μ
a (the a-collinear

region). We say an integral is power-counting finite if,
including the measure, it scales like κ to a positive power
under a given rescaling of this form.
The purpose of these rescalings is that they are related to

whether or not a diagram is infrared divergent.
Conjecture (power-counting finiteness conjecture).—A

Feynman integral is infrared finite if and only if it scales as a
positive power of κ under all possible rescalings in Eq. (11).
That an infrared-finite Feynman integral scales as a

positive power of κ for any rescaling is easy to prove: a
convergent integral must have a convergent Riemann sum.
The converse, that scaling implies infrared finiteness, is also
quite logical. We are certainly not aware of any counter-
examples. Nor do we know of a rigorous proof. This
conjecture is assumed to hold in practically every factori-
zation proof, and we assume it too. For a discussion of a
slightly stronger versionof this conjecture, see p. 428of [59].
A convenient simplification is that it is not necessary to

consider all possible values of a; b; c ≥ 0. In determining
the leading power of κ with a given scaling, all that matters
is which terms can be dropped with respect to which other
terms—any scaling that drops the same terms gives the
same integrand with the same singularities. Between two
power-counting regions that allow two different terms to be
dropped lies a boundary where both terms must be kept.
Because more terms must be kept on the boundary, if a
boundary region is power-counting finite, then the regions
it bounds must also be power-counting finite. This sim-
plifies the types of power counting we need to consider.
In a given Feynman loop diagram, we always have one

propagator whose denominator is k2 (by our choice of
momentum routing). Under the rescaling in Eq. (11),

k2 ¼ 2na · nbkakb þ k2⊥ → κaþb2na · nbkakb þ κ2ck2⊥:
ð12Þ

So, if aþ b > 2c, we may drop kakb in place of k2⊥, and if
aþ b < 2c, k2⊥ can be dropped with respect to kakb. We
might also have denominators ðk − paÞ2 for some pμ

a. If p
μ
a

is not lightlike, then ðk − paÞ2 ∼ p2
a ∼ κ0. A more relevant

case is when pμ
a is lightlike. Then it makes sense to choose

one of our basis vectors nμa to point along p
μ
a. In this case, a

term k · pa → κak · pa may appear in a denominator.
Similarly, k · pb → κbk · pb may appear. Thus there are
four relevant scaling behaviors:

kakb ∼ κaþb; k2⊥ ∼ κ2c; k · pa ∼ κa; k · pb ∼ κb:

ð13Þ

In expanding for small κ, all we do is drop some of these
when they are smaller than others. If an integral is power-
counting finite when two terms are of comparable size, it is
necessarily power-counting finite when one of them is
dropped. So we can restrict our considerations to scalings
where two (or more) of these terms are comparable.
There are six regions where two of the scalings in

Eq. (13) are equal. These form the lines in Fig. 1. For
example, one of the diagonal lines has aþ b ¼ 2c so that
kakb ∼ k2⊥ and k2 → κ2ck2. This scaling is special as it
keeps on-shell momenta on shell. In particular, this line
shows the only relevant scalings for external momenta. The
scalings where two lines intersect are the four solid dots. If
an integral is infrared finite at all of these points, it is
automatically infrared finite under any scaling. The points
in the corners come from three scalings being equal and
the center point at a ¼ b ¼ c has k · pa ∼ k · pb and
kakb ∼ k2⊥. The most overlapping region, where all four
scalings are equal, requires a ¼ b ¼ c ¼ 0. This is hard

FIG. 1 (color online). Scalings, k ∼ ðκb; κa; κcÞ, that could give
power-counting IR divergences.
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scaling which does not tell us about infrared divergences
since it does not zoom in on a possibly singular region. The
point at the origin in Fig. 1, where a ¼ b ¼ 0 but c ≠ 0,
also cannot produce infrared divergences since for κ ¼ 0,
kμ is off shell. We are also free to choose one of a; b; c
arbitrarily if it is not zero; for example, we can set c ¼ 1 by
replacing κ by κ0 ¼ κ1=c.
Thus, we can restrict the discussion to the scalings listed

in Table I. Of these, hard scaling does not produce infrared
divergences. Soft and collinear scaling both imply
k2 → κ2k2. In particular, timelike, spacelike and lightlike
momenta stay timelike, spacelike and lightlike, respec-
tively. Glauber scaling, on the other hand, turns timelike
and lightlike momenta into spacelike momenta as κ → 0,
preserving only the spacelike nature.
The set of scalings we need to consider is even smaller

for the processes that have no collinear directions in the
initial state. When there are only final-state particles, for
example in a decay, we know the infrared divergences must
cancel among real and virtual corrections at each order in
αs. The reason infrared finiteness can be proven in this case
is because, by unitarity, a decay is the imaginary part of a
1 → 1 total cross section whose analytic structure is
particularly simple. Not only does infrared finiteness hold,
but there is a one-to-one correspondence between the
momenta producing infrared divergences in real-emission
contributions and the virtual contributions. This is easiest to
see using old-fashioned perturbation theory (see Chap. 13
of [59]). In a real-emission graph with only final-state
particles, all the virtual lines without loop momenta flowing
through them are timelike. As we take λ → 0 these timelike
momenta approach the light cone from within, and give rise
to soft and collinear real-emission phase-space singular-
ities. Because these phase-space divergences come from
timelike momenta becoming lightlike, there cannot be any
phase-space singularities with Glauber scaling, which as
κ → 0 makes timelike momenta spacelike. Then, by infra-
red finiteness of the total decay rate, there cannot be
Glauber singularities in loop integrals either. We conclude
that, when considering only final-state collinear directions,
only soft and collinear scalings can possibly produce
infrared divergences.
When there are collinear particles in the initial state, we

expect that unitarity-based arguments should still hold,
even if they have not yet been rigorously proven. The

complication is that with collinear particles in the initial
state, the virtual momenta in real-emission graphs can be
spacelike. In particular, a virtual particle with momentum
k ¼ pμ − p0μ connecting an initial-state particle of
momenta pμ to a final-state particle of momentum p0μ
can be spacelike and have Glauber scaling if pμ is collinear
to p0μ. Thus Glauber scaling is important for forward
scattering. In this paper, we will only have final-state
collinear directions, so we can ignore Glauber scaling. A
technical pinch-analysis proof of the irrelevance of Glauber
scaling for decay processes can be found in Chap. 5 of [60].
We conclude that we only need to consider soft scaling,

and collinear scaling in each relevant direction. If upon
kμ → κ2kμ, an integral scales like κ to a positive power, the
integral is not soft divergent. If it scales like κ0 (it cannot
scale like κ to a negative power; see [3] or Lemma 2), there
might be a soft divergence. Collinear divergences are
determined by rescaling kμ as

kμ →
nb · k
na · nb

nμa þ κ2
nb · k
na · nb

nμb þ κkμ⊥: ð14Þ

If the integral scales like κ to a nonpositive power, there is a
potential collinear divergence. Otherwise, the integral is
collinear finite in the nμa direction.
In practice, Eq. (14) implies that to find a collinear

divergence associated with the direction pμ of an external
momentum, we rescale

d4k → κ4d4k;

k2 → κ2k2;

k · p → κ2k · p: ð15Þ

If q is another loop momenta, then the scaling depends on
whether q is being consider collinear to p or not:

k · q → k · q ×

�
κ2; q∥p;
1; q∦p:

ð16Þ

For collinear-sensitive power counting (see below), the
same scaling rules apply (depending on whether q∥p or
not) if q is a sum of external momenta.

TABLE I. Scalings relevant for factorization.

Exponents Conditions Momenta scaling Name

ða; b; cÞ ¼ ð0; 0; 0Þ: kakb ∼ k2⊥ ∼ k · pa ∼ k · pb kμ ∼ ð1; 1; 1Þ Hard
ða; b; cÞ ¼ ð2; 0; 1Þ: kakb ∼ k2⊥ ∼ k · pa kμ ∼ ð1; κ2; κÞ pa-collinear
ða; b; cÞ ¼ ð0; 2; 1Þ: kakb ∼ k2⊥ ∼ k · pb kμ ∼ ðκ2; 1; κÞ pb-collinear
ða; b; cÞ ¼ ð2; 2; 2Þ: ðkakb ∼ k2⊥Þ& ðk · pa ∼ k · pbÞ kμ ∼ ðκ2; κ2; κ2Þ Soft
ða; b; cÞ ¼ ð2; 2; 1Þ: k2⊥ ∼ k · pa ∼ k · pb kμ ∼ ðκ2; κ2; κÞ Glauber
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As an example, consider the one-loop scalar integral:

I ¼
Z

d4k
ð2πÞ4

1

ðk2 þ iεÞððp1 þ kÞ2 þ iεÞððp2 þ kÞ2 þ iεÞ
ð17Þ

with p2
1 ¼ p2

2 ¼ 0. In the soft limit,

d4k
k2ðp1 þ kÞ2ðp2 þ kÞ2

→
k soft κ8d4k

κ4k2ðκ22p1 · kþ κ4k2Þðκ22p2 · kþ κ4k2Þ

¼ d4k
k2ð2p1 · kÞð2p2 · kÞ

κ0 þOðκ2Þ: ð18Þ

Thus there is a potential logarithmic soft divergence in this
integral. In the limit where k∥p1, we choose n

μ
a ¼ pμ

1. Then

d4k
k2ðp1 þ kÞ2ðp2 þ kÞ2

→
k∥p1 κ4d4k

κ2k2ðκ22p1 · kþ κ2k2Þð2p2 · kþ κ2k2Þ

¼ d4k
k2ðp1 þ kÞ22p2 · k

κ0 þOðκ2Þ: ð19Þ

Thus, there is a potential collinear divergence in the pμ
1

direction. By the symmetry of the integral, there is a
potential collinear divergence in the pμ

2 direction as well.
In some cases, an integral does not have a divergence

associated with a specific power counting despite the
integrand scaling like κ0 (for example, the Glauber scaling
in decay processes). Indeed, one can often deform the
integration contour away from the singularity. If this
deformation cannot be done, the singularity is said to be
pinched. While there is a close connection between our
approach and the results of a pinch analysis, we can
conveniently avoid the discussion of contour deformation
all together. Although we will use strongly that some
diagrams with on-shell internal lines are not soft sensitive,
we will not directly use the Landau equations [1] or their
interpretation by Coleman and Norton [2] in our proof.
Instead, we will show that two expressions agree at leading
power in λ, including both infrared-divergent and infrared-
finite contributions. The connection between infrared
divergences and the leading power in λ is through the
notion of infrared sensitivity which we discuss next.

C. Infrared sensitivity

We are often interested not in actually divergent inte-
grals, but in integrals which would be divergent if λ ¼ 0.
That is, they would scale like κ to a nonpositive power if
two external collinear particles were exactly proportional,

or if a soft external particle had exactly zero momenta. We
generalize the concept of an IR divergence to encompass
such situations by saying that a loop is IR sensitive if it is IR
divergent when λ ¼ 0. Of course, a loop that is IR divergent
(for any λ) is also IR sensitive. For a loop to be infinite at
λ ¼ 0 but finite for λ ≠ 0, we know λmust be acting like an
IR regulator. For example,

Z
1

0

dκ
1

κ þ λ
¼ ln

λþ 1

λ
≅ − ln λ: ð20Þ

The equivalent in a real diagram with p∥q might
be ln λ ¼ ln ðpþqÞ2

Q2 .
When computing probabilities of IR-safe physical

observables we square the amplitude and integrate over
phase space of the external particles. The integration over
phase space encloses the region where λ ¼ 0; in fact, it is this
region that cancels the IR divergences in virtual loops. Thus,
to preserve IR finiteness of physical observables, we must
treat loops that are IR divergent when λ ¼ 0 the same as we
do loops that are IR divergent for any λ. Therefore, IR
sensitivity is the appropriate concept to use when discussing
loops and emissions together, rather than IR divergence.
When power counting IR-sensitive loops, instead of

setting λ ¼ 0 and counting powers of κ, we can simply
count powers of κ and λ together. By power counting λ and
κ as of the same order, we ensure that all the terms are kept
that are necessary for the cancellation of IR divergences
between real and virtual particles at leading power of a
physical IR-safe observable.
For the power counting, we only count powers. This

means that we treat ln λ as being the same order as λ0.
Therefore, a logarithmically divergent integral can be of the
same order as a finite integral. Examples are given in
Sec. IV B, where we see that we must treat

1

λ
≅
ln λ
λ

≅
log divergent

λ
: ð21Þ

The point is that power suppression really requires an extra
power of λ. This is consistent with the leading power of an
IR-safe cumulant reproducing both the constant term and
the terms which are powers of logarithms:

Rðαs; λÞ ¼ fðαsÞ þ f1ðαsÞ ln λþ f2ðαsÞln2λþ � � � : ð22Þ

In a perturbative fixed-order or resummed calculation,
certain terms in this expansion are reproduced, but the
leading power factorization formula is capable of repro-
ducing every term in such an expansion.

D. Light-cone gauge

Traditionally, light-cone gauge has been particularly
useful for studying soft-collinear factorization. In light-
cone gauge, the gluon Feynman propagator is
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Dab;μν
F ðkÞ ¼ δab

iΠμνðkÞ
k2 þ iε

ð23Þ

with

ΠμνðkÞ ¼ −gμν þ rμkν þ rνkμ

r · k
; ð24Þ

where rμ is lightlike and its overall scale does not matter.
The propagator numerator ΠμνðkÞ satisfies

rμΠμνðkÞ ¼ 0 ð25Þ

and

kμΠμνðkÞ ¼ k2

r · k
rν; ð26Þ

which vanishes as k2 → 0.
Equation (26) produces a crucial feature of light-cone

gauge: if k ∝ p, where pμ is some lightlike direction, then
pμΠμνðkÞ ¼ 0. In particular, near a collinear singularity, a
numerator p · ΠðkÞ gives a suppression factor of κ. To be
more explicit, we will often find numerator structures from
virtual gluons of the form p · ΠðkÞ · q for some momenta p
and q. To study the limit when k∥p, we use Eq. (14) with
nμ ¼ pμ and rμ generic. Then

p · ΠðkÞ · q

¼ −p · qþ r · pk · qþ r · qk · p
r · k

→ −p · q

þ p · qr · kþ κ2p · kr · qþ κr · pk⊥ · qþ κ2r · qk · p
r · k

¼ κ

�
r · pk⊥ · q

r · k
þ 2κ

p · kr · q
r · k

�
: ð27Þ

This extra factor of κ strongly restricts the type of diagrams
which are collinear sensitive in light-cone gauge; it makes
many graphs finite (or collinear insensitive) which would
be divergent if the numerator structure scaled like κ0.
Light-cone gauges are sometimes called physical gauges,

as the ghosts decouple and the propagator numerator is a
sum over physical polarizations when the gluon goes on
shell:

ΠμνðkÞ ¼ −gμν þ rμkν þ rνkμ

r · k
⟶
k2¼0X

h¼�
ϵμhðk; rÞϵνhðk; rÞ:

ð28Þ
Recall that the basis of gluon polarizations ϵμ�ðk; rÞ is
uniquely specified by a reference vector rμ to which the
polarizations are orthogonal, and that the polarizations
satisfy rμϵ

μ
�ðk; rÞ ¼ kμϵ

μ
�ðk; rÞ ¼ 0. The factor of κ coming

from the numerator of the light-cone gauge propagator in

Eq. (27) is similar to the extra factor of λ suppression of
collinear-emission diagrams in generic-r compared to,
say, their scalar field theory counterparts [FS1]. That is,
p · ΠðkÞ ∼ κ when k∥p can be thought of, via Eq. (28), as a
consequence of the transversality of the polarization vectors,
which implies that p · ϵðqÞ ∼ λ when p∥q.
In [FS1], the freedom to choose reference vectors for the

gluon polarizations was used extensively to prove factori-
zation at tree level. There, it was shown that two important
choices of r were

generic-r∶ r∦pj for any j ð29Þ

and

collinear-r∶ r∥pj for some j: ð30Þ

For example, choosing collinear-r for the polarizations of
the soft gluons and generic-r for the polarizations of the
collinear gluons simplified the disentangling of soft and
collinear radiation.
For loops, we can of course choose r generic (not parallel

to any pj), which we call a generic-light-cone gauge, or we
can choose r∥pj for some pj, which we call collinear-light-
cone gauge. To prove factorization at loop level, however, it
will be helpful to be able to choose light-cone gauges for
the soft-virtual gluons and collinear-virtual gluons sepa-
rately. We introduce a gauge called factorization gauge in
Sec. VIII which provides this flexibility. We will refer to
either light-cone gauge with generic choice of r or
factorization gauge with generic choice of rc as physical
gauges. This is not quite a standard usage since (i) all light-
cone gauges are usually considered physical and (ii) ghosts
do not completely decouple in factorization gauge (see
Sec. VIII B). Since our definition is morally equivalent to
the usual definition, we do not feel a new term is needed.

E. Wilson lines

Wilson lines describe the radiation produced by a charged
particle moving along a given path in the semiclassical limit.
The semiclassical limit applies when the backreaction of the
radiation on the particle can be neglected, so that the particle
behaves like a source of charge. In particular, this limit holds
when the particle is much more energetic than any of the
radiation, that is, when the radiation is soft. The physical
picture of how Wilson lines arise in the soft and collinear
limits of Yang-Mills theories is discussed in [FS1].
We define a soft Wilson line in the nμj by

Y†
jðxÞ ¼ P

�
exp

�
ig
Z

∞

0

dsnj · Aðxν þ snνjÞe−εs
��

; ð31Þ

where P denotes path ordering and Aμ ¼ Aa
μTa is the gauge

field in the fundamental representation (Wilson lines in
other representations are a straightforward generalization).

HARD-SOFT-COLLINEAR FACTORIZATION TO ALL ORDERS PHYSICAL REVIEW D 90, 105020 (2014)

105020-9



This Wilson line is outgoing because the position where the
gauge field AμðxÞ is evaluated goes from x to ∞ along the
nμj direction. We write Y†

j for Wilson lines for outgoing
particles, and Yj for outgoing antiparticles (as ψ̄ creates
outgoing quarks and ψ creates outgoing antiquarks).
Explicitly,

YjðxÞ ¼ P̄

�
exp

�
−ig

Z
∞

0

dsnj · Aðxν þ snνjÞe−εs
��

;

ð32Þ
where P̄ denotes antipath ordering. We will not bother to
discuss incoming Wilson lines in this paper; they are
defined in [FS1].
Wilson lines can be in any representation. For example,

an adjoint Wilson line can be written as

Y†
jðxÞ ¼ P

�
exp

�
ig
Z

∞

0

dsnj · Aa
μðxþ snjÞTa

adje
−ϵs

��
;

ð33Þ

where ðTa
adjÞbc ¼ ifbac are the adjoint-representation group

generators. Since

ðTc
adjÞabTb ¼ ½Ta; Tc�; ð34Þ

fundamental and adjoint Wilson lines are related as

Y†
jT

aYj ¼ Yab
j Tb: ð35Þ

This identity is occasionally useful to write all of the
Wilson lines for QCD in terms of fundamental and
antifundamental Wilson lines.
From a practical perspective, the most important facts

about Wilson lines for this paper are their Feynman rules
and their gauge-transformation properties. Their Feynman
rules are exactly the eikonal rules, coming from the soft
limit of a QCD interaction:

(36)

with the correct iϵ prescription. Here hk; μ; ajY†
j j0i means

the off-shell matrix element for a gluon with polarization
ϵμðkÞ and color a with the polarization vector stripped off.
That Y†

n gives the eikonal Feynman rules persists at any
order [FS1]. The e�εs factors in the Wilson lines are
required to produce the correct iε prescription for the
Feynman rules (see [FS1]).
We denote collinear Wilson lines as W†

j . They are
mathematically identical to soft Wilson lines but the path
is different. While soft Wilson lines point in the direction of
the particle they represent, collinear Wilson lines point in
some other direction tμj :

W†
jðxÞ ¼ P

�
exp

�
ig
Z

∞

0

dstj · Aðxν þ stνjÞe−εs
��

: ð37Þ

We always take tμj to not be collinear to n
μ
j , that is, tj∦nj. As

discussed in [FS1] and as we will see here, while soft
Wilson lines account for the soft radiation of a particle,
collinear Wilson lines account for the collinear radiation
from all the other particles.

