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We extend the notion of general coordinate invariance to many-body, not necessarily relativistic,
systems. As an application, we investigate nonrelativistic general covariance in Galilei-invariant systems.
The peculiar transformation rules for the background metric and gauge fields, first introduced by Son and
Wingate in 2005 and refined in subsequent works, follow naturally from our framework. Our approach
makes it clear that Galilei or Poincaré symmetry is by no means a necessary prerequisite for making the
theory invariant under coordinate diffeomorphisms. General covariance merely expresses the freedom to
choose spacetime coordinates at will, whereas the true, physical symmetries of the system can be separately
implemented as “internal” symmetries within the vielbein formalism. A systematic way to implement such
symmetries is provided by the coset construction. We illustrate this point by applying our formalism to
nonrelativistic s-wave superfluids.

DOI: 10.1103/PhysRevD.90.105016 PACS numbers: 04.20.Fy, 11.30.Cp, 73.43.Cd

I. INTRODUCTION

Symmetries play a key role in modern understanding of
the fundamental laws of nature. While they paved the way
to the discovery of the standard model of elementary
particles as well as to a geometric understanding of gravity,
they have also proven extremely helpful as a tool for
practical computations. In quantum field theory, sym-
metries of a system can be conveniently encoded in terms
of invariance of the generating functional under trans-
formations of a set of background fields, or external
perturbations. This approach is particularly fruitful in
combination with effective field theory (EFT) techniques,
allowing one to connect descriptions of the same physics at
vastly different length or momentum scales, possibly based
on completely different dynamical degrees of freedom. A
prime example of the use of generating functional methods
within EFT is the chiral perturbation theory of quantum
chromodynamics [1].
Conserved currents associated with physical symmetries

can be probed by introducing a set of external gauge fields.
Provided gravity is not involved and only internal sym-
metries are of interest, it is straightforward to make the
classical action invariant under simultaneous local trans-
formations of the gauge and matter (that is, all other,
nongauge) fields by a suitable choice of transformation
rules [2]. This in turn leads to gauge invariance of the
generating functional under transformations of the back-
ground fields alone [3]. Spacetime symmetries, if desired,
can be described by their action on field components in a
fixed coordinate grid.

Once gravity enters the game, or when background fields
associated with spacetime symmetries are needed, the
implementation of symmetries in the generating functional
becomes nontrivial, as is evidenced by the recent discussion
of general coordinate invariance in nonrelativistic (NR)
systems [4–12]. Here, it helps to keep in mind the view-
point of differential geometry. Namely, treating spacetime
as a (differentiable) manifold, physical observables should
be viewed as geometric quantities, independent of the
choice of local spacetime coordinates. Likewise, the basic
building blocks of the action of a given theory are geo-
metric objects such as scalar or vector fields, which can be
defined in a coordinate-free manner. From this viewpoint, it
is rather clear that general coordinate invariance merely
encodes the freedom to choose a coordinate system at will.
As physics must be independent of such a choice, true,
physical symmetries of the system act directly upon the
fields, without a reference to the spacetime coordinates.
The vielbein, or frame field, formalism is particularly suited
for making this distinction clear: once expressed in terms of
the vielbein basis, all observables can be cast in a
manifestly coordinate-free fashion.
The objective of this paper is to clarify some of the issues

pertinent to general coordinate invariance in NR systems.
We do so by insisting on the above differential-geometric
picture. A systematic use of the vielbein formalism enables
us to keep covariance under coordinate diffeomorphisms
manifest at all stages. The noncovariant transformation
rules for the background fields [4], including the sources
for energy density and current [5], emerge naturally without
the need to start from a relativistic theory and perform a NR
reduction. We demonstrate in particular that making a given*brauner@hep.itp.tuwien.ac.at
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theory generally coordinate invariant does not require
global Poincaré or Galilei symmetry. This is because in
our approach, general coordinate invariance is not a
physical symmetry to start with, and it only determines
how the auxiliary background fields enter the action [13].
This basic scheme determines the plan of the paper. In

Sec. II, we build a generally covariant framework appli-
cable to a large class of local quantum field theories. As a
nontrivial illustration, this is applied in Sec. III to the
problem considered in Refs. [4,5], that is, a NR Galilei-
invariant field theory with a U(1) internal symmetry. At this
stage it could appear that Galilei invariance is imposed by a
naive extension of the free Schrödinger field case. The rest
of the paper is devoted to its systematic implementation,
based on the coset construction [14] and its generalization
to spacetime symmetries [15]. First, in Sec. IV we provide a
basic overview of the structure of the Galilei group and
discuss how it can be implemented within the coset
formalism. The next two sections then work out two
particular realizations of Galilei symmetry, suitable for
the description of a microscopic theory of a charged matter
field (Sec. V), and of an EFT for its low-temperature,
superfluid phase (Sec. VI). Finally, in Sec. VII we conclude
and provide an outlook on possible future application of
our formalism.

A. Relation to recent literature

Since several papers have recently appeared which
address the same or a similar problem, it is mandatory
to clarify the relation of our results to these works. In
Ref. [6], a framework based on the Newton-Cartan geom-
etry was put forward as a means to construct actions
manifestly invariant under spatial diffeomorphisms. Our
approach lends a simple interpretation to the structure
introduced therein, both from a mathematical (in terms of
the vielbein) and a physical (in terms of sources for
momentum density and current) viewpoint.
Formally, the material of Sec. II is related to that of

Ref. [7] which, nevertheless, did not interpret the back-
ground fields in terms of sources for energy and momentum
currents. Our argument in Sec. II is close in spirit to Ref. [9]
which, too, showed how to obtain a generally coordinate
invariant action from one invariant under global symmetries
alone. However, while we systematically use the covariant
vielbein resulting in a clear and concise picture, a similar
result was obtained in [9] by a combination of an educated
guess and “long algebra.”
While this paper was in preparation, Refs. [11,12]

appeared which partially overlap with the material pre-
sented here, in particular, by illuminating the noncovariant
transformation rules for some of the background fields
based on the underlying geometry [11], and by systemati-
cally using the vielbein formalism [12]. However, we
believe that we provide deeper insight in some important
points such as the following: (i) the manifestly covariant

definition of the U(1) gauge field; (ii) the importance of
spacetime symmetries for the relations between conserved
currents; and (iii) the systematic implementation of Galilei
symmetry using the coset formalism.

B. Index conventions

Throughout the paper, we use four types of indices:
μ; ν;… for spacetime coordinates, i; j;… for spatial coor-
dinates, A;B;… for internal (vielbein) spacetime coordi-
nates, and a; b;… for internal spatial coordinates. Where
necessary, the temporal coordinate (both internal and
spacetime) is denoted by the index 0.

II. GENERAL COORDINATE INVARIANCE

Consider a theory of a set of matter fields, denoted
collectively as ψ , and possibly a set of background fields
Aμ, coupled to conserved currents of some internal sym-
metries of the theory. We assume that in flat space, the
action of the theory, Sfψ ; Ag, is invariant under simulta-
neous gauge transformations of the matter and gauge fields.
Provided there is no anomaly introduced by functional
integration, this in turn gives rise to a gauge-invariant
generating functional,

ZfAg≡
Z

DψeiSfψ ;Ag: ð1Þ

We now wish to couple the theory to background spacetime
geometry. One possible motivation for doing so may be that
the space (time) actually is curved. More often, the physical
picture that we will have in mind is rather a system living in
flat spacetime. Here then, the spacetime fluctuations serve
merely as source fields for conserved currents of spacetime
symmetries, analogous to Aμ, which allow for a concise
description of correlators of these currents.

