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We consider relativistic charged-particle dynamics and relativistic magnetohydrodynamics using
symplectic structures and actions given in terms of coadjoint orbits of the Poincaré group. The particle
case is meant to clarify some points such as how minimal coupling (as defined in the text) leads to a
gyromagnetic ratio g ¼ 2 and to set the stage for fluid dynamics. The general group-theoretic framework is
further explained and is then used to set up Abelian magnetohydrodynamics including spin effects. An
interesting new physical effect is precession of spin density induced by gradients in pressure and energy
density. The Euler equation (the dynamics of the velocity field) is also modified by gradients of the spin
density.
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I. INTRODUCTION

The study of the relativistic point particle is a story as
old as the theory of relativity itself. This long history
might suggest that there would be very little new one can
say on this matter. Nevertheless, over the years, new
approaches and clarifications have been obtained [1].
In the quantum theory, a point particle is defined as a
unitary irreducible representation (UIR) of the Poincaré
group. Thus, even classically, a description which high-
lights this connection is interesting. The development of
geometric quantization furnished the basic framework for
carrying this out. The use of symplectic forms defined on
coadjoint orbits of the group led to new Lagrangian
descriptions incorporating spin and, in the case of charged
particles, magnetic moments and spin-orbit couplings [2].
A Lagrangian derivation of the Bargmann–Michel–
Telegdi equation for spin precession [3] was another
result of such descriptions [1,2,4].
Our return to this old problem is motivated by the

potential to generalize it to fluid mechanics. A charged
fluid would obviously be described by magnetohydrody-
namics. An action-based canonical approach to magneto-
hydrodynamics does exist, but we can go further and
ask the following question: How do we incorporate the
effects of magnetic moments and spin-orbit couplings in
magnetohydrodynamics?
The description of fluids in terms of group theory has been

developed over the last few years [5]; see also Ref. [6].
Fluids for which the constituents carry spin or internal
(Abelian or non-Abelian) symmetries can be described using
the Lorentz or internal symmetry groups. One particular
advantage of this is the straightforward symmetry-based

inclusion of anomalies, which has led to formulas for the
chiral magnetic and chiral vorticity effects [7,8]. (The chiral
magnetic effect, although not from a group-theory point of
view, was first discussed in Ref. [9]. The effects of anomalies
in fluids have been analyzed in Refs. [10–12].) However,
even though spin is naturally included in this framework via
the Lorentz group, the extension of this to the full Poincaré
group had some subtleties and nuances related to the fact that
individual particle positions have no meaning from a fluid
point of view [13]. We sort out these issues in this paper, as
they have not been fully clarified in previous work. Finally,
in working out the fluid connection, we realized that some
aspects of the role of the symplectic structure for the orbit of
the Poincaré group for charged particles were also not
entirely clear in the literature. This is another issue that is
addressed in this paper.
To summarize, we will start, in Sec. II, by considering

the symplectic structure for charged point particles defined
purely group theoretically in terms of the Poincaré group.
The equations of motion will be shown to lead naturally
to magnetic moment and spin-orbit interactions (Sec. III).
At the minimal level of gauging or introducing the
electromagnetic field, the Lorentz force will fix the gyro-
magnetic ratio to be 2, just as it is for spinning particles in
single-particle quantum mechanics. The Hamiltonian for
proper time evolution, which is worked out in Sec. IV,
explicitly shows this result. This is the (3þ 1)-dimensional
analog (with its own complications) of the similar situation
in (2þ 1) dimensions [14–16]. Nonminimal coupling can
be introduced to account for the anomalous magnetic
moment, just as in (2þ 1) dimensions [16]. (We should
caution that the word “minimal” is used with somewhat
different meanings here, in Ref. [2] and in Ref. [16]. Also,
one might entertain variants of the Lorentz force. But the
following conditional statement is valid: The Lorentz force
in terms of the coordinate as it appears in the symplectic
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form, the latter being given purely by the group structure,
leads to g ¼ 2.) In the 3þ 1 case, an arbitrary magnetic
moment has been included in the proposed Lagrangians in
Ref. [2]; however, the special role of g ¼ 2 is not manifest,
or, at least, not highlighted in this approach. We also show
how a modification of the symplectic structure can accom-
modate g ≠ 2. The proper time Hamiltonian should be zero
as a constraint, for example, on states upon quantization.
This is the single-particle wave equation. Writing this in
terms of mutually commuting coordinates, which we do in
Sec. V, again shows explicitly the magnetic moment and
spin-orbit interactions. This is also very much a replay of
the similar situation in 2þ 1 dimensions.
Starting from the symplectic structure for the point

particle and following Lagrange’s method of obtaining
fluid dynamics from particle dynamics, we obtain the
required fluid action in Sec. VI. The variation of the
particle coordinates, now viewed as a field, can still lead
to the equations of motion, but incorporating nonzero
pressure is awkward in this language. This is again related
to the lack of a suitable fluid interpretation of particle
positions alluded to before. For this reason, we switch to
the Clebsch parametrization at this stage. The end result is
an action for a relativistic fluid with spin, magnetic
moment, spin-orbit interactions, etc. In Sec. VII, we
examine standard Abelian magnetohydrodynamics in some
detail, but now including spin. The Euler equation for the
charged fluid now shows additional force terms involving
the gradients of the spin density. This is not surprising by
itself since it is related to the magnetic moment interaction.
What is more interesting is the precession equation for the
spin density. This has, in addition to the usual term
proportional to the external field, terms involving gradients
of the pressure and energy density.
A concluding short discussion summarizes the new

results in this paper.
Before concluding this section, we also mention that

there has been some recent work on the use of the
symplectic form derived from the Poincaré group to discuss
Dirac and Weyl particles [17]. While our focus has been on
fluids, and hence not directly along these lines, clearly there
is some resonance with our work.

