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We describe the simplest example of an instanton bag in Euclidean space. It consists of a monopole wall
and a Kaluza-Klein monopole wall, lifted to one higher dimension, trapping the instanton charge in the
middle. This object has finite instanton density in a three-dimensional volume. Baryon physics in
holographic QCD models gets translated into a multi-instanton problem in the bulk, and a state with a high
density baryonic charge consists of a nondiluted multi-instanton solution. The instanton bag is a good
candidate for this high-density state. We compute its parameters via moduli stabilization. Chiral symmetry
restoration is exhibited by this state, and it is a direct consequence of its nondiluted features.
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I. INTRODUCTION

Holographic QCD (HQCD) has been the subject of
intense studies because it provides an environment to
address strong coupling QCD questions with the use of
semiclassical computations. Baryons of the QCD-like
theory defined on the boundary correspond to instantons
in the bulk. Thus, having a finite baryonic density in the
dual theory corresponds to having a finite density of
instantons in the bulk. The problem of the high-density
phase of QCD is thus translated into a multi-instanton
problem, which, even at the classical level, remains quite a
difficult challenge, both numerically and analytically.
Recently with Sutcliffe, we considered a toy model in
2þ 1 dimensions in which the high-density phase can be
studied both analytically and numerically [1]. This model
showed that the dilute approximation breaks down, as
expected, exactly at the densities when the solitons are
sufficiently close to start to populate the holographic
direction.
Solitons are not hard objects but can compenetrate with

one another. A high-density phase of solitons may be in the
form of a collective structure, which is completely different
from a coarse-grained version of a large number of small
constituents. This phenomenon has been observed both for
vortices and monopoles [2] and is known as the “solitonic
bag.” We still do not have a proper soliton bag description
for multi-instanton configurations, although it has been
suggested that this should somehow exist [3,4]. One
obstacle in finding such a solution for instantons is that
for the Yang-Mills theory in Euclidean space, instantons do
not have an intrinsic scale. Thus, it is not uniquely defined
how to make a high-density limit of instantons; the sizes
must be specified in the limiting process. HQCD is a

situation in which instantons do have an intrinsic scale.
This scale is fixed by a balance between the curvature of the
background geometry and the Chern-Simons coupling,
which makes the instanton electrically charged. We may
expect that a large number of instantons in HQCD could
form a bag structure at large enough density.
QCD at high density is expected to exhibit a phase

transition in which chiral symmetry is restored. Moreover,
there is a competition between two other possible insta-
bilities: color superconductivity and chiral density waves.
The second one is favored in the large Nc limit [5,6].
Holographic models of QCD, being particular cases of
large Nc QCD-type models, are thus expected to have
chiral symmetry restoration together with chiral waves.
Recently, these questions have been addressed in HQCD
[7], where it has been found that, using an instanton fluid
approximation, there is no sign of those phases. We will
show that they are instead realized in the instanton bag
background. Another generic expectation from large Nc
QCD is the existence of a “quarkyonic phase” [8]. This is
generally believed to correspond, in HQCD, to the instan-
tons populating the holographic direction [7,9,10], so that
many instantons share the same 3D spatial section. Yet a
different phase in HQCD has been discussed in [11,12] and
named “dyonic salt.” This phase is analogue to the half-
Skyrmion phase in the high-density Skyrme model and, for
this reason, it has been argued to exhibit chiral symmetry
restoration. The instanton bag we discuss in the present
paper can be considered as an extension of the dyonic salt
phase to densities where the instantons start to populate the
holographic direction. In a sense, this paper is a recon-
ciliation of various approaches. Our state is also similar to
the almost homogeneous state considered in [13], but with
a different motivated ansatz.
The paper is organized as follows. In Sec. II we describe

an instanton bag solution in flat space. In Sec. III we review*stefanobolo@gmail.com
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some generic features of HQCD at finite density. In Sec. IV
we embed the instanton bag in HQCD and study the moduli
stabilization. In Sec. V we review the top-down derivation
of the Sakai-Sugimoto model. In Sec. VI we discuss the
phenomenon of chiral symmetry restoration at large
densities. We conclude in Sec. VII.

II. AN INSTANTON BAG FROM
MONOPOLE WALLS

We consider a Yang-Mills (YM) theory in 5D
Minkowski space-time with gauge group SUð2Þ. The
action is

SYM5 ¼ −
Z

dtd4x
1

4g2
Fa
μνFμνa: ð2:1Þ

Instantons correspond to particles with mass 8π2=g2. We
will consider solutions that are periodic in one direction,
and thus we can formally compactify the x3 direction on a
circle of radius R3 (we chose the direction 3 for later
convenience). The sector of configurations that are also
invariant along x3 have the 4D Yang-Mills-Higgs (YMH)
action

SYMH4 ¼ −
Z

dtdx1dx2dx4
πR3

2g2
ðFa

μνFμνa þDμϕ
aDμϕaÞ;

ð2:2Þ
where ϕ is just another name for A3. This is the first term in
a Kaluza-Klein (KK) series expansion. The monopole wall
studied in [14,15] (see also [16–21]) is a solution of the
Bogomol’nyi equations Fij ¼ ϵijkDkϕ for the YMH action
(2.1) and thus, lifted to 4D by keeping the fields x3
independent, it is also a self-dual instanton solution
satisfying F ¼ ~F.
A sketch of the monopole wall solution is given in Fig. 1.

The wall is located at a fixed position in x4 and is extended
in the x1;2;3 directions. The wall separates two phases, one
on the left in which A3 is constant and the field strength is

vanishing, and the other on the right in which A3 grows
linearly with x4 and the magnetic B field is constant. This is
in the singular gauge in which the fields far from the wall
are directed in a fixed direction in the su(2) algebra, and
Dirac string singularities are on the empty left side of the
wall. The Bogomol’nyi equation B ¼ F34 implies that A3 is
growing linearly as a function of x4. Details about the non-
Abelian nature and its lattice structure are all contained in a
small strip near the wall and can be neglected at large
distances. When this solution is lifted to 4D, the monopoles
become monopole strings extended in the x3 direction and
the wall becomes a three-dimensional object.
The monopole wall solution is specified by the following

set of parameters. The first is the area of the unit monopole
lattice in the 1–2 plane. We name l the typical distance
between the constituents’ monopoles and l2 is the area of
the unit lattice in the 1–2 plane. The magnetic field sourced
by the wall is then related to the microscopic structure by

F12 ¼ Btsuð2Þ B ¼ 4π

l2
; ð2:3Þ

which is obtained by requiring that one unit of magnetic
flux pass through each cell. Also, tsuð2Þ is any normalized
generator of SUð2Þ; for example, t3 ¼ diagð1=2;−1=2Þ. In
this singular gauge, the field F12 is constant far from the
wall. The field A3 is then given by

A3jx3<0 ¼ 0 and A3jx3>0 ¼ Bx3tsuð2Þ: ð2:4Þ

The transverse thickness of the wall is of order

δ≃ 1ffiffiffiffi
B

p ; ð2:5Þ

being the scale where massive W bosons start to condense
near the wall. As long as we are interested in length scales
much greater than the lattice size l and the transverse
thickness δ, the microscopic details of the monopole wall
are not relevant. The monopole wall solution has a constant

FIG. 1 (color online). Monopole wall.
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instanton charge and also constant energy density on the
right side and zero on the left side.
The monopole wall, at the microscopic level, necessarily

breaks translational invariance. This is somehow analogue
to the nonexistence of exactly spherical symmetry monop-
oles for charge higher than 1 [22]. The lattice structure of
the monopole wall has been studied in some detail using
numerical techniques in [15] for the BPS case and in [17]
for AdS4 where the hexagonal lattice has been found to be
slightly favored energetically. For the present paper, we do
not need to know the details of the lattice structure because
we consider only the large scale properties.
A monopole wall in isolation is not enough to have finite

instanton density in R3. For this, we also need a wall of
Kaluza-Klein (KK) monopoles, or a “KK monopole wall.”
KK monopoles are solutions of YM equations on R3 × S1

with a nontrivial dependence on the compactified direction.
They carry the same instanton charge of the monopole but
an opposite magnetic charge. One instanton on R3 × S1 is
then decomposable into one monopole plus one KK
monopole [23–25], and the distance between the constitu-
ents is continuously connected with the scale modulus of
the instanton. We will show that with a monopole wall and
a KKmonopole wall, we can create a configuration that has
finite instanton density in a three-dimensional volume.
When the theory is compactified on a circle S1, so with

the periodic identification x3 ≡ x3 þ 2πR3, we can make a
gauge transformation that is topologically distinct from the
identity map

