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The massless Gross-Neveu and chiral Gross-Neveu models are well known examples of integrable
quantum field theories in 1þ 1 dimensions. We address the question of whether integrability is preserved if
one either replaces the four-fermion interaction in fermion-antifermion channels by a dual interaction in
fermion-fermion channels, or if one adds such a dual interaction to an existing integrable model. The
relativistic Hartree-Fock-Bogoliubov approach is adequate to deal with the large-N limit of such models. In
this way, we construct and solve three integrable models with Cooper pairing. We also identify a candidate
for a fourth integrable model with maximal kinematic symmetry, the “perfect” Gross-Neveu model. This
type of field theories can serve as exactly solvable toy models for color superconductivity in quantum
chromodynamics.
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I. INTRODUCTION

In its original form, the Gross-Neveu (GN) model [1] is
perhaps the simplest interacting, fermionic field theory. N
massless flavors of Dirac fermions interact via a scalar-
scalar four-fermion interaction in 1þ 1 dimensions,

LGN ¼
XN
i¼1

ψ̄ ðiÞi∂ψ ðiÞ þ g2

2

�XN
i¼1

ψ̄ ðiÞψ ðiÞ
�2

: ð1Þ

The large-N limit is at the same time tractable and
physically suggestive of higher dimensions, and we use
it throughout this paper. Since its inception 40 years ago, a
number of generalizations of the GN model have been
considered, adding a bare mass term or modifying the
interaction. The best-known such generalization is presum-
ably the chiral GN model, the two-dimensional version of
the even older Nambu–Jona-Lasinio (NJL) model [2],

LNJL ¼
XN
i¼1

ψ̄ ðiÞi∂ψ ðiÞ

þ g2

2

��XN
i¼1

ψ̄ ðiÞψ ðiÞ
�2

þ
�XN

i¼1

ψ̄ ðiÞiγ5ψ ðiÞ
�2�

:

ð2Þ

Here the discrete Z2 chiral symmetry of Eq. (1) gets
promoted to a continuous U(1) chiral symmetry. Other
four-fermion interactions which can be found in the
literature interpolate between Eqs. (1) and (2) by introduc-
ing two different coupling constants [3–5], or have extra

terms which give rise to fermion-fermion pairing rather
than fermion-antifermion pairing [6–12]. The motivation
for the latter models comes mostly from the predicted
phenomenon of color superconductivity in quantum
chromodynamics [13–15]. Accordingly, the emphasis of
these works has typically been on the phase diagram of the
corresponding models and patterns of symmetry breaking.
One property which singles out the Lagrangians (1) and

(2) from the vast majority of their modifications is integra-
bility [16–18]. While this does not seem to play any role in
the calculation of thermodynamic quantities, integrability
permits one to solve static and even time-dependent soliton
problems in the massless GN and NJL models explicitly.
Thus, scattering problems involving any number of kinks,
kink-antikink baryons, compound bound states and breath-
ers have been solved analytically by time-dependent
Hartree-Fock (TDHF) methods recently [19–22]. Nothing
comparable has been achieved for massive GN models, or
any variant with different interaction terms, for that matter,
so that integrability is undoubtedly crucial here. Since it is
quite exceptional to be able to solve both equilibrium
thermodynamics and the time evolution of an interacting
quantum field theory exactly, the question arises whether
there are other (physically relevant) integrable four-fermion
models. This is the main topic of the present paper.
This is not an easy question, and therefore we shall

proceed rather heuristically. Two main ingredients have
proven helpful in our search for integrability: the first one is
related to symmetries, and the second one is related to
the concept of duality between fermion-fermion and
fermion-antifermion pairing.
We consider symmetry issues first. If one wishes to

generalize an integrable model by making it more com-
plicated without losing integrability, we find it plausible*michael.thies@gravity.fau.de
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that it helps if the symmetry of the starting model gets
enhanced in this process. Thus for instance, adding a mass
term to the GN Lagrangian (1) breaks the discrete chiral
symmetry and renders the model nonintegrable. By con-
trast, switching on an interaction in the pseudoscalar
channel of the same strength as in the scalar channel when
going from Eq. (1) to Eq. (2) enhances the chiral symmetry
and maintains integrability. Notice also that the known
integrable models have only one coupling constant. It is
hard to imagine that integrability can be kept if one adds
more interactions with arbitrary coupling constants.
Turning to duality, we remind the reader of a concept

introduced in Ref. [23] and further exploited in the recent
papers [11,12]. The duality transformation we have in mind
consists in replacing fields by their complex conjugates,
separately for left-handed and right-handed fermions (this
distinguishes it from charge conjugation). Thereby one can
relate models with fermion-antifermion pairing (chiral
symmetry breaking) and fermion-fermion pairing (super-
conductivity) to each other. This concept will turn out to be
important for identifying and characterizing potentially
integrable models different from Eqs. (1) and (2).
The plan of this paper reflects these introductory

remarks. In Sec. II, we start with free, massless fermions
and specialize the Pauli-Gürsey symmetry [24,25] to 1þ 1
dimensions. In Sec. III, we briefly recall the duality
transformation applied to the two integrable models (1)
and (2). This yields two distinct integrable models with
Cooper pairing only. In Sec. IV we take up the concept of
“self-dual” field theories from Ref. [23]. Here we construct
the self-dual version of the GN model. We will confirm its
integrability and solve the model completely by reducing it
to the GN model. In doing so, we shall introduce the
appropriate framework for dealing with fermion-fermion
and fermion-antifermion pairing simultaneously, namely
the Hartree-Fock-Bogoliubov (HFB) method [26]. In
Sec. V, we turn to the self-dual NJL model having maximal
symmetry in a sense which will be made more precise
below. We give arguments for its integrability based on the
corresponding classical fermion model. Here we have not
yet been able to solve the HFB equations in any systematic
fashion, and have to leave this for the future. Section VI
contains a brief summary and an outlook.

II. PAULI-GÜRSEY SYMMETRY
IN 1þ 1 DIMENSIONS

The Pauli-Gürsey symmetry [24,25] is the largest
kinematical symmetry group of massless Dirac fermions.
It combines chiral transformations and charge conjugation
with the Poincaré group. Here, we only need the special
case of 1þ 1 dimensions. Throughout this paper, we use
the following chiral representation of the Dirac matrices:

γ0 ¼ σ1; γ1 ¼ iσ2; γ5 ¼ γ0γ1 ¼ −σ3: ð3Þ

The upper and lower components of the Dirac spinor then
coincide with fields of definite chirality,

ψ ¼
�

ψL

ψR

�
¼
�

ψ1

ψ2

�
: ð4Þ

Furthermore, we shall use light-cone coordinates in the
following convention:

z¼ x− t; z̄¼ xþ t; ∂0 ¼ ∂̄ − ∂; ∂1 ¼ ∂̄ þ ∂;
ð5Þ

so that the free, massless Dirac Lagrangian becomes

L0 ¼ ψ̄i∂ψ ¼ −2iψ�
1∂ψ1 þ 2iψ�

2∂̄ψ2: ð6Þ

Leaving Poincaré transformations aside, the Pauli-Gürsey
group in 1þ 1 dimensions can be generated by four basic
(canonical) transformations,

ψ1 → eiαψ1;

ψ2 → eiβψ2;

ψ1 → ψ�
1;

ψ2 → ψ�
2: ð7Þ

The first two lines are the continuous chiral trans-
formations, a symmetry shared by the classical
Lagrangian with c-number fields. The last two lines are
discrete transformations which are not a symmetry of
the classical action, but depend on the fact that the ψ i’s
are Grassmann variables. Note that charge conjugation is
given by

ψc ¼ γ5ψ
� ¼

�
−ψ�

1

ψ�
2

�
ð8Þ

in our representation, so that the discrete Pauli-Gürsey
transformations can be thought of as combinations of chiral
transformations and charge conjugation. The group struc-
ture behind Eq. (7) is Oð2ÞR ⊗ Oð2ÞL, if we decompose ψ1,
ψ2 into real and imaginary parts, an extension of the chiral
symmetry group SOð2ÞR ⊗ SOð2ÞL.