II. SYMPLECTIC FORM

We begin by recalling the essence of the coadjoint orbit
method. If g denotes a general element of a Lie group G, in
a particular representation, the action is

S ¼ i
X
α

wα

Z
dτTrðhαg−1 _gÞ; _g ¼ dg

dτ
; ð1Þ

where hα give a basis of the diagonal generators of the Lie
algebra (the Cartan subalgebra) and wα are a set of
numbers. We are envisaging a matrix representation, say,

the fundamental representation, with TrðhαhβÞ ¼ δαβ.
The basic theorem is that the quantization of this action
leads to a Hilbert space which carries a unitary irreducible
representation ofG, this UIR being specified by the highest
weight ðw1; w2;…; wrÞ, r being the rank of the group,
which is also the range of summation for α. The canonical
1-form associated to (1) is evidently

A ¼ i
X
α

wαTrðhαg−1dgÞ: ð2Þ

Under transformations g → g expð−ihαφαÞ, we find
A → Aþ df, f ¼ P

wαφα. Thus, the symplectic 2-form
Ω ¼ dA is defined on G=T, T being the maximal torus.
Further, the transformation A → Aþ df shows that in the
quantum theory, where wave functions transform as eiS,
there will be restrictions or quantization conditions on wα,
these being the appropriate conditions for ðw1; w2;…; wrÞ
to qualify as the highest weight of a UIR.
In extending this directly to the Poincaré group, first of

all, there is a small technical difficulty due to the lack of a
matrix representation with a well-defined trace. One can
use infinite dimensional representations, but the notion of
the trace has to be carefully defined. This can be done with
a suitable regularization or a cutoff on integrals, but a
simpler solution is to use a finite-dimensional representa-
tion of the de Sitter group, obtaining the Poincaré group as
a contraction. Thus, we will use

Pμ ¼ γμ=r0

Jμν ¼ γμν ¼ ði=4Þ½γμ; γν� ð3Þ

as the representation of the de Sitter algebra, γμ being the
standard 4 × 4 Dirac matrices. The parameter r0, which is
the radius of curvature of the de Sitter space, can be taken to
be very large to recover the Poincaré limit. A general group
element is of the form

g ¼ expðiPμxμÞΛ; ð4Þ

where Λ is the Lorentz matrix constructed using the
generators Jμν. The group has rank equal to 2, and, as
the diagonal generators, we will choose P0 and J12. The
corresponding weights will be mass and spin. Our phi-
losophy here will not be to write down actions a priori, that
will come later, but to start with Ω and work out a
Hamiltonian for τ evolution. The trajectories should be
invariant under reparametrizations of τ; thus, the
Hamiltonian for τ evolution is the generator of a gauge
symmetry. We must thus setH ≈ 0 on states in the quantum
theory. This will become the wave equation for single-
particle states. This was the approach followed in Ref. [14]
to obtain wave equations for anyons. In this approach, there
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is no fixed mass that arises from the constraint H ≈ 0.
Rather, we should use

ffiffiffiffiffi
p2

p
in place of the mass. Finally, Λ

can be parametrized in terms of the boost operator con-
necting the rest frame to an arbitrary frame of momentum
pμ. It is thus given by

Λ ¼ BðpÞR

BðpÞ ¼ 1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2mðp0 þmÞp �

p0 þm ~σ · ~p

~σ · ~p p0 þm

�
; ð5Þ

wherem is a shorthand notation for
ffiffiffiffiffi
p2

p
. R is a pure spatial

rotation matrix generated by J12; J23; J31.
A comment about the Lorentz transformation properties

may be useful.Λ being an element of the Lorentz group, we
may expect that additional Lorentz transformations ~λ may
be represented as left translations on Λ, as Λ → ~λΛ. But Λ
is a dynamical variable made of pμ and elements of R [as in
(5)], and we may simply regard it as a matrix for which the
transformation properties are to be determined from the
transformation of the variables it depends on, namely, pμ

and R. Consider then a Lorentz transformation of pμ as
pμ → p0μ ¼ λμνpν. One can show that BðpÞ transforms as
BðλpÞ ¼ ~λBðpÞRw, where ~λ is the (Dirac) spinorial repre-
sentative of λμν and Rw is the Wigner rotation correspond-
ing to the parameters in λ. We then find that the combined
transformation p → λp and R → R−1

w R is equivalent to
Λ → ~λΛ as expected, namely,

BðpÞR → BðλpÞR−1
W R ¼ ~λðBRÞ: ð6Þ

This relationship between the transformations of pμ, R and
Λ is what is obtained, as is well known, in Wigner’s
construction of the representation of the Poincaré group.
Returning to the canonical 1-form, it is given, in our

case, by

A ¼ ir20

ffiffiffiffiffi
p2

q
Tr

�
γ0
r0

g−1dg

�
þ isTrðJ12g−1dgÞ; ð7Þ

where s denotes the spin of the particle. Using Bγ0B−1 ¼
γαpα=

ffiffiffiffiffi
p2

p
and taking r0 → ∞, we find, for the Poincaré

group,

A ¼ −pμdxμ þ i
s
2
TrðΣ3Λ−1dΛÞ;

Σa ¼
�
σa 0

0 σa

�
: ð8Þ

Upon using (5), this simplifies as

A ¼ −pμdxμ þ i
s
2
TrðΣ3R−1DRÞ

DR ¼ dRþ CR

C ¼ −i
�
Σa

2

�
ϵabcpbdpc

mðp0 þmÞ ;

R ¼ exp

�
i

�
Σa

2

�
θa
�
: ð9Þ

We will see that R describes the spin degrees of freedom,
with 2s quantized as an integer, so that the wave functions
are appropriately single valued or double valued for
fermions. The expression for A has the expected
Lorentz invariance properties, even though this is not
manifest when A is written in terms of pμ and R as in (9).
Defining the unit vector Na by

NaΣa ¼ RΣ3R−1; ð10Þ

the symplectic potential can be simplified as

A ¼ −pμdxμ þ s
ϵabcNapbdpc

mðp0 þmÞ þ i
s
2
TrðΣ3R−1dRÞ: ð11Þ

It is easy enough to see that the transformations R →

½1 − i~Σ · ~ϵ=2�R are generated by sNa in the rest frame
identifying Sa ¼ sNa as the spin vector in the rest frame.
We can also work out Ωð0Þ ¼ dA as

Ωð0Þ ¼ dxμdpμ þ
Sμνdpμdpν

2m2
þ s

ϵabcdNapbdpc

mðp0 þmÞ
−
s
2
ð ~N · ~pÞ ϵabcpadpbdpc

m2ðp0 þmÞ2 −
s
2
ϵabcNadNbdNc;

ð12Þ

where Sμν is the canonical generator of the Lorentz trans-
formation Λ → ð1 − iωμνJμνÞΛ given by

Sμν ¼
s
2
TrðΣ3Λ−1JμνΛÞ: ð13Þ

This can be explicitly written in terms of the spin vectors as

S0i ¼ −ϵijk
pjSk
m

Sij ¼ ϵijk

�
p0Sk
m

−
~S · ~ppk

mðp0 þmÞ
�
: ð14Þ

Evidently

Sμνpν ¼ 0: ð15Þ

SinceN2 ¼ 1, ϵabcNadNbdNc is proportional to the volume
(area) of the 2-sphere defined by Na. The requirement that
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the integral of Ω on any closed 2-surface should be 2π times
an integer shows that 2s must be an integer upon
quantization.
We now turn to the introduction of the electromagnetic

field. The usual minimal prescription amounts to addingR
dτeAμ _xμ to the action. This is equivalent to adding

eAμdxμ to A so that

Ω ¼ Ωð0Þ þ e
2
Fμνdxμdxν: ð16Þ

We will refer to this as the “minimal prescription.”
(As mentioned in the Introduction, there are some varia-
tions in the meaning attributed to the word minimal in the
literature.)

