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We derive, in curved spacetime, the most general Lorentz-violating electromagnetic Lagrangian
containing dimension-five operators with one more derivative than the Maxwell term in the hypothesis
that Lorentz symmetry is broken by a background four-vector nμ. We then study, for the case of isotropic
nμ, the generation of cosmic magnetic fields at inflation and cosmic birefringence. In the limiting case of
Minkowski spacetime, we find that other than the CPT-odd Myers-Pospelov term, there exists another
CPT-odd term that gives rise to nontrivial dispersion and constitutive relations.
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I. INTRODUCTION

The search of Lorentz and CPT symmetry violation
effects at low-energy scales has received a renewed interest
in recent years due to the improved sensitivities of both
terrestrial experiments and astrophysical observations [1,2].
The motivation behind the investigation of such possible
effects is that in some theories that aim to give a quantum-
consistent description of gravity, such as loop quantum
gravity [3] and string theory [4], the breakdown of Lorentz
and CPT symmetries is expected to take place around the
Planck scale mPl ≃ 1019 GeV.
At much lower energies, attainable by present-day

experiments, the breaking of such fundamental symmetries
may manifest itself, for example, by a modification of the
standard dispersion relations of freely propagating particles
such as photons. Irrespective of the underlying fundamental
quantum gravity theory, however, effects of Lorentz and
CPT symmetry violation can be studied in the framework
of low-energy effective field theories [5,6].
The simplest of such effective theories is the so-called

minimal standard-model extension (SME),which represents
the extension of the standard model of particle physics that
incorporates all possible Lorentz-violating renormalizable
(up to dimension four) operators in Minkowski [7] and
curved [6] spacetimes.
A theory, known as standard-model extension, with

Lorentz-violating nonrenormalizable (dimension five and
more) operators in Minkowski spacetime has also been
recently constructed for the case of photons [8] and fermions
[9] and represents a generalization of the so-called Myers-
Pospelov model [10] where only dimension-five operators
were considered.
In particular, the electromagnetic Myers-Pospelov

Lagrangian was constructed by relying upon the following
six criteria [10]: (i) quadratic in the electromagnetic field,
(ii) one more derivative than the usual Maxwell term,
(iii) gauge invariant, (iv) Lorentz invariant, except for the

presence of an external four-vector nμ, (v) not reducible to
lower dimension operators by the equations of motion, and
(vi) not reducible to a total derivative.
The aim of this paper is to consider the extension of the

electromagnetic Myers-Pospelov model to the case of a
general curved background spacetime. This is useful when
testing the theory in a cosmological context using, for
example, data of cosmic birefringence of the cosmic
microwave background (CMB) radiation (see, e.g.,
[11,12]), or when studying the creation of large-scale
cosmic magnetic fields [13] during the inflation era.
Interestingly enough, we will also find, when reducing

ourselves to the Minkowski case, that other than the usual
Myers-Pospelov electromagnetic Lagrangian term there
exists another CPT-odd term satisfying the six criteria
above enunciated and neglected in the seminal paper [10].
We will then analyze this term by finding the photon
dispersion relations, fundamental for the quantization of the
theory, and showing that, at low energies and for the case of
isotropic nμ, the propagation of light in vacuum is formally
equal to the propagation of light in a particular bi-isotropic
medium known as “Pasteur medium.”

II. CURVED SPACETIME

In Minkowski spacetime, (particle) Lorentz violation is
implemented by coupling physical fields to constant
spacetime tensors na1a2…an , called external or background
tensors. The passage from Minkowski to a general curved
spacetime is obtained via the vierbein eμa,

1 nμ1μ2…μn ¼
eμ1a1e

μ2
a2…eμnann

a1a2…an [6]. (In this section, indices in
Minkowski spacetime are indicated with the first letters
of the Latin alphabet and run from 0 to 3. Indices in curved
spacetimes are indicated with Greek letters and run from 0
to 3. Latin indices from the middle of the alphabet run from
1 to 3 and indicate spatial components of a given tensor.) It
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1The vierbein satisfies the condition eμaebμ ¼ ηab, and is such
that gμν ¼ eaμebνηab, where ηab and gμν are the metric tensors in
Minkowski and general curved spacetimes, respectively.
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is important to stress that, while in Minkowski spacetime
the external tensors are constant—in curved spacetime they
are not—since the vierbein eμaðxÞ is, generally, a function of
the spacetime position x.