A. Vielbein formalism

We are relatively free in the choice of the background
fields: different choices may result in generating func-
tionals with different sets of symmetries, which give us
access to different observables. It will prove convenient to
work with the spacetime vielbein, eAμ ðxÞ, representing a
fixed local basis in which spacetime tensors can be
decomposed. Under an infinitesimal coordinate diffeomor-
phism, x0μ ¼ xμ þ ξμðxÞ, the vielbein transforms as a one-
form, that is

ΔeAμ ¼ −eAν ∂μξ
ν: ð2Þ

For the sake of brevity, we used here a shorthand notation
for the form variation of a field, ΔψðxÞ≡ ψ 0ðx0Þ − ψðxÞ.
The total local variation is thus given by δψðxÞ≡
ψ 0ðxÞ − ψðxÞ ¼ ΔψðxÞ − ξμðxÞ∂μψðxÞ. In flat spacetime,
we can always choose the local basis as eAμ → δAμ ; hence we
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will often be interested in the vielbein fluctuation,
AA
μ ≡ δAμ − eAμ . By Eq. (2), this satisfies the transformation

rule

ΔAA
μ ¼ ∂μξ

A − AA
ν ∂μξ

ν: ð3Þ

This is exactly what we would expect from a one-form
gauge field for local translations induced by coordinate
diffeomorphisms. The setup is completed by introducing
the dual vielbein, Eμ

A, defined as

Eμ
Ae

B
μ ¼ δBA: ð4Þ

Under diffeomorphisms, this naturally transforms as a
vector, ΔEμ

A ¼ Eν
A∂νξ

μ.
The covariant vielbein allows us to make any action,

defined by a local Lagrangian, invariant under coordinate
diffeomorphisms. The only assumption we make is that the
Lagrangian is expressed solely in terms of field variables
that can be given a geometric meaning without referring to
a particular coordinate frame. This means in other words
that the Lagrangian is composed out of scalar, vector, and
tensor fields and otherwise does not depend on the
coordinates explicitly. The construction of the generally
covariant Lagrangian out of its counterpart defined in flat
spacetime then proceeds in three steps:
(1) Scalar fields. It is convenient to first turn all field

variables into spacetime scalars, which is done by
projecting their spacetime tensor components onto
the vielbein or its dual. For instance, in the case of a
vector field ~ψμ this amounts to introducing the scalar
components ψA ≡ eAμ ~ψμ.

(2) Covariant derivatives. Suppose that for any scalar
field ψ (internal indices suppressed), we can
construct a covariant derivative Dμψ that trans-
forms under all internal symmetries like ψ itself.
Notice that, whenever ψ itself has a vielbein index
attached to it (either because it carries spin, or
because it is a covariant derivative of another field)
this may not be an easy task. Defining the
covariant derivative Dμψ in general is done most
simply using the coset approach introduced later in
this paper. If, however, ψ is a single spacetime
scalar, the curved background does not introduce
any subtlety. Then, using the dual vielbein, the
covariant derivative Dμψ can be projected to a
diffeomorphism-scalar derivative,

DAψ ≡ Eμ
ADμψ : ð5Þ

(3) Volume measure. By applying the above steps
iteratively, we can convert any local Lagrangian
density into a scalar under diffeomorphisms. Then
one can obtain an invariant action by introducing an
appropriate volume measure, defined as usual by the
determinant of the vielbein: dtdx∥eAμ∥.

This procedure should be thought of as the analogy of
minimal coupling to gauge fields of internal symmetries.
There is no unique way to introduce gauge fields into a
given theory with global symmetry. As long as the
spacetime geometry is treated merely as a background
source, this is not a problem, however: any action invariant
under diffeomorphisms, which reduces to the same action
in a trivial background, or flat spacetime, is equally good.
Hopefully, it is now clear that, contrary to the impression

one might get from the literature, making the theory
diffeomorphism invariant is the easy part of the problem.
The truly nontrivial step in the construction of the action is
the implementation of true, physical symmetries, which
provides a prescription of how to contract the vielbein
indices A. In the following sections of this paper we will
elucidate exactly how to systematically encode the physical
symmetries inherent in a given system.

B. Nonrelativistic notation

Despite using the Lorentz-like spacetime indices μ and
A, we have not made any assumptions about the actual
spacetime symmetries of the system, apart from translation
invariance in flat spacetime which is implicit in the
requirement that the Lagrangian does not depend explicitly
on the coordinates. However, since we have in mind
primarily applications to NR many-body systems, it may
be more transparent to treat spatial and temporal indices
separately. Thus, we represent the vielbein as eAμ ¼ ðnμ; eaμÞ
and its dual by Eμ

A ¼ ðVμ; Eμ
aÞ. The one-form nμ can be

thought of as defining surfaces of constant time, whereas Vi

represents a “velocity” variable [6,16]. The inversion
relation (4) is now cast equivalently as

Vμnμ ¼ 1; Vμeaμ ¼ 0;

Eμ
anμ ¼ 0; Eμ

aebμ ¼ δba: ð6Þ

Splitting the spatial and temporal indices effectively casts
the vielbein in a block-matrix form so that its dual, being a
matrix inverse, can be computed using the block-matrix
algebra [17]. We thus obtain

Vμ ¼ 1

n0
ðδμ0 − Eμ

aea0Þ; E0
a ¼ −

Ei
ani
n0

;

Ei
a ~ebi ¼ δba; where ~eai ≡ eai −

ea0ni
n0

: ð7Þ

The expressions for Vμ and Eμ
a become explicit once we

find the inverse of the reduced spatial vielbein, ~eai . Using
the algebraic identity for the determinant of a block matrix,

det

�
A B

C D

�
¼ detA detðD − CA−1BÞ; ð8Þ

the volume measure can also be evaluated as
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dx‖eAμ‖ ¼ dxn0‖~eai ‖: ð9Þ

C. Background field transformations

Following Eq. (3), we argued that the fluctuations AA
μ of

the vielbein behave as gauge fields for local translations,
that is, they act as sources for the energy-momentum
density and current. However, since to obtain a vertex
function of a conserved current one takes a derivative with
respect to the source and subsequently sets it to zero, the
precise parametrization of eAμ is to a large extent arbitrary.
We only require that to linear order in the sources,
nμ ≃ δμ0 − δμ0Φ − δiμBi, denoting the sources for energy
density and current as Φ and Bi, respectively. Here we are
temporarily adopting the notation of Ref. [5] for easy direct
comparison. One practically convenient parametrization is,
for instance,

nμ ¼ e−Φð1;−BiÞ: ð10Þ

From the general covariant transformation rule for the
vielbein (2), one then obtains by a straightforward manipu-
lation the transformation of the sources,

ΔΦ ¼ ∂0ξ
0 − Bk∂0ξ

k;

ΔBi ¼ ∂iξ
0 − Bk∂iξ

k þ Bið∂0ξ
0 − Bk∂0ξ

kÞ; ð11Þ

in accord with Eq. (38) of Ref. [5]. While the particular
form of these transformation rules is specific to the chosen
parametrization (10) and thus inessential, what is important
is the way to obtain manifestly covariant expressions by
using the vielbein systematically.

D. Comparison with Newton-Cartan formalism

In applications, vielbeins often appear in pairs.
Assuming spatial rotational invariance, we expect the
covariant derivatives Daψ to enter the action through
expressions such as δabDaψ

†Dbψ ¼ δabEμ
aEν

bDμψ
†Dνψ ,

so it is natural to introduce a degenerate symmetric tensor

gμν ≡ δabEμ
aEν

b: ð12Þ

The spatial component of this tensor, gij ¼ δabEi
aE

j
b, can be

inverted, giving rise to a spatial metric,

gij ¼ δab ~eai ~e
b
j : ð13Þ

Using Eqs. (2) and (11), and noting that in the para-
metrization (10) we have ~eai ¼ eai þ ea0Bi, one infers the
transformation rule for gij under diffeomorphisms,

Δgij ¼ −gkj∂iξ
k − gik∂jξ

k − ðBigkj þ BjgikÞ∂0ξ
k; ð14Þ

again in accord with Ref. [5].