Uðx3Þ ¼ e−ix3tsuð2Þ=R3 : ð2:6Þ

This function interpolates between the identity matrix with
plus and minus sign as x3 completes its period. If the theory
contains only adjoint fields, the gauge transformation (2.6)
connecting the two elements of the center of the group 1
and −1 is thus single valued. This gauge transformation
shifts the gauge field by a constant

A3 → A3 −
tsuð2Þ
R3

: ð2:7Þ

Therefore, the gauge field A3 assumes value in a T-dual
circle.
The KK monopole is an ordinary monopole transformed

by a large-gauge transformation action plus a global
gauge transformation that flips the sign of the generator
tsuð2Þ → −tsuð2Þ. The KK monopole has opposite sign
relation between the instanton charge and the monopole
charge. For example if we normalize so that the monopole
has ðnmon; ninstÞ charge equal to ð1=2; 1=2Þ, the KK
monopole has charges ð−1=2; 1=2Þ. So the monopole
together with a KK monopole has exactly the charge of
an instanton (0,1). The asymptotic value of the Higgs field
is ϕ≡ A3 ≃ tsuð2Þ=2R3, so the large-gauge transformation

(2.7) plus the global transformation leave it invariant,
and the monopole and KK monopole can be glued together.
The global transformation flips the sign of both drA3

and the magnetic field so that it does not affect the
instanton charge.
The KK monopole wall can be obtained in a similar

fashion by applying two transformations to the monopole
wall. First we use the same large-gauge transformation
(2.6) and then a π rotation in the x3; x4 plane: x3;4 → −x3;4
and x1;2 → x1;2. Gauge fields are vectors, so A3 flips sign
with this rotation. On the initial left side of the wall, the
empty half x4 < 0, the composition of the two trans-
formations gives the following:

A3 ¼ 0 → −
tsuð2Þ
R3

→ þ tsuð2Þ
R3

: ð2:8Þ

Moreover, the empty side is moved to the right side of the
wall x4 > 0. On the nonempty side, the one filled with
magnetic field x4 > 0, the field F12 remains unchanged
because x1;2 are not affected by the rotation. Also d4A3 is
unchanged because both d4 and A3 flip the sign.
Therefore, both the monopole wall and KK monopole
wall satisfy the BPS equation with the same sign. The
transformation we have described is exactly what we need
to glue together the two walls. The two transformations
are shown in Fig. 2.
A monopole wall together with a KK monopole wall is

capable of trapping the instanton charge in the middle of the
two plates in the x4 direction. They can be glued together
since the B field and the derivative of A3 have the same sign
(see Fig. 3). The microscopic scales are the lattice size l and
the transverse thickness δ. The distance between the two
walls is d. A3 grows linearly between the two walls from
0 to 1=R3. The BPS equation gives the following relation:

B ¼ 1

dR3

: ð2:9Þ

The instanton charge is still infinite in the directions
x1;2;3, but it is finite if interpreted as a density in the unit of
three-dimensional volume. If we call Q the instanton
density in a three-volume dx1dx2dx3, we have the relation

Q ¼
Z

dx4
1

32π2
Fa
μν
~Fμνa ¼ B

8π2R3

: ð2:10Þ

We count the number of parameters of the solution. In
total there are four parameters, l, B, R3, d, and two
relations between them, (2.3), (2.9). Moreover, we want
the instanton charge (2.10) to be fixed. We thus remain
with a one-parameter family of solutions, which we can
take to be the separation d. Rewriting everything as a
function of the distance d, the coupling g, and the
instanton charge density Q, we have the following set
of relations:
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δ≃ l¼ 2
ffiffiffi
π

pffiffiffiffi
B

p R3 ¼
1

2π
ffiffiffiffiffiffiffiffiffi
2Qd

p B¼ 2π

ffiffiffiffiffiffiffi
2Q
d

r
: ð2:11Þ

The instanton bag we just discussed is very similar to the
composite monopole walls studied in [18–21]. These
solutions have a hyper-Kahler moduli space which, for
two walls only, is 4þ 4 dimensional. The relative 4 moduli
are distance d. a Uð1Þ relative phase, and a shift in the
lattice positions of the two walls. The distance d is, for the
present paper, the only modulus of these four that we will
consider because the others affect only the microscopic
structure.
For the bag approximation to be valid, we want to be in a

regime in which we can neglect the microscopic structure
of the wall, and thus we want the distance d to be much
greater than l and δ. The most stringent condition of the
two’s is

d ≫ l ⇒
ffiffiffiffiffiffiffiffiffi
d3Q4

p
≫ 1: ð2:12Þ

Note that, even by keeping fixed Q and g, we can always
reach a point in the moduli space where d is large enough to
make the approximation valid. Yet another way to satisfy
the condition is to increase Q while keeping d and g fixed.
It may be instructive to avoid the direct use of the

Bogomol’nyi equation (2.9) and use instead the minimi-
zation of the energy. The energy density per unit of volume
dx1dx2dx3 is

E ¼ 1

2g2

Z
d=2

−d=2
dx4ðFa

12
2 þ Fa

34
2Þ; ð2:13Þ

which then becomes

E ¼ 1

2g2

�
dB2 þ 64π4Q2

dB2

�
: ð2:14Þ

Minimizing by keeping Q fixed, we determine the value of
dB2 and the corresponding energy density

dB2 ¼ 8π2Q E ¼ 8π2Q
g2

; ð2:15Þ

where (2.9) is recovered, and one parameter between d and
B disappears from E and remains thus a free modulus. This
minimization strategy is the same that we will use in
Sec. IV in the HQCD context, where the BPS equation is no
longer valid.
A brane construction in string theory provides a very

intuitive realization of the monopole wall [4,26].
Monopoles are realized as D1-strings stretched between
two D3-branes in type IIB string theory. We may take the
D3 world volume to be stretched along the directions
x0;1;2;4 and the D1-string along x0;3 with the two D3-branes
separated in the x3 direction. A monopole wall, in its
simplest lattice realization, is an R2 periodic configuration,
which we take along x1;2. A series of transformations brings

x1,2,3

x4

φ ≡ A3

d

0

1/R3

KK monopole wallmonopole wall

F12 = F34

FIG. 3 (color online). Monopole wall and KK monopole wall
with instanton charge inside the two plates.

FIG. 2 (color online). Sequence of transformations from monopole wall to KK monopole wall, first the large-gauge transformation and
then the π rotation in the x3; x4 plane.
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this configuration to a simpler system. First it can be turned
into a D3-F1 system by an S-duality. Then, because we take
a periodic configuration along x12, we can compactify on a
torus and perform T-duality on both directions. After these
transformations, the D3-brane becomes a D1-string along
the directions x0;4, and the D1-string becomes a funda-
mental F1-string along x0;3. The monopole wall is thus
transformed into a web of connected D1 and F1 strings
periodic in x3. The basic building block of this web is a
string junction among a D1, an F1, and a third dyonic (1,1)-
string with a certain angle in the x3;4 plane dictated by the
balance of the tensions. The instanton bag configuration is
then described by the web in Fig. 4. The junctions have to
be placed in a periodic configuration in x3 with the chain
resulting from the KK monopole wall shifted of a half-
period amount with respect to the chain coming from the
monopole wall. To obtain the instanton bag we take this
periodic web of string junctions, and perform all the
previous dualities in reverse order. When we arrive at
the original D3-D1 configuration, we perform another T-
duality in the direction x3 and we get the D4-D0 system.
As it is clear from the string web illustration in Fig. 4, the

monopole wall does not necessarily have to have a zero
Higgs field on its empty side. The value of the Higgs field is
in fact another parameter, which we call h (the existence of
this extra freedom was observed in [18]). For h ≠ 0, the
monopole wall has an intrinsic tension given by