III. EXAMPLE 1: ONE-LOOP WILSON
COEFFICIENT

The general proof of factorization will be presented
starting in Sec. V. To understand this proof, we first provide

two examples. For the first example, in this section we
discuss factorization for hp1; p2jϕ⋆ϕj0i at one-loop order.
This is perhaps the simplest one-loop amplitude for which
factorization holds. What we will show here at one-loop
order is that

hp1; p2jϕ⋆ϕj0i ¼ Cðs12Þ
hp1jϕ⋆W1j0i
h0jY†

1W1j0i
hp2jW†

2ϕj0i
h0jW†

2Y2j0i
× h0jY†

1Y2j0i; ð38Þ

where s12 ¼ ðp1 þ p2Þ2. Note that Eq. (38) is an exact
equality, not a leading-power equivalence, because there
are no particles collinear to each other and no soft particles,
so λ ¼ 0. It is also somewhat trivial: it is just a definition of
Cðs12Þ. The nontrivial part is showing that Cðs12Þ is IR
finite. The next example, in Sec. IV, discusses what
happens when one of the sectors has two collinear particles
and provides a nontrivial check on the universality
of Cðs12Þ.

A. Overview of graphs

There are five graphs contributing to the left-hand side of
Eq. (38) at one-loop order. Four of them involve only one
leg:
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(39)

and the final diagram connects both legs:

(40)

For the right-hand side of Eq. (38), there are a number of graphs involving emissions from the collinear Wilson linesWi.
Recall from Eq. (37) that the Wilson lines are defined with a certain direction tμi . For simplicity, let us choose t1 ¼ t2 ¼ r to
be some random direction not collinear to either p1 or p2. Then, if we work in a generic-light-cone gauge with the same
reference vector rμ, all of the graphs involving Wi precisely vanish. The remaining nonvanishing diagrams are

(41)

and

(42)

and those involving soft Wilson lines Yi. The diagrams in Eqs. (41) and (42) precisely agree with those in Eq. (39). Let us
denote the diagrams coming from soft Wilson lines with the subscript soft-sens. So the remaining terms are

Cðs12Þ
h0jY†

1Y2j0i
h0jY†

1j0ih0jY2j0i
¼ Cðs12Þ

1þ Gð11Þ
soft-sens þ Gð22Þ

soft-sens þGð12Þ
soft-sens

ð1þGð11Þ
soft-sensÞð1þ Gð22Þ

soft-sensÞ
þOðα2Þ

¼ Cðs12Þ½1þ Gð12Þ
soft-sens þOðα2Þ�; ð43Þ

where GðijÞ
soft-sens is the graph found by contracting Yi with Yj. Note that the Feynman rules from the soft Wilson line are

eikonal, so there are no four-point vertices, and therefore, no Gb-type graphs. Solving for Cðs12Þ we find

Cðs12Þ ¼ 1þ Gð12Þ
not-soft-sens þOðα2Þ; ð44Þ

where

Gð12Þ
not-soft-sens ≡Gð12Þ −Gð12Þ

soft-sens: ð45Þ

Thus, to verify Eq. (38) at one-loop order all we need to show is that Gð12Þ
not-soft-sens is IR finite.

HARD-SOFT-COLLINEAR FACTORIZATION TO ALL ORDERS PHYSICAL REVIEW D 90, 105020 (2014)

105020-11



B. IR finiteness

The graph of interest is

(46)

where Πμν is given in Eq. (24) in light-cone gauge. The soft
graph from the matrix element of Wilson lines is

Gð12Þ
soft-sens ¼

Z
d4k
ð2πÞ4

−ig2p1 · ΠðkÞ · p2

ð−p1 · kþ iεÞðk2 þ iεÞðp2 · kþ iεÞ :

ð47Þ

Note that Eq. (47) can be obtained from Eq. (46) with the
eikonal approximation. More precisely, we can use the
identity

1

ðpþ kÞ2 þ iε
¼ 1

2p · kþ iε

�
1 −

k2

ðpþ kÞ2 þ iε

�
; ð48Þ

which holds at p2 ¼ 0. This identity lets us replace
propagators in the full graph with a sum of eikonal
propagators, plus a correction proportional to k2. It is
similar to the Grammar-Yennie decomposition [61] used
in many factorization proofs in QCD [4,5,62]. Since the
original graph was logarithmically divergent in the soft
limit (k → 0), the k2 factors will make the remainder
soft finite. That is, Gð12Þ

not-soft-sens ¼ Gð12Þ −Gð12Þ
soft-sens is soft

finite.
To see collinear finiteness, we will show that in a

generic-light-cone gauge both Gð12Þ and Gð12Þ
soft-sens are

separately collinear finite. Consider the case kμ∥pμ
1.

Then under collinear rescaling k2 → κ2k2 and k · p1 →
κ2k · p1. If we ignore the numerator in Eq. (46), the
diagram would scale like κ0 and be logarithmically
divergent. For the scaling of the numerator, we note that
we are exactly in the situation where Eq. (27) applies.
That is,

p1 · ΠðkÞ · p2 ¼ κ
r · p1k⊥ · p2

r · k
þOðκ2Þ ð49Þ

for a generic choice of light-cone gauge reference vector
rμ. This extra factor of κ makes the Gð12Þ convergent
when k∥p1. A similar analysis for k∥p2 shows that Gð12Þ
is completely collinear finite. The same argument shows

that Gð12Þ
soft-sens is collinear finite, and therefore Gð12Þ

not-soft-sens
has no IR singularities and Eq. (38) is verified at one-
loop order.

For the IR-finite contribution from Gð12Þ
not-soft-sens, which

contributes to the Wilson coefficient, we introduce the
diagrammatic notation

(50)

This is a type of reduced diagram we call hard. A hard
diagram is IR finite, but relevant at leading power.

C. Explicit result and tμj independence

To calculate the Wilson coefficient, rather than scalar
QED, we consider the more phenomenologically relevant
case of a vector current decaying to a qq̄ pair, where
O ¼ ψ̄γμψ . For this case, the factorization formula states

hp1;p2jψ̄γμψ j0i ≅ Cðs12Þγμαβ
hp1jψ̄W1j0iα
h0jY†

1W1j0i
hp2jW†

2ψ j0iβ
h0jW†

2Y2j0i
× h0jY†

1Y2j0i; ð51Þ

where α and β are Dirac spin indices. To calculate the
Wilson coefficient, it is easiest to use Feynman gauge rather
than light-cone gauge, where all of the Wilson line self-
interactions vanish. In pure dimensional regularization, all
of the diagrams from the factorized expression are scaleless
and exactly vanish. The Wilson coefficient is therefore
given by Gð12Þ with the 1

ε and 1
ε2

terms dropped (the UV

divergences are removed with MS counterterms and the IR
cancel in the matching). The Wilson coefficient then comes
out to [48,63–65]

Cðs12Þ ¼ 1 −
α

4π

�
8 −

π2

6
þ ln2

−μ2

s12
þ 3 ln

−μ2

s12

�
þOðα2Þ:

ð52Þ

The Wilson coefficient result is independent of both the IR
regulator and the collinear Wilson line directions tμ1 and tμ2.
To see the tμ1 and tμ2 independence more nontrivially and

the importance of the zero-bin subtraction, one must use an
IR regulator other than dimensional regularization.
Following [57] on the zero-bin subtraction in SCET (where
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more details are given) we consider adding an off-shellness
regulator. The differences between our approach and SCET
are that (i) we use an operator definition of the zero-bin
subtraction; (ii) we do not have separate soft and collinear
modes: all interactions are those in full QCD; and (iii) we
allow for the collinear Wilson lines to point in arbitrary
directions tμj . These differences are all minor, and the results
can essentially be drawn from Eqs. (65)–(70) of [57] with
small modifications.
We can decompose any momentum into light-cone

coordinates using the directions in the soft and collinear
Wilson lines, nμ1 and tμ1:

pμ ¼ p · t1
n1 · t1

nμ1 þ
p · n1
n1 · t1

tμ1 þ pμ
⊥: ð53Þ

The off-shellness regulator keeps n1 · p1 > 0 even if p1 ∝
n1 as in the external state. Thus

p2
1 ¼

2

n1 · t1
ðn1 · p1Þðt1 · p1Þ > 0: ð54Þ

We could also have decomposed with respect to nμ2 and tμ2.
If we perform the calculation in 4 − 2ε dimensions, ε will
regulate the UV and soft divergences, with the collinear
divergences cut off by the off-shellness.
First, consider the self-energy graphs on the external

legs. These are trivially identical on both sides of Eq. (51)
(with any regulator) and thus they can be ignored in the
matching. Although this is also true in label SCET, it is not
trivially true, since the Feynman rules for collinear fields
are different from full theory fields.
For the remaining graphs, we present only the double-

logarithmic terms for simplicity, since these manifest all the
interesting cancellation. On the left-hand side of Eq. (51),
the only full-theory graph needed is

(55)

where ¼DL means equal at double-logarithmic order.
The graphs needed in the factorized expression are the soft Wilson line graph:

h0jY1Y
†
2j0i¼DL − CF

αs
4π

�
2

ε2UV
þ 2

εUV
ln
−μ2s12
p2
1p

2
2

þ ln2
−μ2s12
p2
2p

2
1

�
; ð56Þ

the collinear graphs, without the leg corrections:

hp1jψ̄W1j0i ¼DL − ūCF
αs
4π

�
−

2

εUVεIR
−

2

εIR
ln

μ2

−p2
1

− ln2
μ2

−p2
1

þ
�

2

εIR
−

2

εUV

�
ln

μ

t1 · p1

�
; ð57Þ

hp2jW†
2ψ j0i ¼DL − CF

αs
4π

�
−

2

εUVεIR
−

2

εIR
ln

μ2

−p2
2

− ln2
μ2

−p2
2

þ
�

2

εIR
−

2

εUV

�
ln

μ

t2 · p2

�
v; ð58Þ

and the zero-bin subtractions:

Ẑ1 ¼
1

Nc
trh0jY†

1W1j0i¼DLCF
αs
4π

�
2

εIR
−

2

εUV

��
1

εUV
þ ln

μ2

−p2
1

− ln
μ

t1 · p1

�
; ð59Þ

Ẑ2 ¼
1

Nc
trh0jW†

2Y2j0i¼DLCF
αs
4π

�
2

εIR
−

2

εUV

��
1

εUV
þ ln

μ2

−p2
2

− ln
μ

t2 · p2

�
: ð60Þ

This notation and normalization for the zero-bin
subtraction will be explained in Secs. XI and XIII.
Note that the appearance of the hard scales t1 · p1 and
t2 · p2 is illusory—using Eq. (54), one can express Ẑ1

and Ẑ2 in terms of the off-shellnesses n1 · p1 and
n2 · p2 alone.

Therefore,

hp1jψ̄W1j0i
Ẑ1

¼DL− ūCF
αs
4π

�
−

2

ε2UV
−

2

εUV
ln

μ2

−p2
1

− ln2
μ2

−p2
1

�
;

ð61Þ
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hp2jW†
2ψ j0i

Ẑ2

¼DL − CF
αs
4π

�
−

2

ε2UV
−

2

εUV
ln

μ2

−p2
2

− ln2
μ2

−p2
2

�
v: ð62Þ

These equations show that each collinear sector is inde-
pendent of the Wilson line directions tμj and is only pj-
collinear sensitive as evidenced by the cancellation of the
εIR poles.
Putting everything together up to one loop we find

γμαβ
hp1jW1ψ̄ j0iα

Ẑ1

hp2jW†
2ψ j0iβ
Ẑ2

h0jY†
1Y2j0i

¼DL − v̄γμuCF
αs
4π

×

�
−

2

ε2UV
−

2

εUV
ln

μ2

−s12
þ ln2

μ2

−s12
þ 2 ln

−p2
2

μ2
ln
−p2

1

μ2

�
:

ð63Þ
Comparing to the full-QCD matrix element shown in
Eq. (55), we see that, to double-logarithmic order, the
IR divergences in the full theory and factorized expression
exactly agree.

IV. EXAMPLE 2: TWO COLLINEAR PARTICLES

As the next illustrative example, we consider a state
with two particles in one jet. That is, we consider
hp1; q;p2jϕ⋆ϕj0i, for which the factorization formula reads

hp1; q;p2jϕ⋆ϕj0i ≅ CðS12Þ
hp1; qjϕ⋆W1j0i
h0jY†

1W1j0i
hp2jW†

2ϕj0i
h0jW†

2Y2j0i
× h0jY†

1Y2j0i; ð64Þ

where Pμ
1¼pμ

1þqμ, Pμ
2 ¼ pμ

2 and S12 ≅ ðP1 þ P2Þ2 ≡Q2.
In this case, the two sides are not equal, but equal at
leading power in λ, where λ ¼ P2

1=Q
2. We also must show

that the Wilson coefficient CðS12Þ is the same function
computed with minimal collinear sectors, as in the
previous section. This example will illustrate the role
played by real-emission and IR-sensitive graphs in
factorization.

A. Overview of graphs

In this example, since we have an external photon, we
must choose a reference vector for its polarization. It is
natural to choose the same generic-r reference vector as in
the light-cone-gauge photon propagator. So rμϵμðqÞ ¼
qμϵμðqÞ ¼ 0. These constraints define the polarization
vectors that are consistent with generic-light-cone gauge
completely:

ϵ−ðq; rÞ ¼
ffiffiffi
2

p qi½r
½qr� and ϵþðq; rÞ ¼

ffiffiffi
2

p ri½q
hrqi ; ð65Þ

where we use the spinor-helicity formalism to ease the
discussion of the dependence on the reference vector r of
amplitudes. Our conventions for the spinor-helicity for-
malism are given in [FS1]; however, we will not need
any details of the spinor-helicity formalism in this paper
as everything we need concerning polarization vectors
will be taken from [FS1]. We also choose t1 ¼ t2 ¼ r for
the collinear Wilson lines to decouple them completely.
Thus we can set W1 ¼ W2 ¼ 1 in this example.
As in the previous example, many graphs contribute to

both the left-hand side and right-hand side of Eq. (64). In
particular, all graphs involving one leg only in the full
theory matrix element, such as

(66)

contribute to the right-hand side through hp1; qjϕ⋆j0i. Also trivially factorizing cross terms, such as

(67)

contribute identically on both sides of Eq. (64).
The remaining graphs from the left-hand side of Eq. (64) either have a loop connecting the two legs and the emission

coming off either the p1 leg:
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(68)

or they have the emission coming off of the p2 leg with the loop anywhere:

(69)

With generic reference vectors, the twelve graphs in
Eq. (69) are power suppressed compared to the graphs
where the emission comes off of the p1 leg. Indeed,
graphs which contribute at leading power must have a
factor of 1

q·p1
∼ λ−2, as does Gð12Þ;a. The graphs with the

emission coming from the p2 leg have instead 1
q·p2

∼ λ0

factors which are subleading power. The fact that non-
self-collinear emissions are power suppressed in generic-
light-cone gauge was discussed elaborately in [FS1]. This
result holds at loop level as well, simply because in
generic-light-cone gauge a non-self-collinear emission
can never have an enhanced propagator. We will come
back to the general discussion in the next section and
focus, for now, on the one-loop example at hand. The

result is that we do not need to consider the graphs in
Eq. (69) at leading power.
Note that the power suppression in λ holds whether or

not the graphs are IR finite. Although power counting
something infinite may seem bizarre, one should keep in
mind that the IR divergences in loops are always ultimately
canceled by phase-space integrals in computing IR-safe
observables. Thus, power-suppressed IR divergences trans-
late to power-suppressed finite contributions, which is why
we can drop them.
The remaining graphs contributing to the right-hand side

of Eq. (64) come from the tree-level real emission multi-
plied by the Wilson coefficient and soft-Wilson-line terms
at one-loop order:

(70)

where Gð12Þ
not-soft-sens, defined in Eq. (45), comes from the calculation of the one-loop Wilson coefficient in the previous

section.

What we will now show is that the 0|Y †
1 Y2 |0 term in Eq. (70) reproduces the sum of the soft limits ofGð12Þ;a orGð12Þ;b

at leading power, the Gð12Þ
not-soft-sens term reproduces the nonsoft part of Gð12Þ;a at leading power, and both Gð12Þ;c and the

nonsoft part of Gð12Þ;b are power suppressed, hence proving Eq. (64) at one-loop order.

B. The graph Gð12Þ;a

Writing out the Feynman rules, we find

Gð12Þ;a ¼ g
p1 · ϵ
p1 · q

× ig2
Z

d4k
ð2πÞ4

ð2p1 þ 2q − kÞ · ΠðkÞ · ð2p2 þ kÞ
k2ðp2 þ kÞ2ðp1 þ q − kÞ2 : ð71Þ

As in the previous example, we will write this graph as

Gð12Þ;a ¼ Gð12Þ;a
soft-sens þ Gð12Þ;a

not-soft-sens; ð72Þ
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where the soft-sensitive part is found by dropping terms which are subleading in κ after the rescaling kμ → κ2kμ. We draw
the soft limit with the soft photon colored red and with a long wavelength. That is,

(73)

This graph is not IR divergent, but it is IR sensitive.
Because ðp1 þ qÞ2 ∼ λ2, in taking the soft limit, we did not
drop 2ðp1 þ qÞ · k in favor of ðp1 þ qÞ2. Doing so would
have assumed a certain order of limits, essentially κ ≪ λ,
which would lead to inconsistent results. More precisely, if
wewere to integrate over the phase space of q to produce an
IR-safe cross section, the region where q · p1 ≈ 0 must be
treated independently of the region of kμ ≈ 0 in the loop
integral. That is, the only way for the order of integration of
the loop and phase-space integrals to not matter is if we
keep both terms.
Now, since we keep ðp1 þ qÞ2 > 0 the loop integral is

not soft divergent. This is clear from counting powers of κ

as kμ → κ2kμ, which gives Gð12Þ;a
soft-sens → κGð12Þ;a

soft-sens. However,
if ðp1 þ qÞ2 ¼ 0, the loop scales like κ0 and is logarithmi-
cally soft divergent. Thus, for ðp1 þ qÞ2 ∼ λ2 with λ small,
λ acts like an IR cutoff. We, therefore, have that

Gð12Þ;a
soft-sens ∼ g

p1 · ϵ
p1 · q

g2 ln λ: ð74Þ

This singular-λ dependence must be reproduced by the
factorized expression, as the Wilson coefficient is λ inde-
pendent. On the other hand, the nonsoft part of the loop,

Gð12Þ;a
not-soft-sens ¼ Gð12Þ;a −Gð12Þ;a

soft-sens, is free of soft divergences,
even at λ ¼ 0 (except for the prefactor, of course). This
follows from the eikonal substitution in Eq. (48) which adds
additional powers of k2 to the nonsoft part.
Both the soft and nonsoft parts of the loop are also

collinear finite in generic-light-cone gauge. This holds for

the exact same reason that Gð12Þ
not-soft-sens was collinear finite in

the previous section: in generic-light-cone gauge, the
numerator ofGð12Þ;a is suppressed when k becomes collinear
to p1 or p2 as in Eqs. (26) and (27). Thus,Gð12Þ;a is collinear
finite [even when ðp1 þ qÞ2 ¼ 0], implying that Gð12Þ;a

not-soft-sens
is IR insensitive (collinear and soft insensitive) since

Gð12Þ;a
not-soft-sens has the soft sensitivity subtracted off.

Because the loop integral in Gð12Þ;a
not-soft-sens is IR finite even

when ðp1 þ qÞ2 ¼ 0, we can expand it in powers of λ in the
integrand, and only keep the leading term. The leading term
in this expansion corresponds to treating Pμ

1 ¼ pμ
1 þ qμ as

being lightlike. Performing this expansion on Gð12Þ;a and

Gð12Þ;a
soft-sens shows that they reduce to the integrals in Gð12Þ and

Gð12Þ
soft-sens, respectively, from the previous section. Since both

loops are the same, so is their difference Gð12Þ;a
not-soft-sens. That is,

(75)

where Gð12Þ
not-soft-sensðp1; p2Þ was the IR-finite and λ-independent one-loop contribution to the Wilson coefficient found in the

previous section.
Therefore, the graph Gð12Þ;a

not-soft-sens from the left-hand side of Eq. (64) is reproduced by the factorized expression in the last
term in brackets in Eq. (70).