Three important remarks are in order here. First, in the
general case of spacetime diffeomorphisms, using the
metric gij creates more problems than it solves due to its
complicated transformation properties. However, the sit-
uation dramatically simplifies if one restricts to (possibly
time-dependent) spatial diffeomorphisms so that ξ0 ¼ 0, as
was originally done in Ref. [4]. One can then set con-
sistently Φ ¼ Bi ¼ 0, upon which the metric gij transforms
properly as a two-form. Spatial indices of other tensors can
then be raised and lowered with gij and gij as usual.
Second, it is tempting to introduce another degenerate

symmetric tensor which, like gμν, does transform cova-
riantly under all spacetime diffeomorphisms,

hμν ≡ δabeaμebν : ð15Þ

We use a different symbol to emphasize that this is not an
inverse of gμν (which does not have an inverse to begin
with). From their definition, it is easy to see that hμν and gμν

satisfy a number of relations such as

gμνnν ¼ 0; hμνVν ¼ 0; gμλhλν ¼ δμν − Vμnν;

ð16Þ
and, together with Vμ and nμ, reproduce the Newton-Cartan
structure of Ref. [6]. Using the relation Vi ¼ −Ei

aea0e
Φ we

see that the field Vμ introduced ad hoc in Refs. [6,11] has a
simple interpretation: it is associated with the source ea0 for
momentum density.
Third, we believe that the vielbein formalism offers

conceptual as well as practical advantages compared to the
Newton-Cartan geometry. The vielbein is obviously a
fundamental object, directly related to sources for con-
served currents, whereas the tensors gμν and hμν are derived.
In addition, when correlators of the currents are desired, the
generating functional ZfAμ; nμ; Vμ; gμνg must be varied
subject to constraints of the type (16) [11]. On the contrary,
all components of eAμ are independent; hence the generating
functional expressed as ZfAμ; eAμg does not suffer from
such problems. Most importantly, however, the Newton-
Cartan formalism implicitly assumes spatial rotational
symmetry in that it contracts vielbein indices using the
Kronecker δab. Should we deal with an intrinsically
anisotropic system, the use of the vielbein in combination
with the treatment of physical symmetries, discussed later
in this paper, is mandatory.

III. EXAMPLE: A GALILEI-INVARIANT SYSTEM

In the previous section, we showed how to couple a
given theory to fluctuations of spacetime geometry. We
now wish to illustrate the general formalism on a concrete
example as well as to investigate the constraints that
physical symmetries can impose. We therefore consider
a class of NR systems, described in flat spacetime by the
Lagrangian
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L ¼ i
2
ψ†D0

↔
ψ −

δij

2m
Diψ

†Djψ − Vðψ†ψÞ: ð17Þ

Here, ψ is a complex scalar field that interacts with a
background U(1) gauge field Aμ via minimal coupling,
Dμψ ≡ ð∂μ − iAμÞψ . We also used the shorthand notation

ψ†D
↔

μψ ≡ ψ†Dμψ −Dμψ
†ψ . The model (17) has recently

been used to describe the fractional quantum Hall effect
[11]. Apart from global spacetime symmetries (spacetime
translations, rotations, and Galilei boosts), it is invariant
under the local U(1) transformation

Δψ ¼ iθψ ; ΔAμ ¼ ∂μθ: ð18Þ

In order to cast the Lagrangian in a form independent of
the choice of the coordinate frame, we simply replace
gauge-covariant derivatives with the diffeomorphism-
covariant ones,

L ¼ i
2
ψ†D0

↔
ψ −

δab

2m
Daψ

†Dbψ − Vðψ†ψÞ: ð19Þ

We could stop at this point for we have accomplished our
goal: to make the theory (17) invariant under coordinate
diffeomorphisms. However, it is instructive to make the
dependence of the Lagrangian on the individual fields more
explicit, as it will help us highlight the difference between
diffeomorphisms and actual symmetries.
To this end, we rewrite the Lagrangian (19) in the form

put forward in Ref. [5],

L ¼ i
2
eΦψ† ~D

↔

0ψ − Vðψ†ψÞ

−
gij

2m
ð ~Diψ

† þ Bi
~D0ψ

†Þð ~Djψ þ Bj
~D0ψÞ; ð20Þ

where we used the definition (12). The twisted covariant
derivative, ~Dμψ ≡ ð∂μ − i ~AμÞψ , is defined in terms of the
appropriately modified electromagnetic field

~A0 ≡ A0 þ
1

2
mV2n0;

~Ai ≡ Ai −mVi þ
1

2
mV2ni; ð21Þ

with the shorthand notation Vi ≡ gijVj and V2 ≡ ViVi.
Notice that the form of the field redefinition (21) is
independent of Φ and Bi, and hence of the chosen para-
metrization of nμ.
Up to differences in notation, Eq. (21) agrees with

similar relations obtained in Refs. [6,11,16]. In contrast
to these papers, we began from the covariant field Aμ. For
the sake of completeness, we write down the transformation
rules for ~Aμ, which are obtained by a straightforward
calculation using the properties of its ingredients,

Δ ~A0 ¼ ∂0θ − ~Aμ∂0ξ
μ;

Δ ~Ai ¼ ∂iθ − ~Aμ∂iξ
μ −meΦgik∂0ξ

k:
ð22Þ

These transformation rules are not a product of intuition
or guesswork, but rather descend directly from our fully
covariant formalism.
The appearance of the combination ~Aμ in the action has a

very important consequence. In general, taking a functional
derivative of the action with respect to a background gauge
field gives the corresponding conserved current. Now, Aμ

acts as a source for the particle number current jμ, whereas
eaμ is a source for the momentum current Tμ

a. Noting that to
linear order in the sources, Ai and ea0 only enter the action
(20) through the combination Ai −mVi, immediately leads
to the relation

T0i ¼ mji; ð23Þ
valid in the trivial background. In the absence of a source
for momentum density, this relation can only be derived by
a more-or-less explicit computation [4]. On fairly general
grounds, it can be traced to the underlying Galilei sym-
metry [4,18,19].
The above observation has a very general validity. The

appearance of sources only through certain combinations is
one of the hallmarks of spacetime symmetries. Whereas
here we had to rely on a specific type of Lagrangian, in
Sec. V we will see such combinations of sources emerge
directly as a consequence of the symmetry. This leads to
relations among the corresponding Noether currents, sim-
ilar to Eq. (23). The generality of such relations was already
pointed out in Ref. [19].
As should by now be clear from our construction, each

of the terms in Eq. (19) is separately a scalar under
coordinate diffeomorphisms. This might seem puzzling
since we know that it is Galilei invariance what forces the
temporal and spatial derivatives to appear in the particular
combination featured in Eq. (19). However, in the vielbein
formalism, the physical Galilei symmetry should not be
thought of as a finite-dimensional subgroup of the diffeo-
morphism group. Indeed, a much larger class of local field
theories can obviously be made diffeomorphism invariant.
Diffeomorphisms merely represent the freedom of a coor-
dinate choice, and any physical symmetry must be imposed
on top of general covariance.
In this spirit, Galilei invariance of the theory (19) can be

viewed as an internal symmetry acting on the vielbein
indices. Under an infinitesimal local Galilei boost with the
velocity parameter ua, the covariant derivatives therein are
shifted by

D0ψ → D0ψ − uaDaψ ; Daψ → Daψ þ imuaψ : ð24Þ

The former rule is identical to a boost transformation of
temporal gradients, whereas the latter reflects the fact that
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on complex fields, Galilei boosts are realized projectively.
In addition, the Lagrangian (19) is obviously preserved by
local internal rotations of the vielbein eaμ. While here we
found the symmetries by a mere educated guess, in Sec. V
we will see how they can be imposed systematically using
the coset construction.