T ¼ Bh
g2

¼ Mmon

l2
; ð2:16Þ

which is consistent with the mass of a single BPS monopole
with an asymptotic Higgs field equal to h

Mmon ¼
4πh
g2

: ð2:17Þ

The two configurations in Fig. 4 have exactly the same
energy. What is gained from the monopoles’ mass is lost
from the fact that the two walls are closer. In HQCD, this is
no longer a free modulus, but must enter the minimization

procedure like d and B. We will see that the h ¼ 0 is, in
general, the energetically favorite state.
We conclude this section with a discussion of the gauge

in which we want to prepare our system. When we embed
the monopole wall and KK monopole wall pair in holog-
raphy, we want to choose a gauge that is the most
convenient for the AdS/CFT dictionary. Usually, this is
the gauge in which the gauge field is zero at the UV
boundary, which is the two asymptotic limits x4 → �∞.1

The gauge we used for the previous discussion is not of this
kind because there are Dirac string singularities, one for
every period of the monopole wall and KK monopole
wall. To eliminate the Dirac strings we can go to the
analogue of the hedgehog gauge for the ’t Hooft–Polyakov
monopole. In the middle of the two walls, the gauge
transformation is a function Uðx1; x2Þ so that the adjoint
field Uðx1; x2Þtsuð2ÞUðx1; x2Þ−1 winds around SUð2Þ=Uð1Þ
once for every period of the wall lattice. This is particularly
relevant for later application in HQCD. The magnetic fields
F12 and F34 fluctuate around the su(2) algebra so that every
wave coming from the empty side of the wall in a fixed
su(2) generator (which in HQCD are dual to the vector
meson states in a given isospin state) interacts with some
magnetic field. This gauge is convenient for checking that
the instanton charge is equal to the flux of the Chern-
Simons current

Kμ ¼ 1

16π2
ϵμνρσ

�
Aa
νFa

ρ;σ þ
2

3
ϵabcAa

νAb
ρAc

σ

�
: ð2:18Þ

We take a 4D volume as in Fig. 5 that encloses part of the
instanton bag. The gauge field vanishes at the left side of
the monopole wall and at the right side of the KKmonopole
wall. So the Chern-Simons flux can escape only through
the volumes 1-3-4, 2-3-4, and 1-2-4 inside the two walls.
No term from ϵabc in the Chern-Simons current gives any
contribution. Moreover, there is no contribution from the

FIG. 4 (color online). Web of string junctions in the x3;4 plane. The basic constituent is the three string junction D1-F1-(1,1). The
structure is periodic in the x3 direction. The second is the web for the limit of coincident D1-strings. This configuration corresponds to
the instanton bag of Fig. 3.

1If the gauge field is not zero at the boundary but the gauge is
equivalent to zero, and if we do not want to interpret it as a source,
the AdS/CFT dictionary also must be modified accordingly.
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1-2-4 volume. We just have to compute the flux from 1-3-4
and 2-3-4. The total instanton charge I is then

I ¼
Z

dxidx3dx4
1

8π2
Aa
i F

a
34 ¼

B
8π2R3

L1L2L3; ð2:19Þ

where i ¼ 1; 2. This is consistent with the instanton
density (2.10).

III. HQCD AND FINITE BARYON DENSITY

The Sakai-Sugimoto model, at low energy, consists of a
Uð2Þ gauge theory in the following 5D warped metric
background:

ds2 ¼ HðzÞdxμdxμ þHðzÞ−1dz2

HðzÞ ¼
�
1þ z2

z20

�
2=3

: ð3:1Þ

The length scale z0 is related to the inverse of the dynamical
scale in the dual QCD-like theory. From now on we set
z0 ¼ 1. The action is a sum of the Yang-Mills term plus a
Uð2Þ Chern-Simons term:

S ¼ −
Ncλ

216π3

Z
d4xdz

ffiffiffiffiffiffi
−g

p 1

2
trðF ΓΔF ΓΔÞ

þ Nc

24π2

Z
d4xdzω5ðAÞ: ð3:2Þ

We use the index conventions as follows: Γ;Δ;… ¼
0; 1; 2; 3; z; μ; ν;… ¼ 0; 1; 2; 3; I; J ¼ 1; 2; 3; 4 and
i; j;… ¼ 1; 2; 3. The factors Nc and λ are, respectively,
the number of colors and the ’t Hooft coupling of the dual
theory. We can decompose the gauge field into non-Abelian
and Abelian components Uð2Þ ¼ SUð2Þ ×Uð1Þ:

AΓ ¼ AΓ þ
1

2
ÂΓ F ΓΔ ¼ FΓΔ þ 1

2
F̂ΓΔ: ð3:3Þ

In the following, we are only interested in static configu-
rations, so we restrict to the following ansatz:

AI; Â0 ¼ AIðxIÞ; Â0ðxIÞ A0; ÂI ¼ 0; 0: ð3:4Þ

The action is then reduced to

S ¼
Z

d4xdz

�
1

2H1=2 ð∂iÂ0Þ2 þ
H3=2

2
ð∂zÂ0Þ2

−
1

2H1=2 trðF2
ijÞ −H3=2trðF2

izÞ
�

þ 1

Λ

Z
d4xdzÂ0trðFIJFKSÞϵIJKS; ð3:5Þ

where we have rescaled for convenience the action and the
’t Hooft coupling as

S ¼ 64π2

ΛNc
S and Λ ¼ 8λ

27π
: ð3:6Þ

For large ’t Hooft coupling, the Chern-Simons term is
parametrically suppressed with respect to the Yang-Mills
term. The instanton in the large Λ limit can thus be
approximated by a BPS ansatz [27,28]

AI ¼ −σIJxJ
1

ρ2 þ l2
; ð3:7Þ

with σij ¼ ϵijkσk and σiz ¼ −σzi ¼ σi. The size of the
instanton l is then obtained by minimizing the energy
restricted to the BPS moduli space. This gives

l¼ 31=427=4

51=4Λ1=2 and E ¼ 8π2
�
1þ 27=2

151=2Λ
þ� � �

�
: ð3:8Þ

At large Λ, the size of the instanton is much smaller that
the curvature scale of the metric,2 which is why the BPS
profile function provides a good approximation of the true
solution, at least in the almost-flat region of the metric.
Moreover, the correction to the BPS mass is a subleading
term of order Oð1=ΛÞ. The solution flows exactly to the
BPS for Λ → ∞ but only in rescaled coordinates [29], so
the long-distance properties are not captured by the BPS
ansatz. Long-distance properties are not relevant for high-
density QCD due to the small distance between baryons, so
we will not discuss them in this paper.
At finite densities, the instantons are distributed on a

lattice configuration, and they begin to populate the 3D
space by all sitting at the bottom of the gravitational
potential at z ¼ 0. Their average distance is thus
d ¼ Q−1=3, where Q is the 3D instanton density. This

FIG. 5 (color online). Check of the Chern-Simons flux.

2Upon substitution, l ¼ 37=4π1=221=4=51=4λ1=2, which is
consistent with the results in the literature [27–30].
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configuration remains valid as long as the typical distance d
is longer than the size of the single instantons, and thus for
densities Q ≪ Λ3=2. In this regime, the energy density is
dominated by the BPS term and is thus linear in Q. In the
ensemble in which we keep the chemical potential fixed,
a phase transition to hadronic matter is expected to take
place when the average distance is of order of the curvature
scale; thus, Q≃ 1. This is when the attractive force due to
the pion-pion tail is comparable with the Coulomb repul-
sive force [31]. Above this scaleQ ≫ 1, the attractive force
becomes irrelevant with respect to the Coulomb repulsive
force. The Coulomb interaction, for any couple of instan-
tons at distance ~d, is order ECoulomb ∝ 1=Λ2 ~d2 and this is
valid for l ≪ ~d ≪ 1. The 1= ~d2 dependence is because we
are in 4þ 1 dimensions and the 1=Λ2 dependence is
because 1=Λ is the analogue of the electric charge. We
can compute the energy density of the 3D lattice as a sum of
the mass of the single constituents plus the correction due
to the Coulomb interaction:

E ¼ 8π2Q

�
1þO

�
Q
Λ2

��
: ð3:9Þ

Note that, for the Coulomb term, we summed the 1=Λ2 ~d2

term for every pair of constituents, taking as cutoff ~d≃ 1,
where the Coulomb law is certainly modified by the metric
curvature. The Coulomb correction becomes comparable
with the BPS energy at densities of order Q≃ Λ2, which
are much bigger than Λ3=2.
When the instanton density becomes of order Q≃ Λ3=2,

two interesting things happen almost simultaneously. First,
the instanton lattice is no longer diluted because the typical
inner distance becomes comparable with the instanton
size d≃ l. Second, the instantons begin to climb the
holographic direction as we are going to see with the
following simple estimate. We can estimate the force acting
on each single instanton. The first force is the gravitational
one, FGrav ∝ −Λz, where z is the linear displacement
around the bottom of the gravitational potential. Then
there is a Coulomb force due to the surrounding instantons
in the 3D lattice. This force, projected in the z component,
is proportional to z= ~d4 for any pair of instantons. The total
force is thus FCoulomb ∝ þQ4=3z. This force is pulling the
instantons away from the bottom of the gravitational
potential because it is repulsive. The instantons begin to
move away from the bottom of the gravitational potential
when the two forces are comparable FGrav ≃ FCoulomb. This
condition is the same as the breaking of the diluted
approximation. The fact that these two changes both
happen at the densities Q≃ Λ3=2 is not a coincidence; it
has also been discussed in [32] and observed in the toy
model [1]. The agents that stabilize the instanton radius are,
in fact, the same that decide when the instanton lattice
prefers to move the holographic direction.

At densities Q≃ Λ3=2, the instantons start to fill the
holographic direction as well. After that, another transition
happens at higher densities Q≃ Λ2. Assuming the average
distance remains of the order of the instanton scale d≃ l,
the instanton 4D lattice boundary reaches the curvature
scale z≃ 1, which is whenQ is of order Λ2. This is also the
density when the Coulomb energy becomes comparable
with the BPS energy (3.9), and thus the energy density
strongly deviates from the BPS bound. These phases are
summarized in Fig. 6.
The information we extracted so far is based on

qualitative estimates. To find the actual instanton solution
for the high-density phase is a much harder task. A 4D
instanton lattice is specified by many parameters: the 3D
lattice strata, the relative orientation of the instantons in
the internal space, the sizes of the instantons, and the
depth of the various layers in the holographic direction z.
For densitiesQ ≪ Λ2, the problem simplifies since we can
use a BPS ansatz and minimize the energy restricted to
the BPS moduli space. But even in this simplified case,
the problem remains difficult to solve in full generality.
Some results of the self-dual configurations periodic on T 3

and T 4 have been obtained using a version of the ADHM
transform [33]. But the energy minimization would
require knowledge of the actual gauge fields and not just
the ADHM data.
Our strategy in the rest of the paper is to use the instanton

bag discussed in Sec. II as an ansatz for the high-density
phase. For the instanton bag approximation, we can
compute the fields and thus perform the energy minimi-
zation. At the moment, we do not have sufficient control
over other possible instanton configurations to compute
their energy and thus decide which is the actual minimum
for the high-density phase.

IV. INSTANTON BAG EMBEDDED
IN THE SAKAI-SUGIMOTO MODEL

We now embed the instanton bag studied in Sec. II into
the Sakai-Sugimoto model.

FIG. 6 (color online). Generic expectation for the energy
density of the HQCD phases as function of instanton density Q.
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We first use the BPS ansatz and find the best values of
the moduli that minimize the energy density at a fixed
instanton density. The BPS solution in flat space has two
free moduli, the wall separation d and Higgs field h. We
now parametrize them with �zW , which are the positions
of the monopole wall and KK-monopole wall in the z
direction, and Δ, which is the amount of instanton charge
carried by the walls as a delta function. The relation

Q ¼ B2zw
4π2

þ Δ ð4:1Þ

is valid for a self-dual solution and gives the instanton
charge Q as function of zw, B, and Δ. We use it later to
express B as function of the other parameters.
The action (3.5) inside the two walls is reduced to

S
V3

¼
Z

dt
Z

zw

−zw
dz

�
H3=2

2
ð∂zÂ0Þ2

−
B2ð1þH2Þ

2H1=2 þ 4

Λ
Â0B2

�
: ð4:2Þ

From this, we find the equation for the Abelian electric
potential Â0:

∂zðH3=2∂zÂ0Þ −
4

Λ
B2 ¼ 0: ð4:3Þ

The solution for the electric field inside the walls is thus

∂zÂ0 ¼
4B2z

Λð1þ z2Þ for jzj ≤ zw: ð4:4Þ

The solution outside the walls is given by the solution of the
equation without sources, matched with (4.4) at z ¼ zw:

∂zÂ0 ¼
16π2Q

Λð1þ z2Þ for jzj > zw: ð4:5Þ

The energy density is given by the sum of three
contributions:

E ¼
Z

zw

0

�
H3=2ð∂zÂ0Þ2 þ

B2ð1þH2Þ
H1=2

�

þ 8π2Δð1þ z2wÞ þ
Z

∞

zw

H3=2ð∂zÂ0Þ2; ð4:6Þ

with A0ðzÞ given by (4.4) and (4.5). We evaluate the
integrals, and then expand in series of zw, since the self-
dual approximation is supposed to be valid only for zw ≪ 1.
The result is

EðQ; zw;ΔÞ ¼ 8π2Qþ 128π5Q2

Λ2

−
256ð2π4Q2 þ 2π4QΔ − π4Δ2Þ

3Λ2
zw

þ 8π2ðQþ 8ΔÞ
9

z2w þ � � � ð4:7Þ

This energy density has to be minimized with respect
to zw and Δ by keeping the instanton charge Q fixed. The
solution is given by

zw ¼ 96π2Q
Λ2

Δ ¼ 0: ð4:8Þ

The energy density evaluated at the minimum is then

EðQÞ ¼ 8π2Q

�
1þ 16π3Q

Λ2
−
1024π4Q2

Λ4
þ � � �

�
: ð4:9Þ

Note that the dominant term is the BPS bound, and the
corrections are small if Q ≪ Λ2. This is also the regime in
which zw ≪ 1. Moreover, the bag approximation is valid
when the wall microscopic structure is much smaller
than zw [see (2.12)] and thus, using (4.8), becomes
equivalent to Q ≫ Λ3=2. Therefore, the BPS and bag
approximations are both valid in the region of instanton
densities Λ3=2 ≪ Q ≪ Λ2.
In the previous analysis we used the canonical ensemble:

we kept fixed the charge density Q and minimized the
energy density. We can also pass from the canonical to
the grand-canonical ensemble. The first way is to recover
the chemical potential with the usual thermodynamic
relation

μQ ¼ ∂EðQÞ
∂Q ¼ 8π2 þ 256π3Q

Λ2
− 24 � 1024 π

6Q2

Λ4
þ � � �
ð4:10Þ

The second way, by using the AdS/CFT prescription, is to
compute the asymptotic value of Â0. This can be done by
integrating the electric field in the two regions (4.4) and
(4.5). The result is

Â0ð∞Þ ¼ Â0ð0Þ þ
8π3Q
Λ

−
768π4Q2

Λ3
þ � � � ; ð4:11Þ

where we have kept the first two orders on Q=Λ2. To
compare it with the chemical potential, we first have to find
the proper normalization. The electromagnetic coupling
comes from the Chern-Simons term of the action (3.5)

SCS ¼
1

Λ

Z
d4xdzÂ0trðFIJFKSÞϵIJKS ¼

Z
dt

32π2

Λ
Â0Q;

ð4:12Þ
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so the AdS/CFT prescription predicts the following relation
between chemical potential μQ and the asymptotic value
of Â0:

μQ ¼ 32π2

Λ
Â0ð∞Þ: ð4:13Þ

We can then see that the two ways to compute μQ, (4.10)
and (4.13), agree to every order if we choose Â0ð0Þ ¼ Λ

4
.