C. The graph Gð12Þ;b

We now analyze the second diagram that seems to break collinear factorization in Eq. (68), namely

Gð12Þ;b ¼ 2ig3
Z

d4k
ð2πÞ4

ð2p1 − kÞ · ΠðkÞ · ð2p2 þ kÞðp1 − kÞ · ϵ
k2ðp2 þ kÞ2ðp1 − kÞ2ðp1 þ q − kÞ2 : ð76Þ
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The soft limit of this graph, again keeping the IR-sensitive parts, is

(77)

This graph is soft divergent, scaling as κ0 even with
ðp1 þ qÞ2 ≠ 0, and thus it must be reproduced in the
factorized expression.
Next, we will show that Gð12Þ;b

not-soft-sens is collinear sensitive,
but power suppressed compared to Gð12Þ;a

not-soft-sens. First, to see
that Gð12Þ;b is collinear finite at finite ðp1 þ qÞ2, we note
that for ðp1 þ qÞ2 positive and fixed, the ðp1 þ q − kÞ2
propagator cannot go on shell when other propagators do,
so the loop is not more singular than Gð12Þ;a. As with
Gð12Þ;a, it would be collinear divergent for k∥p1 or k∥p2 but
for the fact that the numerator vanishes by Eqs. (26) and
(27) which causes the integral to be collinear finite
for ðp1 þ qÞ2 ≠ 0.
Now, if ðp1 þ qÞ2 ¼ 0, then the integral would be p1-

collinear divergent (though it remains p2-collinear finite).
This can be seen by taking p1 ∝ q in which case kμ scales
like

kμ ∼ κ0pμ
1 þ κ2pμ

2 þ κkμ⊥; ð78Þ

and so Gð12Þ;b in Eq. (76) scales like

Gð12Þ;b ∼
Z

d4kκ4
κκ

κ2κ0κ2κ2
∼ κ0; ð79Þ

where we used that d4k ∼ κ4, ð2p1 − kÞ · ΠðkÞ·
ð2p2 þ kÞ ∼ κ, k · ϵ ∼ κ, and ðp2 þ kÞ2 ∼ κ. We thus see
that Gð12Þ;b is logarithmically p1-collinear divergent. We
have made all of these arguments for Gð12Þ;b, but they apply
also to Gð12Þ;b

soft-sens and hence to Gð12Þ;b
not-soft-sens. Then, given that

Gð12Þ;b
not-soft-sens is completely IR finite when ðp1 þ qÞ2 ≠ 0 but

logarithmically p1-collinear divergent when ðp1þqÞ2¼0,
we must have that it scales like

Gð12Þ;b
not-soft-sens ∼ g3 ln ½ðp1 þ qÞ2� ∼ g3 ln λ ð80Þ

for small λ. This is power suppressed compared to, say,
Eq. (75) which scales like λ−1. Thus, we can drop
Gð12Þ;b

not-soft-sens at leading power.

D. The graph Gð12Þ;c

Finally, we have the graph with the scalar-QED four-
point vertex

(81)

We will show that this graph is completely power sup-
pressed.
To see if there are soft divergences, we look at the soft

limit ofGð12Þ;c. First, note that if ðp1 þ qÞ2 ≠ 0, thenGð12Þ;c
would be finite in the soft limit, as can be seen by counting
powers of the soft momentum in the integrand which gives
d4k=k3. On the other hand, for ðp1 þ qÞ2 ¼ 0, the inte-
grand of Gð12Þ;c becomes d4k=k4 signaling a logarithmic
divergence. Thus, we must have that, in the soft region of
the integral,

Gð12Þ;c ∼softg3 lnðp1 þ qÞ2 ∼ g3 ln λ2 ≪
g3

λ
: ð82Þ

Hence, in the soft limit, Gð12Þ;c is power suppressed.

We have seen that Gð12Þ;c is power suppressed in the soft
limit. Next, we will now show that the same is true for the
collinear limits of the integral, meaning that the entire graph
Gð12Þ;c is a power correction in our factorization formula.
We start by showing that Gð12Þ;c is p2-collinear finite in
generic-light-cone gauge. This holds for the same reason as
for the other collinear-finite graphs: were it not for the
numerator, Gð12Þ;c would be logarithmically p2-collinear
divergent. However, when k becomes collinear to p2, ΠðkÞ
becomes the polarization sum of photons in the p2 direction
which is transverse to p2. Hence ΠðkÞ · ð2p2 þ kÞ → 0
when k∥p2. These are the words that describe Eqs. (26) and
(27). Hence, Gð12Þ;c is p2-collinear finite.
Gð12Þ;c is also p1-collinear finite, but only when

ðp1 þ qÞ2 ≠ 0. This can be seen by power counting the
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denominator, as k becomes collinear to p1. For ðp1þ
qÞ2 ¼ 0, the denominator of Gð12Þ;c causes it to be logarith-
mically divergent, but in this case the numerator does not
vanish as k∥p1 since ΠðkÞ is not transverse to ϵ. That is,

ϵμΠμνðkÞ ¼ −ϵν þ
k · ϵrν
r · k

⟶ − ϵν for k∥p1∥q; ð83Þ

whereweused that r · ϵ ¼ 0.Thus,whenk∥p1 thenumerator
of Gð12Þ;c looks like p2 · ϵ which does not vanish. Since
Gð12Þ;c is collinear finite for ðp1 þ qÞ2 ≠ 0 and has a
logarithmic divergence for k∥p1 when ðp1 þ qÞ2 ¼ 0, we
conclude that in the k∥p1 region of the integral

Gð12Þ;c ∼p1-collg3 lnðp1 þ qÞ2 ∼ g3 ln λ2 ≪
g3

λ
: ð84Þ

Thus, the entire integral in Gð12Þ;c is power suppressed
compared to the leading-power matrix element p1·ϵ

p1·q
∼ λ−1.

E. Putting it together

We have shown that most of the contributions to Eq. (64)
agree identically on both sides. The ones that do not are
Gð12Þ;a, Gð12Þ;b and Gð12Þ;c in Eq. (68) for the left-hand side
and Eq. (70) for the right-hand side. Of these, Gð12Þ;c is
power suppressed, as is the nonsoft part of Gð12Þ;b. Thus the
nontrivial leading-power diagrams are

(85)

We also showed that Gð12Þ;a
not-soft-sens reproduces the contribution from the Wilson coefficient in Eq. (70). Thus what remains is

to show that the contribution connecting the two soft Wilson lines in the factorized expression agrees with Gð12Þ;a
soft-sens þ

Gð12Þ;b
soft-sens at leading power. We do this by direct calculation.
Let us define a lightlike directions nμi ¼ ð1; ~niÞ, such that pμ

i ¼ 1
2
n̄i · pin

μ
i , and then

Gð12Þ;a
soft-sens þGð12Þ;b

soft-sens ¼
Z

d4k
ð2πÞ4

2ig3p1 · ϵ
k2p2 · kððp1 þ qÞ2 − 2ðp1 þ qÞ · kÞ ×

�ðp1 þ qÞ · ΠðkÞ · p2

p1 · q
−
p1 · ΠðkÞ · p2

p1 · k

�

≅
Z

d4k
ð2πÞ4

12ig3n1 · ΠðkÞ · p2p1 · ϵ
k2p2 · kðp1 · q − ðp1 þ qÞ · kÞ

�
n̄1 · ðp1 þ qÞ

p1 · q
12n̄1 · p1n1 · k

p1 · k
−
n̄1 · p1

p1 · k
p1 · q
p1 · q

�

≅
Z

d4k
ð2πÞ4

ig3p1 · ΠðkÞ · p2p1 · ϵ
k2p2 · kðp1 · q − ðp1 þ qÞ · kÞ

�ðp1 þ qÞ · k
p1 · qp1 · k

−
p1 · q

p1 · qp1 · k

�

¼ −g
p1 · ϵ
p1 · q

× ig2
Z

d4k
ð2πÞ4

n1 · ΠðkÞ · n2
k2n1 · kn2 · k

: ð86Þ

The first term is the tree-level term in hp1; qjϕ⋆j0i and the

second term is the loop integral , where the

photon propagates between the Wilson lines. This is
exactly equal to the rest of the factorized expression
by Eq. (70).
This completes the check that the sum of the one-loop

diagramsonboth sidesofEq. (64) agree at leadingpower and
that the Wilson coefficients are the same and IR insensitive.

V. OUTLINE OF ALL-ORDERS PROOF

In the previous two sections, we checked special cases of
the factorization formula at one-loop order by matching
diagrams. This approach is not sustainable for an all-orders
proof. Moreover, even when two diagrams are identical on

both sides, dropping them from consideration somewhat
obscures the physics of factorization. For example, the
loops in Eq. (66) have both soft and nonsoft parts, but it was
easier not to separate them when matching them loop for
loop with those in hp1; qjϕ⋆j0ihp2jϕj0i. If we had sepa-
rated the soft and nonsoft parts, we would have found that
the sum of the nonsoft parts of the graphs in Eq. (66) is

exactly hp1; qjϕ⋆j0i=h0jY†
1j0i and the soft parts are exactly

0|Y †
1 Y2 |0 , where the contraction indicates the photon

connects only to Y†
1. Both these approaches are equivalent,

but in the latter we see that all of the soft physics is
contained in h0jY†

1Y2j0i; hp1; qjϕ⋆j0i=h0jY†
1j0i is soft

insensitive.
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Proving soft-collinear factorization in general, will
involve four steps:
(1) Write each diagram contributing to the matrix

element in the full theory as a sum of colored
diagrams where each virtual gluon can either con-
tribute to a soft singularity, in which case we call it
soft sensitive (and draw it with a long-wavelength

red line), or it cannot, in which case we call it soft
insensitive (and draw it with a blue line).

(2) Drop diagrams which cannot contribute at leading
power and identify finite diagrams. Doing this in
physical gauges lets us write the full-theory matrix
element as the sum of colored diagrams with a
restricted topology in the following way:

(87)

We call the topology indicated on the right-hand side the
reduced diagram. It has the following properties:

(a) Each colored diagram in the sum corresponds to
a precise Feynman integral, with loop momenta
integrated over all of R1;3. Note that our reduced
diagrams are different from those used in [3–5],
which are pictures representing the pinch sur-
face, not computable functions.

(b) The “jet” amplitudes labeled Jj are soft insensi-
tive and collinear sensitive only in their own, pj

directions. That is, there are no pj-collinear
sensitivities in the Ji jet amplitudes for i ≠ j.

(c) All soft sensitivity comes from virtual gluons in
(or connecting to) the “soft” amplitude.

(d) The blue ball in the center is called the “hard”
amplitude. It is infrared insensitive (IR finite for
any λ and, hence, independent of λ at leading
power). It only depends on the net collinear
momenta coming in from each direction and no
soft particles or red lines connect to it. This
property will establish that the Wilson coeffi-
cient in the factorization theorem is independent
of the external state, as is expected in an operator
product expansion.

(3) Examine factorization gauge, which gives the flex-
ibility needed for an efficient proof of soft-collinear
decoupling. Although ghosts do not decouple com-
pletely, we show that they do not contribute new IR
sensitivities and do not affect the reduced diagram
in Eq. (87).

(4) Using factorization gauge, show that the soft gluons
can be disentangled from the nonsoft gluons. This
step follows quite naturally from the proof of tree-
level disentangling in [FS1]. In the process, show
that the factorized reduced diagrams are exactly

reproduced by gauge-invariant matrix elements in
the factorization formula.

As with the one-loop examples above, we will prove
these steps in a more-or-less gauge-theory-independent
way, using QCD and scalar QED for examples. In this
approach, technical details specific to QCD, such as color
structures, become mostly notational. These are discussed
in Sec. XI.

VI. STEP 1: COLORING (SEPARATING
SOFT SENSITIVITIES)

The first step is to separate the soft-sensitive physics
from that which is soft insensitive. As in the examples, we
define soft sensitive to mean either that a loop has a power-
counting soft divergence or that it would have one for
kinematic configurations corresponding to λ ¼ 0.
Soft sensitivity is a property that each virtual particle

may have. We want to write each Feynman diagram as the
sum of what we call colored diagrams where the color of
each virtual line in a colored diagram indicates if it is soft
sensitive or not. We have already seen examples of this
separation at one loop: in Sec. III the soft-sensitive version
of the graph Gð12Þ in Eq. (46) was explicitly given as

Gð12Þ
soft-sens in Eq. (47), and it was shown that the not-soft-

singular part Gð12Þ
not-soft-sens ¼ Gð12Þ −Gð12Þ

soft-sens was soft finite.
The same was done with Gð12Þa;b in Sec. IV.
Beyond one loop, it is not possible to split each diagram

into one soft-sensitive and one soft-insensitive piece, since
all of the loops are tangled up in a generic graph. More
generally, we would like to expand in each virtual
momenta. The only complication is that all the virtual
momenta are not independent and so the expansion has to
be done iteratively. These iterations can be done algorithmi-
cally, starting from the most soft-sensitive graphs, as we
now explain. Section VI A gives the algorithm, which is
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perhaps easiest to understand through the examples in
Secs. VI B–VI D.

A. Decomposition into colored diagrams

Consider sets Ω ¼ flμ
1;l

μ
2;…g of virtual momenta in a

particular Feynman diagram G which can all go to lμ
i ¼ 0

simultaneously. For a given set Ω, we can expand the
integrand to leading order around lμ

i ¼ 0 for all the lμ
i ∈ Ω

simultaneously. We want to do this very carefully, dropping
only terms whichmust be small when lμ

i ¼ 0. For example,
if pμ is an external collinear momentum, then we can drop
l2i compared to li · p. We do not want to drop lμi compared
to any external soft momentum, or to any other virtual
momentum lμ

k which go soft simultaneously with lμ
i . We

also drop li · pj compared to ðp1 þ p2Þ2 for two collinear
momenta pμ

1 and p
μ
2 if and only if p

μ
1 and p

μ
2 are in different

collinear sectors. If they are in the same sector, then we
allow that ðp1 þ p2Þ2 ∼ λ2 can be arbitrarily small.
Let us call the leading term in the expansion according to

this procedure the soft limit of the set Ω in G and denote it
by GSðΩÞ. The soft limit defined in this way allows us to see
if a setΩ is soft sensitive simply by looking at the scaling of
GSðΩÞ (or equivalently of G) under lμ

i → κ2lμ
i for all

lμ
i ∈ Ω. By not dropping soft momenta compared to terms

which could possibly vanish for certain external momenta,
we are effectively taking the leading power of κ at λ ¼ 0.
Taking the soft limit in this way implies that

lim
Ω→soft

G ¼ lim
Ω→soft

GSðΩÞ; ð88Þ

so that G −GSðΩÞ is automatically less singular than G in
the limit that all the lμ

i ∈ Ω go soft. The limit in Eq. (88)
means restricting the integration regions to balls around the
point where each momenta in Ω vanish and taking the limit
where those balls have vanishing size. The point of taking
the soft limit SðΩÞ is that, since infrared divergences in
gauge theories are at most logarithmic [at least in physical
gauges, as we will show in the log lemma (Lemma 2)], the
difference G −GSðΩÞ cannot be soft sensitive in this
Ω → soft limit.
That all the momenta in a set Ω can go soft together does

not imply that G is soft sensitive in this limit. Let fΩig
enumerate all the possible sets Ω which do have a soft
sensitivity in their simultaneous soft limit. Note that which
sets are in fΩig is gauge dependent, and we will be
concerned primarily with Ωi in generic-light-cone gauge.
Consider first the largest sets fΩi

maxg, defined as those sets
Ωi which are not proper subsets of any otherΩi’s. Now take
the soft limit and define

GΩi
max

≡GSðΩi
maxÞ: ð89Þ

Here,GΩi
max

refers to a particular integral, for each i, derived
from an expansion of the integrand of the original Feynman
diagram integral, G. We represent it as a diagram with the

same topology as G in which we color all the lines in Ωi
max

red and color blue all the lines not in Ωi
max. The blue lines

cannot give rise to a soft singularity because we have
already taken the maximal soft limit in GΩi

max
by con-

struction (this will be shown in Lemma 1 below).
Next, take the sets fΩj

nextg, defined as being the next
largest proper subsets of any of the Ωi

max’s whose simulta-
neous soft limit engenders a soft sensitivity. EachΩj

next may
be a subset of multipleΩi

max. Then subtract off from the soft
limit of Ωj

next all of the GΩi
max

for which it is a subset:

GΩj
next

≡
�
G −

X
fi;Ωi

max⊋Ω
j
nextg

GΩi
max

�
SðΩj

nextÞ
: ð90Þ

As before, we representGΩj
next

as a diagram with the lines in
Ωj

next colored red, and all other lines colored blue to show
that they cannot give rise to a soft sensitivity due to the
subtraction.
This procedure can be iterated, with subsets of Ωj

next and
so on. In each step, we take subsets Ωj

step of the Ωi
max’s of a

given size and subtract off GΩ for every subset Ω of the
Ωi

max’s for which Ωj
step is a subset:

GΩj
step

≡
�
G −

X
Ω⊋Ωj

step

GΩ

�
SðΩj

stepÞ
: ð91Þ

Eventually, all of the possible sets of soft-singular lines are
exhausted. In particular, in the last step, Ωlast is the empty
set. This is a subset of all the other sets, so we have

G ¼ Glast þ
X
Ω
GΩ: ð92Þ

At every stageGΩ is drawn as the graphG but with the lines
in Ω colored red and those not in Ω colored blue. Thus the
full graph becomes the sum of colored graphs.
After this procedure, each colored graph represents a

particular integral which can have a soft singularity or soft
sensitivity only when any of the red lines become soft, but
never when any of the blue lines become soft. In
other words:
Lemma 1 (soft-insensitivity lemma).—Soft sensitivities

cannot come from the soft region of any set of blue lines.
Proof.—We prove this by induction on the number of

blue lines in a colored graph, GΩ. The first step is to show
the result for graphs with the fewest number of blue lines,
namely GΩmax

. Indeed, the only way for a line lblue ∉ Ωmax
to be able to give a soft sensitivity in G but not in the
simultaneous limit Ωmax ∪ lblue → soft is if the limit is
forbidden by momentum conservation. But then
limlblue→ softGΩmax

will vanish since the limit where Ωmax →
soft has already been taken. So the lemma holds for graphs
with the least number of blue lines, GΩmax

.
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Now, suppose it is true for any colored graph with n or
fewer blue lines and consider a colored graph with nþ 1
blue lines, GΩ. Now consider the most general limit where
some subset ω of blue lines goes soft. We must show that
limω→softGΩ is finite.
By definition

GΩ ¼
�
G −

X
ϒ⊋Ω

Gϒ

�
SðΩÞ

¼ GSðΩÞ −
X

ϒ⊋Ω;ω⊆ϒ

ðGϒÞSðΩÞ −
X

ϒ⊋Ω;ω⊈ϒ

ðGϒÞSðΩÞ;

ð93Þ

where the sets ϒ are soft-sensitive sets. In the ω → soft
limit, the last term would involve the soft limit of at least
one blue line in a colored graph with n or fewer blue lines
which must be finite by the induction hypothesis combined
with the fact that

lim
ω→soft

ðGϒÞSðΩÞ ¼ ððGϒÞSðΩÞÞSðωÞ ¼ ððGϒÞSðΩ∪ωÞÞSðωÞ:
ð94Þ

Therefore, the soft limit we are interested in simplifies to

lim
ω→soft

GΩ ¼ lim
ω→soft

�
GSðΩÞ −

X
ϒ⊇Ω∪ω

ðGϒÞSðΩÞ
�
þ finite:

ð95Þ

Now, if Ω ∪ ω⊆Ωi
max for some i, the term in square

brackets in Eq. (95) is finite because, in that case, the sum is
empty and the soft limit of Ω followed by ω does not give
rise to a soft sensitivity in the first term by momentum
conservation (the same argument given in the first-induc-
tion step). If Eq. (95) is finite, we are done with the proof,
so assume Ω ∪ ω ⊆ Ωi

max for some i. Consequently, there
exists a soft-sensitive set Γ that is the next smallest set
containingΩ ∪ ω for which SðΩ ∪ ωÞ ¼ SðΓÞ. Therefore,
using Eq. (94), we have

lim
ω→soft

GΩ ¼ lim
ω→soft

ðG − GΓ −
X

ϒ⊇Ω∪ω;ϒ≠Γ
GϒÞSðΓÞ þ finite

ð96Þ

¼def lim
ω→soft

�
GSðΓÞ −GSðΓÞ þ

X
ϒ⊋Γ

ðGϒÞSðΓÞ

−
X

ϒ⊇Ω∪ω;ϒ≠Γ
ðGϒÞSðΓÞ

�
þ finite: ð97Þ

Now we can split the last sum into

X
ϒ⊇Ω∪ω;ϒ≠Γ

Gϒ ¼
X
ϒ⊋Γ

Gϒ þ
X

ϒ⊇Ω∪ω;ϒ⊉Γ
Gϒ: ð98Þ

Then, canceling the first four terms we are left with

lim
ω→soft

GΩ ¼ − lim
ω→soft

X
ϒ⊇Ω∪ω;ϒ⊉Γ

ðGϒÞSðΓÞ þ finite: ð99Þ

Finally, either Γ ¼ Ω ∪ ω, in which case the above sum
is empty and limω→softGΩ is finite, or the ω → soft limit
forces other lines in ΓnðΩ ∪ ωÞ to go soft along with those
in ω. The latter case means that for every term in the above
sum, limω→softGϒ involves taking a blue line soft which
gives a finite result by the induction hypothesis. Thus,
limω→softGΩ is always finite. ▪
This algorithm may make more sense after a few

explicit examples. We have already seen how to separate
the soft-sensitive and soft-insensitive parts of graphs at
one-loop order in Secs. III and IV, so we move directly to
the more complicated two-loop examples. The first two
examples in Secs. VI B and VI C outline the basics of the
coloring algorithm, having only a single maximal soft-
sensitive set. The example in Sec. VI D has multiple
Ωi

max’s as well as a discussion about symmetry factors of
the colored graphs.
It is also worth pointing out that this separation into

red and blue lines is similar to the zero-bin subtraction
discussed in [57]. Our blue lines correspond to the
propagation of degrees of freedom that can be collinear
sensitive but cannot be soft sensitive. This is imple-
mented by recursively subtracting off the soft-sensitive
limits from the full-theory graphs. In SCET, collinear
fields are defined by summing over discrete labels on
momentum space with the label pointing to zero momen-
tum—known as the zero bin—removed. In practice the
discrete sum is always turned into an integral and the
zero bin is subtracted off. This procedure calls for a soft
subtraction for every single collinear line, irrespective of
whether or not the line is soft sensitive, but otherwise is
similar to our subtraction for the blue lines. Therefore,
the SCET-familiar reader could think of our blue lines as
a cleaner version of the collinear lines of SCET. In any
case, our blue lines are still too complicated to use in
practice; by the end, our factorization theorem will be
formulated entirely in terms of full-theory Feynman rules
with the subtraction procedure implemented by dividing
by simple matrix elements of Wilson lines.
In a colored diagram, every line is either soft sensitive