IV. SPACETIME SYMMETRIES

As repeatedly emphasized above, true physical sym-
metries can, and should, be treated separately from mere
coordinate diffeomorphisms. It is a purpose of this section
to set up a systematic procedure that will allow us to do so.
We will follow closely the treatment of Ref. [20] and its
recent application to the coupling of spontaneously broken
symmetries to gravity [21].
The same physics can be equivalently described using

the spacetime coordinates xμ or using coordinates yAðxÞ
defined in the local frame eAμ ðxÞ. In flat spacetime, one can,
for instance, choose the vielbein as a global orthonormal
basis, and define yA geometrically as its integral curves,
dyA ¼ eAμdxμ. The action of symmetry transformations on
the system can be described in such a basis in a way
independent of the coordinate chart xμ. From the point of
view of xμ, even spacetime symmetries therefore appear to
be internal. Any given symmetry can now be made local
using standard techniques by introducing a set of back-
ground gauge fields, one for each symmetry generator.
Since spacetime symmetries, in particular translations, act
on the coordinates as affine rather than linear transforma-
tions though, one has to exercise some care. The imple-
mentation of the symmetries can be worked out
economically using the method of nonlinear realizations,
also known as the coset construction [14,15]. For the
reader’s convenience, the elements of the coset construction
are reviewed in Appendix A.

A. Poincaré invariance

In order to set the stage, we review here briefly the
case of relativistic systems, invariant under the Poincaré
group [20]. We wish to describe its action in the space of
local coordinates yA, scalar under diffeomorphisms. While
Lorentz transformations, generated by the operator of
angular momentum JAB, act on them linearly, spacetime
translations, generated by the momentum operator PA, act
on yA by a shift. Geometrically, one can view the
Minkowski space spanned by yA as the coset space
G=H, where G is the Poincaré group and H its Lorentz
subgroup. From the general expression (A3), the coset
space can be represented by the matrix field

UðxÞ≡ eiy
AðxÞPA: ð25Þ

The action of a group element g ∈ G is then defined as in
Eq. (A4). This immediately reproduces the expected

behavior under Lorentz transformations, yA → ΛA
ByB [in

which case hðy; gÞ ¼ g], as well as under spacetime
translations, yA → yA þ aA [in which case hðy; gÞ ¼ 1].
The virtue of the coset construction is that it admits a

straightforward gauging of the symmetry. To this end, one
introduces a set of one-form gauge fields RAB

μ for the
generators JAB, and SAμ for PA. Put together in the matrix
field, Aμ ≡ 1

2
RAB
μ JAB þ SAμPA, they transform according to

Eq. (A6). The last element of the construction is the
Maurer-Cartan (MC) form (A7). It can be evaluated
explicitly using the commutation relations of the
Poincaré algebra. Projecting it back to the two subspaces
of generators, one finds that ωJ;AB

μ ¼ −RAB
μ , whereas [20]

ωP;A
μ ¼ ∂μyA − SAμ − RAB

μ yB: ð26Þ

The latter quantity is invariant under translations generated
by PA. It transforms as a vector under the Lorentz groupH
and can be interpreted as the covariant vielbein, that is,
ωP;A
μ ≡ eAμ . The connection ω

J;AB
μ , on the other hand, allows

one to define a covariant derivative of matter fields ψ that
transforms nontrivially under the Lorentz group H via
Eq. (A10), i.e.

Dμψ ≡
�
∂μ −

i
2
RAB
μ RðJABÞ

�
ψ : ð27Þ

The above construction leads to a generating functional
ZfeAμ ; RAB

μ g, invariant separately under internal gauge
spacetime translations and Lorentz transformations, as well
as under coordinate diffeomorphisms. The coordinates yA

can be fixed arbitrarily and do not represent dynamical
degrees of freedom; hence they also appear in the gen-
erating functional. Nevertheless, they only enter together
with SAμ and RAB

μ through the combination defined by
Eq. (26). At this stage, RAB

μ is still an independent back-
ground field. If desired, it can be eliminated in a way that
respects all the symmetries, for instance, by setting to zero
the field-strength tensor associated with ωP

μ , that is, the
torsion tensor,

ωP;A
μν ¼ Dμω

P;A
ν −Dνω

P;A
μ : ð28Þ

This determines RAB
μ in terms of derivatives of eAμ , giving it

a value typical for a spin connection [20],

RAB
μ ¼ −

1

2
½eνAð∂μeBν − ∂νeBμ Þ þ eμCeνAeλB∂λeCν − ðA↔BÞ�:

ð29Þ

After this reduction, the generating functional depends
solely on eAμ and is still constrained separately by the
internal translations and spacetime diffeomorphisms. This
reproduces the algorithm for construction of invariant
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actions outlined in Sec. II. Additionally, however, the coset
construction tells us that covariant derivatives for fields
with spin must be defined according to Eq. (27).
Notice that the internal coordinates yA were introduced

merely as a device that allows us to treat spacetime
symmetries separately from coordinate diffeomorphisms.
At the end of the day, they can be fixed at will; a natural
choice in flat spacetime is yA ¼ δAμxμ. Upon fixing the
internal coordinates, geometric objects such as vectors or
tensors become “pinned” to the coordinate grid; spacetime
symmetries and coordinate diffeomorphisms then become
linked to each other. However, all general arguments can be
carried out without such gauge fixing.

B. Galilei invariance

We now proceed to our main object of interest in this
section: the Galilei symmetry. The generators of the Galilei
algebra will be denoted as Jab (rotations), Na (boosts), Pa
(space translations), and H (time translations). In the case
of a single quantum-mechanical particle, the commutator
½Pa; Nb� has a central charge, causing the Galilei group to
be realized projectively [22]. In a many-body system
composed of particles of the same mass m, the Lie algebra
can be closed by introducing the operator of particle
number Q. All nontrivial commutators of the Galilei
algebra then read

½Jab; Jcd� ¼ iðδacJbd þ δbdJac − δadJbc − δbcJadÞ;
½Jab; Pc� ¼ iðδacPb − δbcPaÞ;
½Jab; Nc� ¼ iðδacNb − δbcNaÞ;
½Pa; Nb� ¼ imQδab;

½H;Na� ¼ iPa: ð30Þ

One can associate with the above generators the gauge
fields Rab

μ (rotations), Ba
μ (boosts), Saμ (spatial translations),

Tμ (time translations), and Aμ (particle number). They can
all be collected in the matrix gauge field

Aμ ≡ 1

2
Rab
μ Jab þ Ba

μNa þ SaμPa þ TμH þ AμQ: ð31Þ

The transformation of the gauge fields under local sym-
metry transformations is again given by Eq. (A6). Choosing
a parametrization of the Galilei group in terms of the
transformation parameters αab, ua, aa, b, and θ,

g ¼ exp

�
i
2
αabJab þ iuaNa þ iaaPa þ ibH þ iθQ

�
;

ð32Þ

we obtain explicit expressions for infinitesimal field trans-
formations [23],

ΔRab
μ ¼ ∂μα

ab − Rab
ν ∂μξ

ν þ αacRcb
μ þ αbcRac

μ ;