When zw becomes of order 1, we can no longer use the
self-dual approximation, although we can still use the
instanton bag approximation. For this, we have to solve
the profile function for A3ðzÞ as it is generally modified by
the metric curvature and is no longer linear in z. The relation
(4.1) is now given in more generality by the following:

Q ¼ B
8π2

Z
zw

−zw
∂zA3 þ Δ: ð4:14Þ

The action density between the two walls is

S
V3

¼
Z

dt
Z

zw

−zw
dz

�
H3=2

2
ð∂zÂ0Þ2 −

B2

2H1=2

−
H3=2

2
ð∂zA3Þ2 þ

4

Λ
Â0B∂zA3

�
; ð4:15Þ

from which we derive the equations for Â0 and A3:

∂zðH3=2∂zÂ0Þ −
4

Λ
B∂zA3 ¼ 0 ð4:16Þ

∂z

�
H3=2∂zA3 −

4

Λ
Â0B

�
¼ 0: ð4:17Þ

The second one can be integrated

∂zA3 ¼
4Â0B − CΛ

ΛH3=2 ; ð4:18Þ

where C is an arbitrary integration constant.
Equation (4.16), together with the boundary condition
∂zÂ0ð0Þ ¼ 0, gives the solutions for Â0:

Â0 ¼ Â0ð0Þ þ
CΛ
4B

�
1 − cosh

�
4Btan−1ðzÞ

Λ

��
: ð4:19Þ

The solution for ∂zA3 is

∂zA3 ¼ −
C

H3=2 cosh

�
4Btan−1ðzÞ

Λ

�
: ð4:20Þ

The relation (4.14) can now be written as

Q ¼ CΛ
16π2

sinh

�
4Btan−1ðzwÞ

Λ

�
þ Δ: ð4:21Þ

Outside the walls, A3 is constant, while Â0 is given by

Â0 ¼ c1 − C sinh

�
4Btan−1ðzwÞ

Λ

�
tan−1ðzÞ; ð4:22Þ

where c1 is a constant that we do not need for the moment.
The energy density is then given by

E ¼
Z

zw

0

�
H3=2ð∂zÂ0Þ2 þ

B2

H1=2 þH3=2ð∂zA3Þ2
�

þ Δð1þ z2wÞ
π2

þ
Z

∞

zw

H3=2ð∂zÂ0Þ2: ð4:23Þ

We can use the relation (4.21) to write the integration
constant C as function of the other parameters, and then the
energy density becomes

EðQ;B; zw;ΔÞ ¼
32π4ðQ − ΔÞ2 sinhð8Btan−1ðzwÞΛ Þ

BΛðsinhð4Btan−1ðzwÞΛ ÞÞ2

þ B2

Z
zw

0

1

ð1þ z2Þ1=3

þ Δð1þ z2wÞ
π2

þ 256π4ðQ − ΔÞ2
Λ2

×

�
π

2
− tan−1ðzwÞ

�
: ð4:24Þ

This is the function that has to be minimized with respect to
the three parameters B; zw;Δ, while keeping Q fixed. With
the following convenient rescaling

B ¼ bΛ Q ¼ qΛ2; ð4:25Þ

we can write the functional (4.24) as

1

Λ2
Eðq; b; zwÞ ¼

32π4q2 sinh ð8btan−1ðzwÞÞ
bðsinh ð4btan−1ðzwÞÞÞ2

þ b2
Z

zw

0

1

ð1þ z2Þ1=3

þ 256π4q2
�
π

2
− tan−1ðzwÞ

�
: ð4:26Þ

Numerical examples, for a given value of q, show that the
minimum always exists and is at Δ ¼ 0 for some finite
value of B; zw.
An analytic solution to the minimization of (4.26) can be

obtained in the limit zw ≫ 1. For this, we can first minimize
(4.26) with respect to zw by keeping only the dominant
terms in a large zw expansion,

zw ¼ 64π3
�
q coth ð2bπÞ

b

�
3=2

for zw ≫ 1: ð4:27Þ
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We then have to minimize

1

Λ2
Eðq; bÞ ¼ 64π4q2 coth ð2bπÞ

b

þ 16b3=2πðq2ðcoth ð2bπÞÞ2Þ1=4 ð4:28Þ

with respect to b. By considering only the dominant terms
in the large q limit, we obtain the result

b ¼ 221=5π6=5q3=5

32=5
and

zw ¼ 1621=533=5π6=5q3=5 for q ≫ 1; ð4:29Þ

and the energy density is

EðQÞ ¼ 80

�
24π14Q7

33Λ4

�
1=5

for Q ≫ Λ2: ð4:30Þ

Note that the derivative with respect to Δ is positive:

∂E
∂Δ

				
Δ¼0

≃þ z2w
π2

−
256π5Q

Λ2
> 0 for Q ≫ Λ2: ð4:31Þ

This limit Q ≫ Λ2 is exactly the opposite of the BPS limit
previously considered. We can compute the chemical
potential in this limit with the thermodynamic relation

μQ ¼ ∂EðQÞ
∂Q ¼ 11224=5π14=5Q2=5

33=5Λ4=5 : ð4:32Þ

The asymptotic value Â0 is obtained by integrating (4.19)
and (4.22):

Â0ð∞Þ ¼ 16π2Q

�
1

4B
þ 1

zw

�
¼ 7π4=5Λ1=5Q2=5

21=533=5
; ð4:33Þ

and this agrees with (4.32) by using (4.13).
The minimization can be performed numerically for

any value of Q. The results are shown in Figs. 7 and 8
and are confronted both with the small Q and large Q
approximations.
We can consider a local inertial frame by zooming in

closer to the monopole wall. In the new coordinates,

~xμ ¼ HðzwÞ1=2xμ ~z ¼ z − zw
HðzwÞ1=2

; ð4:34Þ

the metric is locally Minkowski,

ds2 ≃ d~xμd~xμ þ d~z2; ð4:35Þ

and this is valid as long as j~zj is much smaller than the
metric curvature radius, which, for zw ≫ 1, is the condition

j~zj ≪ 1

jRj1=2 ≃
3z1=3w

2
ffiffiffiffiffi
13

p : ð4:36Þ

In this frame, the fields close to the wall are

F~z ~3 ¼ Fz3 ¼
8π2Q
Λz2w

¼ π28=5Λ7=5

36=58Q1=5

F ~1 ~2 ¼
B

HðzwÞ
¼ π18=5Λ7=5

36=58Q1=5 : ð4:37Þ

The monopole wall lattice period ~l and the transverse
thickness ~δ are given by

~l ¼ 1ffiffiffiffiffiffiffiffi
F ~1 ~2

p ~δ ¼ 1ffiffiffiffiffiffiffiffi
F~z ~3

p ð4:38Þ

and are always smaller than the curvature radius. This
justifies the approximation made before of neglecting the
microscopic structure of the walls.

8 2 Q 1 4 2 Q 64 4 Q2)

8 2 Q

Q

Q

0.1

0.2

0.3

0.4

0.001 0.002 0.003

FIG. 7 (color online). Numerical plot of EðQÞ for small values
of Q obtained from the minimization of (4.26) for Λ ¼ 2. This
confirms the expectation from the BPS approximation (4.9).

8 6 4 2
log Q

4

2

2

4

log Q

FIG. 8 (color online). Numerical solution of EðQÞ in a log-log
plot for Λ ¼ 2. This shows the interpolation between the
almost-BPS limit for small Q and the asymptotic solution
(4.30) for large Q.
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V. EMBEDDING IN STRING THEORY