III. DUALITY TRANSFORMATION
OF GN AND NJL MODELS

Let us consider the original GN model (1) with discrete
chiral symmetry first. Its Lagrangian reads (using the
summation convention for the flavor indices i ¼ 1;…; N)

LGN ¼ −2iψ ðiÞ�
1 ∂ψ ðiÞ

1 þ 2iψ ðiÞ�
2 ∂̄ψ ðiÞ

2

þ g2

2
ðψ ðiÞ�

1 ψ ðiÞ
2 þ ψ ðiÞ�

2 ψ ðiÞ
1 Þ2: ð9Þ
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Out of the Pauli-Gürsey group (7), Uð1ÞV (conservation of
fermion number), the Z2 chiral subgroup (ψ1 → �ψ1,
ψ2 → �ψ2) and charge conjugation are unbroken by the
interaction term. If we perform the canonical transforma-
tion ψ1 → ψ�

1 which leaves only the free part of the
Lagrangian invariant, we generate a new interacting theory
which will also be integrable [23]. This transformation will
be referred to as “duality transformation” from now on. The
Lagrangian dual to Eq. (9) is

~LGN ¼ −2iψ ðiÞ�
1 ∂ψ ðiÞ

1 þ 2iψ ðiÞ�
2 ∂̄ψ ðiÞ

2

þ g2

2
ðψ ðiÞ�

1 ψ ðiÞ�
2 þ ψ ðiÞ

2 ψ ðiÞ
1 Þ2: ð10Þ

This Lagrangian gives rise to fermion-fermion pairing
instead of fermion-antifermion pairing, i.e., features super-
conductivity rather than chiral symmetry breaking. The
residual Pauli-Gürsey symmetries are now Uð1ÞA (con-
servation of axial charge), Z2 chiral symmetry, and charge
conjugation. The Cooper pair condensate in this model is
real, as is the chiral condensate in the original GN model.
We do not have to solve the superconductivity model (10),
but can take over all results from the massless GN model
after an appropriate reinterpretation of the observables.
Next we turn to the NJL model (2). Here, the continuous

chiral symmetry of the Pauli-Gürsey group is preserved, as
is manifest in the chiral representation of the Dirac matrices
(3) where the NJL Lagrangian takes on the form

LNJL ¼ −2iψ ðiÞ�
1 ∂ψ ðiÞ

1 þ 2iψ ðiÞ�
2 ∂̄ψ ðiÞ

2

þ 2g2ðψ ðiÞ�
1 ψ ðiÞ

2 Þðψ ðjÞ�
2 ψ ðjÞ

1 Þ: ð11Þ

The discrete part of the Pauli-Gürsey group breaks down to
charge conjugation. Applying the duality transformation to
this Lagrangian yields the following four-fermion theory:

~LNJL ¼ −2iψ ðiÞ�
1 ∂ψ ðiÞ

1 þ 2iψ ðiÞ�
2 ∂̄ψ ðiÞ

2

þ 2g2ðψ ðiÞ�
1 ψ ðiÞ�

2 Þðψ ðjÞ
2 ψ ðjÞ

1 Þ: ð12Þ

This is yet another field theory with fermion-fermion
pairing, here with the full Uð1ÞV and Uð1ÞA symmetries.
As pointed out in Ref. [23], it is in fact identical to the
Cooper pair Lagrangian proposed by Chodos, Minakata
and Cooper (CMC) [7],

LCMC ¼ ψ̄ ðiÞi∂ψ ðiÞ þ 2G2ðψ̄ ðiÞγ5ψ ðjÞÞðψ̄ ðiÞγ5ψ ðjÞÞ; ð13Þ

for the choice g2 ¼ 2G2. Since the duality transformation is
a canonical transformation, there is no need to solve the
Cooper pair model anew if the NJL model has been solved
already. All one has to do is translate the physical
observables into the dual language. Thus for instance,
the chiral vacuum circle of the NJL model becomes the

circle of the complex Cooper pair condensates in the dual
model. The integrability of the Cooper pair model
(12)–(13) again follows trivially from that of the NJL
model. As also discussed in Ref. [23], the situation
becomes slightly more involved if one includes vector
and axial chemical potentials μ, μ5. Since the vector and
axial vector densities change their role under the duality
transformation ψ1 → ψ�

1, one has to interchange μ and μ5;
see also Ref. [12].
The content of this section is in essence already con-

tained in Ref. [23]. The reason why we recall it here is to set
the stage for more interesting candidates of integrable
models. They have both fermion-fermion and fermion-
antifermion pairing and will be discussed in the following
two sections.

IV. SELF-DUAL GN MODEL

The GN model (9) breaks the discrete part of the Pauli-
Gürsey group down to charge conjugation. This enabled us
to generate a new integrable model by applying the duality
transformation (ψ1 → ψ�

1) to the GN Lagrangian; see
Eq. (10). We now try to construct another integrable model
by “self-dualizing” the GN Lagrangian. This means that we
add the interaction term of the dual GN model (10) to the
GN model Lagrangian (9), so that the full Lagrangian
shares the discrete part of the Pauli-Gürsey symmetry with
the free, massless theory,

LsdGN ¼ −2iψ ðiÞ�
1 ∂ψ ðiÞ

1 þ 2iψ ðiÞ�
2 ∂̄ψ ðiÞ

2

þ g2

2
½ðψ ðiÞ�

1 ψ ðiÞ
2 þ ψ ðiÞ�

2 ψ ðiÞ
1 Þ2

þ ðψ ðiÞ�
1 ψ ðiÞ�

2 þ ψ ðiÞ
2 ψ ðiÞ

1 Þ2�: ð14Þ

We shall refer to this model as the self-dual Gross-Neveu
(sdGN) model. Notice that this theory possesses neither
Uð1ÞV nor Uð1ÞA symmetries. The discrete symmetry is
recognized as the dihedral group D2 (the symmetry group
of a rectangle) with four elements ðψ1 → �ψ1;�ψ�

1Þ. The
two interaction terms in Eq. (14) can give rise to both
fermion-fermion and fermion-antifermion pairing, with
both condensates being real.
In view of the large-N limit, we perform a standard

Hubbard-Stratonovich transformation [27,28] on the
Lagrangian (14). The Lagrangian