(red) or soft insensitive (blue). We sometimes draw soft-
insensitive lines as black lines if no expansion is done
(for example with external lines). All black lines in the
following should technically be drawn blue.
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B. Example one: Tangled two-loop

Consider the following graph in scalar QED:

(100)

where we have dropped constant prefactors and the integration measure d4k1d4k2 is left implicit. In Feynman gauge (or
other covariant gauges), the gauge-dependent ΠðkiÞ factors count as order 1. Then, this graph has a soft singularity when
both photons go soft, or when either one goes soft and the other goes collinear. Note that the virtual scalars can never give
rise to a soft sensitivity by helicity conservation, which can easily be checked by power counting, say, the ðp1 − k2Þ → soft
limit.
Our first step is to write down the soft-singular graph with the most soft lines. This is done by expanding the integrand as

if both virtual-photon momenta k1 and k2 were soft, giving

(101)

Note that we have not dropped either soft momentum with
respect to the other. Also, GΩmax

is clearly soft divergent
when both k1 and k2 vanish.
Now we would like to write down the part of G that is

soft divergent when only one of the photons goes soft (and
the other goes collinear). To do this, we expand one of the
virtual momentum as if it were soft and leave the other one
general. That is, for k1 soft we have

GΩ1
next

¼
Z

p2 · Πðk1Þ · ðp1 − k2Þ
k21p2 · k1ð−p1 · k1Þ

×
ð2p1 − k2Þ · Πðk2Þ · ð2p1 − k2Þ

k22ðp1 − k2Þ2ðp1 − k2Þ2
− ðGΩmax

ÞSðk1Þ:

ð102Þ
With this definition, GΩ1

next
is clearly finite when k2 goes

soft because we have subtracted that limit off in the form
of ðGΩmax

ÞSðk1Þ. Similarly, we define the k2-soft-singular
graph as

GΩ2
next

¼
Z ð2p2 þ k1Þ · Πðk1Þ · ð2p1 − k1Þ

k12ðp2 þ k1Þ2ðp1 − k1Þ2

×
ðp1 − k1Þ · Πðk2Þ · 2p1

k22ð−p1 · k2Þðp1 − k1Þ2
− ðGΩmax

ÞSðk2Þ; ð103Þ

which is, again, finite in the limit where k1 goes soft
because of the subtraction.
Finally, we have the remainder of the graph, given by

Glast ¼ G −GΩmax
−GΩ1

next
− GΩ2

next
: ð104Þ

It is easy to see that Glast is finite in any limit ω → soft for
ω ⊆ fk1; k2g, for example,

lim
k1→soft

Glast ¼ ðG − GΩmax
ÞSðk1Þ − ðGΩ1

next
ÞSðk1Þ þ finite

¼ GΩ1
next

− GΩ1
next

þ finite ¼ finite; ð105Þ

where we used the definition of GΩ1
next
, that ðGΩ1

next
ÞSðk1Þ ¼

GΩ1
next

and that ðGΩ2
next
ÞSðk1Þ is finite.

We can now draw these four integrals as separate
graphs by denoting which internal lines are taken soft
by a longer-wavelength red line and the other lines that
are made soft insensitive by the subtraction are drawn
blue. That is,
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(106)

and the sum of these four graphs is trivially equal to the original graph G.
We reiterate that in these modified graphs, only the red, long-wavelength lines can have soft singularities. Each blue line

is made soft insensitive by subtracting from the original graph all of the graphs with that line red. In our example,GΩmax
was

subtracted off in Eqs. (102) and (103) to ensure that the blue line in both GΩ1
and GΩ2

is soft insensitive and all three of
GΩmax

, GΩ1
and GΩ2

were subtracted off in Eq. (104) in order to make both of the blue lines in Glast soft insensitive.
In deriving the decomposition in Eq. (106), no scaling of the numerators was used. Thus this decomposition holds in

covariant gauges, such as Feynman gauge, where there is no extra numerator suppression. In physical gauges, such as
generic-light-cone gauge, the set of colored graphs is different. As will be discussed in detail in Sec. VII in a physical gauge,
there is no singularity when k2 goes soft and k1 does not, soΩ2 is not a possible set with a soft sensitivity. Thus, in a physical
gauge, GΩmax

and GΩ1
are defined as above and Glast ¼ G −GΩmax

−GΩ1
. So, the colored-graph decomposition of G in a

physical gauge is given by the sum of only three graphs:

(107)

C. Example two: Two loops, three gluons

Consider now a slightly more complicated example, the
QCD graph:

(108)

For this graph, when all three gluons go soft, there are nine
powers of soft momenta in the denominator from the
propagators, one in the numerator from the three-point
vertex, and eight from the d4k1d4k2 integration measure.
The result is an overall logarithmic divergence (in covariant
or physical gauges). This is the soft singularity with the
highest number propagators that are simultaneously going
soft.

Thus the soft-singular graph with the largest number of
soft propagators in it is

(109)

The algebraic expression for HΩmax
is found by taking the

integrand of H and expanding as if k1 and k2 were soft but
of the same order, as was done in Eq. (101).
There are no singularities with only two gluons going

soft since momentum conservation will not allow two of the
gluons to go soft without the third being soft as well. Thus,
the soft-singular configurations with the next largest
number of soft internal lines are those with one of the
gluons going soft. In covariant gauges there is a singularity
when any of the gluons go soft:

(110)
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and their algebraic expressions are given by taking the soft limit of one of the gluons and subtracting off ðHΩmax
ÞSðkiÞ to

ensure that the other gluons cannot be soft singular. That is,

HΩi
next

¼ ðH −HΩmax
ÞSðkiÞ; i ¼ 1; 2; and HΩ3

next
¼ ðH −HΩmax

ÞSðk1−k2Þ: ð111Þ

Finally, the soft-insensitive graph is given by

(112)

Thus we have the decomposition

(113)

Every graph has its soft sensitivities manifest, since none of the blue lines admit a soft sensitivity by construction.
We will see in Sec. VII that in physical gauges Ω2

next and Ω3
next are soft insensitive. Thus, HΩmax

and HΩ1
next

are defined as
above, but HΩ2

next
and HΩ3

next
do not exist, thereby modifying the definition of Hlast to Hlast ¼ H −HΩmax

−HΩ1
next
. The

colored diagram expansion in physical gauges is then

(114)

D. Example three: Soft-gluon decoherence

For our final example, we consider a graph that does not
have a unique maximal set of soft lines that contribute to a
soft sensitivity:

(115)

Because of momentum conservation, there is no way for all
the gluons to go soft in the loops; at least a single
continuous line of nonsoft momentum must flow through
the graph. This means that there are multiple maximally
soft-sensitive sets of different sizes.
First we define the soft graphs with the maximal sets of

soft-sensitive lines:

(116)

(117)

(118)

(119)

The algebraic expressions for these graphs are found by
taking the soft limit of the relevant virtual momenta in I.
Note that although no subtraction is performed, none of the
blue lines can give rise to soft sensitivities due to mo-
mentum conservation. Although IΩ1

max
¼ IΩ2

max
and

IΩ3
max

¼ IΩ4
max
, these graphs are generated by expanding

in different nonoverlapping regions of the virtual momen-
tum phase space in the original integral I. Thus they
correspond to separate colored graphs. This separation

ILYA FEIGE AND MATTHEW D. SCHWARTZ PHYSICAL REVIEW D 90, 105020 (2014)

105020-24



foreshadows the separation of QCD gluons into soft (red)
and collinear (blue) gluons in the factorized expression.
Now, take the next largest subsets that admit a soft

sensitivity, Ωj
next, and define the corresponding colored

graph via the subtraction procedure. In every case, the sets
Ωj

next ¼ fljg have a single soft line:

IΩj
next

¼
�
I −

X
i;lj∈Ωi

max

IΩi
max

�
SðljÞ

ð120Þ

and define the last graph as

Ilast ¼ I −
X5
j¼1

IΩj
next

−
X4
i¼1

IΩi
max
: ð121Þ

We draw these graphs by coloring every line that has a soft
limit taken red and the other lines blue:

(122)

(123)

(124)

The blue lines either have a soft subtraction or are soft finite by momentum conservation.
It is easy to check that no blue lines can give rise to a soft sensitivity. To be explicit, we check that this is the case for Ilast

in the limit where l1 goes soft. First note that only IΩ1
next
, IΩ2

max
and IΩ3

max
can have a soft singularity in the l1 → 0 limit

because only these graphs have a red l1 line. Thus,

lim
l1→0

Ilast ¼ lim
l1→0

½I − IΩ1
next

− IΩ2
max

− IΩ3
max
� þ finite

¼ ISðl1Þ − ðI − IΩ2
max

− IΩ3
max
ÞSðl1Þ − ðIΩ2

max
ÞSðl1Þ − ðIΩ3

max
ÞSðl1Þ þ finite

¼ finite:

Finally, note that all of the colored graphs in the decomposition of I are equal to another colored graph except for IΩ3
next

and Ilast. That is,

(125)

In the graphs that are doubled, the coloring breaks the Z2

symmetry of the original graph, I. Because of this sym-
metry, I gets a symmetry factor of 1=2. In the graphs where
the coloring breaks the symmetry, the factors of 2 directly
cancel this factor of 1=2. In the graphs where the coloring

preserves the symmetry, no factor of 2 results and the
original symmetry factor of I is preserved. Thus, the final
integrals have exactly the symmetry factor corresponding
to the symmetries of the colored graphs. It is easy to see that
this happens quite generally, as expected in an effective
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theory where the red and blue lines are distinguishable
particles.

VII. STEP 2: REDUCED DIAGRAMS

At this point, we have a procedure for writing any
Feynman graph as a sum of graphs each of which has all its
lines marked as either soft sensitive (red) or soft insensitive
(blue). As discussed in some of the examples, the coloring
is gauge dependent. The coloring also does not indicate if a
graph is collinear sensitive. In this section we prove a set of
lemmas that determine which graphs can be soft or
collinear sensitive. The lemmas in Sec. VII A are very
general. They apply to QCD Feynman diagrams, indepen-
dent of the coloring. Conclusions about collinear sensitiv-
ity, for example, apply equally well to soft-sensitive and
soft-insensitive lines. The lemmas in Secs. VII B and VII C
are more specific to the colored diagrams. Taken together,
the lemmas imply a simplified reduced-diagram structure
which encapsulates hard factorization and facilitates soft-
collinear factorization.
Our reduced diagrams are very similar to the reduced

diagrams describing the pinch surfaces [3–5]. Indeed, our
reduced diagrams include the singular momenta defining
this surface (kμ ¼ 0 or kμ ¼ αpμ for some external pμ) but
also have a precise expression as integrals (with singular
and nonsingular parts) derived from the full Feynman
diagrams as described in the previous section.
Recall that we define physical gauges as either light-cone

gauge, with a generic choice of reference vector, or
factorization gauge (see Sec. VIII) with generic rc. Our
physical gauges also have generic reference vectors for the
polarizations of external collinear particles. In the literature,
physical gauges often refers more generally to any gauge
whose propagator-numerator corresponds to a sum over
physical polarizations, including axial gauges. We will not
need to consider such a generality.
To be clear, although we do not say so explicitly in the

formulation of each lemma, all the lemmas in this section
are only proven to hold in physical gauges. Most of them in
fact do not hold in Feynman gauge, which plays no role in
our proof.

A. Finding the IR sensitivities

We now discuss how to locate the IR sensitivities in
graphs. IR sensitivity is a delicate thing. One IR-insensitive

line can contaminate a whole subdiagram, removing its IR
sensitivity. This fact formalized in the zombie lemma
(Lemma 5). However, Lemma 5 requires the proof of
the log lemma (Lemma 2), which states that IR sensitivities
in graphs are at most logarithmic. Other facts that will be
necessary to determine where IR sensitivities lie in QCD
graphs are also proven in the process of showing Lemma 2.
Our first step is to prove that in physical gauges, IR

sensitivities are at most logarithmic.
Lemma 2 (log lemma).—According to the power count-

ing discussed in Sec. II, in physical gauges any Feynman
diagram in QCD (or any other renormalizable theory with
only gauge interactions) scales at worst like κa with a ≥ 0.
Thus IR divergences are at most logarithmic.
This fact has been known for decades [3]. We reproduce

the proof here for completeness and to facilitate the proofs
of Lemmas 4–9.
Although we will not discuss covariant gauges much, it

is also known that in Feynman gauge, individual diagrams
can have divergences more severe than logarithmic [62].
These power divergences provide an obstruction to using
reduced diagrams for a transparent picture of hard factori-
zation. Of course, the power divergences cancel in a gauge-
invariant sum over diagrams, but this cancellation is of little
use in a diagram-by-diagram analysis. Light-cone gauge
with nongeneric choices of reference vectors also does not
lead to the same simple reduced-diagram picture.
The two lemmas that will be proven during the proof of

Lemma 2 are
Lemma 3 (collinear lemma).—Consider two lines of a

given diagram. If the lines cannot become collinear due to
momentumconservation or if they give rise to a κ suppression
when they do become collinear, then a virtual particle
connecting between them cannot be collinear sensitive.
Lemma 4 (four-point lemma).—There are no diagrams

with soft-sensitive gluons attaching to soft-insensitive lines
through a four-point vertex.
Proof of Lemmas 2–4.—We will focus on proving the

log lemma (Lemma 2), and mention the other two lemmas
as they come up.
Before getting into the proof, we will need to establish

the form of the various vertices in the theory in the limit
where all of the particles involved are soft or collinear.
First, as discussed in [FS1], the three-point vertex involving
a soft gauge boson has the following limiting behavior:

(126)

where a; b and c are color indices and s and s0 are
helicities (the wave functions of the nonsoft particles
are included). This result holds if the nonsoft lines
represent particles of any spin [66]; in particular, these

lines can be gluons. Similarly, the all-collinear vertex
with at least one gauge boson is proportional to the
momentum flowing through the vertex, by Lorentz
invariance:
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(127)

Again, this is true irrespective of the spin of the particles in
the straight lines and only when the lines are on shell.
Now for the proof; we prove the log lemma (Lemma 2)

by induction on the number of loops. Tree-level diagrams
trivially scale like κ0, so Lemma 2 holds for n ¼ 0. Then
suppose it holds for n − 1 loops and consider adding
another loop. We will consider all possible ways to add
a loop using three- and four-point vertices.
For massless particles, propagators blow up when virtual

lines are either soft or collinear. Let us begin with the soft
case. According to the power-counting rules in Sec. II,
when the new line goes soft the measure associated with a
soft line power counts as d4k ∼ κ8 and the denominator of
the propagator of the soft line counts as k2 ∼ κ4. If the soft
line connects via three-point vertices to two lines of
momentum pμ

1 and pμ
2, then the new loop adds two more

propagators with denominators ðpi � kÞ2 for i ¼ 1; 2. If pμ
i

is off shell, this scales like κ0; if pμ
i is on shell and not soft,

it scales like pi · k ∼ κ2; and if pμ
i is soft, it scales like κ

4.
The numerator of the propagators, combined with the three-
point vertices, power count the same as pi þ k. If pμ

i is not
soft, then pi þ k ∼ κ0; if pμ

i is soft, then pi þ k ∼ κ2. Thus
when pμ

i is off shell, the numerator and denominator
combine to κ0; if pμ

i is on shell but not soft, they combine
to κ0=κ2 ∼ κ−2 and if pμ

i is soft, they combine to
κ2=κ4 ∼ κ−2. The worst scaling is therefore when pμ

i is
on shell, and then

pi þ k
ðpi þ kÞ2 ∼ κ−2 for p2

i ¼ 0 ðeither soft or not softÞ:

ð128Þ

Thus, adding a soft loop with three-point vertices only
gives an enhancement if both lines it connects to are on
shell, in which case the new loop power counts as

(129)

on top of the original loop’s power counting.
To be more precise, the lines with momenta p1 and p2 which connect to the soft momenta k and go on shell do not have to

directly connect to k. Even if there are some loops in the graph, as long as there are lines which go on shell and connect to k
there will still be an enhancement. We can simply think of these loops as producing a composite vertex:

(130)

Since there are no extra complications with such composite vertices, we will leave the composite case implicit in this proof.
Next suppose the new loop with the soft momentum connects via at least one four-point vertex. This happens by the new

gluon connecting to a three-point vertex in the n − 1 loop graph. Again, the only way to get an enhancement is if the lines it
connects to are on shell. Because of the four-point vertex, the additional loop adds only two propagators rather than three.
The new propagator denominators are k2 and ðpi þ kÞ2. The n − 1-loop graph had a three-point vertex, with either all three
momenta collinear or one of them soft. Using Eqs. (126) and (127), we see that the original three-point vertex gave a
contribution to the numerator of the graph of the form

(131)

whereas, when we add the loop with the four-point vertex, this becomes
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(132)

Thus, there is a possible additional κ−1 from killing the numerator suppression if the original graph had an all-collinear three-
point vertex. So, connecting a soft loop to a collinear line via a four-point vertex adds a loop that power counts either as

(133)

or as

(134)

In both cases, the new graph scales like a higher power of κ
than the graph it modified. By the same argument, adding a
soft loop that connects to a collinear line on each end via a
four-point vertex will be (even more) IR finite. By the
induction hypothesis, the rest of the graph scales at worst like
κ0, so any time we add a four-point vertex with both soft and
collinear momentum flowing through it, we get a κ≥1

scaling. Thus, we see that there cannot be a soft sensitivity
when a soft gluon attaches to nonsoft gluons through a four-
point vertex. This proves the four-point lemma (Lemma 4).
When all the relevant lines go soft, the four-point

vertices can contribute at leading power. To see this,

consider the case where the soft loop connects to all-
soft lines through a four-point vertex and assume for
now that the other end connects via a three-point
vertex. This case is just like the previous discussion
in that the new loop adds only two new propagators of
the form k−2 and ðpi þ kÞ−2 and kills some of the
suppression coming from the original three-point vertex
that became a four-point vertex. However, in the all-
soft case, the three-point vertex suppression is a power
of the soft momenta, which goes like κ2 instead of
κ from the collinear case, so the new loop power
counts as

(135)

Similarly, if the new soft loop connects to all-soft lines via a four-point vertex on both ends, we only add one propagator, but
we kill two κ2-suppressed numerators, giving

(136)
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Thus four-point vertices involving all soft lines must be
included. We have now exhausted all possible ways of
adding a loop that can go soft and we have found that they
all add a power counting of κa for a ≥ 0 to the original
graph. This proves the log lemma as far as soft scaling
alone is concerned.
Now consider adding a line that can have a collinear

sensitivity. As in the soft case, there are a number of ways
that this can take place and we will systematically consider
each possibility. For the diagram to possibly be IR
divergent the momentum in the line must be going collinear
to the momenta of the lines it connects to on at least one
end. Let us suppose first that it is not also collinear to the

line it connects to on the other end. Adding a line like this
introduces two new on-shell propagators if it connects to
the line to which it is collinear with a three-point vertex, and
only a single on-shell propagator if it connects with a four-
point vertex. In the first case, the all-collinear three-point
vertex will be proportional to the momentum flowing
through it, as in Eq. (127), and this will give a suppression
when contracted with any of the propagators (or external
polarization vectors) it connects to. This is because, in
physical gauges, the propagator numerators are equal to the
polarization-vector sum when the momentum in a propa-
gator goes on shell. Thus, pμΠμνðqÞ ∼ κ for p∥q and
we have