III. EQUATIONS OF MOTION

Our next step is to consider the equations of motion,
which will determine the Hamiltonian as the generator for τ
evolution. We consider uniform fields Fμν viewed as a good
approximation to slowly varying fields. The minimal
equations of motion will be taken to be

dxμ

dτ
¼ pμ

M
ð17Þ

dpμ

dτ
¼ −eFμν dxν

dτ
þOð∂FÞ; ð18Þ

which produce the Lorentz force equation

M
d2xμ

dτ2
¼ −eFμν dxν

dτ
þOð∂FÞ: ð19Þ

Thus, our definition of minimal coupling and Lorentz force
amounts to the Ω given in (12) and (16) and the equations
of motion given in (17) and (18).
It is useful to consider some arguments motivating our

labeling of (12), (16), (17) and (18) as minimal coupling.
The symplectic structure given in (12) and (16) corresponds
to an action

S ¼
Z

dxμ

dτ
pμ þ eAμ

dxμ

dτ
þ � � � ð20Þ

Since xμ only appears in the terms explicitly shown here,
we obtain (18) as an exact equation of motion for any
translationally invariant Hamiltonian.
In our approach, the Lorentz boost transformation BðpÞ

takes us from the rest frame to one which is moving with
4-velocity pμ=

ffiffiffiffiffi
p2

p
, as is clear from the explicit formula for

BðpÞ. On the other hand, the 4-velocity in terms of xμ is

uμ ¼ dxμ

dτ
1ffiffiffiffiffiffiffiffiffiffiffi

dxα
dτ

dxα
dτ

q : ð21Þ

(We write in this way to make it independent of the
parameter τ.) Thus, a priori, there are two velocities which
enter the description. Since a moving particle (say, defined
by nonzero ui) can be brought to rest by a suitable boost
defined by BðpÞ, we should expect these two velocities to
be the same, namely, uμ [as defined in (21)] to be pμ=

ffiffiffiffiffi
p2

p
.

This implies that in general

dxμ

dτ
¼ c

pμ

M
: ð22Þ

If c is a constant of motion, we can write τ → τ
c so that the

equations of motion will produce the Lorentz force equa-
tion (19). This means that, since we have reparametrization
invariance for τ (once we set its evolution operator to zero),
we may, without loss of generality, set c ¼ 1. (The freedom
of such a function c was noted in Ref. [16], where the
authors also noted that it amounted to just reparametriza-
tion of τ.)
In short, if the symplectic structure is entirely defined by

the Poincaré group, boost transformations [with the veloc-
ity parameter occurring in BðpÞ] should implement the
transformation from the rest frame to the comoving frame
of the particle. Incorporating this feature and requiring that
c is a constant of motion (this will essentially restrict the
choice of Hamiltonian) will produce the equations of
motion (17), (18) which in turn lead to the Lorentz force
equation. This motivates our qualification of (12), (16),
(17) and (18) as minimal.
So what is nonminimal? Our expression for Ωð0Þ is given

by Poincaré symmetry. The gauging is done by adding the
term eAμdxμ in A, to the canonical 1-form; this is basically
singled out as the leading coupling for slowly varying fields
by gauge invariance. Going beyond what we termed
minimal would include additional terms in Ωð0Þ, possible
changes to the equations of motion themselves, etc. For
example, one could envision corrections to the equations of
motion involving powers of F, even when we ignore
gradients of the fields. (We may, however, note that
corrections to the equations of motion with higher powers
of the field strength must involve powers of Fμν=p2 or
Fμν=M2 for dimensional reasons. Thus, they are significant
only at high field strengths, of magnitudes needed for pair
production. Single-particle dynamics may not be adequate
for such field strengths anyway.)

IV. HAMILTONIAN

We are now ready to obtain the Hamiltonian for τ
evolution. This can be done in terms of the τ evolution
vector field given by (17) and (18), namely,

V⌋Ω ¼ −dH

V ¼ pμ

M
∂
∂xμ − eFμν p

ν

M
∂

∂pμ þ � � � ; ð23Þ
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where the ellipsis refers to the spin part. Another way to
calculate the Hamiltonian is by computing the Poisson
brackets for the dynamical variables and identifying the
Hamiltonian that produces the equations of motion (17),
(18). These two ways of identifying the Hamiltonian are
equivalent, of course, but since the Poisson brackets are
interesting in their own right and we can derive them to all
orders in F (up to ∂F corrections), we will follow the latter.
Either way, we need Hamiltonian vector fields Vf,

corresponding to a function f, defined by

Vf⌋Ω ¼ −df; ð24Þ

where V⌋Ω denotes the interior contraction of V with Ω
given by

V⌋Ω ¼ VμΩμνdξν

Ω ¼ 1

2
Ωμνdξμdξν;

V ¼ Vμ ∂
∂ξμ ; ð25Þ

ξμ are phase space coordinates given by xμ, pμ and the
two coordinates on the two-sphere are defined by Na.
First define a vector υμ, υ0 ¼ 0 and υi by its action on
Na as

υi⌋dNa ¼
Nipa − δia ~N · ~p
mðp0 þmÞ ; m ¼

ffiffiffiffiffi
p2

q
: ð26Þ

Although tedious, it is then straightforward to verify that
the vector fields corresponding to pα and xμ are

ðVpÞα ¼ −ðM−1Þαμ
� ∂
∂xμ þ eFμνQν

�

ðVxÞμ ¼
�
δμν −

SμαðM−1ÞαλðeFλνÞ
m2

�
Qν

−
SμαðM−1Þαλ

m2

∂
∂xλ ; ð27Þ

where

Mμ
α ¼ δαμ þ

eFμνSνα

m2
; Qμ ¼ ∂

∂pμ
þ υμ: ð28Þ

One can also verify that

QμSαβ ¼ Sμαpβ − Sμβpα

m2
: ð29Þ

The Poisson bracket of two functions f and g is given by

ff; gg ¼ −ðVf⌋Vg⌋ΩÞ ¼ ðVf⌋dgÞ: ð30Þ

Using the vector fields (27), the basic bracket relations (PB)
we need are thus given by