L0
sdGN ¼ LsdGN −

1

2g2
½S þ g2ðψ ðiÞ�

1 ψ ðiÞ
2 þ ψ ðiÞ�

2 ψ ðiÞ
1 Þ�2

−
1

2g2
½B þ g2ðψ ðiÞ�

1 ψ ðiÞ�
2 þ ψ ðiÞ

2 ψ ðiÞ
1 Þ�2 ð15Þ

involving two real, scalar, flavor-singlet fields S, B is
equivalent to LsdGN from Eq. (14). It can be expanded as
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L0
sdGN ¼ −2iψ ðiÞ�

1 ∂ψ ðiÞ
1 þ 2iψ ðiÞ�

2 ∂̄ψ ðiÞ
2

− Sðψ ðiÞ�
1 ψ ðiÞ

2 þ ψ ðiÞ�
2 ψ ðiÞ

1 Þ

− Bðψ ðiÞ�
1 ψ ðiÞ�

2 þ ψ ðiÞ
2 ψ ðiÞ

1 Þ − 1

2g2
ðS2 þ B2Þ:

ð16Þ

The Euler-Lagrange equations for S, B show that these
fields are constrained to fermion bilinears as follows:

S ¼ −g2ðψ ðiÞ�
1 ψ ðiÞ

2 þ ψ ðiÞ�
2 ψ ðiÞ

1 Þ;
B ¼ −g2ðψ ðiÞ�

1 ψ ðiÞ�
2 þ ψ ðiÞ

2 ψ ðiÞ
1 Þ: ð17Þ

In the large-N limit, the auxiliary fields can be replaced by
their expectation values, so that one has to deal with
quantized fermions in a c-number mean field to be
determined self-consistently, according to the expectation
values of Eq. (17). For the standard GN models with
fermion-antifermion pairing, these last few steps can be
regarded as a derivation of the relativistic Hartree-Fock
(HF) framework. Similarly, the more general case with
fermion-fermion and fermion-antifermion pairing leads to
the Hartree-Fock-Bogoliubov (HFB) theory, a generaliza-
tion of HF that is well known in many-body physics [26].
In order to quantize the theory canonically, we turn to the

Hamiltonian density corresponding to L0
sdGN

H ¼ iψ ðiÞ�
1 ∂1ψ

ðiÞ
1 − iψ ðiÞ�

2 ∂1ψ
ðiÞ
2 þ Sðψ ðiÞ�

1 ψ ðiÞ
2 þ ψ ðiÞ�

2 ψ ðiÞ
1 Þ

þ Bðψ ðiÞ�
1 ψ ðiÞ�

2 þ ψ ðiÞ
2 ψ ðiÞ

1 Þ þ 1

2g2
ðS2 þ B2Þ: ð18Þ

Keeping only the fermionic part for the moment, we can
cast the quantized Hamiltonian into the Nambu-Gorkov
form [29,30],

H ¼ 1

2

Z
dxðψ†

1;ψ
†
2;ψ1;ψ2Þ

×

0
BBB@

i∂1 S 0 B

S −i∂1 −B 0

0 −B i∂1 −S
B 0 −S −i∂1

1
CCCA
0
BBB@

ψ1

ψ2

ψ†
1

ψ†
2

1
CCCA; ð19Þ

where we have suppressed flavor indices. The 4 × 4 matrix
appearing in Eq. (19) will be denoted by h from now on. It
plays the role of the first-quantized HFB Hamiltonian. We
first note an important symmetry property which will be
useful later on, namely invariance under charge conjuga-
tion. According to Eq. (8), charge conjugation in the space
of Nambu-Gorkov spinors can be represented through a
unitary matrix,

�
ψ
ψ†

�
c
¼
�

0 γ5
γ5 0

��
ψ
ψ†

�
: ð20Þ

Denoting this unitary matrix by Uc, it is easy to verify that

h ¼ UchU
†
c: ð21Þ

Next we observe that h can be block diagonalized by a
constant, unitary transformation V,

h ¼ V†hbdV; hbd ¼
�
hI 0

0 hII

�
; ð22Þ

with

V ¼ 1ffiffiffi
2

p

0
BBB@

1 0 1 0

0 1 0 −1
1 0 −1 0

0 1 0 1

1
CCCA; VV† ¼ 1;

hI;II ¼
�

i∂1 SI;II
SI;II −i∂1

�
; ð23Þ

and SI ¼ S − B, SII ¼ S þ B. Note that each 2 × 2 block
hI;II looks like the first quantized Hamiltonian of the
standard GN model in the HF approximation with scalar
mean fields S∓B. In order to simplify further the HFB
Hamiltonian, we plug Eq. (22) into Eq. (19),

H ¼ 1

2

Z
dxðψ†;ψÞV†hbdV

�
ψ
ψ†

�
¼ 1

2

Z
dxΨ†hbdΨ:

ð24Þ

In the last step we have introduced unitarily transformed
fermion field operators

Ψ ¼ V

�
ψ

ψ†

�
¼ 1ffiffiffi

2
p

0
BBBBB@

ψ1 þ ψ†
1

ψ2 − ψ†
2

ψ1 − ψ†
1

ψ2 þ ψ†
2

1
CCCCCA ≔

0
BBBBB@

χ1

iχ2
−iχ3
χ4

1
CCCCCA: ð25Þ

Thus block diagonalization of the Hamiltonian matrix h
reveals that the natural degrees of freedom are four
independent Majorana fields per flavor ðχ†a ¼ χaÞ obeying
the anticommutation relations

fχðiÞa ðxÞ; χðjÞb ðyÞg ¼ δabδijδðx − yÞ: ð26Þ

(The choice of signs in the definition of the χa’s is a matter
of convention and was made in such a way that some
formulas below simplify.) In these variables, the HFB
Hamiltonian of the self-dual GN model decomposes into
a sum of two commuting Hamiltonians,
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H ¼ HI þHII; ð27Þ
with

HI ¼
1

2

Z
dxðχ1; χ2Þ

�
i∂1 iSI
−iSI −i∂1

��
χ1

χ2

�
;

HII ¼
1

2

Z
dxðχ3; χ4Þ

�
i∂1 iSII
−iSII −i∂1

��
χ3

χ4

�
: ð28Þ

In principle, these two terms could still be coupled via the
scalar fields SI;II through the self-consistency condition in
the HFB approach, but we will now verify that this is not
the case. The inverse relations to Eq. (25),

ψ1 ¼
1ffiffiffi
2

p ðχ1 − iχ3Þ;

ψ2 ¼
1ffiffiffi
2

p ðχ4 þ iχ2Þ; ð29Þ

can be used to translate S, B in Eq. (17) into Majorana
fields,

S ¼ −ig2ðχðiÞ3 χðiÞ4 þ χðiÞ1 χðiÞ2 Þ;
B ¼ −ig2ðχðiÞ3 χðiÞ4 − χðiÞ1 χðiÞ2 Þ: ð30Þ

Hence, in the large-N limit,

SI ¼ −2ig2hχðiÞ1 χðiÞ2 i;
SII ¼ −2ig2hχðiÞ3 χðiÞ4 i; ð31Þ

so that the full HFB problem indeed separates into two
simpler, independent problems of HF type. As a matter of
fact, HI;II and the self-consistency conditions (31) are the
same as in the standard GN model, but with Majorana
instead of Dirac fields [the OðNÞ-symmetric model, rather
than the UðNÞ- or Oð2NÞ-symmetric model with Dirac
fermions]. This shows at once that the sdGN model is
integrable, and that its solution can be reduced to solutions
of the standard GN model.
One point still has to be clarified: we have dropped the

purely bosonic part from the Hamiltonian, which contains
the coupling constant g2 of the sdGN model. This coupling
constant does not have to coincide with G2, the one of the
pair of standard GN models. We shall determine G2 by
demanding that the bosonic part of the Hamiltonian also be
additive,

S2 þ B2

2g2
¼ S2I þ S2II

2G2
; SI;II ¼ S∓B: ð32Þ

This fixes the GN coupling constant to the value G2 ¼ 2g2.
We will confirm this choice via the self-consistency
conditions of the GN and sdGN models below.