ΔBa
μ ¼ ∂μua − Ba

ν∂μξ
ν þ αabBb

μ − ubRab
μ ;

ΔSaμ ¼ ∂μaa − Saν∂μξ
ν þ αabSbμ − abRab

μ þ uaTμ − bBa
μ;

ΔTμ ¼ ∂μb − Tν∂μξ
ν;

ΔAμ ¼ ∂μθ − Aν∂μξ
ν þmuaSaμ −maaBa

μ; ð33Þ

where the internal vector indices are lowered and raised by
the Kronecker metrics δab and δab. By construction, all
gauge fields transform as one-forms under coordinate
diffeomorphisms. For the sake of future reference, we
add explicit expressions for the field-strength tensor,
defined in the matrix form as Aμν ≡ ∂μAν − ∂νAμ−
i½Aμ;Aν�. By projecting it to the respective generators,
one obtains the field strengths of the individual gauge
fields,

Rab
μν ¼ ∂μRab

ν − ∂νRab
μ þ Rac

μ Rb
νc − Rac

ν Rb
μc;

Ba
μν ¼ ∂μBa

ν − ∂νBa
μ − Ra

μbB
b
ν þ Ra

νbB
b
μ;

Saμν ¼ ∂μSaν − ∂νSaμ − Ra
μbS

b
ν þ Ra

νbS
b
μ − Ba

μTν þ Ba
νTμ;

Tμν ¼ ∂μTν − ∂νTμ;

Aμν ¼ ∂μAν − ∂νAμ −mBa
μSνa þmBa

νSμa: ð34Þ

The transformation rules for the components of the field-
strength tensor are obtained from Eq. (33) by dropping all
terms containing a derivative of the parameters αab, ua, aa,
b, θ.
The physical meaning of some of the gauge fields

introduced above is immediately clear, as they represent
sources for the respective conserved currents: Saμ for
momentum, Tμ for energy, and Aμ for the particle number
current. In Sec. II, we already interpreted fluctuations of the
spacetime vielbein as sources for the momentum and
energy currents. One of our first tasks therefore will be
to compute the MC form to check whether the covariant
vielbein obtained from it is compatible with our earlier
definition. Furthermore, as we will see, the gauge field Rab

μ

will give us access to spin degrees of freedom analogously
to the relativistic case. Finally, the gauge field Ba

μ in
principle couples to the conserved currents for Galilei
boosts, although it does not seem to admit a simple physical
interpretation.

C. Choice of the coset space

Before applying the strategy of Sec. IVA to describe
Galilei-invariant systems, it is worth pausing and comment-
ing on the various ways in which a coset construction for
the Galilei group can be implemented consistently with
unbroken rotational symmetry. While for a relativistic
system in vacuum the choice of the coset space G=H is
essentially unique, the commutation relations of the Galilei
algebra (30) admit several consistent options. Given that
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spacetime translations are always nonlinearly realized,
there are altogether four different options for the choice
of generators of H:
(1) fJab; Na;Qg. This option corresponds to using a

coset parametrization identical to the relativistic
one given in Eq. (25). While mathematically
consistent, it turns out to be impractical: due to
the commutation relation ½Pa; Nb� ¼ imQδab, the
coset generators fPa;Hg do not span a represen-
tation of the subgroup H. As a consequence, the
coset construction cannot be applied directly as the
ω⊥μ part of the MC form does not transform
covariantly like in Eq. (A9).

(2) fJab; Nag. Here one chooses the generators of H
as in the Poincaré case. The remaining generators
fPa;H;Qg form a representation of H which is
reducible but indecomposable [24]. It is still
possible to build manifestly Galilei-covariant ex-
pressions using such a representation provided one
embeds the Galilei group in the Lorentz group of a
spacetime with one extra dimension (see Ref. [25]
and references therein). Within this formalism, the
coset generators fPa;H;Qg define a vector of H
with an extra component due to Q. As a result,
tensor fields (such as gauge fields) now have more
components, some of which are unphysical and
have to be eliminated in a covariant manner.

(3) fJab; Qg. Thanks to Q’s inclusion in the subgroup
H, this option allows the straightforward inclusion
of charged matter fields. Additionally, it automati-
cally leads to the correct Galilei transformation for
such fields, whereby a time-dependent coordinate
shift is accompanied by a change of phase of the
field. Since Galilei boosts Na belong to the coset
space G=H, we will have to introduce a set of
fields vaðxÞ that account for their nonlinear reali-
zation. The resulting EFT framework naturally
reproduces a version of Schrödinger field theory
with an auxiliary velocity field which makes the
equations of motion of first order in derivatives.
This choice will be discussed in detail in Sec. V.

(4) fJabg. In this scheme, internal U(1) transforma-
tions generated by Q are realized nonlinearly and
consequently one needs to introduce another field,
πðxÞ. The boost fields va are still present, but in
this case can be eliminated algebraically by a set
of covariant conditions, known as the inverse
Higgs constraints [19,26,27]. Since the coset fields
can always be interpreted as Nambu-Goldstone
(NG) fields of spontaneously broken symmetry,
this setup is ready-made for an EFT description of
superfluid phases of matter, in which particle
number is spontaneously broken. This implemen-
tation of the coset construction will be described
in Sec. VI.

V. MICROSCOPIC THEORY

Here we develop the framework corresponding to a
subgroup H that is generated by Jab and Q. After making
this choice for the coset space, the mathematical structure
of the setup is completely dictated by symmetry. We
therefore first work out the details and only then interpret
what we found.
Following closely the general discussion in Appendix A,

we parametrize the coset space G=H as

UðxÞ≡ eiy
aðxÞPaeizðxÞHeivaðxÞNa: ð35Þ

The gauged MC form is defined as usual by Eq. (A7). In
order to evaluate it explicitly, we make use of the
conjugation relations that follow from the commutators
(30),

e−iα·PJabeiα·P ¼ Jab − αaPb þ αbPa;

e−iα·PNaeiα·P ¼ Na þmαaQ;

e−iα·NPaeiα·N ¼ Pa −mαaQ;

e−iα·NHeiα·N ¼ H − α · Pþ 1

2
mα2Q; ð36Þ

where we used the shorthand notation u · v≡ δabuavb. The
individual components of the MC form, projected onto the
respective generators, read

ωJab
μ ¼ − Rab

μ ;

ωQ
μ ¼ − Aμ −my · Bμ −mv · ∂μy

þmvaðSaμ þ Rab
μ yb þ zBa

μÞ þ
1

2
mv2ð∂μz − TμÞ;

ð37Þ

for the generators of H, and

ωNa
μ ¼ ∂μva − Ba

μ − Rab
μ vb;

ωPa
μ ¼ ∂μya − ðSaμ þ Rab

μ yb þ zBa
μÞ − vað∂μz − TμÞ;

ωH
μ ¼ ∂μz − Tμ; ð38Þ

for the generators of G=H.

A. Fields and symmetry transformations

In order to understand the structure just introduced, it is
important to work out the transformation properties of all
the ingredients. The canonical transformation of coset
fields is given by Eq. (A4), whereas that of the MC form
by Eq. (A9). From these general results, it is easy to deduce
the following transformation properties.
Spatial rotations. These are by construction realized

linearly on the coset fields: z is a scalar while ya and va

are vectors. In this case, h ¼ g ¼ e
i
2
αabJab . The components
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of the MC form ωQ
μ and ωH

μ are scalars while ωNa
μ and ωPa

μ

are vectors under rotations. Finally, ωJab
μ transforms as a

tensor gauge field, just like −Rab
μ .