fxμ; xνg ¼ −
Kμν

m2
ð31Þ

fxμ; pνg ¼ δμν −
KμαðeFανÞ

m2
ð32Þ

fpμ; pνg ¼ −
�
eFμν −

ðeFμαÞKαβðeFβνÞ
m2

�
¼ −eFμλfxλ; pνg ð33Þ

fxμ; Sαβg ¼ ðpαKβμ − pβKαμÞ
m2

ð34Þ

fpμ; Sαβg ¼ pαðeFμνÞKνβ − pβðeFμνÞKνα

m2

¼ −eFμλfxλ; Sαβg ð35Þ

Kμν ¼ SμαðM−1Þνα ¼ Sμν − Sμα
eFαβ

m2
Sβν þ � � � ð36Þ

Since Sαβpβ ¼ 0 and H is to be made out of invariants, we
consider a Hamiltonian of the form H ¼ Hðp2; σÞ, where
σ ¼ eFαβSαβ. The PB relations (31)–(36) show that

dxμ

dτ
¼ 2pμ ∂H

∂p2
þ KμαeFαβpβ

m2
2

�∂H
∂α −

∂H
∂p2

�
ð37Þ

dpμ

dτ
¼ −eFμν dxν

dτ
: ð38Þ

Equation (38) is exact for any Hamiltonian as mentioned
earlier. Equation (37) agrees with (17) if the Hamiltonian is
of the form

H ¼ p2

2M
þ 1

2M

�
g
2

�
eFαβSαβ þ constantþOð∂FÞ ð39Þ

and further if we choose g ¼ 2. Thus, starting with the
symplectic structure Ω, which determines the PB relations
among the dynamical variables, and requiring that the
Lorentz force equation be satisfied fixes g ¼ 2 in (39).
This is the essence of our statement in the Introduction that,
with the minimality conditions we have stated, the Lorentz
force equations imply g ¼ 2. There is no surprise here; after
all, it is well known that the minimal gauging of single-
particle wave equations for spinning particles does lead
to g ¼ 2.
We now turn to the possibility of the anomalous

magnetic moment. We want to allow for the possibility
of g ≠ 2, while obtaining equations of motion consistent
with the Lorentz force equation (19). A more general set of
equations that allows this is
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dxμ

dτ
¼ pμ þ Bμ

M
ð40Þ

dðpμ þ BμÞ
dτ

¼ −eFμν dxν
dτ

þOð∂FÞ; ð41Þ

where B ¼ Bðp; S; eFÞ and pμ þ Bμ ¼ fpμ for some
function f, but f is not necessarily a constant of motion.
The important point is that this more general set of
equations is not compatible with the minimal symplectic
structure given by the Poincaré group. In fact, Eq. (41)
implies that the symplectic structure has to be modified by

Ω → Ωþ dxμdBμ; ð42Þ

where Bμ is to be determined so that (40) is satisfied.
We will determine Bμ as a series in powers of F. If we use
Ωþ δΩ as the symplectic form, the modified PBs are
given by

ff; gg ¼ ff; ggð0Þ þ ðVð0Þ
f ⌋Vð0Þ

g ⌋δΩÞ þ � � � ; ð43Þ

where Vð0Þ are the Hamiltonian vector fields given by Ω.
With δΩ ¼ dxμBμ, we find

fxμ; xνg ¼ −
Kμν

m2
þ 1

m2
½SμλðQνBλÞ − SνλðQμBλÞ� þ � � �

ð44Þ

fxμ; pνg ¼ δμν −
KμαðeFανÞ

m2
− ðQμBνÞ þ � � � ð45Þ

Using the same Hamiltonian as before, namely, Eq. (39),
we find that the new equations of motion become

dxμ

dτ
¼ pμ þ Bμ

M
þ
�
g
2
− 1

�
KμαeFαβpβ

Mm2

− ðQμBνÞ
pν

M
−
Bμ

M
þ � � � ð46Þ

dðpμ þ BμÞ
dτ

¼ −eFμν dx
ν

dτ
ð47Þ

The choice

Bμ ¼
ðg − 2Þ

2

ðSαβeFαβÞ
2m2

pμ þOðF2Þ ð48Þ

eliminates all the unwanted terms on the right-hand side of
(46), giving us (40). As mentioned earlier, given themodified
Ω in (42), we obtain (41) as an exact equation of motion.
We then choose Bμ such that dx

μ

dτ ¼ pμþBμ

M is also obtained as
an exact equation, even though Bμ has to be determined in a
series expansion. Thus, the Lorentz force is still an exact
result, up to terms involving gradients of the fields.

A comment about canonical transformations would be
appropriate at this stage. We note that once the equations of
motion are specified the vector field generating this flow
gives the Hamiltonian. There is no further freedom in H.
In our case, the Lorentz force equations are expressed in
terms of xμ, which have the direct physical interpretation as
the position, so we have chosen to keep these variables, as
the starting point, in writing down the τ evolution vector
field and, from there, the Hamiltonian. Certainly, further
canonical transformations can be carried out on this version
of τ evolution and the Hamiltonian, if desired. This would
give a transformed set of equations and a corresponding
transformed Hamiltonian. More explicitly, let X be a vector
field generating a canonical transformation. Then the τ
evolution vector field V → V þ ½X; V�, where the second
term is the Lie bracket. This also gives ðV þ ½X; V�Þ⌋Ω ¼
−dH − dffX;Hg, where fX is the corresponding function
in phase space. Thus, H → H þ ffX;Hg as expected. (Up
to unitary transformations on Ψ, the wave equation
HΨ ¼ 0, which is discussed in the next section, remains
the same.)

V. WAVE EQUATION

Since τ is a gauge parameter, the generator of τ
evolution, namely, H, must be set to zero. Upon quantiza-
tion, the wave equation is thus given by HΨ ¼ 0. Taking
the constant in (39) to be −μ2=2M, this becomes�

p2 þ eg
2
FαβSαβ − μ2

�
Ψ ¼ 0: ð49Þ

This shows that the mass appearing in solutions of the wave
equation is μ. This would also be the mass which appears in
the classical equations of motion obtained starting from the
wave equation and taking a classical limit. However, the
mass parameter we used for the classical equations of
motion wasM. There is no real contradiction here by virtue
of reparametrization invariance. Going back to (17), (18)
or (19), we see that M can be replaced by μ by redefining
τ → τM=μ. Therefore, without loss of generality we can
take μ ¼ M, and the wave equation can be written as�

p2 þ eg
2
FαβSαβ −M2

�
Ψ ¼ 0: ð50Þ

The orbit of the Poincaré group, and the corresponding Ω,
should be specified by the values for the set of mutually
commuting observables, which are the mass and the spin.
But we relaxed the condition to retain unconstrained pμ

in Ω by using
ffiffiffiffiffi
p2

p
in place of the mass, as in (7). The

requirement (50) is thus the reinstatement of the definition
of mass.
As is evident from (44), in the quantum theory, xμ does