We were led to introduce Majorana fields as a result of
block diagonalization of the HFB Hamiltonian h. To better
understand this result, let us go back to the Lagrangian (14)
and express the Dirac fields in terms of Majorana fields
right away, using Eq. (29),

LsdGN ¼ −iχðiÞ1 ∂χðiÞ1 þ iχðiÞ2 ∂̄χðiÞ2 − g2ðχðiÞ1 χðiÞ2 Þ2

− iχðiÞ3 ∂χðiÞ3 þ iχðiÞ4 ∂̄χðiÞ4 − g2ðχðiÞ3 χðiÞ4 Þ2: ð33Þ

This is indeed a sum of two independent OðNÞ GN
Lagrangians. Although we arrived at our findings through
the HFB approach, this simple exercise shows that they
have nothing to do with it, but can be exposed already at the
level of the Lagrangian.
The OðNÞ-symmetric GN model with N Majorana fields

is equivalent to the UðN=2Þ-symmetric GN model with
N=2 Dirac fields. Since the solutions of the GN model are
usually formulated for Dirac fields, we first transform
expressions (28) and (31) into Dirac language. There are
many ways how to combine pairs of Majorana fields into
Dirac fields, due to the flavor degrees of freedom. One
possible choice is

ψ ðiÞ
I;1 ¼

1ffiffiffi
2

p ðχðiÞ1 − iχðN=2þiÞ
1 Þ;

ψ ðiÞ
I;2 ¼

1ffiffiffi
2

p ðχðN=2þiÞ
2 þ iχðiÞ2 Þ;

ψ ðiÞ
II;1 ¼

1ffiffiffi
2

p ðχðiÞ3 − iχðN=2þiÞ
3 Þ;

ψ ðiÞ
II;2 ¼

1ffiffiffi
2

p ðχðN=2þiÞ
4 þ iχðiÞ4 Þ; ð34Þ

for i ¼ 1;…; N=2. This yields

HI ¼
Z

dx
XN=2

i¼1

ðψ ðiÞ†
I;1 ;ψ

ðiÞ†
I;2 Þ
�
i∂1 SI
SI −i∂1

� 
ψ ðiÞ
I;1

ψ ðiÞ
I;2

!
; ð35Þ

and a similar equation with all subscripts I replaced by II.
The condensate operators, assuming that the two standard
GN models have coupling constant G2, read

SI ¼ −G2
XN=2

i¼1

ðψ ðiÞ†
I;1 ψ

ðiÞ
I;2 þ ψ ðiÞ†

I;2 ψ
ðiÞ
I;1Þ ¼ −iG2χðiÞ1 χðiÞ2 ;

SII ¼ −G2
XN=2

i¼1

ðψ ðiÞ†
II;1ψ

ðiÞ
II;2 þ ψ ðiÞ†

II;2ψ
ðiÞ
II;1Þ ¼ −iG2χðiÞ3 χðiÞ4 ;

ð36Þ

where we continue to use the summation convention for
indices running from 1 to N. This agrees with Eq. (31)
provided we set G2 ¼ 2g2, confirming our findings from
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the bosonic part of the Hamiltonian. Notice that in this case
the ’t Hooft condition reads

N
2
G2 ¼ Ng2 ¼ const: ð37Þ

Thus the sdGN model with N Dirac flavors and coupling
constant g2 is mapped onto two independent GN models
with N=2 Dirac flavors each and coupling constant 2g2.
The value of the ’t Hooft coupling, Ng2, is the same in the
sdGN model and the two GN models.
We will now show how to construct a self-consistent

HFB solution of the sdGN model out of any pair of self-
consistent HF solutions of the standard GN model. To this
end we immediately go to the time-dependent version of
HF and HFB theory, since this is not more complicated than
the static case. The TDHF equations for the two indepen-
dent GN models can be cast into the form

0
BBB@

2i∂ SI 0 0

SI −2i∂̄ 0 0

0 0 2i∂ SII
0 0 SII −2i∂̄

1
CCCA
0
BBB@

φI;1

φI;2

φII;1

φII;2

1
CCCA ¼ 0: ð38Þ

Here, the spinors are solutions of the Dirac equation
describing the single-particle levels. They have to fulfill
the self-consistency conditions

SI ¼ −Ng2
Xocc

ðφ�
I;1φI;2 þ φ�

I;2φI;1Þ;

SII ¼ −Ng2
Xocc

ðφ�
II;1φII;2 þ φ�

II;2φII;1Þ; ð39Þ

where the sum runs over all occupied states. The time-
dependent Hartree-Fock-Bogoliubov (TDHFB) equation
for the sdGN model on the other hand can be written as
the following system of four coupled equations:

0
BBB@

2i∂ S 0 B

S −2i∂̄ −B 0

0 −B 2i∂ −S
B 0 −S −2i∂̄

1
CCCA
0
BBB@

ϕ1

ϕ2

ϕ3

ϕ4

1
CCCA ¼ 0; ð40Þ

supplemented by the self-consistency conditions

S ¼ −
Ng2

2

Xocc
ðϕ�

1ϕ2 þ ϕ�
2ϕ1 − ϕ�

4ϕ3 − ϕ�
3ϕ4Þ;

B ¼ −
Ng2

2

Xocc
ðϕ�

1ϕ4 þ ϕ�
4ϕ1 − ϕ�

2ϕ3 − ϕ�
3ϕ2Þ: ð41Þ

It is now easy to verify that the unitary transformation V,
Eq. (23), transforms Eq. (40) into Eq. (38) and the self-
consistency condition (41) into Eq. (39), remembering that
SI;II ¼ S∓B. Hence the Nambu-Gorkov spinors for any

single-quasiparticle level of the sdGN model are related to
the GN spinors via

0
BBB@

ϕ1

ϕ2

ϕ3

ϕ4

1
CCCA ¼ V†

0
BBB@

φI;1

φI;2

φII;1

φII;2

1
CCCA ¼ 1ffiffiffi

2
p

0
BBB@

φI;1 þ φII;1

φI;2 þ φII;2

φI;1 − φII;1

φII;2 − φI;2

1
CCCA: ð42Þ

This looks at first sight as if one would have to add and
subtract spinors from two different GN solutions. However,
this is not the case. The correct interpretation of Eq. (42) is
as follows. If we take any solution of the GNmodel labelled
I in Eq. (38), we set φII;1 ¼ φII;2 ¼ 0 and obtain the sdGN
model spinors

ΦI ¼
1ffiffiffi
2

p

0
BBB@

φI;1

φI;2

φI;1

−φI;2

1
CCCA: ð43Þ

The contribution from the occupied states to the mean field
S ðBÞ is SI=2 ð−SI=2Þ; see Eqs. (39) and (41). The GN
model labelled II corresponds to setting φI;1 ¼ φI;2 ¼ 0 in
Eq. (38) and consequently to the sdGN spinors