(137)

If the all-collinear vertex is a four-point vertex, then we only get one new collinear propagator. However, going from an all-
collinear three-point vertex to a four-point vertex kills the suppression that we just discussed, so we have

(138)

Finally, if the four-point vertex has a soft line connecting to
it, it will give a finite loop due to Eq. (133). We conclude
that unless the new line is collinear to the momenta on both
ends, and in particular that all the relevant lines are on shell,
the new diagram will have additional κ suppression
compared to the n − 1 loop graph.
Combining Eqs. (137) and (138), we conclude that

whenever a particle travels between two lines that could
not originally go collinear, or that is κ-suppressed if they do

become collinear, the resulting loop is κ-suppressed, and
therefore, collinear insensitive. This proves the collinear
lemma (Lemma 3).
It remains to show that when the momenta are all on shell,

the overall scaling is at worst κ0. We have shown this already
for soft singularities. So consider the remaining casewhen the
new linegoes collinear to all of the lines towhich it connects. If
both vertices are three-point, we get three collinear propa-
gators and two κ-suppressed products in the numerator:

(139)

If only one of the vertices is a three-point vertex, then adding the loop adds two propagators, one κ-suppressed product in the
numerator due to the all-collinear three-point vertex, and one κ enhancement due to the removal of one of the original all-
collinear three-point vertices. Thus, graphs with one three-point and one four-point vertex power count as

(140)

Finally, if the added loop connects on both ends to all-collinear four-point vertices, then only one collinear propagator is
added, but two three-point vertices are removed causing two additional κ−1 enhancements:

(141)

So, all possible additional loops that involve all-collinear vertices power count as κ0 and are logarithmically collinear

singular.
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We have shown that any possible addition of a loop
power counts as κa for a ≥ 0. Therefore, by induction,
every graph in physical gauges power counts like κa for
a ≥ 0 and is at most logarithmically divergent. This proves
Lemma 2. ▪
Now, let us define the term subdiagram to mean a part of

a larger diagram that could be cut out with an arbitrarily
shaped (possibly 3D) cookie cutter. A subdiagram is
considered as a function of the generic (not necessarily
on-shell) momenta of the lines that the cookie cutter
cut. These lines are considered to be external lines of
the subdiagram, though they may have been internal in the
original graph. Internal lines in a subdiagram are the
complement of external lines.
With this definition, we can now make a useful

observation about how IR-insensitive lines scale with κ
to establish how IR-insensitive graphs can infect any line
they come in contact with, making it also IR insensitive.
This observation is encapsulated by the following lemma.
Lemma 5 (zombie lemma).—Consider adding a new

internal line L to a subdiagram with no IR-sensitive lines.
If at least one end of L attaches to an internal line of the
original subdiagram, then L is IR insensitive.
Proof.—Since no line in the subdiagram is IR sensitive,

in any soft or collinear limit the subdiagram scales like κa

for some a > 0. First, consider whether the line L can have
a soft sensitivity. When L becomes soft, it produces a loop
that scales like κ0 at most. However, this only happens if the
lines it connects to are on shell (or it produces an on-shell
line elsewhere in the subdiagram). By assumption, one of
these lines is an internal line from the original subdiagram,
so there is a corresponding κa suppression from the rest of
the subdiagram. Thus, overall the subdiagram is still soft
insensitive and so is the line L. That L cannot be collinear
sensitive follows directly from the collinear lemma
(Lemma 3). Thus L is IR insensitive and the lemma is
proven. ▪

B. IR insensitivity of the hard amplitude

Two immediate consequences of the above lemmas
completely characterize the hard amplitude.
Lemma 6 (hard-blue lemma).—Any all-blue 1PI sub-

diagram containing the hard-scattering vertex is IR
insensitive.
Proof.—Any 1PI subdiagram that contains the hard-

scattering vertex must have momenta from two different
collinear sectors piping through it. Consequently, there
must be a line L that connects between two lines that
cannot simultaneously become collinear by momentum
conservation. The collinear lemma (Lemma 3) then
implies that L is not collinear sensitive. Since L is blue
(by hypothesis), it is soft insensitive as well, and hence
IR insensitive. Now, starting with the one-loop graph
containing L, we can build up the rest of the 1PI
subdiagram by adding new lines (inserting vacuum loops

in the middle of L is allowed). Whenever a new line
connects to L, or to the network of lines previously
connected to L, it is IR insensitive by the zombie lemma
(Lemma 5). Alternatively, a new line might connect to
external lines of the subdiagram. If it connects two in the
same sector, the graph cannot be 1PI. If it connects two
in different sectors, the new line is IR insensitive for the
same reason L is, and we can replace L by this new line
to continue our argument. Thus every line in the 1PI
subdiagram is IR insensitive, as was to be shown. ▪
Lemma 7 (hard-red lemma).—Red lines cannot connect

to internal lines of an all-blue 1PI subdiagram containing
the hard-scattering vertex.
Proof.—Any all-blue 1PI subdiagram containing the

hard vertex is IR insensitive by the hard-blue lemma
(Lemma 6). Any line connecting to an internal line of this
subdiagram must also be IR insensitive, by the zombie
lemma (Lemma 5). Since red lines are soft sensitive, by
definition, these lines cannot be red. ▪
These two lemmas explain why some colored graphs are

absent in physical gauges. For example, as discussed in
Sec. VI C, the diagrams

(142)

are IR (in particular, soft) insensitive in generic-light-cone
gauge and therefore, absent from the colored-graph decom-
position. The diagrams

(143)

are present because the first two are IR divergent and the
third is the IR-finite “last” graph in the decomposition.
Note that the second diagram in Eq. (143) does not satisfy
the hypothesis of the hard-blue lemma (Lemma 6) because
without the red line, it is not a 1PI graph containing the hard
vertex.

C. Power-suppressed colored graphs

So far, we have only characterized where the IR
sensitivities are. Some diagrams, despite being IR sensitive,
contribute only at subleading power and can be dropped
from a leading-power factorization theorem. We have
already seen an example of subleading diagrams in
Sec. IV. There, in particular in Eqs. (75) and (80), we
found that for q∥p1,
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(144)

In this example, the soft-insensitive loop in the first graph is
IR finite, so the λ−1 comes from the tree-level splitting on

external leg. In the second graph, the loop is tangled with
the emission. At λ ¼ 0, the graph would be divergent, but
for λ > 0 it is not. Thus the graph scales like ln λ ≪ λ−1.
The second graph is therefore subleading compared to the
first and can be dropped. In a sense, the IR-insensitive loop
eats the enhancement of the real emission. This is to be
contrasted with IR-sensitive loops which do not eat
emissions. For example,

(145)

In each case, the graphs are divergent without the emission.
In particular, the loop in the second graph cannot eat the
emission.
The generalization of this example is embodied in the

following lemma.
Lemma 8 (loop-emission lemma).—Any diagram with an

IR-insensitive 1PI subdiagram that has a real emission
attached to an internal leg is power suppressed compared to
a corresponding diagram where the emission comes off of
an external leg.
Proof.—An IR-insensitive subdiagram that is 1PI has at

least one overall power of suppression when approaching
the soft and collinear limits. That is, it scales like κa for
some a > 0. Suppose some line in the loop has momenta
qþ k in it, where q is the external momenta and k is the
loop momenta. Adding an external collinear emission
connecting inside the loop gives an additional propagator
with momentum pþ qþ k with p the new external
momenta. Since ðpþ qÞ2 ∼ λ2, when k goes collinear to
q, this propagator scales like

1

ðpþ qÞ2 þ 2ðpþ qÞ · kþ κ2
∼

1

λ2 þ κ2
: ð146Þ

In physical gauges, the vertex contractedwith the polarization
gives ðpþ 2qþ 2kÞ · ϵ ∼ λþ κ when all of these momenta
are collinear. The net effect is therefore κþλ

κ2þλ2
. So if, of n

emissions, m are inside the loop, the diagram scales like

1

λn−m

Z
dκκa−1

�
λþ κ

λ2 þ κ2

�
m
∼
�

ln λ
λn−a ; m ≥ a
1

λn−m ; m < a
≪

1

λn
:

ð147Þ

Thus the diagrams with any number of collinear emissions
coming from within the loop are power suppressed com-
pared to the diagram with m ¼ 0, where all the emissions
are outside the loop.

Soft emissions are similar. Adding a soft emission to an IR-
insensitive subdiagram gives ðλ2 þ κ2Þ−1 for the propagator,
as before but now ðpþ kþ qÞ · ϵ ∼ 1 since although k and q
are soft,p is not.Thus eachnewemission fromwithin the loop
gives ðλ2 þ κ2Þ−1 compared to λ−2 from outside the loop and
becomes suppressed upon integration as above.
Thus, for either soft or collinear emissions, emissions

coming out of an IR-finite loop (or an IR-finite, 1PI
subdiagram) are power suppressed and can be dropped
at leading power. ▪
A final lemma finishes the required ingredients for the

advertised reduced diagram picture.
Lemma 9 (self-collinear lemma).—Graphs where a

collinear gluon is emitted from a leg to which it cannot
be collinear near an IR sensitivity are power suppressed
compared to graphs where the gluon can be collinear to the
leg it is emitted from near an IR sensitivity.
Proof.—This lemma was proven for tree-level graphs in

[FS1], using that self-collinear emissions have an enhanced
propagator compared to non-self-collinear ones. The subdia-
gram to which a collinear emission is connected must be IR
sensitive, by the previous lemma (Lemma 8) and, therefore,
cannot connect to 1PI subdiagram containing the hard vertex
with only blue lines, by the hard-blue lemma (Lemma 6).
Thus the subdiagram towhich the emission is connected can
only contain external momenta associated with a single
collinear sector before the emission is added. Thus, near an
IR sensitivity all of the propagators in the subdiagram are
either soft or collinear to the same direction and the lemma
follows from the same reason it did at tree level. ▪
That completes the lemmas. As a reminder, all of these

lemmas hold in physical gauges, as defined at the begin-
ning of this section, and are generally violated in Feynman
or other covariant gauges.

D. General reduced diagram

With these lemmas we have all of the rules required to
reduce the most general graphs that contribute to N-jet-like
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scattering in a physical gauge. We first expand the
various loop momenta and soft external momenta in
their soft limit to write a diagram as a sum of colored
diagrams with soft-sensitive virtual particles and soft-
insensitive ones. The lemmas guide the coloring; by
indicating where the soft sensitivities can be, they
indicate which red or blue lines can have associated
collinear sensitivities and which colored diagrams are
power suppressed (even if IR sensitive) compared to
other diagrams with the same external states at the same
order in perturbation theory.
To draw the physical-gauge reduced diagram, first note

that the hard-blue lemma (Lemma 6) tells us that each
diagram has an IR-insensitive core, given by the largest-
possible 1PI subdiagram containing the hard vertex which
has only blue lines. By the loop-emission lemma (Lemma
8), no real emissions can come out of this core. Thus the

hard core connects to the rest of the diagram only through a
single line in each sector.
Now let us temporarily ignore red lines. Then there are

only collinear singularities. By the collinear lemma
(Lemma 3), it is impossible for any IR-sensitive graph
to involve external momenta from two different collinear
sectors. Thus, outside of the IR-insensitive core, the only
collinear-sensitive subdiagrams are self-energy-type cor-
rections to each sector. No blue lines go between sectors, or
they would remove the IR sensitivity, by Lemma 6, and
should have been included in the core. Moreover, all
collinear emissions come from self-collinear sectors, by
the self-collinear lemma (Lemma 9). Now add the red lines
back in. These lines can connect anywhere, except to the
IR-insensitive core by Lemma 7.
We have therefore shown that any colored diagram can

be drawn as

(148)

This reduced diagram has all the properties claimed in
Sec. V. We call the sum over soft-insensitive (blue) 1PI
subdiagrams involving the hard vertex the hard amplitude
and the sum of all soft-insensitive (blue) corrections to each
external leg the jet amplitude. All of the soft-sensitive (red)
lines are in the soft amplitude, which is not necessarily
connected. Note that these are amplitudes, in contrast to the
common use of hard jet and soft functions to refer to
squares of the amplitudes. This reduced diagram displays
hard factorization. We have not yet shown how the jet and
soft amplitudes can be disentangled which requires soft-
collinear factorization.
In generic light-cone gauge, where there are no ghosts,

every line in or exiting S is soft sensitive and is colored red.
Because all the lines entering S are soft sensitive, no
momenta within S can be dropped with respect to any other
momenta. Thus, there is no expansion done by the coloring
algorithm applied to S and the loops within S are given by
the full-QCD Feynman rules. The lines leaving S connect-
ing to the Jj blobs have been expanded and have eikonal
interactions with the Jj blob. As we will see in the next
section, in factorization gauge, there are ghosts in the S
blob. Ghosts are always IR insensitive, and thus they
should be colored blue. Since the ghosts are blue without
any expansion, the S blob still contains all the unmodified
loops of full QCD. In summary, in any physical gauge, the

S amplitude connects to the rest of the diagram through
soft-sensitive (red) lines with eikonal interactions and all
the internal loops of S are the same as in full QCD.
Before moving on to soft-collinear factorization, we

pause to discuss the physically rich structure of the reduced
diagram in Eq. (148). The hard factorization displayed here
is a consequence of the geometrical property that the jet and
soft subdiagrams attach to the hard subdiagram by a single
line. Moreover, near the IR sensitivities in the loops, this
line is almost on shell and carries the net momentum of the
jet. The hard subdiagram is therefore a completely inde-
pendent process that depends only on a single net momen-
tum and the overall quantum numbers for each collinear
sector. Since the hard subdiagram has a smooth λ → 0 limit,
it is completely insensitive to corrections of order λ;
namely, it is completely insensitive to the distribution of
collinear momenta among the external states hX1…XN ;Xsj.
The IR finiteness of the hard amplitude arises because, in

physical gauges, there are additional suppression factors
from numerators in regions where the virtual particles go on
shell. Since the hard amplitude is IR insensitive, all the
dynamics it encapsulates takes place at short distance. Only
distances of order ðΔxÞH ¼ ðPi · PjÞ−1=2 are relevant.
Since the hard diagram communicates with the rest of
the process only through the single lines which are off shell
by of order λ, these interactions take place at distances
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ðΔxÞJ ∼ λ−1ðΔxÞH away from the hard core. The sub-
sequent nonsoft (i.e. collinear) interactions take place
around ðΔxÞJ, but in different directions. These collinear
particles can then only communicate with each other
through the exchange of long-wavelength modes, at dis-
tances of order ðΔxÞS ¼ λ−2ðΔxÞH. The single particle in
each sector coming out of the hard vertex corresponds to
the single partons in hard matrix elements which can be
calculated first and then either showered through a
Monte Carlo event generator or convolved against analytic
jet and soft functions in an inclusive calculation.
It is important to note that the intuitive picture drawn in

Eq. (148) is only valid in physical gauges, such as generic-
light-cone gauge. In Feynman gauge or non-generic-light-
cone gauges with enhanced polarization vectors, Eq. (148)
is totally destroyed and the factorization becomes com-
pletely opaque [62]. Although this seems like an esoteric
point, these unphysical gauges are often used in discussions
of factorization, such as in the original formulation of
SCET [29,45]. For more discussion of this point see [FS1].

VIII. STEP 3: FACTORIZATION GAUGE

We saw in the previous section that generic-light-cone
gauge limits the types of diagrams which can contribute at
leading power. Let us temporarily imagine restricting the
region of integration of the loop momenta so that the soft-
sensitive lines are forced to be soft and the soft-insensitive
lines are forced to be collinear to some direction (instead of
integrating them over R1;3 like we should). Then each
reduced diagram would just be some integrals over soft
and collinear particles with the same topologies as discussed
in [FS1], and it seems like the same proof of soft-collinear
decoupling would apply nearly unchanged. However, [FS1]
made heavy use of the freedom to choose different reference
vectors for different external particles. In particular, a
different reference vector rμj is chosen for each distinct
collinear sector as well as another, rμs , for the soft sector. For
this to work at loop level, we need to be able to choose the
reference vector for a light-cone-gauge propagator to depend
on the direction that the virtual gluon is going. We call a
gauge with this flexibility factorization gauge. Factorization
gauge is critical to our proof and will be useful even when
the virtual phase space is unrestricted over R1;3.
This section introduces factorization gauge. In factori-

zation gauge, ghosts do not completely decouple, as they
do in light-cone gauge. However, we will show that ghosts
do not give rise to additional IR sensitivities. The next
section will use factorization gauge to rigorously prove
soft-collinear factorization, following essentially the same
procedure as in [FS1].

A. Definition

Wewould like to be able to choose a different light-cone-
gauge reference vector for each sector in the reduced

diagram, which is the loop-level equivalent of choosing
different reference vectors for the polarizations of each
sector which was done in [FS1]. That is, we would like to
choose a gauge such that the numerator of the gluon
propagator is given by

ΠμνðkÞ ¼ −gμν þ rμðkÞkν þ rνðkÞkμ
rðkÞ · k ð149Þ

with

rμðkÞ ¼

8>><
>>:

rμs ; ksoft;

rμj ; k∥pj;

rμh; otherwise:

ð150Þ

We assume rμs , r
μ
j and r

μ
h to be lightlike and take r

μ
s and r

μ
j as

the reference vectors for polarizations of soft and collinear
external gluons, respectively. Given that for loop momenta
k being soft or collinear is equivalent to −k being the same,
we will further define

rμðkÞ ¼ rμð−kÞ; ð151Þ
so we only need to specify rμ for positive-energy momenta.
In practice, wewill only use two different reference vectors:
rμj ¼ rμc for all j and rμh ¼ rμs . Although our arguments will
only use the freedom to choose rc and rs separately, we
define factorization gauge with the full N þ 2 different
reference-vector choices since this is consistent with our
freedom to choose the reference vectors for the external
gluons separately.3

To be concrete, we can make Eq. (150) precise by
chopping up phase space. For example, we can draw a
Euclidean ball of size λ2Q around k ¼ 0 for the soft region,
draw cones of angle λ around each jet region, and let
everything else count as hard. The precise partitioning will
not matter for the proof of factorization.
Note that both soft-sensitive and soft-insensitive gluons

have unrestricted momenta. For example, soft-sensitive
(red) lines can be collinear or hard in which case their
propagator has rj or rh. Factorization gauge does not assign
a different reference vector to different lines in the reduced
diagram (which would not be gauge invariant). The assign-
ment of reference vector is based only on the gluons’
momentum, which is a legitimate gauge choice.
To implement this gauge choice into the Lagrangian, we

can use the following nonlocal gauge fixing term:

Lg-fðxÞ ¼ −
1

2ξ
ðrμði∂ÞAa

μðxÞÞ2 ð152Þ

and then take ξ → ∞. This gives a Faddeev-Popov deter-
minant of

3Light-cone gauges with different (constant) reference vectors
for different sectors have appeared in the SCET literature [67].
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det

�
1

g
rði∂Þ ·Dadj

�

¼
Z

DcDc̄ exp

�
−i

Z
d4xc̄aðrði∂Þ ·DabÞcb

�
: ð153Þ

Therefore, the ghosts couple to gluons via

(154)

Thus, the vertex Feynman rule depends on rμðpÞ with pμ

the momentum of the ghost.
The gluon propagator is

(155)

with ΠμνðkÞ given in Eq. (149) which satisfies (for lightlike
rμ)

rμðkÞΠμνðkÞ ¼ 0: ð156Þ

Recall that in light-cone gauge (where rμ is constant),
although the ghost-gluon vertex is still proportional to rμ,
any graph where a ghost couples to a virtual gluon is zero,
due to Eq. (156). If rμ is also the reference vector of the
external polarizations, then the ghosts completely decouple
diagram by diagram (for a different choice of external
reference vector, individual diagrams with ghosts may not
vanish but their sum must due to the Ward identity, which
guarantees reference-vector independence). In factorization
gauge, when a gluon of momentum k couples to a ghost of
momentum p, where rðkÞ ≠ rðpÞ, the vertex will not be
orthogonal to the gluon propagator or polarization. Thus,
ghosts do not completely decouple in factorization gauge.
Nevertheless, ghosts play a very small role in factorization,
as we now show.