not commute with xν. Thus, to write (50) as a differential
equation, we must first transform to a mutually commuting
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set of coordinates. This is equivalent to the choice of
Darboux coordinates in the classical theory. We will show
how this can be done for the simpler case of g ¼ 2, where
Bμ ¼ 0. In this case, it is easily verified that the required
transformation is

xμ ¼ qμ − CμðkÞ − e
2
Fλα

�∂Cμ

∂kα q
λ þ ∂Cα

∂kμ C
λ

�
þ � � �

pμ ¼ kμ −
e
2
Fμαqα þ eFμαCαðkÞ

−
1

4
qλeFλα

�∂Cβ

∂kα −
∂Cα

∂kβ
�
eFβμ þ � � � ; ð51Þ

where qμ, kμ are standard canonical coordinates,

½qμ; qν� ¼ 0; ½qμ; kν� ¼ δμν ; ½kμ; kν� ¼ 0: ð52Þ

Further, Cα in (51) is given by

Cα ¼ Sa
ϵabckbffiffiffiffiffi

k2
p

ðk0 þ
ffiffiffiffiffi
k2

p
Þ
δαc: ð53Þ

This corresponds to the 1-form C in (9) written in terms of
the commuting momenta k. One can verify that these
definitions (51) reproduce the Poisson brackets (31) to (35)
to the lowest nontrivial order. In evaluating Poisson
brackets with (51), it should be kept in mind that

½Sa; Sb� ¼ −ϵabcSc: ð54Þ

The symplectic structure (12), specifically the term
−ðs=2ÞϵabcNadNbdNc, gives these PB relations for Sa.
The Darboux coordinates (51) show that, in going to the

quantum theory, we can represent pμ in terms of derivatives
with respect to qμ as

pμ ¼ −i
∂
∂qμ þ eAμ þ eFμαCα þ � � � ; ð55Þ

where Aμ ¼ − 1
2
Fμαqα is the vector potential for us, since

we are ignoring derivatives of Fμα. The wave equation (50)
thus takes the form

�
−ð∂μ þ ieAμ þ ieFμαCα þ � � �Þ2þ e

2
gSαβFαβ −M2

�
Ψ¼ 0:

ð56Þ

One point worth emphasizing here is that, while the term
ðeg=2ÞSαβFαβ gives the correct magnetic moment inter-
action, the spin-orbit interaction part of this term is twice
what is needed. The extra term −ieð∂μFμαCα þ
FμαCα∂μÞΨ compensates for this and leads to the correct
spin-orbit interaction in the wave equation. More specifi-
cally, if we introduce the nonrelativistic wave functionΨNR

by writing Ψ ¼ eiMq0ΨNR, (56) can be simplified in the
nonrelativistic limit as

HΨNR ≡ −i
∂
∂q0 ΨNR

≈
�
−
ð∇þ ie~AÞ2

2M
− eA0 − eF0iCi

−
eg
4M

ð2S0iF0i þ SijFijÞ
�
ΨNR

≈
�
−
ð∇þ ie~AÞ2

2M
− eA0 þ

e
2M2

~S · ð~k × ~EÞ

−
e
M

~S · ~B

�
ΨNR; ð57Þ

where we have used the nonrelativistic limit of Sμν in (14)
and Ci in (53). Equation (57) shows the correct magnetic
moment and the correct spin-orbit interaction for g ¼ 2.

VI. FLUIDS

As the first step in generalizing these considerations to
fluids, we consider the action for a number of particles,
each described byA in (11). For the point we want to make,
it suffices to consider spinless particles. The action is thus
given by

S ¼
XN
α

Z
½pðαÞ

μ _xμðαÞ − fðnαÞ�; ð58Þ

where n2 ¼ p2. The particles are labeled by the index α.
We are interested in a continuum approximation where N is
very large and the index α becomes almost a continuous
variable. Lagrange’s key observation was that the initial
positions of particles may be used to label them, so thatP

N
α →

R
d3α. Further, the transformation between the

present positions xiðtÞ and the initial positions is a diffeo-
morphism, so we can replace d3α by d3xJ, J being the
Jacobian j∂α=∂xj. The action can then be expressed as a
spacetime integral. The Jacobian J can be absorbed into the
definition of pμ. We then find

S ¼
Z

d4x

�
pμðxÞ

�∂xμ
∂τ

�
− fðnÞ

�
: ð59Þ

The 4-velocity uμðxÞ ¼ _xμ is the flow velocity of a stream
of particles. The Hamiltonian will depend on pμ.
We know that such a simple generalization at the level of

the action will not suffice. Lagrange’s derivation of hydro-
dynamics was done at the level of the equations of motion
and a derivation based on the action came much later, with
the replacement of the coarse-grained particle velocity in
terms of the Clebsch variables. Nevertheless, let us go a
little further with (59) and work out the equations of motion
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by variation with respect to xμ. For this, we write (59) in
terms of d3α again and find

δS ¼
Z

dτd3αpðαÞ
μ

∂
∂τ ðδx

μÞ

¼
Z

dτd3αpðαÞ
μ uλ

∂
∂xλ ðδx

μÞ

¼
Z

d4xJpðαÞ
μ uλ

∂
∂xλ ðδx

μÞ

¼ −
Z

d4x

� ∂
∂xλ ðu

λpμÞ
�
δxμ; ð60Þ

where we used the fact that ∂=∂τ acting on a function g of
xμ is uλð∂g=∂xλÞ, and, further, pμ ¼ JpðαÞ

μ . The equation of
motion is thus

∂
∂xλ ðu

λpμÞ ¼ 0: ð61Þ

The energy-momentum tensor corresponding to (59) is
given by

Tμν ¼ uμpν − ημνðnf0 − fÞ; ð62Þ

where f0 ¼ ð∂f=∂nÞ. The equation of motion (61) only
coincides with the conservation of Tμν provided fðnÞ ¼ n,
so that the pressure P ¼ nf0 − f ¼ 0. In this case
pμ ¼ nuμ. Thus, (61) only describes the pressureless flow
of a large number of particles. There is no surprise here,
since, beyond using a continuous set to label the particles,
we have not included interparticle interactions which is
needed for nonzero pressure. We can modify fðnÞ to allow
for nonzero pressure, but then individual particle positions
lose meaning as independent dynamical variables. There
are two points to be made here. First the use of individual
positions as dynamical variables to be varied to get
equations of motion will not work, even nonrelativistically.
Second, having four positions xμ is appropriate for particles
because we would eliminate one of them by the constraint
of H ≈ 0 eventually. We do not have such a constraint in
terms of the fluid variables. Thus, we need three variables
for the fluid velocity for which the variation in the action
can lead to the correct equations of motion. For this, it is
useful to recall that, even for the nonrelativistic case, an
action for fluid dynamics requires the Clebsch parametri-
zation of the velocities, given by

vi ¼ ∇iθ þ α∇iβ: ð63Þ
For constructing an action for fluids, it is necessary to fix a
value for the helicity C (which is C ¼ 1