U(1) charge transformations. Here we have again
h ¼ g ¼ eiθQ; all coset fields are trivially invariant.
Likewise, all components of the MC form remain U(1)
invariant except for ωQ

μ which behaves as a gauge field,

δQω
Q
μ ¼ −∂μθ: ð39Þ

Space and time translations. In the parametrization given
by Eq. (35), the coset fields transform simply,

δP;Hya ¼ aa; δP;Hz ¼ b; δP;Hva ¼ 0: ð40Þ

Consequently, h ¼ 1 and all components of the MC form
are trivially invariant under translations.
Galilei boosts. This is the most interesting transforma-

tion. By a direct computation using Eq. (36), we find that z
is boost invariant whereas

δNya ¼ zua; δNva ¼ ua: ð41Þ

As expected, z and ya behave exactly as time and a spatial
coordinate, while va behaves as a velocity. Furthermore, we
find that h ¼ eimðu·yþ1

2
zu2ÞQ. Since this matrix defines the

transformation rule for matter fields, we recover the well-
known fact that for any charged field, a Galilei boost is
accompanied by a change of its phase. Due to the form of h,
we finally observe that all components of the MC form are
boost invariant except for ωQ

μ which changes under an
infinitesimal boost as

δNω
Q
μ ¼ −m∂μðu · yÞ: ð42Þ

B. Invariant actions

The coset construction provides us with all the ingre-
dients we need to build manifestly invariant actions. As to
the covariant vielbein eAμ , we naturally identify

nμ ¼ ωH
μ ; eaμ ¼ ωPa

μ : ð43Þ

Given a matter field ψ , the H-components of the MC form
allow us to define its covariant derivative,

Dμψ ¼
�
∂μ þ iqωQ

μ −
i
2
Rab
μ RðJabÞ

�
ψ ; ð44Þ

where q is the electric charge of ψ , and R the (spin)
representation of the rotation group in which it transforms.
The dual vielbein Eμ

A can in turn convert Dμψ into a
spacetime scalar; see Eq. (5).
We have managed to identify the building blocks that

were used in Secs. II and III to construct the action.
However, the coset construction tells us much more.

Namely, we now know how to contract the vielbein indices:
they have to be summed over in a way that preserves the
linearly realized subgroup H, that is, rotations and U(1)
phase redefinitions. Notice that Galilei invariance is already
built in automatically, thanks to the presence of the coset
field va.
For a complex scalar field ψ , there is a unique

Lagrangian that respects all the symmetries and contains
just one derivative,

L ¼ i
2
ψ†D

↔

0ψ − Vðψ†ψÞ: ð45Þ

This should be contrasted with Eq. (19). In order to see that
the two Lagrangians describe equivalent theories, we have
to deal with the boost NG field va hidden in the definition
of Eμ

A and ωQ
μ . To highlight the precise way this NG field

enters the Lagrangian (45), it is convenient to introduce the
“bare” vielbein with va removed,

ēaμ ≡ ∂μya − ðSaμ þ Rab
μ yb þ zBa

μÞ; ð46Þ

so that eaμ ¼ ωPa
μ ¼ ēaμ − vanμ. Denoting the “bare” dual

vielbein, inverse to ēaμ and nμ, analogously as Ēμ
a, V̄μ, it is

easy to verify the relations

Eμ
a ¼ Ēμ

a; Vμ ¼ V̄μ þ vaĒμ
a: ð47Þ

Finally, define the modified gauge field Āμ ≡ Aμ þmy · Bμ

so that −VμωQ
μ ¼ VμĀμ þ 1

2
mv2. The Lagrangian (45) thus

acquires the explicit form

L ¼ i
2
Vμψ†∂↔μψ þ Vμψ†Āμψ þ 1

2
mv2ψ†ψ − Vðψ†ψÞ:

ð48Þ

The field va is obviously not dynamical because it enters
Eq. (48) without any derivatives. Upon integrating va out
using its equation of motion [16], the Lagrangian (19) is
recovered, provided ēaμ and Āμ are identified with the
vielbein and the U(1) gauge field introduced therein [28].
It is integrating out the boost NG field va that eventually

ensures that all the ingredients introduced in Sec. III have
appropriate transformation rules under Galilei boosts and
appear in the Lagrangian in the right combinations. While
eAμ is boost invariant, it follows from Eq. (47) that
δNV̄μ ¼ −uaĒμ

a. Likewise, it is easy to check the trans-
formation rule for Āμ,

ΔĀμ ¼ ∂μðθ þmu · yÞ − Āν∂μξ
ν −muaēaμ: ð49Þ

From here, one immediately recovers the previously
guessed rule (24) for covariant derivatives together with
the phase factor induced by Galilei boosts as appropriate
for the complex field ψ .
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C. Relations among conserved currents

As we have just shown, the coset formalism exactly
reproduces the results of Sec. III. Moreover, we now have
access to a wealth of information due to the presence of
independent sources for translation, rotation, boost, and
electromagnetic currents. Equations (37) and (38) ensure
that the sources appear only through certain specific
combinations. For instance, Aμ always appears together
with the boost source in the linear combination Āμ, defined
above, while Saμ always enters through the combination

S̄aμ ≡ Saμ þ Rab
μ yb þ zBa

μ; ð50Þ

so that ēaμ ¼ ∂μya − S̄aμ. The combined diffeomorphism
gauge transformation of this field reads

ΔS̄aμ¼∂μðaaþαabybþzuaÞ− S̄aν∂μξ
ν−αabē

b
μ−uanμ; ð51Þ

which indicates that S̄aμ transforms as a gauge field with
respect to the total coordinate shift, including the contri-
butions from rotations and boosts.
Let us initially assume that the theory does not contain

any fields with spin so that ωJ
μ does not contribute, and that

ωN
μ can be disregarded (see Sec. VI on this point). After

integrating out the auxiliary field va, the action then quite
generally depends on the sources only through nμ, ēaμ, and
Āμ. This eventually leads to the relations

Mμij ¼ xiTμj − xjTμi; Bμi ¼ tTμi −mxijμ ð52Þ

among the particle number current jμ, momentum current
Tμi, boost current Bμi, and angular momentum current
Mμij, valid in Cartesian coordinates in flat spacetime [19].
These identities directly reflect the fact that a local rotation
can be compensated by a local translation, and a local
Galilei boost can be compensated by a combination of a
local translation and a local U(1) transformation [29]. Note
that the identity (23) is not a relation between currents,
equating momentum density to the U(1) current. It is also a
consequence of Galilei symmetry though, and can be
understood as a consistency condition associated with
the above identity for Bμi [19].

D. Spin connection and torsion

So far, we have simplified the discussion by considering
solely fields without spin. However, the coset construction
provides a concise description of the general case. To
that end, it is suitable to trade the components of the MC
form for their gauge-covariant combinations, given by the
field-strength tensor,ωμν ≡ ∂μων − ∂νωμ þ i½ωμ;ων�. After
some manipulations using Eqs. (34), (37), and (38), its
components can be given the explicit form,

ωJab
μν ¼ − Rab

μν ;

ωQ
μν ¼ − Aμν −myaBa

μν þmvaðSaμν þ Rab
μνyb þ zBa

μνÞ

−
1

2
mv2Tμν;

ωNa
μν ¼ − Ba

μν − Rab
μνvb;

ωPa
μν ¼ − Saμν − Rab

μνyb − zBa
μν þ vaTμν;

ωH
μν ¼ − Tμν: ð53Þ

In analogy with the relativistic case, we can therefore
interpret ωJab

μν as the spatial curvature tensor and ωH
μν as the

temporal torsion tensor (both up to a sign).
The other components of the MC form depend on the

dynamical field va so we have to be more careful. We
define the spatial torsion tensor by stripping off the va-term
from ωPa