A. Lagrangian and equations of motion

Let us construct the most general Lagrangian for the

photon field Aμ, Lð5Þ
em, containing all gauge-invariant,

Lorentz-violating terms, which are quadratic in the electro-
magnetic field strength tensor Fμν ¼ ∂μAν − ∂νAμ and have
just one more derivative than the Maxwell term. These
terms are dimension-five operators that can generally be
written as

Lð5Þ
em ¼ 1

4mPl
nμναβγFμνFαβ;γ; ð1Þ

where a semicolon denotes covariant differentiation with
respect to spacetime coordinates, and nμναβγ is a dimension-
less rank-5 background tensor that breaks Lorentz sym-
metry. The presence of the Planck mass indicates that we
are assuming that Lorentz symmetry breaking occurs at the
Planck scale. The external tensor nμναβγ is antisymmetric in
the first two and second two indices. Also, it can be taken
to be antisymmetric for the interchange of the first two
indices with the second two indices. This is because the
corresponding symmetric part would give, after integrating
by part the action Sem ¼ R

d4x
ffiffiffiffiffiffi−gp

Lem, where g is
the determinant of the metric tensor and Lem ¼
− 1

4
FμνFμν þ Lð5Þ

em, to a surface term plus a term propor-
tional to nμναβγ ;γFμνFαβ, which does not contain, as
required, an extra derivative of the Maxwell term.
Variation of the action gives the equation of motion

Dμν
;μ ¼ 0; ð2Þ

where Dμν ¼ Fμν −Mμν is the so-called “displacement
tensor,” and Mμν ¼ nμναβγFαβ;γ þ 1

2
Fαβnμναβγ ;γ is the

“polarization-magnetization tensor.” The Bianchi identities
are ~Fμν

;μ ¼ 0, where ~Fμν ¼ 1
2
EμναβFαβ is the dual electro-

magnetic field strength tensor, with Eμναβ ¼ εμναβ=
ffiffiffiffiffiffi−gp

being the totally antisymmetric tensor in four dimensions
and εμναβ the Levi-Civita symbol (with ε0123 ¼ þ1).
Let us now assume that Lorentz symmetry is broken just

by the presence of a background four-vector nμ. By
inspection, the tensor nμναβγ with the above discussed
symmetry properties that can be constructed using nμ,
the metric tensor gμν, and Eμναβ can be written as

nμναβγ ¼ ζðgα½μEν�γδβ − gβ½μEν�γδαÞnδ
þ ξðEμνδ½αnβ� − Eαβδ½μnν�Þnδnγ; ð3Þ

where ζ and ξ are dimensionless coupling constants (which,
without loss of generality, we assume to be positive
definite), and square brackets indicate antisymmetri-
zation of the indices enclosed, e.g., Tμ1…½μiμj�…μn ¼
1
2
ðTμ1…μiμj…μn − Tμ1…μjμi…μnÞ. Taking into account