8π

R
ϵijkvi∂jvk) for

which the value is superselected in the sense that local field
transformations do not change it. For vanishing C, the
velocity in three dimensions can be brought to the form
(63) with three independent fields θ, α, β. (A similar form

exists for other values of C as well.) For a general
discussion of the Clebsch variables, see Ref. [6].
The action for nonrelativistic fluids is given by

S ¼
Z

d4x

�
j0ð∂0θ þ α∂0βÞ −

1

2
j0ð∇θ þ α∇βÞ2 − Vðj0Þ

�

−
Z

d4xj0; ð64Þ

where j0 ¼ ρ is the density. Usually the last term can be
omitted as it does not contribute to the equations of motion,R
d3xρ being fixed. Introducing an auxiliary field ji, we can

rewrite this as

S ¼
Z

d4x

�
j0ð∂0θ þ α∂0βÞ − jið∇iθ þ α∇iβÞ

− j0 þ jiji
2j0

− Vðj0Þ
�
: ð65Þ

The elimination of ji evidently leads back to (64). We
notice that this action is the approximation, for
ðj0Þ2 ≫ jiji, of the action

S ¼
Z

d4x½jμð∂μθ þ α∂μβÞ − fðnÞ�

fðnÞ ¼ nþ VðnÞ;
n2 ¼ ημνjμjν ¼ ðj0Þ2 − jiji: ð66Þ

Clearly we can take (66) as the relativistic action which
reproduces the nonrelativistic one in the appropriate limit.
The point of this argument is that what takes the place of _xμ

is the Clebsch parametrization ∂μθ þ α∂μβ. The distinction
between the use of the Clebsch variables and _xμ is not
important if we were just to transform the equations of
motion, as Lagrange did; it is relevant only when we want
to construct an action.
With this understanding of the replacement of _xμ by the

Clebsch parametrization, we can now easily generalize the
point-particle action to fluids. Going back to (8), we can
write the action

S ¼
Z

d4x

�
jμð∂μθ þ α∂μβÞ −

i
4
jμðsÞTrðΣ3Λ−1∂μΛÞ

− fðn; nðsÞÞ
�
; ð67Þ

where Λ is a function on spacetime, depending on all xμ in
general. It is again given explicitly by Λ ¼ BR, with

B ¼ 1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2nðsÞðj0ðsÞ þ nðsÞÞ

q
"
j0ðsÞ þ nðsÞ ~σ · ~jðsÞ

~σ · ~jðsÞ j0ðsÞ þ nðsÞ

#
: ð68Þ
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There are two currents in (67), jμ for mass and jμðsÞ for spin.
As before, n2 ¼ ημνjμjν, n2ðsÞ ¼ ημνj

μ
ðsÞj

ν
ðsÞ. For point par-

ticles, these two currents were proportional to each other;
rather the corresponding momenta were the same.
However, for fluids, we can consider independent transport
of mass and spin, so the general situation is to have separate
currents.
So far we have considered only the mass and spin of the

fluid. The inclusion of additional quantum numbers is
straightforward. We consider the full symmetry group,
which is of the form of the Poincaré group times the
internal symmetry group G. The latter could be the full
symmetry group of the standard model, for example,
including the gauged subgroup Uð1ÞY × SUð2ÞL×
SUð3Þc, as well as the relevant chiral symmetries, the
difference between the baryon and lepton numbers (B − L),
etc. The generalization of the action (67) is then

S ¼
Z

d4x

�
jμð∂μθ þ α∂μβÞ −

i
2
jμðsÞTrðΣ3Λ−1∂μΛÞ

þ i
X
a

jμðaÞTrðhag−1DμgÞ − fðfngÞÞ
�
þ SðAÞ; ð69Þ

where we have, in principle, separate currents jμ; jμðsÞ; j
μ
ðaÞ

for all the diagonal generators of the symmetry group, i.e.,
as many currents as the rank of the group. We use θ, α, β to
describe mass transport; Λ for spin transport; and g ∈ G for
the transport of internal symmetries corresponding to a
group G. (We use a current of mass dimension 3, so that jμ

is like the mass current divided by a mass parameter.)
The covariant derivative Dμ indicates gauging with respect
to the gauge fields of the standard model. SðAÞ indicates the
part of the action for the gauge fields, which is the sum of
Yang–Mills-type terms. The function fðfngÞ now depends
on all the invariants of the form n ¼ ffiffiffiffiffiffiffiffiffiffiffiffiffiffi

jμjνημν
p

made from
the currents, including, in principle, terms of the formffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
jμjνðsÞημν

q
,

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
jμjνðaÞημν

q
, etc.

The action (69) is a general action for relativistic
(Abelian/non-Abelian) magnetohydrodynamics. The dis-
tinction between different types of fluids with the same
symmetry is in the choice of the function f (which
determines the various partial pressures and hence the
equation of state) and “constitutive relations” among the
currents. For example, if we have only one species of
particles, each carrying an electric charge e, then for the
corresponding mass current and electric current we expect
the relation jμðeÞ ¼ ejμ.

VII. MAGNETOHYDRODYNAMICS WITH SPIN

Most of the terms in the action (69) were already given
many years ago in Ref. [5]; see also Ref. [6]. We have also
considered a similar action with Wess–Zumino terms added
[7,8] to account for anomalies and have shown that the

chiral magnetic effect and the chiral vorticity effect are
incorporated. The main new point here is the clarification of
how the terms associated with the Poincaré symmetry enter.
To illustrate how such terms can affect the physics of the
fluid, we will consider in some detail a special case of (69)
where we take the flow velocity for the mass, spin and
electric charge to be the same, i.e., jμðsÞ ¼ sjμ, jμðeÞ ¼ ejμ. If
we have a single species of particles with identical charge
we should expect the same velocity for mass and charge.
Even so, the spin flow can have a different velocity as spin
singlet combinations can form; their transport would affect
mass/charge flow but not the spin current. However, for a
dilute system where such combinations are unlikely on the
scale of coarse graining, having the same flow velocity for
spin as well is not unreasonable. This is essentially this
special case; wewill analyze this in some more detail as it is
closely related to the single-particle motion discussed in
earlier sections. Thus, we consider the action

S ¼ SðAÞ þ
Z

d4x½jμð∂μθ þ α∂μβ þ eAμÞ

− i
s
2
jμTrðΣ3Λ−1∂μΛÞ − fðn; σÞ�: ð70Þ

Anticipating that wewill need magnetic moment couplings,
we take f to be a function of n ¼ ffiffiffiffiffiffiffiffi

jμjμ
p

and σ ¼ SμνFμν.
For obtaining and simplifying the equations of motion, it is
convenient to use a slightly different action