μν ,

Sa
μν ≡ Saμν þ Rab

μνyb þ zBa
μν: ð54Þ

It is easy to check using Eq. (33) thatSa
μν is covariant under

internal rotations and invariant under internal spacetime
translations and U(1) transformations. The only trans-
formation that affects it is the internal Galilei boost, under
which δNSa

μν ¼ uaTμν. As could have been expected, Sa
μν

together with Tμν transform as a vector under Galilei
boosts.
To further check the consistency of the definition (54),

we note that Sa
μν can be expressed in terms of the MC form

rather than in terms of the field-strength tensorAμν in a way
independent of va,

Sa
μν ¼ −∂μēaν þ ∂νēaμ þ Ra

μbē
b
ν − Ra

νbē
b
μ þ nμBa

ν − nνBa
μ:

ð55Þ

Barring the appearance of the boost source Ba
μ, the

generating functional of the EFT depends on the vielbein
nμ, ēaμ, electromagnetic source Āμ, and the spin connection
Rab
μ . Owing to the fact that Eq. (55) is algebraic in Rab

μ , the
latter can be traded for the spatial torsion Sa

μν [12]. Since
the spatial torsion depends on the choice of reference
frame, covariant constraints on the background can be
obtained by setting either the temporal torsion, or both the
temporal and the spatial torsion to zero. In the latter case,
the spin connection can be expressed in terms of derivatives
of the vielbein as in Eq. (29).

E. Rotationally invariant systems

The formalism developed above allows a streamlined
construction of effective actions invariant under internal
U(1) symmetry, spacetime translations, spatial rotations,
and Galilei boosts. In real condensed matter systems, boost
invariance is often broken at a much higher energy scale
than other symmetries. It is therefore illustrative to inspect
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how our results modify in this case, where the low-energy
EFT is invariant under spatial rotations but not under the
boosts.
Relaxing the constraints imposed by boost invariance is,

in fact, extremely simple. In all the above formulas we have
to discard the external source Ba

μ as well as the coset field
va. The MC form thereby reduces to

ωJab
μ ¼ −Rab

μ ; ωQ
μ ¼ −Aμ;

ωPa
μ ¼ ∂μya − S̄aμ; ωH

μ ¼ ∂μz − Tμ; ð56Þ

where S̄aμ ¼ Saμ þ Rab
μ yb. The temporal torsion Tμν and

spatial torsion Sa
μν become completely decoupled, depend-

ing just on nμ and on ēaμ and Rab
μ , respectively. Equation (55)

becomes identical to a Euclidean version of its relativistic
counterpart. If desired, it can be used to eliminate the spin
connection in favor of the vielbein as usual. Local invariant
Lagrangians are constructed as before by imposing the
linearly realized symmetry H, consisting of spatial rotations
and internal U(1) transformations.

VI. SUPERFLUID EFFECTIVE THEORY

In the previous section, we showed how to construct
invariant actions for charged matter fields. The setup
therefore provides a suitable tool for the discussion of
symmetries of microscopic theories of electrons and nuclei,
atoms or molecules. Consider now a system which
becomes superfluid at sufficiently low temperatures.
Provided there are no other gapless modes in the spectrum,
we then expect the low-energy physics to be dominated by
the ensuing NG boson. In this case, both Galilei boosts and
the particle number U(1) are spontaneously broken by the
physical ground state, and the framework based on the
isotropy subgroup H generated by Jab becomes appropri-
ate. In this section, we describe the main differences
compared to the coset construction carried out in the
previous section. The coset construction for a nonrelativ-
istic superfluid in flat spacetime has also been discussed
recently in Ref. [30].
On account of having an extra broken generator, the

associated NG field, πðxÞ, must be added to the coset
element (35),

UðxÞ≡ eiy
aðxÞPaeizðxÞHeivaðxÞNaeiπðxÞQ: ð57Þ

Since Q commutes with all other generators, this modifi-
cation has a limited impact on the results derived in Sec. V.
The only change to the MC form is an extra term ∂μπ inω

Q
μ ,

so that now [cf. Eq. (37)]

~ωQ
μ ¼ ∂μπ − Āμ −mv · eμ −

1

2
mv2nμ: ð58Þ

The transformation rules of the fields change accordingly.
First, under U(1) charge transformations, δQπ ¼ θ so that

h ¼ 1 and consequently all components of the MC form are
trivially invariant under U(1). Second, under small Galilei
boosts, one now has δNπ ¼ mu · y. Again, h ¼ 1 and the
MC form is completely boost invariant.
The transformation rules have thus become extremely

simple. Spacetime translations, U(1) transformations, and
Galilei boosts are all realized by shifts of their respective
coset fields (plus the corrections δNπ and δNya, induced by
the boosts), leaving the MC form invariant. Spatial rota-
tions, on the other hand, act linearly on all the fields except
for the gauge field Rab

μ , as expected.
The EFT now contains two dynamical NG fields: π and

va. However, it is well known that there are no physical
gapless states in superfluids that could be associated with
the spontaneously broken Galilei boosts. The low-energy
spectrum only contains one gapless state, to which both the
U(1) current and the boost currents couple [31]. In the EFT,
this is reflected by the fact that the va field is not protected
by symmetry from acquiring a mass term [19,27]. It
therefore does not contribute to low-energy physics even
if it was initially introduced as an independent degree of
freedom.
To obtain an EFT for the physical mode π (in the

presence of background fields) alone, one eliminates va by
integrating it out, or by imposing an algebraic inverse
Higgs constraint [26]. The latter is more convenient as the
elimination is performed on the level of the covariant
constituents of the theory, without the need to know the
details of its action. While the precise form of the inverse
Higgs constraint may sometimes be ambiguous, in this case
a convenient choice is Eμ

a ~ω
Q
μ ¼ 0, leading to

va ¼
1

m
Eμ
aDμπ; ð59Þ

where we set Dμπ ≡ ∂μπ − Āμ. Plugging this back into the
expression (47) for the dual vielbein, it becomes

Eμ
a ¼ Ēμ

a; Vμ ¼ V̄μ þ 1

m
gμνDνπ; ð60Þ

where we used the degenerate metric gμν, introduced in
Eq. (12). Since the low-energy spectrum contains no
gapped matter states on which ωJ

μ could act, the only
building blocks at our disposal are

ωNa
μ ¼ −Ba

μ þ
1

m
DμðEaνDνπÞ;

Vμ ~ωQ
μ ¼ V̄μDμπ þ gμν

2m
DμπDνπ; ð61Þ

where, in the last term on the right-hand side of the first
line, Dμψ

a ≡ ∂μψ
a − Ra

μbψ
b.

In a power-counting scheme where ∂μπ counts as order
zero and any additional derivative acting on the fields
increases the order [32], ωN

μ will not contribute at the lowest
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order in derivatives. The leading-order action will then be
given by [33]

S ¼
Z

dtdxn0
ffiffiffiffiffiffiffiffi
∥g∥

p
PðVμ ~ωQ

μ Þ; ð62Þ

where P defines the thermodynamic pressure of the system at
zero temperature as a functionof the chemical potential for the
U(1) symmetry. This generalizes the action found in Ref. [4]
to an arbitrary spacetime background, including sources for
momentum density and energy density and current.