B. Ghosts decoupling

Although ghosts do not completely decouple, we will
now show that ghosts cannot give rise to IR sensitivities. In
particular, this means that ghost lines can never be red and
can only contribute IR-insensitive loops internal to the
hard, jet and soft blobs of Eq. (148).
The fact that ghost loops do not give rise to IR sen-

sitivities can be anticipated using unitarity. Independent of
the gauge choice, we are always free to choose different
reference vectors for the polarizations of external gluons in
different IR sectors (as was extensively used in [FS1]). By
unitarity, these on-shell soft and collinear gluons should be
in one-to-one correspondence with cuts of loops near IR
singularities. We then expect that in a gauge consistent with

choosing different reference vectors for different IR sectors
(i.e. factorization gauge) ghosts should not exist in IR-
sensitive loops, since the ghosts cannot exist as external
particles.
Ghosts cannot be part of IR-sensitive loops because near

the IR-sensitive regions of integration, factorization gauge
looks like a regular light-cone gauge in which ghosts
decouple. That is, because the sum of soft momenta is
soft and the sum of collinear momenta (to a single
direction) is collinear, the all-soft and all-collinear ghost-
ghost-gluon vertices vanish when contracted with the gluon
propagator or external polarization exactly as they do in
light-cone gauge. Therefore, ghosts will only modify the
internal structure of the hard, jet and soft blobs by adding to
them IR-insensitive loops.
What other types of vertices can give rise to IR

sensitivities? Momentum conservation rules out the pos-
sibility of vertices with off-shell and two collinear momenta
or off-shell and a soft and collinear momentum. The
collinear lemma (Lemma 3) says that a vertex with an
off-shell momentum and two-hard on-shell momenta that
are not collinear to each other cannot give rise to an IR
sensitivity. So, we only need to consider ghost loops with
singularities where the vertices in the loop have mixed-on-
shell momenta. There are then two possibilities:
(1) Collinear ghost/soft ghost/collinear gluon, such as in

(157)

where p is a collinear and k and k0 are soft.
(2) Collinear ghost/collinear ghost/soft gluon,

(158)

with p collinear and k soft.
In situations of the first type, one of the vertices is

proportional to rμðk0 − kÞ and the other vertex to rμðpþ kÞ.
The rμðk0 − kÞ is not orthogonal to the collinear-gluon
propagator ΠμνðpÞ, because k and k0 are soft, so this vertex
will not vanish. However, these nonvanishing vertices are
always accompanied with the other vertex which is propor-
tional to rμðpþ kÞ which is equal to rμðpÞ since p∥pþ k,
and rμðpÞ is orthogonal to ΠμνðpÞ. Hence graphs with
segments like in Eq. (157) always vanish near the singu-
larity. A vertex of the second type, Eq. (158), does not
automatically vanish on its own, since rμðpÞ ≠ rμðkÞ.
However, since there are no external ghosts, a ghost with
a collinear momentum can only give rise to an IR
sensitivity if it came from a gluon with collinear momen-
tum. Thus there must be a vertex of the first type
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somewhere in the graph making the graph vanish in the IR-
sensitive region of the ghost.
That being said, we are not arguing that the soft gluon in

Eq. (158) cannot give rise to a soft sensitivity irrespective of
the ghost momentum; we are only showing that the ghost
lines themselves cannot give rise to IR sensitivities when
they go on shell. For example, we could have the following
soft-sensitive graphs:

(159)

In both cases, the integrand vanishes when the red gluon(s)
go soft and the ghost goes soft or collinear. However,
when the ghost is off shell, the red gluon(s) can go soft
giving rise to a soft sensitivity of the same form as from the
corresponding graphs where the ghost loop is contracted to
a point.
The most important point that we use from this section is

that ghost lines cannot be soft sensitive (red). Since we can
treat ghosts as blue lines, any 1PI-blue subdiagrams that
contain the hard vertex are IR insensitive by the hard-blue
lemma (Lemma 6), irrespective of whether or not they
contain ghosts. Furthermore, the loop-emission lemma
(Lemma 8) tells us that such subdiagrams do not have
external emissions connecting to them. Hence, the reduced-
diagram picture in Eq. (148) is unchanged in factorization
gauge, except for the fact that now the hard, jet and soft
amplitudes may contain IR-insensitive ghost loops.

IX. STEP 4: SOFT-COLLINEAR FACTORIZATION

The all-orders proof of soft-collinear factorization can
now be built upon the skeleton of the tree-level proof from
[FS1]. This is made possible by factorization gauge, in
particular, our ability to choose a different reference vector
for (real and virtual) soft momenta, rs, and for (real and
virtual) collinear momenta, rj. Wewill choose all of the rj’s
to be a particular generic direction rc not collinear to any of

the collinear sectors; we call this the generic-rc choice. For
the soft reference vector we will go back and forth between
choosing rs in a particular collinear direction and rs
generic, building up elements of soft-collinear factorization
as we go. We take rh ¼ rs for simplicity.
Before getting started, it is worth noting how coloring

works in matrix elements involving Wilson lines. One
should color these diagrams just as with diagrams involv-
ing only local fields. Since emissions from Wilson lines
already have eikonal vertices, they are exactly equal to
their leading expansion in the soft limit. Thus, in matrix
elements involving only Wilson lines, such as h0jY†

jWjj0i,
all the lines are red. These lines interact with each other
through an S blob just like in Eq. (148). In matrix
elements involving Wilson lines and fields, on the other
hand, such as h0jϕ⋆Wjj0i, there can be both blue and
red lines. As discussed in the previous section, in
factorization gauge, the S blob can also have blue lines
if there are ghosts just like in the non-Wilson line matrix
elements.
Although we use scalar QED notation, operators in QCD

look similar, with extra gauge and spin indices floating
around. As far as hard-soft-collinear factorization is con-
cerned, the differences between scalar QED and QCD are
almost entirely notational. Thus we postpone the presen-
tation of QCD matrix elements until Sec. XI.

A. Soft and collinear factorization separately

To begin, consider diagrams which only have red lines
connecting to bare collinear sectors and call them Gpure red.
Recall that diagrams with red lines are derived from full
theory diagrams by expanding to leading order around
the limit where the momenta in all the red lines are small.
This expansion is the same as the eikonal expansion.
Equivalently we can expand by taking all the nonsoft lines
infinitely hard. This infinite-hard limit removes the dynam-
ics from the nonsoft lines, making them appear as classical
sources which can be represented with Wilson lines. Thus,
the sum of graphs of the form Gpure red gives matrix
elements of Wilson lines:

(160)

where the sum over all possible diagrams of this topology is
implicit. This equality holds in any gauge.
It is not hard to prove Eq. (160) directly. The Wilson

lines Y†
j exactly give the eikonal Feynman rules, so doing

the contraction combinatorics just like in [FS1], we see that
the sum of the red lines connecting to the collinear ones
is the same as the red lines connected to the soft Wilson
lines. Since the S blob gives all-possible QCD interactions
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(including ghosts in factorization gauge), we exactly get the
matrix element of Wilson lines in Eq. (160) to all-
loop order.
For Eq. (160) to work the symmetry factors in the

original uncolored loops must turn into the symmetry
factors of the red loops. This is not hard to check. As
discussed in Sec. VI D, for every symmetry of an uncolored
graph that is broken by the coloring, there are exactly as
many different-but-equivalent soft sensitivities. So the
symmetry factors work out correctly.
Pure collinear factorization is harder to discuss using

colored diagrams. While diagrams with the maximal number
of red lines are reproduced from a simple gauge-invariant
Wilson line structure, diagrams with the maximal number of
blue lines do not have any special simplifying property.
Indeed, the Feynman rules for blue lines are a mess since
they are given by differences between full QCD Feynman
rules and eikonal Feynman rules. Moreover, graphs with all
red lines are just as collinear sensitive as graphs with all
blue lines.
Instead, it is perhaps useful to consider the following

rather trivial diagrammatic identity, forgetting about the
coloring altogether:

(161)

where, again, a sum over diagrams of the topology shown is
implicit. In this equation, the right-hand side is simply the
sum over all graphs in scalar QCD with only self-energy
corrections to each collinear sector. We saw such a structure
emerge from the reduced diagram picture. Recall from the
hard-blue lemma (Lemma 6) that when a gluon connects
between two different collinear sectors, there is no collinear
sensitivity associated with it. Thus the diagrams on the right
give the maximally collinear sensitive contributions to an
amplitude at each order in perturbation theory in physical
gauges.

B. Soft-collinear factorization with a single
collinear sector

We have seen that the sum of all graphs with the only red
lines connecting to naked collinear sectors is reproduced by
a matrix element of Wilson lines, as in Eq. (160), and that
the self-energy-type corrections to a single collinear sector
are given by matrix elements of fields, as in Eq. (161). To
prove soft-collinear factorization, the next step, as in [FS1],
is to factorize amplitudes containing both soft sensitivity
and collinear sensitivity in one direction.
Let us define GJj⊗S as the sum of all colored diagrams

that, when the red lines are removed, have collinear

sensitivity to the j direction and no collinear sensitivity
to any other direction. These are diagrams with any type of
red or blue self-energy corrections to the j leg, any number
of blue lines in the hard vertex, and any number of red lines
connecting the j sector to other sectors. These diagrams all
have the form

(162)

ThatGJj⊗S is a sum of such diagrams is left implicit. The Jj
blob means all possible soft-insensitive loops (only blue
lines) consistent with the external emissions in hXjj and the
S blob means all-possible graphs with only red lines (soft-
sensitive lines or soft external lines) coming out. Note that
the restriction that Jj have only blue lines is only a
convention. It does not restrict the relevant subdiagrams,
since any red self-energy contributions are simply absorbed
into S. The S blob does not have to be 1PI, planar or even
connected.
It is not hard to write down an operator definition of

GJj⊗S. As long is rc is generic

(163)

There is an implicit choice of H in this equation. The Yi
Wilson lines for i ≠ j provide the eikonal interactions
between the red lines and the i ≠ j collinear sectors. The ϕ⋆

j
allows for any possible self-energy-type graphs in the j
sector. Although the left-hand side is gauge invariant, in
unphysical gauges (such as Feynman gauge or factorization
gauge with a nongeneric rc∥pj), there will be collinear-
sensitive diagrams with gluons going between different
Wilson lines, or between a Wilson line and the j sector. The
hard-blue lemma (Lemma 6), which guarantees that such
lines are only soft sensitive, critically uses that a physical
gauge was chosen in the collinear-sensitive region.
Now we will show that in factorization gauge with rh ¼

rs ¼ pj there are no soft-sensitive graphs inGJj⊗S with lines
connecting the S blob to the Jj blob. This is the loop-level
version of the tree-level result that when rs ¼ pj any graph
with soft external lines connecting to the pj-collinear sector
is power suppressed. At tree level, the decoupling happens
because the eikonal vertex gives a factor of pj · ϵðrsÞ which
is power suppressed when rs ≅ pj. At loop level, we need to
show that all the relevant graphs have a similar structure and
are therefore similarly power suppressed.
Although there is no restriction that red lines have soft

momenta—in general, red lines are integrated over all of
R1;3—there is a restriction that red lines do have to be soft
sensitive. Their soft sensitivity is inherent in the coloring,
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as discussed in Sec. VI. Thus, consider the soft-sensitive
region of a subdiagram with red gluon emerging from the
jet blob. It looks like

(164)

where all the indices are suppressed except the Lorentz
index on the soft line. Here, Sμ is a function of the
momentum k, the external-collinear momentum fpjg
and the reference vectors associated with our gauge choice;
that is, we imagine having done all of the loops in the
collinear blob Jj. We now state a simple lemma pertaining
to which Lorentz structures can carry the μ index in Sμ.
Lemma 10 (soft-attachment lemma).—When rs ¼ rh,

the soft sensitivity can only come from the term in
Sμðk; fpjg; rs; rj; rhÞ proportional to pμ

j .
Proof.—The first step is to show that

Sμðk; fpjg; rs; rj; rhÞ has no term proportional to rμj at
leading power. The only way to get an rμj term in Sμ is from
the soft line connecting to a line that goes collinear to the
j-jet direction. However then, the leading power soft vertex
is eikonal, namely, proportional to pμ

j instead of rμj as
discussed in Eq. (126) (as discussed in Sec. VIII B, the soft
gluon cannot connect to a collinear ghost). So any terms
proportional to rμj are κ suppressed near the collinear
sensitivity. Then, when the collinear region is integrated
over, the κ-suppressed integrals give a finite value propor-
tional to the volume of the collinear region, namely, λ to
some positive power. Thus rμj terms are power suppressed
in loops and trees alike.
Now, since the rμj term is power suppressed, we are left

with rμs ¼ rμh, k
μ and pμ

j . However, when the red line is
contracted with a soft propagator or a soft external
polarization, any term proportional to rμs vanishes exactly
and any term proportional to kμ will be suppressed in κ. So
these terms cannot contribute to a soft sensitivity in the red
line. This proves the lemma. ▪

Therefore, if we make the nongeneric choice rs ¼
rh ¼ pj, which we call collinear rs, there will be no soft
sensitivities connecting to the j-collinear sector. We state
this as a lemma.
Lemma 11 (collinear-rs lemma).—There are no soft-

sensitive (red) lines connecting to the j-collinear sector in
factorization gauge in collinear-rs (r

μ
s ¼ rμh ¼ pμ

j ).
Proof.—The result is easy to see for a single soft line by

Lemma 10, since when rs ¼ pj any soft propagator or
external polarization vector will be orthogonal to pμ

j . Now
suppose we have many lines connecting to the j-collinear
sector. Working our way inwards towards the hard vertex,
the outermost line must be soft insensitive by the argument
for a single line, since it does not depend on the momentum
of the other potentially soft lines. If the outermost-red line
connects to a different collinear sector, then by the hard-
blue lemma (Lemma 6) the rest of the lines must be blue
and IR insensitive or, if any of the other lines are external-
soft emissions, the whole graph is power suppressed by
loop-emission lemma (Lemma 8). So the lemma is proved
in this case. On the other hand, if the outermost line
connects back to the j-collinear sector, because it is soft
insensitive, it will just contribute to the blue-collinear blob
and we can start the argument over again starting from the
next-outermost line. In this way, we see that no soft-
sensitive (red) lines can connect to the j-collinear sector in
collinear rs. ▪
For the rest of this paper we will take all of the collinear-

reference vectors, frjg, to be the same generic direction rc,
that is not collinear to any of the collinear sectors.
Furthermore, we will always take rh ¼ rs. Neither of these
choices is necessary, but they simplify the discussion. We
have shown that if one chooses rs ¼ pj there are actually
no red lines connecting to the Jj blob in Eq. (162). This
means that no expansion was done to the integrals in the Jj
blob and therefore the Jj blob is exactly the same as in the
full theory. Thus the set of relevant colored graphs
contributing to GJj⊗S is somewhat different in generic-
light-cone gauge from factorization gauge with rs ¼ pj:

(165)

In most physical gauges, there are blue self-energy
bubbles in the Jj blob, red self-energy bubbles attaching
to the Jj blob, as well as red lines leaving this blob and
connecting to the other legs and to external-soft emis-

sions. However, in factorization gauge with rμs ¼ pμ
j , the

Jj blob is unmodified from full QCD and no red lines
connect to it. The H, J and S blobs are all different in the
two cases.
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Now, since there are no soft-sensitive lines connecting to the Ji blob when rs ¼ pj, the amplitude from summing all the
relevant graphs is closely related to the amplitude from a product of Wilson lines, as in Sec. IX A. More precisely,

(166)

where Pμ
j is the net collinear momentum in the j sector, nμi is the lightlike direction of the i sector and Cðfni · PjgÞ is an IR-

finite function of ni · Pj for i ≠ j.
A subtle point is that Cðfni · PjgÞ does not have to equal the sum of the graphs in the hard amplitudeHðPj; kiÞ evaluated

at kμi ¼ 0 for all the soft loop momenta. To see where the difference comes from, recall that theH blob is IR insensitive, so it
is finite when any of the momentum from the red lines goes soft. Thus, we can write

(167)

This allows us to extract the loops over the soft-sensitive
red lines, Sðki; niÞ, from the soft-insensitive loops,
HðPj; kiÞ. Since the soft-sensitive loops are at most
logarithmically divergent by the log lemma (Lemma 2),
the second term is finite because HðPj; kiÞ −HðPj; 0Þ
vanishes when the ki → 0. Thus, we can pull out an overall
IR-insensitive power series, Cðfni · PjgÞ, times the pure-
eikonal loops which are identically given by the matrix
element of Wilson lines shown in Eq. (166). Now, the
second term on the right-hand side of Eq. (167) could either
be power suppressed (for example, if the ki → 0 limit in
question is tangled with a soft emission by Lemma 8), or it
could be some IR-finite integral multiplying a lower-order
IR-sensitive contribution from the soft Wilson line matrix
element. Thus, Cðfni · PjgÞ is not equal to HðPj; 0Þ in
general. Instead, it is some IR-insensitive power series in
the perturbative coupling that starts at 1. Despite the
difference, Cðfni · PjgÞ, like HðPj; 0Þ, only depends on
the net momenta in each collinear sector. The difference is
from the subtraction terms on the right-hand side of
Eq. (167) which is subleading power when tangled with
external emissions, by Lemma 8.
Now, combining Eqs. (163), (165) and (166), and that,

since the Jj blob contains no red lines it is simply all the
corrections to the j sector in full QCD, we have

hXj;XsjY†
1…ϕ⋆…YN j0i

≅
rs¼pj
genrc

Cðfni · PjgÞhXjjϕ⋆j0ihXsjY†
1…Yj−1Yjþ1…YN j0i:

ð168Þ

In other words, rs ¼ pj lets us disentangle a field from the
product of Wilson lines.

C. Bootstrapping in Y†
j and Wj

At this point, following [FS1], we want to insert Y†
j into

Y†
1…Yj−1Yjþ1…YN in Eq. (168) to make it gauge invariant.

Recall that at tree-level choosing rs ¼ pj for the external
soft particles forces Y†

j to contribute only power-suppressed
terms. When loops are involved, it is not quite that simple,
since the red lines are not restricted to be soft. Indeed, self-
contractions in Y†

j (self-energy graphs on the j leg) are
collinear sensitive, since in the collinear-sensitive region
the gluon propagator has the collinear reference vector rc
instead of rs. Thus it is true at tree level but not at loop level
that inserting Y†

j only gives a power-suppressed modifica-
tion in collinear rs.
When rs ¼ pj, contractions of Y

†
j with the other Yi’s are

soft insensitive by the collinear-rs lemma (Lemma 11) and
must be blue. Then, by the hard-blue lemma (Lemma 6), we
know that any contractions of Y†

j with the other Yi’s are IR
insensitive in physical gauges, as are any 1PI subdiagrams
containing such contractions. So when rs ¼ pj, the only

new IR sensitivities that arise from adding in the Y†
j are the

collinear sensitivities in new self-energy-type corrections to
the pj sector, namely from purely self-contractions of the

Y†
j operator. The sum of the purely self-contractions of Y†

j is

trivially given by h0jY†
j j0i. Therefore, if we not only add the

Y†
j into the product of Y†

1…Yj−1Yjþ1…YN but also divide

by h0jY†
j j0i, the new collinear-sensitive contributions from

Y†
j will be completely removed, and this addition does not

change the IR sensitivities.
The net effect of adding Y†

j to the product of Wilson lines

and dividing by h0jY†
j j0i is not nothing. There are graphs
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from this modification with gluons going between Y†
j and

one of the other legs. These contributions are soft insensi-
tive (in factorization gauge with rs ¼ rp) and collinear
insensitive (since they connect different legs, by Lemma 6),
and thus they are IR insensitive. Using the same procedure
as outlined in Eq. (167), we can absorb the IR-insensitive
difference into a modification of the Wilson coefficient,
which means that Eq. (168) becomes

hXj;XsjY†
1…ϕ⋆…YN j0i

≅
rs¼pj
genrc

C0ðfni · PjgÞhXjjϕ⋆j0i hXsjY†
1…YN j0i

h0jY†
j j0i

ð169Þ

for some new IR-insensitive function C0ðfni · PjgÞ.
This is the second timewe find two objects with the same

leading-power IR sensitivities differing by an IR-insensi-
tive set of loops. Rather than modifying the Wilson
coefficient Cðfni · PjgÞ in each step for the IR-insensitive
part, let us introduce the symbol ≅IR to mean that the IR
sensitivities on both sides agree at leading power. For
example, with this notation, Eq. (169) becomes

hXj;XsjY†
1…ϕ⋆…YN j0i ≅

rs¼pj
genrc

IRhXjjϕ⋆j0i hXsjY†
1…YN j0i

h0jY†
j j0i

:

ð170Þ
An ≅IR equivalence implies that a ≅ equivalence holds if
some IR-finite Wilson coefficient, CðfPi · PjgÞ, is multi-
plied on one side. That is,

A ≅IR B⟺
A
B
≅ CðSijÞ ð171Þ

for some IR-insensitive function CðSijÞ, where
Sij ¼ ðPi þ PjÞ2.