ΦII ¼
1ffiffiffi
2

p

0
BBB@

φII;1

φII;2

−φII;1

φII;2

1
CCCA: ð44Þ

Their contribution to both S and B is SII=2, so that the
relations SI;II ¼ S∓B are indeed satisfied. Notice also that
the quasiparticle spinors ΦI;II are eigenstates of the charge
conjugation matrix Uc from Eq. (20),

UcΦI ¼ −ΦI; UcΦII ¼ ΦII: ð45Þ

We will come back to this observation below when
we interpret the two decoupled GN models in more
physical terms.
This shows that the TDHFB solution of the self-dual GN

model inherits self-consistency from the two input solu-
tions of the standard GN model. The energy is the sum of
the energies of both constituent solutions, since this also
holds for the Hamiltonians, as discussed above. Since the
massless GN model is integrable and its complete large-N
solution is known analytically, the same is true for the
self-dual variant of the GN model.
In the GN model, the Z2 chiral symmetry maps the

TDHF solution with condensate S onto the one with
condensate −S after spontaneous symmetry breaking
(SSB). In the self-dual GN model, the Pauli-Gürsey D2

symmetry maps the TDHFB solution with condensates
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ðS;BÞ onto the ones with ð−S;−BÞ, ðB;SÞ, ð−B;−SÞ. The
change of sign is due to the discrete chiral symmetry,
whereas swapping S and B is the result of the duality
transformation.
Clearly, one can generate a huge variety of static and

dynamical solutions of the TDHFB equation in this way.
Let us explore some of the simpler solutions to see whether
they make sense from the physics point of view.

A. Vacua

The GN model with spontaneously broken Z2 chiral
symmetry has two degenerate vacua with S ¼ �m ¼ �1
(dynamical fermion mass in natural units); see e.g.
Ref. [31]. Consequently there are four degenerate vacua
in the self-dual GNmodel (see Fig. 1), reflecting the SSB of
the larger discrete group D2. The ground state is either a
superconductor ðS ¼ 0;B ¼ �1Þ or a chirally broken state
ðS ¼ �1;B ¼ 0Þ. All four states are physically indistin-
guishable, as they differ only in the convention for the
fermion operators. The renormalized vacuum energy den-
sity is the same as in the GN model with N Dirac
flavors, −N=4π.

B. Kinks

In the GN model, the kink interpolates between the two
vacua with S ¼ �1 [31]. In the self-dual GN model we
expect six types of “domain walls” separating two out of
the four vacua. They can easily be found by using as input
either the GN kink and the vacuum, or two GN kinks. If we
choose the vacuum and a kink for S�, we get the kinks
between two neighboring vacua (I and II, II and III, III and
IV, IVand I; see Fig. 2), whose mass is half of the mass of a
GN kink with N Dirac flavors, N=2π. If we choose two
kinks which are shifted relative to each other, we inter-
polate between two opposite vacua (I and III, II and IV); see
Fig. 3. Here, the mass is equal to the mass of the GN kink
with N Dirac flavors, N=π. The width of this kink can be

made arbitrarily large by pulling the constituent kinks apart.
In the transition region, there is a localized zone where the
system is in the dual vacuum. This can be used for instance
to manufacture a domain wall between the B ¼ 1 and
B ¼ −1 superconducting vacua, separated by a normal
(chirally broken) region—a kind of π-Josephson junction
(the dual of Fig. 3). We list the expressions for the
condensates for the examples of kinks shown in Fig. 2,

S ¼ 1

2
ð1þ tanh xÞ; B ¼ 1

2
ð1 − tanh xÞ; ð46Þ

and in Fig. 3,

–1 (IV)

–1

(III)

1 (II)

1

(I)

FIG. 1. Four vacua of the sdGN model.

0

0.2

0.4

0.6

0.8

1

–10 –5 5 10 15 20

FIG. 2. Static kink joining vacua II and I of the sdGN model,
composed of the GN vacuum and GN kink. The formulas used
are from Eq. (46).

–1

–0.5

0

0.5

1

020101–02–

FIG. 3. Static kink joining vacua III and I of the sdGN model,
composed of two (shifted) GN kinks. The formulas used are from
Eq. (47); a ¼ −5 is shown.
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S ¼ 1

2
½tanhðx − aÞ þ tanhðxþ aÞ�;

B ¼ 1

2
½tanhðx − aÞ − tanhðxþ aÞ�:

ð47Þ

In the first case, if one plots the corresponding trajectories
in the ðS;BÞ plane, one gets a straight line segment from
vacuum II to vacuum I. In the second case the result
depends on the shift parameter a; see Fig. 4.

C. Multikink solutions

Dynamical solutions result if we choose time-dependent
kink solutions of the GN model as ingredients for S� [32].
A snapshot of such a solution may be described as an
arbitrary succession of regions of vacua I–IV, separated by
the kind of kinks described before (Figs. 2 and 3). Under
time evolution, these domain walls move and collide, the
details depending on the input parameters. The only static
kink solutions are the single domain walls, like in the
GN model.

D. Other solutions

If we allow for kink-antikink baryons, breathers and
multisoliton bound states, there are evidently many
more static or time-dependent solutions to be explored
[20–22,33–36].
Although solitons of the sdGN model and of the GN

model are so closely related, the physics interpretation may
be quite different. Thus for instance, solitons of the GN
model are characterized not only by the scalar condensate,
but also by the fermion density and fermion number they
carry. In the sdGNmodel, neither fermion number nor axial
charge are conserved, so that it is impossible to attribute a
definite fermion number to any soliton solution. The
fermion numbers of the two standard GN models are of

course conserved, but they acquire a different physical
meaning in the sdGN model. In fact, there are two
dynamical U(1) symmetries hiding in the Lagrangian
(14), namely the Uð1ÞV symmetries of the pair of equivalent
GN models.
How do these continuous symmetries of the GN models

manifest themselves in the sdGN model, and what are the
corresponding conserved Noether charges? The easiest way
to answer these questions is to start from the TDHF
equations (38) and (39) and the TDHFB equations (40)
and (41), since the conservation of GN fermion number is
valid separately in every single-particle state. In the GN
model, the two Uð1ÞV transformations read

Uð1ÞV;I∶
�
φI;1

φI;2

�
→ eiα

�
φI;1

φI;2

�
;

Uð1ÞV;II∶
�
φII;1

φII;2

�
→ eiβ

�
φII;1

φII;2

�
: ð48Þ

The corresponding Noether charges are the fermion num-
bers in both GN models,

QI ¼
Z

dxðjφI;1j2 þ jφI;2j2Þ;

QII ¼
Z

dxðjφII;1j2 þ jφII;2j2Þ: ð49Þ

(For this purpose, we assume a box normalization such that
all spinors are square integrable.) Upon using Eq. (42),
Eq. (48) translates into the following symmetry trans-
formation of the sdGN model quasiparticle spinors:

Uð1ÞV;I ⊗ Uð1ÞV;II∶

0
BBB@

ϕ1

ϕ2

ϕ3

ϕ4

1
CCCA

→
eiβ þ eiα

2

0
BBB@

ϕ1

ϕ2

ϕ3

ϕ4

1
CCCAþ eiβ − eiα

2

0
BBB@

−ϕ3

ϕ4

−ϕ1

ϕ2

1
CCCA: ð50Þ

Remembering the charge conjugation matrix Uc from
Eq. (20) and denoting the Nambu-Gorkov spinor as Φ,
we can identify the second spinor on the right-hand side of
Eq. (50) with the charge-conjugate quasiparticle spinor,
Φc ¼ UcΦ, so that this last equation becomes

Uð1ÞV;I ⊗ Uð1ÞV;II∶ Φ →
eiβ þ eiα

2
Φþ eiβ − eiα

2
Φc:

ð51Þ
In this form, the equation is begging for the introduction of
quasiparticle spinors of definite C-parity �1 as

–1

–0.5

0

0.5

1

–1 –0.5 0 0.5 1

FIG. 4. ðS;BÞ plot of the static kink joining vacua III and I of
the sdGN model. The formulas used are from Eq. (47). From top
to bottom: a ¼ −2;−1;−0.5; 0; 0.5; 1; 2.
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Φð�Þ ¼ Φ� Φcffiffiffi
2

p ; ð52Þ

for which the transformations finally simplify to

Uð1ÞV;I ⊗Uð1ÞV;II∶ Φð−Þ→eiαΦð−Þ; ΦðþÞ→eiβΦðþÞ:

ð53Þ

This yields a physical interpretation of the pair of inde-
pendent GN models equivalent to the sdGN model, con-
sistent with the previous hint in Eq. (45); they correspond to
the two decoupled quasiparticle sectors with even and odd
C-parity. The interactions implied by the self-dual choice of
the Lagrangian apparently lead to the fact that not only
is C-parity conserved, but that quasiparticles with opposite
C-parity do not talk to each other.
The conserved fermion numbers of Eq. (49) can now be

interpreted as numbers of quasiparticles with even or odd
C-parity, which are separately conserved. In terms of ϕa
components, they assume the form

Qð�Þ ¼ 1

2

Z
dxðjϕ1 � ϕ3j2 þ jϕ2∓ϕ4j2Þ: ð54Þ

The total number of quasiparticles agrees with the norm of
Φ,

QðþÞ þQð−Þ ¼
Z

dxðjϕ1j2 þ jϕ2j2 þ jϕ3j2 þ jϕ4j2Þ:
ð55Þ

Its conservation already follows from the Hermiticity of h.
We have only discussed the Noether charges. It is easy to

write down the corresponding Noether currents, starting
from the vector currents of the GN models,

ρð�Þ ¼ 1

2
ðjϕ1 � ϕ3j2 þ jϕ2∓ϕ4j2Þ;

jð�Þ ¼ 1

2
ð−jϕ1 � ϕ3j2 þ jϕ2∓ϕ4j2Þ;

0 ¼ ∂0ρ
ð�Þ þ ∂1jð�Þ: ð56Þ

Coming back to the question of fermion number and
solitons, we can now give the following answer. If we
construct a soliton solution of the sdGN model out of
soliton solutions of the GN model with NI and NII
fermions, respectively, it will carry Nð−Þ ¼ NI ðNðþÞ ¼
NIIÞ quasiparticles with odd (even) C-parity, respectively.
The number of quasiparticles should not be confused with
the fermion number, which is not a good quantum number
in the sdGN model.

V. SELF-DUAL NJL MODEL:
THE PERFECT GN MODEL

In the previous section, we have self-dualized the GN
model by adding an interaction term where ψ ðiÞ

1 has been
replaced by ψ ðiÞ�

1 , the duality transformation. The resulting
model then exhibits the discrete part of the Pauli-Gürsey
transformations (7) from the free, massless theory.
However, it breaks both Uð1ÞV and Uð1ÞA from the
continuous chiral group explicitly. Here we apply the same
procedure to the NJL model (11) by adding the dual
interaction term from Eq. (12) to the original Lagrangian
(11). The resulting model is unique in that the interaction
preserves the full Pauli-Gürsey symmetry of the free
Lagrangian. In this sense, it has maximal kinematic
symmetry and has therefore been referred to as the
“perfect” GN (pGN) model in Ref. [37],

LpGN ¼ −2iψ ðiÞ�
1 ∂ψ ðiÞ

1 þ 2iψ ðiÞ�
2 ∂̄ψ ðiÞ

2

þ 2g2½ðψ ðiÞ�
1 ψ ðiÞ

2 Þðψ ðjÞ�
2 ψ ðjÞ

1 Þ
þ ðψ ðiÞ�

1 ψ ðiÞ�
2 Þðψ ðjÞ

2 ψ ðjÞ
1 Þ�: ð57Þ

A similar model, but with two independent coupling
constants in front of the fermion-antifermion and fer-
mion-fermion pairing term, is the subject of the recent
Refs. [11,12] where the self-dual special case (57) was also
touched upon. In these previous works the emphasis was on
the phase diagram of the models as a function of temper-
ature and (vector and axial-vector) chemical potentials μ,
μ5. Here we focus on the question of integrability and
prepare the ground for solving soliton problems in the
future. In our opinion the model (57) with a single coupling
constant is the only one in this family with any chance of
being integrable.
Let us begin with a hint from the literature in favor of the

integrability of the pGN model. The four-fermion inter-
action in Eq. (57) can be rewritten in various ways (see also
Refs. [11,12]) among which

Lint ¼ g2ðψ ðiÞ�
1 ψ ðjÞ

1 − ψ ðjÞ�
1 ψ ðiÞ

1 Þðψ ðiÞ�
2 ψ ðjÞ

2 − ψ ðjÞ�
2 ψ ðiÞ

2 Þ:
ð58Þ

In a celebrated paper where the dressing method was
developed, Zakharov and Mikhailov succeeded in mapping
classical four-fermion models to principal chiral models
(PCMs) known to be integrable [38]. They found that the
N-flavor GN model corresponds to the Spð2N;RÞ PCM,
and the NJL model to the UðNÞ PCM. They also proposed a
third fermionic field theory related to the OðNÞ PCM
[occasionally referred to as Zakharov-Mikhailov (ZM)
model [39]], which has not played any role in particle
physics so far, to the best of our knowledge. The four-
fermion interaction of this model is identical to Eq. (58), so
that we can identify the pGN model with the quantum
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version of the ZMmodel. Since the classical integrability of
the other two models survives quantization, it is plausible
that this will also be true for the third model, although we
cannot prove it. In contrast to the GN and NJL models, the
classical Euler-Lagrange equations of the ZM model do not
have the same form as the TDHF equations of the quantum
field theories, so that one cannot apply the dressing method
to find the solitons of the pGN model. In any case, the high
degree of symmetry of the pGN model and the fact that the
physics is even richer than in the GN and NJL models due
to the possibility of fermion-fermion pairing makes it seem
worthwhile to try to actually solve the pGN model as well,
irrespective of whether it is integrable or not.
In order to set up the HFB formulation of the pGN

model, we can follow almost literally the steps performed
in the previous section. The Hubbard-Stratonovitch trans-
formed Lagrangian now reads