VII. CONCLUSIONS

In this paper, we have developed a framework that casts a
given Lagrangian field theory in a form manifestly invariant
under arbitrary coordinate reparametrizations, and at the
same time provides a transparent treatment of symmetries of
the system. By making systematic use of the vielbein
formalism, we naturally reproduced in Secs. II and III the
Newton-Cartan structure, recently introduced in the studies
of the fractional quantumHall effect. (See alsoRef. [34] for a
study of Newton-Cartan geometry with torsion in a different
context.) Utilizing the coset construction, we then showed in
Secs. IV, V, and VI how the physical symmetries can be
implemented separately from coordinate diffeomorphisms.
The discussion in Sec. V B suggests that it is more natural to
construct Galilei-invariant actions with the additional aux-
iliary velocity field va. Upon integrating this out, the action
takes a form that seems difficult to obtain directly in a
systematic manner.
Although our approach might seem intimidating due to

the amount of notation and algebra involved, it is in fact
extremely simple conceptually: once the basic scheme is set
up, all the algebraic manipulations are enforced by sym-
metry, and do not require any further insight or guesswork.
To conclude, we make several comments on the potential
extensions and applications of our approach in the form of
final remarks.
First, we used for illustrative purposes only the simplest

type of model: a NR Galilei-invariant system with a U(1)
internal symmetry. This U(1) symmetry plays a special role in
that it enters the commutation relations of the Galilei algebra
(30). As a consequence, the associated gauge field Aμ enters
the action in a nontrivial manner. We anticipate that other,
possibly non-Abelian, internal symmetries can be added
straightforwardly, as suggested in Ref. [7]. This is obvious
in the coset formalism, worked out in Sec. V: adding an extra
set of generators that commute with the Galilean algebra
results in a separate contribution to the MC form which does
not interfere with already existing structure.
Second, the formalism can straightforwardly be applied

to any local field theory regardless of its symmetries and
particle composition. This underlines the fact that there is
very little physical content in general coordinate invariance
alone, expressing merely the freedom to choose an arbitrary

coordinate system for the description of physical observ-
ables. An interesting direction of future work would be to
apply the formalism developed here to systems where
spacetime symmetries such as rotations or translations
actually are spontaneously broken. This would represent
a synthesis of the approach of Refs. [35,36], where EFTs for
NG modes of spacetime symmetries were studied, with that
of Refs. [37,38] which applied the generating functional
technique to spontaneously broken internal symmetries.
Third, note that in two spatial dimensions, the Galilei

algebra possesses another, exotic central charge [39],
possibly related to the two-dimensional spin. While the
inclusion of such a central charge by means of an additional
U(1) generator in the coset construction seems straightfor-
ward, it would be interesting to investigate its physical
consequences for, say, two-dimensional superfluids.
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APPENDIX: OVERVIEW OF THE
COSET CONSTRUCTION

Suppose that the action of a given theory is invariant
under the Lie group G. It is customary to assume that
elementary fields that enter the action span multiplets of
this group, that is, the symmetry transformations from G act
on them linearly. However, this is not always the case. For
instance, spacetime translations act on the coordinates xμ

by a shift, x0μ ¼ xμ þ ξμ. Likewise, NG fields of a sponta-
neously broken symmetry transform by a similar shift
under the broken transformations, which in turn guarantees
the low-energy theorems for the associated NG bosons
[40]. As soon as a symmetry is realized nonlinearly,
invariant actions cannot be obtained by usual tensor
methods, that is, by taking a product of fields and then
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contracting their indices with invariant tensors of the
symmetry group. The coset construction [14] solves the
problem, and we outline here its essentials needed in
the body of the paper.
We assume that the group G corresponds to an internal

symmetry in the sense that it does not affect the spacetime
coordinates xμ, and its action on the fields does not depend
on xμ explicitly. This is reasonable for, as stressed repeat-
edly throughout the paper, true symmetries can be imple-
mented in a way that does not refer to coordinate
reparametrizations, the latter merely representing the free-
dom to choose a coordinate system. We further need to
know the subgroup H ⊂ G which is realized linearly on all
the fields.
To find a nonlinear realization of the full group G, one

first defines its action on the coset space G=H. This space
consists of all (mutually disjoint) sets of the form χg ≡
fghjh ∈ Hg with fixed g ∈ G [41]. For each such coset χ,
one can pick a fixed representative, Uχ . In other words,
every element g ∈ G can be uniquely decomposed as

g ¼ Uχghg; ðA1Þ

where hg ∈ H. The action of the group on the coset space is
then defined by left multiplication

Uχg0→
g
Uχgg0 ¼ gUχg0hg0h

−1
gg0 : ðA2Þ

Denote now the generators of H temporarily as Tα and the
generators of G=H as Ta. At least in some neighborhood of
unity, one can represent a given coset as

UðπÞ≡ eiπ
aTa ; ðA3Þ

where the objects πa serve as local coordinates on the coset
space G=H. The transformation rule (A2) can then be given
the more familiar form,

UðπÞ→g Uðπ0Þ ¼ gUðπÞhðπ; gÞ−1: ðA4Þ

To implement this construction in a quantum field theory,
the coset coordinates are interpreted as fields, πaðxÞ. In case
of spontaneous symmetry breaking, the subgroup H
corresponds to the symmetry of the physical vacuum
and πa represent the ensuing NG bosons. However, the
construction is more general and also applies to nonlinear
realizations of symmetries such as translations which are
not necessarily spontaneously broken. The geometric fields
πa then rather play the role of arbitrary but fixed functions
that specify the local coordinate frame.
Once the coset structure is made local, it is natural to

promote the action of the symmetry group G to a local one
as well, that is, to make g coordinate dependent. To
achieve manifest covariance under such gauge symmetry,

a set of background gauge fields is needed, which can be
put together in the one-form matrix-valued variable

Aμ ¼ Aα
μTα þAa

μTa: ðA5Þ

The group G is assumed to act upon it as usual in non-
Abelian gauge theory,

Aμ→
g
gAμg−1 þ ig∂μg−1: ðA6Þ

The basic building block of the coset construction is the
MC form, whose gauge-covariant version reads

ωμ ≡ −iU−1ð∂μ − iAμÞU: ðA7Þ

It decomposes as

ωμ ¼ ω∥μ þ ω⊥μ ≡ ωα
∥μTα þ ωa⊥μTa: ðA8Þ

Using Eqs. (A4) and (A6), and assuming that the
generators Ta span a representation of H [42], it is easy
to verify the transformation rules of the MC form,

ω∥μ→
g
hω∥μh−1 − ih∂μh−1; ω⊥μ→

g
hω⊥μh−1; ðA9Þ

where h is defined by Eq. (A4).
So far we have only discussed the fields πa whose

presence is enforced by the geometry of the coset space.
Nongeometric, or matter, fields can be added to the
construction at will though. We will denote such fields
collectively as ψðxÞ. By assumption, they transform under
H in some linear (not necessarily irreducible) representa-

tionR: ψ→
h
RðhÞψ . This prescription can be promoted to a

nonlinear realization of the whole group G by using the

matrix h from Eq. (A4): ψ→
g
Rðhðπ; gÞÞψ . Upon such a

symmetry transformation, ψ acquires additional coordinate
dependence through the π-dependence of h even if g itself
is global. A covariant derivative of ψ is constructed with the
help of ω∥μ, which transforms as a gauge connection of H,

Dμψ ≡ ½∂μ þ iRðω∥μÞ�ψ : ðA10Þ

Invariant Lagrangians can be assembled using standard
tensor methods out of ψ , ω⊥μ and their covariant
derivatives. In fact, even Lagrangians invariant only up
to a surface term, leading to topological actions of the
Wess-Zumino type [36,37,43,44], can be obtained from
the building blocks, provided by the MC form. Note that
ω⊥μ can play a dual role: (i) as a covariant derivative of
πa in case these represent dynamical NG fields of a
spontaneously broken symmetry; and (ii) as a covariant
vielbein in case the functions πaðxÞ represent local
coordinates that are not dynamical and can be chosen
at will.
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