Next, we show that collinear Wilson lines can be added
without changing the IR structure. Recall that collinear
Wilson lines Wj have the same definition as soft Wilson
lines Yj, but while the Yj point along the jet direction pj,
the Wj lines point in some direction tj which is only
restricted not to be collinear to pj. In light-cone gauge, if
we choose tj ¼ r, then Wj simply decouples since the
gluons all have tjμΠμνðkÞ ¼ 0 for any k and Wj ¼ 1
effectively. In factorization gauge with rs ¼ pj and tj
and rc generic, the Wilson lines do not decouple com-
pletely. However, it is still true that

hXjjϕ⋆Wjj0i
h0jY†

jWjj0i
≅

rs¼pj
genrc

IR
hXjjϕ⋆j0i
h0jY†

j j0i
: ð172Þ

This is true for exactly the same reason that we could
bootstrap Y†

j into Eq. (169): when rs ¼ pj, any lines
connecting to ϕ⋆ and Y†

j are blue by Lemma 11. This
means, by Lemma 6, that the only new IR sensitivities
introduced on the left-hand side of Eq. (172) are those
coming from purely self-contractions of Wj which cancel
in the ratio, proving Eq. (172).
Now, since no red lines can connect to ϕ⋆ or to Y†

j when
rs ¼ pj, the right-hand side of Eq. (172) must be soft
insensitive. This implies that the left-hand side is soft
insensitive too. Since the left-hand side is gauge invariant, it
is soft insensitive in any gauge. In other words,
hXjjϕ⋆Wjj0i=h0jY†

jWjj0i contains only blue lines.
Moreover, these all-blue-line graphs cannot come from
h0jY†

jWjj0i or hXjjWjj0i since these matrix elements,
involving Wilson lines only, always have red lines attach-
ing to the Wilson lines (with an arbitrary S blob connecting
them). Thus the blue lines can come from hXjjϕ⋆j0i or
from contractions between Wj and ϕ⋆. However, blue
contractions between Wj and ϕ⋆ are IR insensitive by the
hard-blue lemma (Lemma 6). Therefore, we have

(173)

where the Jj blob has only blue lines. We use this result
below to strip the red lines off of a general matrix element.
Let us pause briefly to give an interpretation of

h0jY†
jWjj0i. Note that hXjjϕ⋆Wjj0i has both collinear

and soft sensitivities, but hXjjϕ⋆Wjj0i=h0jY†
jWjj0i has

only blue lines so it is soft insensitive. Thus h0jY†
jWjj0i is

subtracting off the contribution which is both soft and
collinear sensitive. Dividing by it implements the subtrac-
tion procedure known as the zero-bin subtraction in SCET.
We will discuss this further in Sec. XIII where we contrast
our matrix-element definition with that used in the SCET
literature.

Returning to Eq. (172), if we combine it with Eq. (170),
we find

hXj;XsjY†
1…ϕ⋆…YN j0i

≅IR
hXjjϕ⋆Wjj0i
h0jY†

jWjj0i
× hXsjY†

1…YN j0i: ð174Þ

Although we only showed this IR equivalence in collinear
rs (rs ¼ rh ¼ pj, generic rc) since both sides of this
equation are gauge invariant, it must hold for any choice
of rs or rc and more generally in any gauge (including
Feynman gauge). Thus, Eq. (174) is not restricted to a
particular gauge.
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Note that Eq. (174) holds for any number of soft Wilson
lines. As a special case, when there are two sectors

hXj;Xsjϕ⋆Yij0i ≅IR
hXjjϕ⋆Wjj0i
h0jY†

jWjj0i
× hXsjY†

jYij0i; ð175Þ

which holds for any i and j.

D. Sprig of thyme

Equation (174) [or more simply, Eq. (175)] establishes
soft-collinear factorization for a single nonminimal

collinear sector. When multiple sectors are nonminimal,
we clearly cannot choose rs ¼ pj for all j simultaneously
to repeat the above derivation. However, since Eq. (174) is
gauge independent, this is not necessary, as we will see.
When rμs is not collinear to p

μ
j , Eq. (174) still holds, since

it is gauge invariant. For generic choices of rs, there are soft-
sensitive diagrams with red lines connecting to the Jj blob
contributing to Eq. (174). Although there is no diagram-by-
diagram correspondence in Eq. (174), the sum of diagrams
with a Jj blob and a fixed number n of red lines attaching to
it do correspond. In fact, as we will now show,

(176)

On the left-hand side, the usual Jj blob is defined to have
only blue (soft-insensitive) lines and to have all such
lines summed over and their integrals evaluated. We are
considering diagrams which have n generically off-shell
red lines attaching to this Jj blob. In a full diagram the
red lines can be closed into a loop, contracted with
polarizations for external soft particles, or connect to a J
blob in another sector (not shown); we simply slice them
close to their attachment to the Jj blob and treat them as
off shell. The

P
perms onj means the sum over permuta-

tions of all possible ways of connecting the red lines to
Jj blob on the left-hand side. The right side has these
same red lines now connecting to a Y†

j Wilson line; the
Y†
j on the right-hand side is meant to be taken at the

same order as the number of red lines on the left, as
indicated by the jn.
Equation (176) is the loop-level equivalent of the tree-

level Eq. (94) in [FS1]. It shows that red lines can be
stripped off of arbitrarily complicated jet amplitudes, like
leaves off a sprig of thyme, independent of where those red
lines connect in the rest of the diagram.
Proof of Eq. (176) sprig of thyme.—We will prove

Eq. (176) by induction on the number of red lines n leaving

the Jj blob. The key, as in [FS1], is to cancel all diagrams
which contribute to both sides of Eq. (176) but have fewer
than n red lines attaching to the Jj blob using Eq. (175) and
the induction hypothesis. The remaining diagrams will
have all n red lines connecting to the Jj blob so that
Eq. (176) follows from Eq. (175).To avoid the notational
quagmire of an algebraic induction proof as was done in
[FS1], in this paper we take a diagrammatic approach.
To begin note that both sides of Eq. (175) can be

decomposed into colored diagrams. We will thus consider
all of the blue diagrams in Eq. (175) with a fixed number of
red lines emerging from the Jj blob.
n ¼ 0.—With no red lines coming out of Y†

j , this Wilson
line is simply 1 and Eq. (176) follows from Eq. (173)
exactly:

(177)

n ¼ 1.—Consider Eq. (175) with one red end attached
anywhere. Since there is only one red end attached, the red
line must be part of hXsj ¼ hkj. Then the left-hand side of
Eq. (175), at this order, is given by

(178)

On the right-hand side of Eq. (175) the red line can only come from one of the Wilson lines in hkjY†
jYij0i (since the other

factor is all blue), so

�hXjjϕ⋆Wjj0i
h0jY†

jWjj0i
hXsjY†

jYij0i
�				

1 red

¼ hXjjϕ⋆Wjj0i
h0jY†

jWjj0i
ðhkjY†

j j0ij1 red þ hkjYij0ij1 redÞ: ð179Þ

By Eq. (175), Eqs. (178) and (179) are equal. By Eq. (177), the second term on the right-hand sides of Eqs. (178) and (179)
are separately equal. This leaves
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(180)

We can now strip off the polarization vector (the contraction with the external state) because the vertex Feynman rule is the
same for a red line in a loop connecting to another sector or for a real emission, as discussed in Eq. (126) and also in the soft-
attachment lemma (Lemma 10). Thus, Eq. (180) establishes Eq. (176) for n ¼ 1.
n ¼ 2.—At n ¼ 2, if the red lines are all external, Eq. (175) gives

(181)

Using Eq. (177), the
P

perms oni terms cancel term by term with the Oðg2Þ contractions of the external states with the Yi
Wilson line. The middle term cancels with theOðgÞ contractions of the external states with the Yi and Y

†
j operators using the

previous induction step, Eq. (180). We are left with

(182)

This and the previous case are almost identical to the tree-level proof since there are as many external emissions as orders, n.
That is, there are no red loops and we simply cancel off emissions off of the i ≠ j sector term by term using the previous
induction hypotheses.
If the red lines are in a loop, then all cases where the red lines do not both come off the j line still cancel by the previous

induction steps (which already have the polarization vectors stripped off). Thus, after canceling these terms off in Eq. (175),
we are left with

(183)

The indicated contraction is superfluous, since h0jY†
j j0i only has red lines and we are restricting it to only two red vertices.

The combination of Eqs. (182) and (183) means that Eq. (176) holds for n ¼ 2.
Arbitrary n.—It should now be clear how the induction step works: at every step, all of the diagrams in Eq. (175) cancel

except those with all of the red lines on the jth sector. That is, using all of the previous induction steps, this cancellation
occurs between all of the contractions of the Wilson lines except those that only involve Y†

j . After canceling the terms off,
we are left with the result for any n. Hence, Eq. (176) is proved. ▪

E. Final steps

Equation (176) implies that we can strip red lines off sector by sector of the general reduced diagram in
Eq. (148):

(184)
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Once the red lines are stripped off of every collinear sector, they connect from the soft Wilson lines, through the S blob, to
the external emissions. The S blob gives all possible interactions with the full QCD Lagrangian Feynman rules, so the red
lines are exactly described by the matrix element hXsjY†

1…YN j0i in QCD. Thus,

(185)

The braces describe which parts of the reduced diagram the
indicated quantities reproduce, in physical gauges. Since
both sides are gauge invariant, this factorization formula
holds in any gauge, even covariant ones.
This completes the proof of hard-soft-collinear factori-

zation. To clean things up, we can drop the ≅IR sign in
favor of the leading-power equality, ≅, by adding in the
Wilson coefficient. At every stage that we have dropped
IR-insensitive loops, they have not contained external
emissions by Lemma 8, so the Wilson coefficient is still
independent of the states hXjj and hXsj and only depends on
the net momentum in each collinear sector [using the
procedure of Eq. (167)]. Therefore, we have our final
factorization formula:

hX1…XN ;XsjOj0i

≅ CðSijÞ
hX1jϕ⋆W1j0i
h0jY†

1W1j0i
� � � hXN jW†

Nϕj0i
h0jW†

NYN j0i
hXsjY†

1…YN j0i:

ð186Þ

X. GENERAL SCATTERING AMPLITUDES

So far, we have discussed factorization for matrix
elements of local operators. None of the arguments given
to derive the structure of the reduced diagram in Eq. (148)
actually require the scattering to be mediated by a single
operator. In calculating a general scattering matrix element,
any line that cannot go on shell cannot be IR sensitive. Thus
off-shell lines can be included in the hard amplitude of the
reduced diagram and absorbed into the Wilson coefficient.
For example, we have already shown that matrix

elements for the operator jϕj2 between the vacuum and
final states hX3X4;Xsj factorize as

hX3X4;Xsjϕ⋆ϕj0i

≅ Cjϕj2ðS34Þ
hX3jϕ⋆W3j0i
h0jY†

3W3j0i
hX4jW†

4ϕj0i
h0jW†

4Y4j0i
hXsjY†

3Y4j0i;

ð187Þ

where S34 ¼ ðP3 þ P4Þ2 and Cjϕj2ðS34Þ ¼ 1 at tree level.
Let us compare this to γγ → ϕϕ⋆ in scalar QED. At tree
level, three diagrams contribute:

(188)

Because of the off-shell lines, this amplitude cannot be
written exactly as the matrix element of a local operator. On
the other hand, since the lines are off shell, we can still
factorize the amplitude for γγ → hX3X4;Xsj as

hX3X4;Xsjεμðp1Þ;ενðp2Þi

≅ ε1με
2
νC

μν
γγϕϕ⋆ðSijÞ

hX3jϕ⋆W3j0i
h0jY†

3W3j0i
hX4jW†

4ϕj0i
h0jW†

4Y4j0i
hXsjY†

3Y4j0i

ð189Þ

with

ILYA FEIGE AND MATTHEW D. SCHWARTZ PHYSICAL REVIEW D 90, 105020 (2014)

105020-42



Cμνγγϕϕ⋆ðsijÞ ¼ e2
�ð2pμ

4 − pμ
1Þðpν

2 − 2pν
3Þ

ðp1 − p4Þ2

þ ð2pμ
3 − pμ

1Þðpν
2 − 2pν

4Þ
ðp3 − p1Þ2

þ 2igμν
�

ð190Þ

at tree level.
At higher orders, the Wilson coefficients Cjϕj2 and C

μν
γγϕϕ⋆

will get different radiative corrections, but the jet and soft
sectors of the factorized processes are identical. The all-
orders definitions of the Wilson coefficients are

Cjϕj2ðQÞ ¼ hϕ; p3;ϕ
⋆; p4jϕ⋆ϕj0i

hϕ;p3jϕ⋆W3j0i
h0jY†

3
W3j0i

hϕ⋆;p4jW†
4
ϕj0i

h0jW†
4
Y4j0i h0jY†

3Y4j0i
ð191Þ

and

Cγγϕϕ⋆ðQÞ ¼ hϕ; p3;ϕ
⋆; p4jϵμðp1Þ; ϵνðp2Þi

hϕ;p3jϕ⋆W3j0i
h0jY†

3
W3j0i

hϕ⋆;p4jW†
4
ϕj0i

h0jW†
4
Y4j0i h0jY†

3Y4j0i
: ð192Þ

In either case, the Wilson coefficient only depends on the
type of scattering and not on distribution of soft and
collinear radiation in the external states hX3X4;Xsj. Thus,
we see that the factorization arguments given in this paper
apply to any type of scattering process in any gauge theory
as long as the external states contain only soft and collinear
degrees of freedom.
Factorization holds with identical arguments when there

are collinear particles in the initial state, with the only
change that the Wilson lines become incoming (see [FS1]).
The situation where particles in the initial state are collinear
to particles in the final state are explicitly excluded from our

formulation. In particular, general hadron-hadron scattering
is not described if there are spectator partons with signifi-
cant energy. The formula does apply to the special case of
threshold hadron-hadron scattering, where the partonic
center of mass is close to the machine energy so the
spectator partons are necessarily soft. Expanding around
this limit has proved useful in both total-cross-section
calculations [68,69] and jet shape calculations at hadron
colliders [11,12,50,51,70,71].

XI. QCD

All of the arguments in the proof of hard-soft-collinear
factorization are completely general. They apply to any
renormalizable Abelian or non-Abelian gauge theory with
any matter content. The change in going from scalar QED
to QCD essentially amounts to pinpointing where the color
indices go. Wewill use hi for fundamental color indices and
a; b;… for adjoint indices, with i and j still denoting jet
directions.

A. Jet amplitudes

To add in the color contractions, we trace back through
the soft-collinear factorization discussion, replacing scalars
with quarks. Equation (173) becomes

(193)

Here the h color index comes from the net color of the state
hXjj that exits the jet blob on the left. Now, recall that in
factorization gauge with rs ¼ pj no soft sensitive lines can
attach to the j-collinear sector, which led to Eqs. (172) and
(173). In QCD these equations become

(194)

One can think ofWj as bringing color h0 in from infinity to
the origin along the tj direction. Now the vacuum is gauge
invariant, so

h0jY†
jWjj0ihh0 ¼

1

Nc
trh0jY†

jWjj0iδhh0 ð195Þ

and therefore

(196)

Similarly, the sprig-of-thyme equation, Eq. (176), for a
quark jet becomes

(197)

with the Nc factor implicitly absorbed into the Wilson
coefficient (by the definition of ≅IR). Pulling n gluons out
of the soft Wilson line gives a series of Ta matrices which
multiply through to convert h0 to h. The color indices on the

soft Wilson line represent a matrix which transforms the
color coming out of the hard process due to the soft
radiation. It is, of course, highly nontrivial that the color
within the jet is manipulated only by ψ̄ and Wj and the
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color of the soft radiation is manipulated only by Yj, with
the two not interacting. It is also true, since the soft
radiation only senses the net color charge of the collinear
radiation. This follows from our proof because in rs ¼ pj
the soft radiation comes from everywhere else in the event
(which has the opposite color charge as the jet). All of the
manipulations we did to prove soft-collinear factorization

used only gauge invariance and that in the soft limit, gluon
emissions are reproduced by the matrix element of a path-
ordered Wilson line (a fact both well known and proven in
[FS1]).
The sprig of thyme for gluon jets is similar but involves

adjoint Wilson lines, Yj and Wj defined in Eq. (33). The
equivalent of Eq. (197) with adjoint vector fields is

(198)

where trδab ¼ dðadjÞ ¼ N2
c − 1 is again dropped. Note that

adjoint Wilson lines are not themselves Hermitian, despite
the fact that the adjoint representation is real. Conjugating a
path-ordered Wilson lines reverses the order of the ma-
trices. Thus, the correct relation between an adjoint Wilson
line and its conjugate is ðY†Þab ¼ Yba.
Although Ac

μWcb
j is the obvious adjoint version of ψ̄Wj,

it is somewhat jarring to see an operator with a raw gauge
field instead of covariant derivatives. Of course, since any
matrix element of a color-singlet operator will satisfy the
Ward identity, any factorized expression containing Aa

μ will
also satisfy the Ward identity. It is nevertheless sometimes
useful to rewrite the gluon jet function in terms of covariant
derivatives.
If the original operator has Aa

μ in a covariant derivative in
the fundamental representation, such asO ¼ ψ̄Aψ , then Aa

μ

will come accompanied by a Ta. Thus there will be a Ta
hh0

contracted with the a index in (198), with h and h0
contracted elsewhere in the factorized expression. Now,
using Y†

jT
aYj ¼ Yab

j Tb, as in Eq. (35), ðY†Þab ¼ Yba, and
tr½TaTb� ¼ TFδ

ab, we find

Wab
j ðY†

jÞbcTc
hh0 ¼ Wab

j ðYjTbY†
jÞhh0

¼ T−1
F tr½TaTc�Wcb

j ðYjTbY†
jÞhh0

¼ T−1
F tr½TaWjTbW†

j �ðYjTbY†
jÞhh0 : ð199Þ

Since the Ward identity must be satisfied in any process we
consider, replacing Aμ → ∂μ gives zero. Thus, we can
replace igsAa

μtr½TaWjTbW†
j � → tr½W†

jDμWjTb�. Therefore,
converting the denominator with similar manipulations to
those in Eq. (199) and absorbing igs into the Wilson
coefficient, we can write

(200)

Jet amplitudes in this form are occasionally useful since
they manifest gauge invariance and only have Wilson lines
in the fundamental representation.

B. Example factorization formulas

To write down the factorization formula in QCD for
some process, we simply combine copies of Eqs. (197) and
(200) for each quark or gluon jet direction and contract the

loose soft-Wilson lines with the soft-sector final state. For
example, a vector boson decaying to three jets can be
mediated by a hard-scattering operator of the form

O ¼ ψ̄Dψ : ð201Þ

The associated factorization formula is, in gluon-jet
notation,

hX1X2X3;Xsjψ̄Dψ j0i ≅ CðSijÞγμαβ
hX1jψ̄W1j0iαh1
trh0jY†

1W1j0i
hXjjAμWjj0ia
trh0jY†

jWjj0i
hX3jW†

3ψ j0iβh3
trh0jW†

3Y3j0i
hXsjY†

1Y
†ab
2 TbY3j0ih1h3 ð202Þ

or, representing the gluons with covariant derivatives,
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hX1X2X3;Xsjψ̄Dψ j0i ≅ CðSijÞγμαβ
hX1jψ̄W1j0iαh1
trh0jY†

1W1j0i
trhX2jW†

2DμW2Taj0i
trh0jW†

2ðY2TbY†
2ÞW2Tbj0i

hX3jW†
3ψ j0iβh3

trh0jW†
3Y3j0i

× hXsjY†
1Y2TaY†

2Y3j0ih1h3 ; ð203Þ

where α and β are Dirac spin indices, a and b are adjoint
color indices and hi are fundamental color indices. To
reduce clutter, the Nc and N2

c − 1 factors from the traces
have been absorbed into the Wilson coefficient; to put them
back one only needs to divide each zero bin by the
dimension of the representation of that sector.
There may be multiple operators contributing to a single

hard process. For example, in ud → ud scattering, there are
two relevant hard operators [72]:

O1 ¼ ðūTaγμuÞðd̄TaγμdÞ; O2 ¼ ðūγμuÞðd̄γμdÞ; ð204Þ
where the parentheses indicate color contractions. For
ud → ud at tree level in QCD, only a single-gluon
exchange is relevant and so O2 is not. At one loop and
beyond, both operators are important to correctly reproduce
the hard scattering. As in this paper we have avoided
configurations where incoming and outgoing partons can
be collinear, the factorization formula has only been shown
to hold in threshold kinematical regimes where there is no
phase space for hard initial-state radiation to end up in the

final state [11,12,50,51,70,71]. Alternatively, one could
think of the factorization formula in this case mediating a
decay, like h → ūud̄d rather than a scattering process.
Factorization for four-parton scattering was also studied
in [7].
To study ud → ud near threshold is helpful to have

somewhat more general notation. Labeling the hard partons
as 1, 2, 3, and 4, the relevant operators are

OIΓΓ0 ¼ ðq̄4TIγμΓq2Þðq̄3TIγ
μΓ0q1Þ: ð205Þ

Here, I indexes the color structure (T1 ¼ Ta or T2 ¼ 1),
and Γ and Γ0 index the helicity [e.g. Γ ¼ Γ0 ¼ PL ¼
Pþ ¼ 1

2
ð1 − γ5Þ]. Helicity and flavor are preserved in

QCD, so the helicity of the u fixes the helicity of the ū.
There are thus eight relevant operators, since I ¼ 1; 2, Γ ¼
� and Γ0 ¼ �. Each set of helicities has a separate
factorization, but the color structures can mix.
So the matrix element for a four-quark-jet decay factor-

izes as

M�� ¼ M��ðp1 þ p2 → X3 þ X4 þ XsÞ

≅
X
I

CI��ðSijÞ
hX4jψ̄4W4j0i�h4

trh0jY†
4W4j0i

hp2jW̄†
2ψ2j0i�h2

trh0jW̄†
2Ȳ2j0i

hX3jψ̄3W3j0i�h3

trh0jY†
3W3j0i

hp1jW̄†
1ψ1j0i�h1

trh0jW̄†
1Ȳ1j0i

× hXsjðY†
4TIȲ2Þh4h2ðY†

3TIȲ1Þh3h1 j0i; ð206Þ

where Wi and Yi are incoming Wilson lines (see [FS1]).
Note that we only write explicitly the color and spin
indices of the partons which emerge from the hard
scattering. There are many implicit color and spin indices
in the states hXjj and hXsj. These colors and spins are
important when computing scattering amplitudes but are

usually summed over in computing resummed distribu-
tions.