Now we move to the full string version of Sakai-
Sugimoto (SS) [34]. First we briefly review the brane
construction and the near-horizon geometry. The SS model
starts with the intersection of D4, D8, and anti-D8 branes in
type IIA string theory. The gauge theory with group
SUðNcÞ is defined on the D4-branes, which are extended
along the directions x0;1;2;3;5, and the Nf flavors are
provided by the D8-branes and anti-D8-branes extended
along the directions x0;1;2;3;5;6;7;8;9. This brane intersection
leaves only massless chiral fermions with one gauge and
one flavor index in the low-energy theory. Moreover, the
direction x5 is compactified with antiperiodic boundary
conditions for fermions on a circle with radius R5 [35].
With this compactification, the low-energy of the D4 is
exactly that of QCD in 3þ 1 dimensions with Nf massless
fermions.
The next step is to take large Nc and large λ limits and

go to near-horizon geometry of the D4-branes. The D4-
branes disappear and leave a curved AdS5 geometry
compactified on x5, plus an S4 sphere with Nc units of
Ramond-Ramond flux. The D8-branes remain as physical
branes in this background. The geometry, the field
strength, and the dilaton are given by

ds2 ¼
�
u
L

�
3=2

ðdxμdxμ þ hðuÞdx25Þ

þ
�
L
u

�
3=2

�
du2

hðuÞ þ u2dΩ2
4

�

F4 ¼
ð2πÞ3α03=2Nc

V4

volðS4Þ

eϕ ¼ gs

�
u
L

�
3=4

; ð5:1Þ

with

hðuÞ ¼ 1 −
�
u0
u

�
3

: ð5:2Þ

This is a cigarlike topology in the two-dimensional
subspace x5; u (see Fig. 9). It is like a Euclidean
Schwarzschild black hole, with x5 playing the role of
the Euclidean time. The holographic direction is u, and
both limits u → �∞ correspond to the UV limit of the
boundary theory. The cigar topology implies that the two
stacks of D8 and anti-D8 branes are continuously joined
together at the tip of the cigar; this is the geometric
realization of chiral symmetry breaking.
We now recall the relation between bulk and boundary

theories. The dual gauge theory is defined by the gauge
couplings gYM4 and gYM4, the number of colors Nc, the
compactification radius R5, and the ’t Hooft coupling λ
related by the following:

g2YM4 ¼
g2YM5

2πR5

λ ¼ g2YM4Nc: ð5:3Þ

The dynamical scale is given by

ΛQCD ¼ 1

R5

e−cost=λ ð5:4Þ

which means that the low-energy QCD is hierarchically
separated from the Kaluza-Klein modes only for λ ≪ 1.
This is one limitation of the λ → ∞ limit in the SS model.
Thus, the bulk string theory has parameters gs, α0, L, u0,
and R5. The absence of any conical singularity at the cigar
tip gives the relation

1

R2
5

¼ 9u0
4L3

: ð5:5Þ

We then have three parameters to be matched between bulk
and boundary. The dictionary is given by the following
three relations:

L3

α0
¼ λR5

2

u0
α0

¼ 2λ

9R5

gs
ffiffiffiffi
α0

p
¼ λR5

2πNc
: ð5:6Þ

Note that only three out of the four parameters, L; u0; gs; α0,
are needed to define the boundary parameters Nc; λ; R5.
To maintain string theory at weak coupling, we need the

curvature of the bulk to be small with respect to the string
scale and thus the ’t Hooft coupling to be large:ffiffiffiffiffiffiffiffiffiffi

L3u0
4
p

ffiffiffiffi
α0

p ≫ 1 ⇒
ffiffiffi
λ

p
≫ 1: ð5:7Þ

Moreover, the string coupling has to be small:

gs

�
u0
L

�
3=4

≫ 1 ⇒
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
λ3=2=Nc

q
≪ 1: ð5:8Þ

FIG. 9 (color online). Geometric realization of confinement and
chiral symmetry breaking in the Sakai-Sugimoto model and the
embedded instanton bag on the D8’s worldvolume.
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There is always a scale uUV above which string theory is no
longer weakly coupled. For this, we need a further
restriction on Nc and λ:

uUV

u0
≃ N4=3

λ2
≫ 1: ð5:9Þ

The low-energy theory on the D8-branes is the non-
Abelian Dirac-Born-Infeld (DBI) action plus a Wess-
Zumino term. Since the D8 and anti-D8 are continuously
connected, we can write an action on a single extended
stack ofNf D8-branes. Wewill mostly focus on theNf ¼ 2
case. The DBI action in the weak field limit is just the
Yang-Mills action, so that

S ¼ −k
Z

d4xdu
u5=2

hðuÞ1=2
1

2
tr

×

��
L
u

�
3

F μνF μν þ 2hðuÞF μuF μu

�

þOðF 4Þ þ Nc

24π2

Z
ω
Nf

5 ðAÞ; ð5:10Þ

where we raised indices with ηΓΔ, and the coefficient k is
given by

k ¼ L3=2

243π4gsα05=2
: ð5:11Þ

This can be written as a theory living on an effective 5D
effective metric which takes into account the effect of the
dilaton:

ds ¼ u2

u20
dx2 þ L3

u20uhðuÞ
du2: ð5:12Þ

We can change variables from u to z with

1þ z2

z20
¼ u3

u30
with z20 ¼

4L3

9u0
¼ R2

5: ð5:13Þ

This brings the metric to the form (3.1), and the action
(5.10) to (3.2) in the xμ; z coordinates in units z0 ¼ R5 ¼ 1.
Figure 9 shows how the instanton bag solution is

embedded in the D8’s world volume. The terms (5.10)
are a truncation of the DBI action to the first YM term. The
original DBI action for the D8 brane is

SDBI ¼ T8

Z
d9xe−ϕtr

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
−detðgΓΔ þ 2πα0F ΓΔÞ

p
: ð5:14Þ

To check if the truncation of the DBI action to the YM term
is a good approximation, we have to check if the three
corrections

ðα0BÞ2
g11g22

;
ðα0F3uÞ2
g33guu

;
ðα0F̂u0Þ2
g00guu

ð5:15Þ

are negligible for any u. In the almost-BPS limit, that is,
Q ≪ Λ2, the first two in (5.15) are both of order 1. So, as it
happens for an instanton in isolation, the YM term receives
order 1 corrections from the higher derivative terms. This is
mitigated by the fact that the self-dual solutions are also
solutions of the DBI action in flat space [36]. Even in the
large Q ≪ Λ2 limit, computed on the solution (4.29), these
higher derivative corrections remain non-negligible.
In the effective metric (3.1) the full DBI plus Chern-

Simons (CS) action is

S ¼ −
Z

d4xdzCtr

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
−det

�
gΓΔ þ 2

C1=2F ΓΔ

�s

þ 8

3Λ

Z
d4xdzω5ðAÞ; ð5:16Þ

where

C ¼ Λ2

16ð1þ z2Þ1=2 ; ð5:17Þ

and we used the same rescaling as (3.6). For the
almost-BPS regime, from (4.1) and (4.8), the non-
Abelian field is B ¼ Λ=

ffiffiffi
6

p
inside the instanton bag. The

correction from the higher derivative terms is thus of order
B=C1=2 ¼ 4=

ffiffiffi
6

p
, which is indeed non-negligible and does

not depend on Λ. A detailed study of the instanton bag
solution using the full DBIþ CS action is beyond the scope
of this paper. We do not expect, at least in the almost-BPS
regime, a qualitative change in the solution.

VI. CHIRAL SYMMETRY RESTORATION

The purpose of this section is to discuss the phenomenon
of chiral symmetry restoration at high density.
Let us first discuss the basic features of chiral symmetry

breaking in the SS model with the linear expansion in
eigenmodes. The theory lives in the effective geometry
(3.1), where the left and right flavor branes correspond to
the left and right limits of the holographic coordinate
z → �∞. The YM action in this metric is

S ¼
Z

d4xdztr

�
−

1

2HðzÞ1=2 Fμν
2 −HðzÞ3=2Fμz

2

�
: ð6:1Þ

We linearly expand around the vacuum state

Aμ ¼
X
n

Bn
μðxμÞψnðzÞ Az ¼

X
n

φnðxμÞϕnðzÞ; ð6:2Þ

We take ϕn to be the derivative of ψn. The boundary
conditions correspond to the vanishing of the sources at the
conformal boundaries:
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ψnð�∞Þ ¼ 0 for n > 0: ð6:3Þ

This is the condition that quantizes the mesons states. n odd
or even correspond, respectively, to even or odd states, and
n ¼ 0 is a case to be treated with special care. ψn solves the
equation