Eq. (3), we can recast Lagrangian (1) in the form

Lð5Þ
em ¼ ζ

2mPl
~nμαβ FμνDαFβν

þ ξ

2mPl
nμnαnβðFμνDα

~Fβν − ~FμνDαFβνÞ; ð4Þ

where ~nμαβ ¼ nγεγμαβ is the dual tensor of the vector nμ.
The term proportional to ξ can be viewed as the general-
covariant generalization of the electromagnetic Myers-
Pospelov Lagrangian (see Sec. III a).
Let us now restrict our analysis to the case of a spatially

flat, Friedmann-Robertson-Walker universe, described by
the line element ds2 ¼ a2ðdη2 − dx2Þ, where η is the
conformal time and aðηÞ is the expansion parameter.
Since gμν ¼ a2ημν, we can take for the vierbein
ebμ ¼ aδbμ, where δbμ is the Kronecker delta. Also, we
consider only the case of timelike external vector nb, nb ¼
ð1; 0; 0; 0Þ (to be close to the original analysis in [10]), so
that nμ ¼ eμbnb ¼ ða; 0; 0; 0Þ and nμ ¼ ð1=a; 0; 0; 0Þ.
Working in Coulomb gauge, Aμ ¼ ð0;AÞ with ∂iAi ¼ 0,

the equation of motion (2) becomes

A00 −∇2AþD½∇ ×A� ¼ 0; ð5Þ

where a prime denotes differentiation with respect to the
conformal time, ∇ is the nabla operator with respect to
comoving coordinates, and D is the second order differ-
ential operator

D ¼ ð~g1 þ 2~g2Þ
∂2

∂η2 − ~g1∇2 − ð~g1 þ 2~g2ÞH
∂
∂η

þ
�
2~g1 þ

1

2
~g2

�
ðH2 −H0Þ: ð6Þ

Here, ~gi ¼ gi=a, g1 ¼ ζ=mPl, g2 ¼ ξ=mPl, and H ¼ a0=a.
In obtaining Eq. (5), we used the fact that the nonzero
Christoffel symbols are Γi

j0¼Γi
0j¼Γ0

ij¼Γ0
ji¼δijΓ0

00¼δijH,
so that the only nonzero components of nμ;ν are
ni;j ¼ −aHδij.
To solve Eq. (5), let us expand the vector potential as

Aðη;xÞ ¼
X2
λ¼1

Z
d3k

ð2πÞ3 ffiffiffiffiffiffiffiffiffi
2jkjp εk;λAλðη; jkjÞeikx þ c:c:;

ð7Þ
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where k is the comoving wave number, and εk;λ are the
standard circular polarization vectors.2 Inserting in Eq. (5),
we get the equation of motion for the two photon
polarization states Aλ,

ð1 − β3ÞA00
λ − β03A

0
λ þ ½ð1 − β1Þjkj2 − β002�Aλ ¼ 0; ð8Þ

where β1 ¼ ð−1Þλ ~g1jkj, β2 ¼ ð−1Þλð2~g1 þ ~g2=2Þjkj, and
β3 ¼ ð−1Þλð~g1 þ 2~g2Þjkj.
It is useful, for the following discussion, to define the

rescaled electromagnetic field ψλ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffi
1 − β3

p
Aλ. Inserting

in Eq. (8), we find that it satisfies the equation of motion

ψ 00
λ ¼ Uλψλ; ð9Þ

where

Uλ ¼ −
1 − β1
1 − β3

jkj2 þ β002
1 − β3

þ 1ffiffiffiffiffiffiffiffiffiffiffiffiffi
1 − β3

p ∂2

∂η2
ffiffiffiffiffiffiffiffiffiffiffiffiffi
1 − β3

p
:

ð10Þ

Equation (9) is formally equal to the one-dimensional
Schrodinger equation with zero energy and potential
energy Uλ, η taking the place of the spatial coordinate,
and gi, jkj, and λ playing the role of free constant
parameters.