C. QCD factorization formula

In summary, a general factorization formula in QCD can
be written as

Mf�g ≅
X
I

CI;f�gðSijÞ × � � � hXijψ̄ iWij0i�hi

trh0jY†
i Wij0i

� � � hXjjAμWjj0i�aj

trh0jY†
jWjj0i

� � � hXkjW†
kψkj0i�hk

trh0jW†
kYkj0i

� � �

× hXsj…ðY†
i T

i
IÞhili…ðY†

jT
j
IÞlj−1ajljþ1…ðTk

IYkÞlkhk…j0i; ð207Þ

where the� indexes the helicities. The li indices are contracted within the soft Wilson line matrix element, while the hi and
ai indices contract with the colors of the jets.
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XII. SPLITTING FUNCTIONS AND
SOFT CURRENTS

One application of factorization is that it can provide
gauge-invariant and regulator-independent definitions of
the collinear-sensitive or soft-sensitive parts of scattering
amplitudes. Such definitions may be useful in perturbative
QCD calculations if they help simplify or clarify the
structure of the infrared divergences. We therefore consider
the soft and collinear limits of our formulas separately,
deriving definitions of splitting functions and soft currents
and thereby proving their universality.

A. Splitting functions

Suppose we have a state hX0j ¼ hX0
1…X0

N ;X
0
s j contain-

ing soft and collinear particles and a matrix elementM0 for
producing that state. We want to know howM0 is modified
into M by the addition of extra collinear particles to the
j-collinear sector, turning hX0

j j into hXjj, while leaving the
net momenta in the j sector unmodified at leading power
Pμ
j ≅ P0μ

j . Let us write the modified matrix element
formally as some operator acting on the original matrix
element

M ¼ Sp ·M0: ð208Þ

The distribution of the soft radiation in hX0
s j is completely

independent of the splitting. The only modification from
the addition of collinear particles to hX0

j j is in the matrix
element associated with the j-collinear sector.
The factorization formulas for M0 and M are almost

identical. The relevant parts of the factorization formulas
are

M0 ≅
hX0

j jψ̄Wjj0i�hj

trh0jY†
jWjj0i

·M
hj
rest;

M ≅
hXjjψ̄Wjj0i�hj

trh0jY†
jWjj0i

·M
hj
rest: ð209Þ

Now, the spin of each collinear sector, that is, the helicity of
the nearly on-shell particle coming out of the hard vertex, in
M must be the same as inM0 for the two to be related. So
let us fix this helicity � and drop the spin indices. Then we
can write

SpðXj; X0
jÞhh0 ¼

hXjjψ̄Wjj0ih
hX0

j jψ̄Wjj0ih0
: ð210Þ

The notation here indicates that the splitting functions are
operators in color space. Note that the zero-bin subtractions
from the denominator of the general factorization formula
have dropped out. These denominators are 1 in dimensional
regularization, but here we see that they play no role with

any regulator. As we will see, this is also true for soft
currents.
To convert Eq. (210) into something more practical, let

us work out a simple example, following Sec. 9.1 of [FS1].
We take hX0j to have a single right-handed antiquark in it
with momentum Pμ and color h: hX0j ¼ hūhðPÞj. In terms
of spinor helicities, this state is [P and at tree level

MhR
0 ≅ ½PMh

rest�: ð211Þ

We take hXj to have a right-handed antiquark of momentum
pμ ≅ zPμ and a single gluon with momentum qμ ≅
ð1 − zÞPμ with color a and helicity �. If the gluon helicity
is −, the modified amplitude is (see [FS1])

MhaR− ¼ gs

ffiffiffi
2

p

½qp�
zffiffiffiffiffiffiffiffiffiffi
1 − z

p ½PTa
hh0M

h0
rest�: ð212Þ

Thus the tree-level splitting function for a − helicity
gluon is

SpR−ðp; qÞ ¼ gs

ffiffiffi
2

p

½qp�
zffiffiffiffiffiffiffiffiffiffi
1 − z

p Tj: ð213Þ

For a þ helicity gluon, the tree-level splitting function is
also extractable from [FS1]:

Sphh0
Rþðp; qÞ ¼ gs

ffiffiffi
2

p

hpqi
�

zffiffiffiffiffiffiffiffiffiffi
1 − z

p þ ffiffiffiffiffiffiffiffiffiffi
1 − z

p �
Ta
hh0 : ð214Þ

These splitting functions can be calculated to higher order
using Eq. (210).
The gluon splitting functions are similar:

SpgðXj; X0
jÞab ¼

hXjjW†
jAμWjj0ia

hX0
j jW†

jAμWjj0ib
: ð215Þ

The universality of Eqs. (210) and (215) to all orders for
any process is proven by our factorization theorem.

B. Soft currents

The equivalent of splitting functions for soft radiation are
often called soft currents [33]. Extracting their matrix-
element definition from the general factorization formula
proceeds in the same way as for collinear splittings.
Suppose we have a state hX0j ¼ hX0

1…X0
N ;X

0
s j contain-

ing soft and collinear particles and a matrix element
M0 for producing that state. We want to know how M0

is modified into M by the addition of extra soft particles
hXsj. The modified matrix element can be formally
written as

M ¼ J ·M0; ð216Þ
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where J is an operator acting in color space. Isolating the
part of the factorization formula involving soft radiation, it
follows that

J ¼ hXsjY†
1…TI…YN j0i

hX0
s jY†

1…TI…YN j0i
: ð217Þ

Here I indexes the color structures of the relevant
operators.
J has implicit indices which also act on the color of the

particles in hX1…XN j. It is standard to write J as a
function of color-charge operators Ta

j which act in color
space as the SU(3) generator in the representation of net
color flowing in direction j. This representation is of
course the same as the representation of the Yj Wilson
line. When using color-charge operators, one never needs
to perform a color sum, and so there is, trivially, no
dependence of J on the color structure I. That the matrix
element for soft emission only depends on the net color in
each collinear sector, and not how that color is distributed,
is a nontrivial consequence of factorization. It was proven
to one loop by direct computation in [34], and now we
have shown that it holds to all orders in gs, for an
arbitrarily complicated collinear sector and any number
of hard particles.
In the simplest case, hX0

s j ¼ h0j and hXsj has only one
gluon, with momentum q, polarization ϵμðqÞ and color a.
Then J ¼ ϵμJ

μ
a. At tree level, J is

Jμð0Þ ¼ gs
Xm
j¼1

Tj

pμ
j

pj · q
; ð218Þ

where Tj is the color-charge operator in the j direction. To
be more concrete, if there is only a quark and antiquark jet,
then

Jμ ¼ Jμahh0 ¼
hϵμðpÞ; ajY†

1Y2j0ihh0
CAtrh0jY†

1Y2j0i

¼ gsTa
hh0

�
pμ
1

p1 · q
−

pμ
2

p2 · q

�
þ � � � : ð219Þ

The h and h0 color indices act on the jets,
hX1jψ̄W1j0ihhX1jW†

2ψ j0ih
0
.

In dimensional regularization in 4 − 2ε dimensions, with
outgoing particles only, the one-loop current is [34]

Jμð1Þ ¼−
1

16π2
1

ε2
Γ3ð1− εÞΓ2ð1þ εÞ

Γð1−2εÞ

× ifabc
X
i≠j

Tb
iT

c
j

�
pμ
i

pi ·q
−

pμ
j

pj ·q

��
−4πpi ·pj

2ðpi ·qÞðpj ·qÞ
�
ε

:

ð220Þ

In calculating this current, Catani and Grazzini were
able to prove that it is independent of the momenta and
color-flow of the process at one loop. As noted above,
our proof generalizes this observation to all orders. Of
course, the factorization formula does not help in
actually calculating the soft current in dimensional
regularization. The current for one soft gluon emission
at two loops can be found in [35,36].
Another familiar result that can be deduced from our

all-orders definition of the soft current is that of Abelian
exponentiation. Namely, that in an Abelian gauge
theory, the soft current is exact at tree level. This
follows simply from the fact that in an Abelian theory,
the contraction of a Wilson line with the external state
can be pulled out of the rest of the matrix element.
Since the Wilson lines are exponentials, pulling out a
contraction leaves behind the same Wilson line (just like
taking a derivative), so that, to all orders in perturbation
theory,

JμAbelian ¼
hqjY†

1…YN j0i
h0jY†

1…YN j0i
¼ h0jY†

1…YN j0i
h0jY†

1…YN j0i
XN
j¼1

hqjYjj0itree

¼
XN
j¼1

Qj

nμj
nj · q

; ð221Þ

where Qj is the QED charge: Qj ¼ e if it comes from a Y†
j

and Qj ¼ −e if it comes from a Yj. Gauge invariance
implies that

P
N
j¼1Qj ¼ 0.

XIII. EFFECTIVE FIELD THEORY

In this paper, our emphasis has been on factorization
in QCD at the amplitude level. In our view, working at
the amplitude level, rather than at the amplitude-squared
level as is often done, makes some elements of fac-
torization more transparent. It also elucidates some
aspects of SCET.
Consider Eq. (207), which we have proven to leading

power in λ. Let us assign particles in each collinear
sector hXjj the quantum number j ∈ f1;…; Ng and each
particle in hXsj the quantum number s. Let us also write
an effective Lagrangian that is N þ 1 copies of the QCD
Lagrangian

Leff ¼ Lsoft þ
XN
j¼1

Lj ð222Þ

with fields in each sector only creating and annihilating
states with the appropriate quantum numbers. Then we can
combine the numerator matrix elements in Eq. (207) into a
single matrix element in a trivial way.
For example, with two collinear sectors, the factorization

formula becomes
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hX1X2;Xsjψ̄γμψ j0i
≅ C2hX1X2;Xsj

ψ̄1W1

trh0jY†
1W1j0i=Nc

Y†
1γ

μY2

×
W†

2ψ2

trh0jW†
2Y2j0i=Nc

j0iLeff
ð223Þ

if computed with an effective Lagrangian

Leff ¼ Lsoft þ L1 þ L2: ð224Þ

The Wilson coefficient C2 depends only on the net
momenta Pμ

1 and Pμ
2 in each sector, not on the detailed

distribution of momenta in hX1X2;Xsj. Since C2 depends
on the hard-scattering operator and not the states, it is a
legitimate Wilson coefficient from matching onto an
effective field theory.
It is possible to clean up the effective field theory

operator a little. Let us define

Ẑi ≡ 1

Nc
trh0jW†

i Yij0i: ð225Þ

For other color representations, Ẑi is defined similarly with
the Wilson lines in the appropriate representation and Nc
replaced by dimension of the representation. The Ẑi factors
are both UVand IR divergent. They are, however, indepen-
dent of λ and any momenta in the process. That is, for given
UVand IR regulators, they are power series in αs. Thus, they
can play the role of a kind of field-strength renormalization
for jets. Indeed, it is natural to define jet fields as

χi ≡ 1

Ẑi
W†

iψ i: ð226Þ

These composite fields are gauge invariant (up to a global
rotation associated with the net color charge of the jet) and
are soft insensitive and collinear sensitive only in the i
direction. In terms of the jet fields, Eq. (223) becomes
simply

ψ̄γμψ ≅ C2ðχ̄1Y†
1ÞγμðY2χ2Þ; ð227Þ

which is a valid leading-power matching equation in an
effective theory describing dijetlike states because the
Wilson coefficient is IR insensitive and independent of
which external states are used to compute it. Of course, this
matching must be done within the régime of validity of the
effective theory, which in this case is justified by the
factorization theorem that is proved for N-jet-like final
states.4

The effective theory that naturally arises from our
factorization formula is very different from the traditional
formulation of SCET. Consequently, had we started from
the traditional formulation of SCET and derived a factori-
zation formula, it would look very different from the one
we have proven. In particular, the Lagrangian and Feynman
rules would not be those of full QCD and would not give
rise to an all-orders full-QCD definition of the soft current
and splitting functions.
Transitioning to the effective field theory language is

particularly useful when discussing subleading power
corrections in λ. Recent progress has been made toward
describing collider-physics observables at subleading
power using the formulation of SCET discussed in this
section [74].
In [FS1], the tree-level version of this formulation of

SCET (without the vacuum-matrix element denominators)
was shown to be equivalent to that discussed by Freedman
and Luke [56]. However, with the all-loop factorization
theorem in hand we naturally see arise an all-orders
matrix-element definition of the zero-bin subtraction (similar
to what was shown in [75,76]). In Freedman and Luke’s
approach to SCET, the zero bin is subtracted off using an ad
hoc procedure applied on an integral-by-integral basis that
essentially comes from mimicking the procedure of the
traditional approach to SCET [57]. In the traditional
approach, the zero-bin subtraction arises naturally from
the SCET Lagrangian. It instructs us to apply a soft
subtraction to every single collinear line in each
Feynman diagram. This is arguably a more complicated
algorithm than dividing by a single gauge-invariant color-
coherent vacuum matrix element, as in our factorization
formula.
Before moving on, we point out that our factorization

formula is derived with fixed external states that come
designated as soft or collinear. This was the goal of our
paper. For particles which power count as soft or collinear,
the factorization theorem holds if they are put in either sector.
However, to perform phase-space integrals in the factorized
expression without chopping up phase space, it would be
convenient not to place a hard cutoff between sectors. To
achieve this, in the language of Sec. VI, the algorithm in
Sec. VI A would need to be modified to color external-
collinear particles blue or red. Then when calculating cross
sections, we would be able to integrate the collinear states
over their entire phase space, including the soft region. Our
expectation is that this would be a simple step using the tools
at our disposal and would give a zero bin of the form of the
eikonal-cross-section subtraction used in the QCD literature
(see the discussion in [58,77]). However, this is outside the
goal of our paper and we leave it for future work.
Another feature of our approach to factorization is that

we did not have to choose the power counting of the soft
emissions to be the same as that of the collinear emissions.
For example, we could have used a separate λs and λc:

4See [73] for an interesting discussion of how this matching
equation can break down when certain initial states are used to
perform the matching.
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kμsoft⟺kμ ∼ λ2sQ and qμ∥pμ⟺q · p ∼ λ2cQ2;

q0; p0 ∼Q: ð228Þ

The factorization theorem holds at leading power in both λs
and λc. In fact, one could even take a different λc in each
sector. Taking λs ¼ λc ¼ λ and transitioning to an effective
theory implies the factorization theorem that is appropriate
to what is referred to as SCETI in the literature. If we take
instead λ2s ¼ λc ¼ λ, the factorization theorem still holds.
This power counting is equivalent ksoft ∼ ðλ; λ; λÞ and
qcoll ∼ ðλ2; 1; λÞ in light-cone coordinates, which in the
SCET literature is considered to be a different effective
field theory, known as SCETII. The traditional derivation of
SCETII involves rather involved intermediary matching
through SCETI [78]. The factorization theorem presented
in this paper is general enough to unify these two SCETs
into a single framework.

XIV. CONCLUSIONS

In this paper we have formulated and proven to all orders
in perturbation theory a precise statement of factorization
for scattering amplitudes in QCD, given in Eq. (207).
This formula applies to states with N well-separated jets
with any number collinear particles in each jet, hXjj for
j ¼ 1;…; N, and any amount of soft radiation in any
direction, hXsj. Suppressing color and spin indices, the
formula for quark jets reads

hX1…XN ;Xsjii

≅ CðPiÞ
hX1jψ̄W1j0i
trh0jY†

1W1j0i
� � � hXN jW†

Nψ j0i
trh0jW†

NYN j0i
hXsjY†

1…YN j0i;

ð229Þ

where jii is, say, some uncolored initial state and CðPiÞ is
an IR-finite function depending only on the net momenta in
each sector Pμ

i . The symbol ≅ means equality at leading
power in λ, a physical power-counting parameter that
constrains only the external momenta in the amplitude.
The factorization formula actually holds to leading power
in different power-counting parameters λs and λjc in each
sector. It also holds if there are collinear particles in the
initial state, as long as no initial-state and final-state
particles are collinear to each other.
The proof of Eq. (229) was broken into two steps, which

essentially correspond to hard factorization and soft-
collinear factorization. The first step was to determine
the structure of the possible graphs that contribute to each
type of infrared sensitivity (soft or j-collinear) in the matrix
element. The structure of the diagrams relevant at leading
power are encoded in the reduced diagram [see Eq. (148)],
which represents hard factorization in physical gauges.
This reduced diagram is similar to reduced diagrams used
in the literature to represent the pinch surface. Indeed,

our derivation of hard factorization exploits essentially
the same observations as these traditional approaches.
However, the reduced diagrams traditionally used in the
literature are usually defined only for momenta which are
exactly kμ ¼ ð0; 0; 0; 0Þ or exact proportional to one of the
external momenta. In contrast, our reduced diagram rep-
resents a precise set of Feynman integrals, defined for all
values of external and loop momenta with rules that
describe how they are to be calculated. This generalization
of the reduced diagram allows for a clean transition to an
amplitude-level factorization formula.
The second step in the proof is to factorize the soft-

sensitive from the collinear-sensitive contributions to
matrix elements. This step builds upon the reduced diagram
picture and coloring rules which established hard factori-
zation. The all-orders proof of soft-collinear factorization
uses the same logic as was used in [FS1] for the tree-level
proof. In particular, the use of different reference-vector
choices used in [FS1] is critical also at loop level. For loops,
the reference-vector flexibility must be generalized to
momentum-dependent light-cone-gauge reference-vector
choices. We call a gauge with this flexibility factorization
gauge. Within factorization gauge, different choices for the
reference vector in the soft region slosh the soft sensitivities
around among different colored diagrams within the
reduced diagram structure. This lets us see how soft
sensitivities factorize from collinear sensitivities for any
value of the soft and collinear power-counting parameters
λs and λc. Once appropriate Wilson lines are added, the
final factorization formula is gauge invariant and applies
even in covariant gauges like Feynman gauge.
There are many practical applications of factorization,

from the universality of splitting functions and soft currents
in QCD [20,26,30,31,34], to regulating infrared divergen-
ces in fixed-order calculations [32,79–82], to the compu-
tation of resummed distributions in jet substructure
[51,53,54,83,84]. For example, having gauge-invariant
and regulator-independent definitions for objects which
contain universal soft or collinear singularities may be
useful as the basis of subtractions for fixed-order calcu-
lations in QCD. In many cases, assuming factorization is
enough for phenomenological purposes. Having a rigorous
proof of factorization of course puts many approximations
on firmer footing. But it may also point the way to
understanding subtleties of where factorization may break
down, such as in the context of forward scattering
[27,28,73,85] or nonglobal logarithms [43,44,86–93]. In
both of these cases, our expectation is not that the
factorization theorem proven in this paper will immediately
resolve the confusions. Instead, we envisage that the
physical picture on which the factorization is based, with
an intuitive reduced diagram picture and matrix-element
zero-bin subtractions, should be a practical scaffold on
which to build a more sophisticated and nuanced picture of
factorization in scattering amplitudes.
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