S ¼
Z

d4x½jμð∂μθ þ α∂μβ þ eAμÞ

−
is
2
jμTrðΣ3Λ−1ð∂μ þ iγμνξνÞΛÞ�

−
Z

d4xfðn; σÞ þ SðAÞ: ð71Þ

In (71), we treat Λ as an arbitrary dynamical variable.
The requirement that Λ can be written as BR with the
velocity in B being identical to the mass/charge transport
velocity uμ ¼ jμffiffiffi

j2
p is enforced by the constraint

Sμνuν ¼ 0: ð72Þ
This is obtained as the equation of motion of the Lagrange
multiplier field ξν. First we show that this constraint can
indeed give the identity of the flow velocities. Writing out
(72), we find

Tr½Λ−1γ · uΛ;Σ3�Λ−1γνΛ ¼ Λν
αTr½Λ−1γ · uΛ;Σ3�γα ¼ 0:

ð73Þ
SinceΛν

α is invertible, we need ½Λ−1γ · uΛ;Σ3� to have zero
trace with γα, for any α. Further, since ½Λ−1γ · uΛ;Σ3� is a
linear combination of single powers of γμ, we get ½Λ−1γ ·
uΛ;Σ3� ¼ 0 or
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Λ−1γ · uΛ ¼ aγ0 þ bγ3: ð74Þ

Since uμuμ ¼ 1, a ¼ coshω, b ¼ sinhω, so that we may
write Λ−1γ · uΛ ¼ Λ−1

0 γ0Λ0, Λ0 ¼ expð−iωγ03Þ. The sol-
ution for Λ is thus Λ ¼ BRΛ0, with B as given in (68). Λ0

drops out of the action since it commutes with Σ3 and
TrðΣ3γ03Þ ¼ 0. We may thus drop it from further consid-
eration. Thus, the constraint (72) does enforce the equality
of the flow velocities.
The remaining variational equations are

∂μjμ ¼ 0; jμ∂μα ¼ 0; jμ∂μβ ¼ 0 ð75Þ

Vμ − Kμ þ Sμνξν ¼
∂f
∂n uμ

Vμ ¼ ∂μθ þ α∂μβ þ eAμ

Kμ ¼
is
2
TrðΣ3Λ−1∂μΛÞ ð76Þ

DSμν −
2

n
∂f
∂σ ðSμλF

λ
ν − SνλFλ

μÞ þ ðuμSνλ − uνSμλÞξλ ¼ 0;

ð77Þ

where D ¼ uμ∂μ. The first set (75) arises from varying
the action with respect to θ, α and β. The second one,
(76), corresponds to the variation with respect to jμ, and
the last one is due to the variation of Λ as
in δΛ ¼ −iωμνγμνΛ.
The simplification of these equations will proceed as in

the spinless case. It is convenient in what follows to denote
γμν by tA, taking A, B, C, as composite indices; thus,
t12 ¼ 1

2
Σ3. The normalization is TrðtAtBÞ ¼ δAB. We can

then write

Λ−1dΛ ¼ −itAEA; Λ−1∂μΛ ¼ −itAEA;M∂μφ
M; ð78Þ

where we denote the parameters of Λ generically by φM.
This relation gives

Kμ ¼ sE12;M∂μφ
M: ð79Þ

Further, from the definition of SA ¼ s
2
TrðΣ3Λ−1tAΛÞ, we

find

fABCSAdSB ∧ dSC ¼ s3f12;MPf12;MNf12;PQEN ∧ EQ

¼ s3f12;NQEN ∧ EQ; ð80Þ

where we used the relation f12;MPf12;MNf12;PQ ¼ f12;NQ

which may be shown directly from the definitions. Using
this equation and taking the curl of Kμ, we find

∂μKν − ∂νKμ ¼ −
is
2
TrΣ3½Λ−1∂μΛ;Λ−1∂νΛ�

¼ −
1

s2
fABCSA∂μSB∂νSC

¼ 4

s2
Sαβ∂μSλα∂νSλβ: ð81Þ

Taking the curl of (76) and contracting with uμ and using
(75) and (81), we get

Dðf0uνÞ − ∂νf0 ¼ euλFλν −
4

s2
SαβDSλα∂νSλβ þDðSνλξλÞ

− uμ∂νðSμλξλÞ; ð82Þ

where f0 ¼ ð∂f=∂nÞ. The equation for the spin density,
namely, (77), remains as it is for now. The key issue,
however, is that the constraint (72) must be preserved by the
evolution equations. The requirement is that

DðSμνuνÞ ¼ 0 ð83Þ

on the constrained subspace with Sμνuν ¼ 0. Using (77)
and (82), this can be written as

Sμν

�
uλFλνXðn; σÞ þDðSνλξλÞ − uρ∂νðSρλξλÞ

−
4

s2
SαβðDSλαÞ∂νSλβ þ ∂νf0 þ f0ξν

�
¼ 0; ð84Þ

where

Xðn; σÞ ¼ e −
2

n
∂f
∂n

∂f
∂σ : ð85Þ

The vector inside the bracket in (84) is orthogonal to Sμν,
so it can be written as a linear combination of uν and Wν,
where Wν is the normalized Pauli–Lubanski vector
defined as

Wμ ¼ −
1

2s
ϵμναβuνSαβ; W ·W ¼ −1: ð86Þ

The following relations, which are easily verified, are
useful for further simplification,

Sμν ¼ sϵμνρσWρuσ ⇒ Sμνuν ¼ SμνWν ¼ W · u ¼ 0 ð87Þ

SμνSνρ ¼ −s2ðδρμ þWμWρ − uμuρÞ: ð88Þ

By virtue of these relations, a vector ων, satisfying
Sμνων ¼ 0, is of the form ωμ ¼ uμðu · ωÞ −WμðW · ωÞ.
Applying this to (84) we get
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Xðn; σÞ½uλFλν þWνWρuλFλρ� þDðSνλξλÞ − uρ∂νðSρλξλÞ
þWν½WρDðSρλξλÞ − uρWσ∂σðSνλξλÞ�

−
4

s2
SαβðDSλαÞð∂νSλβ þWνWσ∂σSβλÞ

þ ∂νf0 þWνWρ∂ρf0 − uνDf0 þ f0ξν ¼ 0: ð89Þ

Equation (89) is to be understood as the equation determin-
ing ξν. Further, from the way ξν it enters the action (71), it is
clear that, without loss of generality, we can take ξν to be
orthogonal to uν and Wν as well. We can solve (89) as a
series expansion in gradient terms and powers of the
external field F, namely,