HðzÞ1=2∂zðHðzÞ3=2∂zψ
�
ðkÞðzÞÞ þ k2nψ�

ðkÞðzÞ ¼ 0: ð6:4Þ

The action becomes then

S ¼
X
n

ðψn;ψnÞ
Z

d4x
�
−
1

4
ð∂μBn

ν − ∂νBn
μÞ2

þ k2n
2
ðBn

μ − ∂μφ
nÞ2

�
; ð6:5Þ

and the metric in ψðzÞ functional space is

ðψ1;ψ2Þ ¼
Z

dzHðzÞ−1=2ψ1ðzÞψ2ðzÞ; ð6:6Þ

with ψn, ψm that are orthogonal if n ≠ m. For n ≥ 1 we can
eliminate φ’s with a gauge transformation, and the action
is then that of a vector boson with mass kn. When n ¼ 0,
also k0 ¼ 0, and this gives the action of the pion. This is
a special case because the boundary condition (6.3) is not
satisfied, but nevertheless there is no source at the
boundary.
If we expand around another state, we need the particular

multi-instanton background which solves the finite density
problem. The spectrum in the dual theory always consists
in a tower of vector bosons plus the pions.
Vector mesons come in pairs, one vectorial V and one

axial A, under the parity symmetry z → −z. In our con-
ventions, these correspond, respectively, to the choice of n
being odd or even. One of the simplest observables that
probes chiral symmetry breaking is the mass splitting
between the axial and vectorial states:

ηm ¼ M2m −M2m−1

M2m þM2m−1
: ð6:7Þ

This test can be performed at every level m > 0, although
the lower ones give, in general, the biggest η. If ηm is
different from zero, chiral symmetry is broken. If ηm is
zero, or almost zero, the Vand A states are degenerate, and
chiral symmetry is restored, or almost restored. In the
vacuum, the two left and right branes are connected by the
geometry, and chiral symmetry is thus broken. This may
not be the case in the presence of something in the middle
that could prevent communication between the two sides.
Chiral symmetry is restored, for example, at high

temperature in the SS model. Introducing finite temperature
leads to competition between the Euclidean time circle τ
and the x5 circle on which to close the topology. This may

lead to a phase transition with chiral symmetry restored. In
this case, the geometry of space-time has a Hawking-Page
phase transition, and the two branes become disconnected
by the presence of a horizon. This is a drastic change in the
topology, and the V and A states become absolutely
degenerate; i.e., ηm is exactly zero for every level m. At
finite chemical potential, the situation is more subtle. We
will be mainly interested in the zero temperature case, so
the topology of space-time remains unchanged (3.1). Chiral
symmetry restoration can be explained just within the
effective action (3.2).
We consider first a toy model that illustrates a simplified

version of the phenomenon we want to discuss. This is the
quantum mechanical problem of a particle in a double-well
potential with Hamiltonian

H ¼ −
1

2

�
d
dx

�
2

þ v2

2
ðx2 − 1Þ2: ð6:8Þ

The potential has a parity symmetry x → −x. In case of a
very large potential barrier, v ≫ 1, we can approximate the
eigenstate energies as

Em;� ≃ 1

2
þm ∓ Oðe−4v=3Þ for m ≪ v; ð6:9Þ

with m ∈ N. These states are localized near the two vacua
of the potential and come in pairs. The potential provides a
barrier for the states that have energy below its maximum
height. For the states below this barrier, we have an
approximate degeneracy between V and A states. The
splitting between odd and even states can occur only
through the tunneling below the barrier, and it is thus
suppressed exponentially by the instanton action e−4v=3.
The situation in HQCD at high density, as we are going to
see, is analogue to this toy model. The instanton charge
provides a potential barrier between the left and right
boundaries. We then have to determine under which
conditions the barrier can seal the two sides from commu-
nication with each other, at least for some of the low-energy
states, thus providing a mechanism for an effective chiral
symmetry restoration. Note that, as for the toy model, the
chiral symmetry restoration can never be exact but only up
to exponentially small terms. This is expected because,
unlike the high temperature case, the left and right branes
are always connected by the geometry.
We now consider a second toy model, which is a step

closer to the real thing. We take a charged particle living on
a strip −L < z < L and −∞ < x < ∞ and coupled to a
background gauge field. The equation of motion is the
following covariant version of the Klein-Gordon equation:�
1

2
ð∂t − iAtÞ2 −

1

2
ð∂x − iAxÞ2 −

1

2
ð∂z − iAzÞ2

�
× ψðt; x; zÞ ¼ 0: ð6:10Þ
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In a static background, we can solve the eigenvalues
equation

�
−
1

2
ð∂x − iAxÞ2 −

1

2
ð∂z − iAzÞ2

�
ψnðx; zÞ ¼ ϵnψnðx; zÞ:

ð6:11Þ

This is the same as the Schrödinger equation for a
nonrelativistic quantum particle with mass=ℏ2 ¼ 1. This
analogy may be useful. For states which do not have
momentum in the x direction, the eigenvalues λn are related
to the mass in the holographic interpretation, precisely

ϵn ¼
M2

n

2
for kx ¼ 0: ð6:12Þ

In the vacuum Ax;z ¼ 0, the spectrum of the operator (6.11)
is ϵn ¼ ð1þ nÞ2=L, where n being odd or even corre-
sponds to the parity with respect to z → −z and clearly
there is no degeneracy between V and A states. We then
turn on a constant magnetic field Fxz ¼ F in a smaller strip
−z� < z < z� with z� < L. The phenomenon of magnetic
trapping is quite clear by considering the classical particle
trajectories in Fig. 10. This in the sense of the non-
relativistic analogy mentioned before. For a particle to
be able to cross the magnetic strip, the radius of the
trajectory in the constant magnetic field zone

ffiffiffiffiffi
2ϵ

p
=F must

be at least equal to the strip size 2z�. There is an effective
energy barrier ≃ðFz�Þ2 between the left and right regions.
The left and right states, if confined in the regions without
the magnetic field, have energies

ϵm;V;A ¼ π2ð1þmÞ2
2ðL − z�Þ2

∓ Oðe−∝Fz2� Þ ð6:13Þ

with m ∈ N:

lp ≃ 1þm
ðL − z�ÞF

: ð6:14Þ

The condition to have V and A degeneracy is lp ≪ z�,
which, for the lowest state m ¼ 0, is

1

ðL − z�ÞF
≪ z�: ð6:15Þ

To be more explicit, we take the following gauge to
reproduce the desired magnetic field,

Ax ¼ 0 z� ≥ z ≥ L

Ax ¼ Fðz − z�Þ − z� ≤ z ≤ z�
Ax ¼ −2Fz� − L ≥ z ≤ −z�; ð6:16Þ

with At ¼ Az ¼ 0. The eigenstates can be written as

ψðt; x; zÞ ¼ eiktt−ikxxψnðzÞ; ð6:17Þ

where k2t − k2x ¼ M2
n is the mass square from the x; t

perspective. With this ansatz, the eigenvalue equation
becomes

−
1

2
ψnðzÞ00 þ

ðFðz− z�Þ− kxÞ2
2

ψnðzÞ ¼
M2

n

2
ψnðzÞ; ð6:18Þ

which is the analogue of (6.4). The wave function ψnðzÞ is
exponentially suppressed in the magnetic field region. This
damping is smaller if we increase the particle massMn and/
or if we give a momentum in the x direction, as is also clear
from Fig. 10. For the low-energy states, the penetration
length is given by formula (6.14).
We now consider a third toy model (Fig. 11), which

contains yet another different effect that will have to be
considered when we will deal with the real thing. We take
the same charged particle as before, living on a strip −L <
z < L and −∞ < x < ∞ and coupled to a background
gauge field. We then turn on a pure gauge field Ax ¼ C,
with C a constant in a smaller strip −z� < z < z�, with
z� < L:

Ax ¼ 0 z� þ δ ≥ z ≥ L

Ax ¼ C − z� ≤ z ≤ z�
Ax ¼ 0 − L ≥ z ≤ −z� − δ; ð6:19Þ

with At ¼ Az ¼ 0. The two walls at the edges of the strip
have thickness δ ≪ z�. Here a magnetic field Fxz is
inevitably turned on to have the matching of the gauge
field. We assume that this happens in the simplest way, a
linear function homogeneous in x. So the magnetic field
inside the two walls is, respectively, Fxz ¼ �C=δ.