LpGN
0 ¼ LpGN −

1

2g2
jΔþ 2g2ψ ðiÞ�

1 ψ ðiÞ
2 j2

−
1

2g2
jC þ 2g2ψ ðiÞ�

1 ψ ðiÞ�
2 j2: ð59Þ

The auxiliary fields are complex and have been denoted as
ðΔ; CÞ, to distinguish them from the real fields ðS;BÞ in the
sdGN case. Expanding L0

pGN, we find

L0
pGN ¼ −2iψ ðiÞ�

1 ∂ψ ðiÞ
1 þ 2iψ ðiÞ�

2 ∂̄ψ ðiÞ
2 − Δ�ψ ðiÞ�

1 ψ ðiÞ
2

− Δψ ðiÞ�
2 ψ ðiÞ

1 − C�ψ ðiÞ�
1 ψ ðiÞ�

2 − Cψ ðiÞ
2 ψ ðiÞ

1

−
1

2g2
ðjΔj2 þ jCj2Þ; ð60Þ

with the constraint equations

Δ ¼ −2g2ψ ðiÞ�
1 ψ ðiÞ

2 ;

C ¼ −2g2ψ ðiÞ�
1 ψ ðiÞ�

2 : ð61Þ

Evaluating the Hamiltonian density and writing the quan-
tized Hamiltonian in the Nambu-Gorkov form (19), we
obtain an expression analogous to Eq. (19), but with the
4 × 4 matrix h replaced by

h ¼

0
BBB@

i∂1 Δ� 0 C�

Δ −i∂1 −C� 0

0 −C i∂1 −Δ
C 0 −Δ� −i∂1

1
CCCA: ð62Þ

This is the first-quantized HFB Hamiltonian of the pGN
model. For real condensates Δ ¼ Δ� ¼ S, C ¼ C� ¼ B, it
reduces to the Hamiltonian of the sdGN model. The
TDHFB equations, ðh − i∂0ÞΦ ¼ 0, in Eq. (40) are
replaced by

0
BBB@

2i∂ Δ� 0 C�

Δ −2i∂̄ −C� 0

0 −C 2i∂ −Δ
C 0 −Δ� −2i∂̄

1
CCCA
0
BBB@

ϕ1

ϕ2

ϕ3

ϕ4

1
CCCA ¼ 0; ð63Þ

whereas the self-consistency conditions (41) go over into

Δ ¼ −Ng2
Xocc

ðϕ�
1ϕ2 − ϕ�

4ϕ3Þ;

C ¼ −Ng2
Xocc

ðϕ�
1ϕ4 − ϕ�

2ϕ3Þ: ð64Þ

Due to the Hermiticity of h, the norm (55) of Φ, i.e., the
total number of quasiparticles, is again conserved. This is
the Noether charge of the symmetry transformation
ϕi → eiαϕi, i ¼ 1;…; 4 with the conserved current

ρ ¼ jϕ1j2 þ jϕ2j2 þ jϕ3j2 þ jϕ4j2;
j ¼ −jϕ1j2 þ jϕ2j2 − jϕ3j2 þ jϕ4j2: ð65Þ

However, h is no longer invariant under charge conjuga-
tion, but we have

UchðΔ; CÞU†
c ¼ hðΔ�; C�Þ ð66Þ

instead. As a consequence the second continuous sym-
metry which we had found in the sdGN case is not
present here. We also cannot block diagonalize h by a
constant, unitary transformation, so that the solutions of
the pGN model can in general not be reduced to those of
any simpler, integrable model. This increased complexity
can also be seen if we express the Lagrangian of the pGN
model in terms of Majorana spinors, as in Eq. (33). The
result is

LpGN ¼ LsdGN − g2ðχðiÞ1 χðiÞ4 Þ2 − g2ðχðiÞ3 χðiÞ2 Þ2: ð67Þ

The extra terms introduce interactions between the two
independent GN models in Eq. (33) and destroy the
trivial solubility of the model. Of course, this does not
rule out that the perfect GN model is also integrable, but
one needs to work harder.
We have not yet been able to solve the TDHFB

equations for soliton solutions in any systematic way,
and leave this for the future. Nevertheless, it is possible
to give a few examples of self-consistent solutions. We
first note that any solution of the sdGN model is also a
solution of the pGN model. This is a nontrivial statement
because of the different self-consistency conditions in
both cases. Thus for instance, a solution of the ordinary
GN model does not solve the NJL model in general,
unless the total fermion number vanishes [23]. The way it
works in the case of the two self-dual models is as
follows. We start from a solution of the sdGN model with
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spinors in the form given in Eqs. (43) and (44). If we
plug those spinors into the self-consistency conditions
(64) and sum over occupied states, we find that
Δ ¼ ðSII þ SIÞ=2 ¼ S, C ¼ ðSII − SIÞ=2 ¼ B, i.e., real
condensates.
Starting from these solutions with real mean fields, we

can then try to make the potentials complex by a unitary
transformation, changing the phases of the spinor compo-
nents. If these phases depend on z, z̄, they will destroy the
form of the TDHFB equations because the derivatives act
on the phases. The only exceptions are complex phases
which are either constant or linearly x dependent. These
special cases give us a first handle on the soliton problem
and hopefully will be useful for eventually constructing a
general solution and proving (or disproving) the integra-
bility of the pGN model. Let us consider these two
possibilities.

A. Constant phases

Suppose that the mean fields have the form

Δ ¼ eiαS; C ¼ eiβB; ð68Þ

where α, β are constant but S, B are real functions of x, t. In
this case, the complex phases can be eliminated by the
constant unitary transformation

U ¼ diagðeiðαþβÞ=2; e−iðα−βÞ=2; e−iðαþβÞ=2; eiðα−βÞ=2Þ ð69Þ

in the form

UhðΔ; CÞU† ¼ hðS;BÞ: ð70Þ

There are two physical examples where this method can
be applied: the vacuum and the twisted kink between
superconducting and chirally broken phases.
We take the vacuum first. If the condensates are constant,

they can be parametrized as

Δ ¼ eiαm; C ¼ eiβM; ð71Þ

with real, non-negative ðm;MÞ. The unitary transformation
(69) maps the vacuum problem of the pGN model onto that
of the sdGN model. The four discrete vacua of the sdGN
model of Fig. 1 go over into the vacuum manifold of the
pGN model consisting of two disconnected unit circles, in
natural units (the chiral circle and the circle of the Cooper
pair condensate). Which point is chosen on which circle is
physically irrelevant, as always in SSB. The renormalized
vacuum energy density of the pGN model is the same as
that of the sdGN model.
A more interesting result of this unitary transformation

arises if we apply it to the domain wall between chirally
broken and superconducting phases of the sdGN model,

i.e., the kink of Fig. 2 and Eq. (46). Under the inverse of the
unitary transformation (69), this goes over into

Δ ¼ 1

2
ð1þ tanh xÞeiα; C ¼ 1

2
ð1 − tanh xÞeiβ; ð72Þ

interpolating between the superconducting vacuum ðΔ ¼
0; C ¼ eiβÞ at x → −∞ and the chirally broken vacuum
ðΔ ¼ eiα; C ¼ 0Þ at x → ∞. This is a new kind of twisted
kink and an exact self-consistent soliton solution of the
HFB equations for the pGN model. Notice that the width of
the kink does not depend on the twist angles, unlike the
twisted kink of the original NJL model [40].
If we apply the same transformation to the more

complicated domain wall of Figs. 3 and 4 and Eq. (47),
we arrive at the condensates

Δ ¼ 1

2
½tanhðx − aÞ þ tanhðxþ aÞ�eiα;

C ¼ 1

2
½tanhðx − aÞ − tanhðxþ aÞ�eiβ:

ð73Þ

The phase β allows us to dial the phase of the Cooper pair
condensate inside the kink region. However, the vacua at
x�∞ are always located at diametrically opposing points
on the chiral circle, �eiα. It is not possible to generate in
such a manner the most general kink, which should depend
on three different twist angles.