ξν ¼ ξνð1Þ þ ξνð2Þ þ � � � ; ð90Þ

where ξνð1Þ contains terms linear in gradients or in F; ξνð2Þ
contains terms quadratic in gradients or quadratic in F or
linear in gradients and F and so on. In this way, we find

ξνð1Þ ¼
1

f0
½uνDf0 − ∂νf0 −WνWρ∂ρf0

− Xðn; σÞ½uλFλν þWνWρuλFλρ�� ð91Þ

ξνð2Þ ¼ −
1

f0

�
DðSνλξλð1ÞÞ − uρ∂νðSρλξλð1ÞÞ

þWν½WρDðSρλξλð1ÞÞ − uρWσ∂σðSρλξλð1ÞÞ�

−
4

s2
SαβðDSλαð1ÞÞð∂νSλβ þWνWσ∂σSβλÞ

�
: ð92Þ

We can now substitute these expressions into (77) and (82)
to obtain the equations of motion for the spin density Sμν
and the fluid velocity uν. The expressions are quite
involved, so at this point we will simplify the equations
by imposing the condition

Xðn; σÞ ¼ 0 ⇒ e ¼ 2

n
∂f
∂n

∂f
∂σ : ð93Þ

This determines the dependence of f on σ in terms of its
dependence on n. As discussed earlier, in the absence of the
external field F, we take fðnÞ ¼ nþ VðnÞ. [VðnÞ ¼ 0
corresponds to the pressureless case.] One can find a
power series solution for fðn; σÞ, satisfying (93), of the
form

fðn; σÞ ¼ nþ VðnÞ þ enσ
2½1þ V0ðnÞ� þOðσ2Þ: ð94Þ

This can be thought of as the analog of the requirement of
g ¼ 2 in the single-particle case. In the nonrelativistic limit,
V 0ðnÞ ≪ 1, and we see from the term linear in σ that the
magnetic moment is proportional to the charge density en
and corresponds to g ¼ 2. The condition (93) characterizes

a special kind of fluid, perhaps the most relevant case, since
g − 2 is usually very small. Nevertheless, we emphasize
that this is a specialization; one can always use the general
solution (91), (92) for more general types of fluids.
Using (91) and (92) in (77) and (82) and keeping only

terms linear in F and gradients we find the following
expressions for the equations of motion:

Dðf0uνÞ − ∂νf0 ¼ e

�
uλFλν −

4

s2f0
∂νSλβðSFS − FSSÞλβ

−
1

f02
ðSναFα

λ − SλαFα
νÞ∂λf0

�
þ � � � ð95Þ

DSμν ¼
1

f0
½SμλðeFλν þGλνÞ − SνλðeFλμ þ GλμÞ�

−
4e
s2f02

ðuμSνλ − uνSμλÞ∂λSρβðSFS − FSSÞρβ

þ e
f03

½s2½ðuμFλ
ν − uνFλ

μÞ þ ðuμWν − uμWνÞWρFλ
ρ�

þ uμðSFSÞνλ − uνðSFSÞμλ�∂λf0 þ � � � ð96Þ

Gλν ¼ uλ∂νf0 − uν∂λf0

ðSFS − FSSÞλβ ¼ SλρFρτSτβ − Fλ
ρSρτSτβ: ð97Þ

We have ignored the gradients of the external field, so that
this is valid for almost uniform fields, or as the first set of
terms in an expansion in terms of gradients of the fields.
The first equation in this set, (95), is the analog of the

Euler equation with the Lorentz force on the right-hand
side, as expected for magnetohydrodynamics. (The term
magnetohydrodynamics is often used for the more
restricted case where the electric field ~E is related to the
magnetic field ~B via ~Eþ ~v × ~B ¼ 0, which plays the role
of Ohm’s law for a plasma. We are using the term in a more
general sense. The specialization to ~B via ~E ¼ ~v × ~B can be
easily made at any stage.) The appearance of a term
involving the gradient of the spin density on the right-
hand side of this equation is not surprising since a term like
SμνFμν in the Hamiltonian would be like a contribution to
the potential energy and we should expect its gradient in the
equation of motion.
The second equation (96) describes the flow (or pre-

cession) of the spin density. What is novel and interesting is
that this equation shows a precession term SμλGλν − SνλGλμ

in addition to the usual precession effect due to
eðSμλFλν − SνλFλμÞ, even in the absence of gradients for
Sαβ. Since Gλν involves gradients of the pressure and
energy density, we see that nonuniform pressure and energy
density in magnetohydrodynamics can generate preces-
sional motion for spin density. Notice that we may rewrite
the Euler equation (95) also as
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f0Duν ¼
�
uλðeFλν þ GλνÞ −

4

s2f0
∂νSλβðSFS − FSSÞλβ

�
þ � � � ð98Þ

Thus,Gλν plays a role similar to that of Fλν in this equation,
so its presence in the spin precession equation (96) is not
entirely surprising.

VIII. DISCUSSION

The group-theoretic formulation of fluid dynamics has
been used to describe fluids with non-Abelian charges and
to include anomaly effects. We explore this formulation
further in this paper. The focus here is to clarify the role of
Poincaré group, rather than internal symmetries. For this,
we started by considering relativistic charged-particle
dynamics in some detail. The minimal symplectic form,
as given by the Poincaré group, along with the Lorentz
force is shown to imply a gyromagnetic ratio of 2. (We give
a clearer definition of what is meant by minimal in the text.)
A similar result was found some time ago in 2þ 1
dimensions. In that case, it is known that variants of the
symplectic form can accommodate the anomalous mag-
netic moment. We show that a similar result holds in 3þ 1
dimensions as well. We analyze the canonical structure and
also show how the one-particle wave equation with the
correct magnetic moment and spin-orbit interactions can be
obtained upon quantization.
The extension to fluids is then considered, and the

general group-theoretic framework is clarified further.
The main result may be summarized as Eq. (69) which

gives the general form of the action for a fluid with
Poincaré symmetry and an internal symmetry correspond-
ing to group G. This action with the addition of a suitable
Wess–Zumino term for anomalies should describe general
fluid dynamics with anomalous symmetries as well.
The derivatives can also be made Levi–Civitá covariant
to accommodate gravitational effects. Variants of (69) have
been used previously, with and without anomalies, to
describe a number of phenomena [5,7,8,13,18].
We also considered another special case, namely, the

extension of standard magnetohydrodynamics (Maxwell
field coupled to charged fluids) to include spin effects. The
nature of this theory is dictated purely on symmetry
grounds by the Poincaré or Lorentz group. The equation
for the fluid shows new spin precession effects due to the
gradients of pressure and energy density. There are also
corrections to the Euler equation depending on the gra-
dients of the spin density in the presence of electric and
magnetic fields.
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