FIG. 10 (color online). Charged particle tunneling a magnetic
field strip.
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There is now a massless eigenstate that can propagate
inside the strip since it is a pure gauge. The only difference
is that this state must have a phase changing in the x
direction to cancel the constant field eiCx. So the main
source of tunneling between the left and right side takes
place inside the two walls of thickness δ, and is just given
by the overlap between the massless states inside and
outside the strip. The penetration length is now given by

lp ≃ ð1þmÞδ
ðL − z�ÞC

: ð6:20Þ

The condition to have V and A degeneracy is lp ≪ δ,
which, for the lowest state m ¼ 0, is

1

ðL − z�ÞC
≪ 1: ð6:21Þ

Note that δ disappears from this condition.
Now we finally consider the real problem of HQCD in

the instanton bag background. The problem is quite
complex, and we cannot provide an analytic solution for
the wave functions and the spectra as in the the vacuum
state (6.4). We have to rely on analogies with the previous
toy models. There are two different sources of tunneling we
need to consider: one is mimicked by the second toy model
of Fig. 10, and the other by the third toy model of Fig. 11.
The theory is defined on the metric (3.1), which is

effectively a box with finite size, and this is what provides
the quantization of the vector mesons’masses. The analogy
with the previous two toy models is that the size of the strip
L is the curvature scale.
We begin from the almost-BPS limit, which is valid in

the region of densities Λ3=2 ≪ Q ≪ Λ2. The Λ3=2 lower
bound is when the instantons begin to populate the

holographic direction, and it also coincides with the
microscopic wall structure, l≃ δ≃ 1=

ffiffiffiffi
Λ

p
, being smaller

than the distance between the two walls, which is of
order Q=Λ2. The upper bound coincides with the wall
position being much smaller than the curvature scale
zw ≃Q=Λ2 ≪ 1. In this case, the wavelength of the particle
confined in the empty sides is of order 1 [this is the
analogue of 1=ðL − z�Þ in the toy model].
The first effect to consider is the tunneling as in Fig. 10.

Between the two walls the fields are

F12 ¼ F3z ¼ BUðx1; x2Þtsuð2ÞUðx1; x2Þ−1: ð6:22Þ

A gauge transformation Uðx1; x2Þ is necessary, as we
discussed in Sec. II, for the gauge fields not to have
Dirac string singularities at both boundaries. The magnetic
fields oscillate in all the su(2) generators. The vector boson
states are instead waves coming from the empty sides in a
fixed generator of the su(2) algebra.
The F field of the toy model in Fig. 10 is the analogue of

this Fzx3 field. We will neglect the magnetic field F12 for
simplicity. First, we check if the oscillations of the
magnetic field generator are fast enough with respect to
the momentum of the wave hitting the monopole wall from
the empty side. This is indeed the case because the
momenta of the waves confined in the empty regions are
of order 1 while the momentum of the monopole wall
lattice is 1=l≃ 1=

ffiffiffiffi
Λ

p
. The vector boson states do not have

enough energy to resolve the microscopic structure of the
wall or to see the fluctuations of the magnetic fields (6.22).
Then we have to check if the size of the magnetic strip is
large enough to separate the left and right sides. The
penetration length is of order 1=F≃ 1=Λ and is much
smaller than the wall’s distance zw ≃Q=Λ2 in this regime.
Therefore, the two sides are indeed separated by a potential
barrier, at least for the channel described by Fig. 10.
There is yet another possible source of tunneling. The

monopole wall solution is essentially an Abelian solution
far from the wall. In the Dirac gauge, the fields are all
directed in one particular direction in the algebra su(2); see
(2.3), (2.4). So the states of the vector boson fields which
are directed in the same direction are completely trans-
parent to the magnetic fields and they pass through the
region between the two walls as free fields. The hedgehog
gauge does not make these massless states disappear; they
just have particular winding in the x1 and x2 direction to
compensate for the gauge transformation. This is an exact
analogue to what happens in the toy model of Fig. 11. The
condition for having a barrier is that the wavelength of the
particle confined in the empty sides must be much smaller
that the microscopic wavelength 1=l, and this we already
checked to be the case.
We then go to the high-density limit Q ≫ Λ2, and we

have to compute the equivalent of the energy scale (6.13) in
the toy model. For this, it is convenient to go first in the η

FIG. 11 (color online). Charged particle tunneling a “pure
gauge” strip.
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coordinate where the metric is conformally flat, which for
z ≫ 1 and η ≪ 1 is

ds2 ¼ zðηÞ4=3ðdxμdxμ þ dη2Þ zðηÞ≃ 27

η3
: ð6:23Þ

The typical momentum of a particle confined in the empty
region z > zW , in these coordinates, is

kη ≃ 1

ηw
≃ 3

z1=3w

: ð6:24Þ

We then use the coordinate transformations to go in the ~x; ~z
coordinates, the ones in which the metric is (4.35) near the
wall. The result is

k~z ≃ kη
z2=3w

≃ 3

zw
: ð6:25Þ

This is the momentum of the wave hitting the monopole
wall in a locally Minkowski frame.
The next step is to compare this with the lattice size of

the monopole wall. The following inequalities,

k~z ≪
1

~l
⇒ Λ1=2 ≪ Q1=2; ð6:26Þ

mean that the momentum k~z is never large enough to see the
microscopic structure of the wall, so we can average out the
fluctuations of the magnetic field. Then wewant to estimate
the penetration length of the wave with momentum (6.25)
when it enters the magnetic field region. The penetration
length is from the equation

lp ≃ k~z
F ~3 ~z

∝
1

Q2=5Λ1=5 ; ð6:27Þ

which is even smaller than the wall thickness δ. Thus, the
two sides are not communicating also in the Q ≫ Λ2 limit.
With the chiral symmetry restoration being only up to

exponentially small terms, the V-A mass splitting is never
exactly zero, and in particular the pion, as a massless state
in the spectrum of the theory, is always present. Testing
chiral symmetry restoration with the pion would be more
complicated than just computing the spectrum; it would
require us to check the pion self-interaction or the pion
vector meson interaction. The pion wave function ϕ0ðzÞ is
approximately constant in the two empty sides of the
instanton bag, with opposite sign, and joined by an
exponentially suppressed tail in the middle. This implies
that the higher derivative interactions between pions and
between pions and the massive vector bosons should be
exponentially suppressed. It would be interesting to under-
stand this aspect in terms of the chiral condensate, as
in [37,38].

VII. CONCLUSIONS

In the first part of the paper, we discussed a multi-
instanton solution in flat space which is periodic in three
directions and finite in the fourth direction. We called this
an instanton bag because, in some opportune limit, it can be
described by a homogeneous distribution of self-dual fields
trapped between a monopole wall and a Kaluza-Klein
monopole wall. We embedded the instanton bag in the
Sakai-Sugimoto model. This is the dual of a phase of high-
density baryons in the QCD-like theory defined on the
boundary. The parameters of the solutions have been
determined by the constrained energy minimization, ana-
lytically solved in two limits of intermediate and large
densities, and confronted with the numerical solution.
A transition from a lattice of instantons and a lattice of

monopoles and KK monopole pairs has been discussed in
[11] under the name of “dyonic salt.” Our construction is
somehow an extension of this because we show, using the
monopole walls, how to extend this to higher densities
where the holographic direction is also probed. The fact
that at high densities the instantons start to probe the
holographic direction has been discussed [7,9,10] and
linked to the existence of a quarkyonic phase. We showed
that a configuration similar to the dyonic salt can be
extended to arbitrarily high densities and probe the holo-
graphic direction.
We still cannot perform the minimization over all the

possible multi-instanton moduli space. The instanton bag
configuration we considered in this paper is just one
particular case, for we can compute the fields and the
energy and then minimize the moduli.
This instanton bag phase is intrinsically nondilute; i.e., the

individual instantons’ components cannot be distinguished
and are larger than their average separation. Previous results
in the toy model [1] and also the qualitative analysis of
Sec. III showed that nondilution is an inevitable feature of
large density solutions andbecomes applicable exactlywhen
the solitons start to populate the holographic direction.
The restoration of chiral symmetry is related to the

nondilution of this phase. The non-Abelian field strength is
continuously spread in the bulk, as opposed to a dilute
phase in which it is confined to the instanton cores. This
considerably affects the equation of motion for the gauge
fields in the bulk, and thus creates a barrier between the left
and right branes, leading to an effective chiral symmetry
restoration.
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