B. Linearly x-dependent phases

In the NJL model, a chiral transformation with a linearly
x-dependent phase generates at the same time a chemical
potential (from the spatial derivatives) and a helical con-
densate (“chiral spiral” [41]). As is well known, this leads
to a crystalline structure of cold and dense matter. We can
copy this trick here. Depending on whether the vacuum has
chiral symmetry breaking or Cooper pairs, we will be
dealing with the same phenomenon as in the NJL model, or
with an inhomogeneous superconductor [the Larkin-
Ovchinnikov-Fulde-Ferrel (LOFF) phase [42,43]]. We
consider first the case where the vacuum has m ¼ 1, M ¼
0 and define the unitary transformation

U1 ¼ diagðe−iμx; eiμx; eiμx; e−iμxÞ: ð74Þ

The unitary transformation of h yields
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U1

0
BBBBB@

i∂1 1 0 0

1 −i∂1 0 0

0 0 i∂1 −1
0 0 −1 −i∂1

1
CCCCCAU†

1

¼

0
BBB@

i∂1 − μ e−2iμx 0 0

e2iμx −i∂1 − μ 0 0

0 i∂1 þ μ −e2iμx

0 0 −e−2iμx −i∂1 þ μ

1
CCCA:

ð75Þ

This corresponds to introducing a vector chemical potential
μ and condensates in the form of the standard chiral spiral,
Δ ¼ e2iμx. If the vacuum is superconducting ðm ¼ 0;
M ¼ 1Þ, we choose the unitary transformation

U2 ¼ diagðeiμ5x; eiμ5x; e−iμ5x; e−iμ5xÞ: ð76Þ

We then map the Cooper pair vacuum onto the LOFF state
with C ¼ e−2iμ5x,

U2

0
BBB@

i∂1 0 0 1

0 −i∂1 −1 0

0 −1 i∂1 0

1 0 0 −i∂1

1
CCCAU†

2

¼

0
BBB@

i∂1 þ μ5 0 0 e2iμ5x

0 −i∂1 − μ5 −e2iμ5x 0

0 −e−2iμ5x i∂1 − μ5 0

e−2iμ5x 0 0 −i∂1 þ μ5

1
CCCA:

ð77Þ

Now μ5 has to be interpreted as the axial chemical potential,
since it enters with opposite sign for left- and right-handed
fermions. These spiral states have also been discussed in
Ref. [12] in the more general model with two coupling
constants and at finite temperature. Since only one type of
condensates appears, these structures are identical to what
one expects in the NJL model and its dual discussed in
Sec. III.
Besides these cases, there are a number of trivial

solutions of the pGN model. If we choose for ðϕ1;ϕ2Þ
any solution of the NJL model with a self-consistent
potential Δ and set ϕ3 ¼ ϕ4 ¼ 0, this yields a self-
consistent solution of the pGN model as well. The system
then does not take advantage of the possibility of fermion-
fermion pairing at all. Likewise, we can introduce any
solution of the NJL model with potentialΔ into the ðϕ1;ϕ4Þ
components and set ϕ2 ¼ ϕ3 ¼ 0. This yields a solution of
the pGNmodel with a Cooper pair condensate C ¼ Δ, but a
vanishing chiral condensate. However, we have not yet

found any soliton solution where both Δ and C are
nonvanishing, other than the twisted kinks above. If the
pGNmodel is indeed integrable, we would expect that such
solutions should exist in closed analytical form, by analogy
with the other integrable models.

VI. SUMMARY AND OUTLOOK

For many years, the integrability of the massless GN and
chiral GN models seemed like a rather academic issue. The
derivation of hadron masses (mesons, baryons, multibaryon
bound states) and of the phase diagrams in the ðT; μÞ plane
could equally well be done for the massive case [44–50] as
for the massless case [19,33,34,40,42,51], even to a large
extent analytically, although only the massless models are
integrable. With the study of time-dependent problems, this
perspective has changed in recent years. The scattering of
baryons for instance could only be solved in the massless
GN and NJL models. Properties that are characteristic of
integrable systems show up most clearly in scattering
processes: transparent self-consistent potentials, the fac-
torization of transmission amplitudes, and the additivity of
masses of bound states [20–22].
These findings have incited us to think about other

potentially integrable four-fermion models. From the
strong-interaction physics point of view, models giving
rise to Cooper pairing are particularly interesting as toy
models for color superconductivity in QCD. In this paper
we have indeed identified three such models which are
definitely integrable and one model which is a candidate,
but for which there is no proof yet. Two of these models are
rather trivial: by replacing the fermion-antifermion inter-
action in the standard GN models by fermion-fermion
interactions using a simple duality transformation (particle-
hole conjugation of fermions with one chirality only), the
standard GN and NJL models are mapped onto two Cooper
pair models with real and complex Cooper pair conden-
sates, respectively. The second one, the dual NJL model,
has already been studied in the literature some time ago [7].
Both models can be trivially solved and shown to be
integrable by noting that the duality transformation is
canonical, so that it is only a matter of interpretation
whether one talks about chiral symmetry breaking or
superconductivity. This reminds us of the title of the
original NJL paper, “Dynamical model of elementary
particles based on an analogy with superconductivity” [2].
More interesting candidates for integrable models have

been obtained by self-dualizing the starting models, i.e.,
adding the dual (fermion-fermion) to the original (fermion-
antifermion) pairing interaction. The motivation behind
these attempts is that we expect integrable models to have
only one coupling constant and particularly high symmetry.
This does not leave much choice. If we self-dualize the GN
model, surprisingly we arrive at a model equivalent to a pair
of independent GN models. While we obtained this result
using the HFB approach, with hindsight one can see this
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decoupling already at the Lagrangian level, provided one
formulates it with Majorana fields rather than Dirac fields.
Physically, the fermions of the two independent GNmodels
are closely related to quasiparticles with definiteC-parity of
the sdGN model.
Perhaps the most intriguing candidate for an integrable

model is the self-dual NJL model. It is unique in the sense
that it shares the full Pauli-Gürsey symmetry with the free,
massless Dirac theory, i.e., has maximal kinematic sym-
metry. This is why it was referred to as the perfect GNmodel
[37]. Classically this model reduces to a model proposed by
Zakharov andMikhailov [38]which can bemapped onto the

PCM of the orthogonal group. We take this as a hint of
integrability of the quantum theory as well. However, so far
we could find only soliton solutionswhich can be reduced to
known ones from the GN models or the sdGN model.
Genuine solitons with both fermion-fermion and fermion-
antifermion condensates still have to be found. Inview of the
increased complexity of the TDHFB as compared to the
TDHFapproach, this is actually quite a challenge. It remains
to be seen whether the methods developed for solving the
GN and NJL models in Refs. [19–22] can be generalized to
this situation. This would enable us to confirm or disprove
the integrability of the pGN model.
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