B. Cosmic magnetic fields

Microgauss magnetic fields are observed in all large-
scale gravitationally bound systems, such as galaxies and
clusters of galaxies, and there are hints that they exist even
in cosmic voids [13]. Their large correlation, up to Mpc
scales, and their ubiquity supports the idea that they have
been created in the early universe [14], presumably during
inflation [15].
It is generally believed that a necessary condition to

generate inflationary cosmic magnetic fields is to introduce
new terms in the photon Lagrangian that break the
conformal invariance of standard electromagnetism [14]
(see [16–18] for mechanisms that work without resorting
to nonstandard physics). This may allow for a “super-
adiabatic” amplification of large-scale magnetic fluctuation
during inflation that then may eventually evolve and
survive from the end of inflation until today [19].
The Lorentz-violating terms in Eq. (4) naturally break

electromagnetic conformal invariance, so it is interesting to
see if they may also be responsible for the creation of
cosmic magnetic fields (see [20] for other Lorentz-violating

electromagnetic Lagrangians that can give rise to large-
scale magnetic fields).
Let us consider, for the sake of simplicity, the case of de

Sitter inflation. In this phase, the conformal time is inversely
proportional to the expansion parameter, η ¼ −1=aHdS,
while the Hubble parameter HdS is a constant. On large
super-Hubble scales, −jkjη ≪ 1, which are the only impor-
tant scales for cosmic magnetic fields [14], the “potential
energy” Uλ reads Uλ ¼ −jkj2½1þ b2 þOðjkjηÞ�, where
b¼ 1

2
ð−1Þλðζþ2ξÞHdS=mPl. In this case, the solution of

Eq. (9) is

Aλ ¼ cðjkj; bÞe−ijkjη
ffiffiffiffiffiffiffiffi
1−b2

p
; ð11Þ

where the coefficient cðjkj; bÞ is a normalization constant
that must reduce to unity for vanishing coupling constants,
limb→01cðjkj; bÞ ¼ 1, so as to have the usual plane-wave
solution Aλ ¼ e−ijkjη in the limiting case of Maxwell
theory [21].
Consideration of graviton production requires that the

scale of inflation M is below 1016 GeV [22,23]. Assuming
instantaneous reheating, so that M4 ¼ ρinf ¼ 3H2

dS=8πG,
where ρinf is the total energy density during inflation
and G ¼ 1=m2

Pl the Newton’s constant, we have
b≲ 10−6ðζ þ 2ξÞ. Accordingly and even in the case of
strong coupling, ζ ∼ ξ ∼ 1, only small values of b are
allowed giving jAλj2 ∼ 1.
We conclude that the inflation-produced magnetic

field evolves adiabatically on super-Hubble scales—
superadiabatic amplification occurs when jAλj2 ∝ fðaÞ
with f an increasing function of a—and that the production
of cosmic magnetic fields is inhibited in the model at hand.

C. Cosmic birefringence

Lorentz-violating electromagnetic theories can give rise
to effects of cosmic birefringence (see, e.g., [24]): the left-
and right-circular polarized components of light, Aλ,
propagate differently in vacuo, resulting in potentially
observable effects, such as the rotation of the polarization
plane of (partially) linearly polarized light, such as the
CMB radiation.
At low momenta compared to the Planck scale, the

potential energy reads Uλ ¼ −jkj2 − 2ð−1Þλ ~g2jkj3½1þ
OðH2=jkj2Þ þOðH0=jkj2Þ� to the lowest order in
jkj=mPl, with the terms of order H2=jkj2 and H0=jkj2
coming from the last two terms in Eq. (10). For typical
photons of CMB radiation, these terms are vanishingly
small when compared to the first term in Eq. (10). To see
this, let us introduce the redshift z ¼ 1=ð1þ aÞ, so that
HðzÞ ¼ H0ð1þ zÞ−1EðzÞ and H0ðzÞ ¼ H2

0ð1þ zÞ−2×
½1 − 1

2
ð1þ zÞ∂z�E2ðzÞ, where EðzÞ ¼ HðzÞ=H0 is the

Hubble parameter HðzÞ normalized to the Hubble
constant H0. In a spatially flat universe dominated by
dark matter and cosmological constant, we have

2The circular polarization vectors are defined through the
relations k ·εk;λ¼0, εk;λ · ε�k;λ0 ¼ δλλ0 , and

P
2
λ¼1ðεk;λÞiðε�k;λ0 Þj ¼

δij − k̂ik̂j, and satisfy the useful properties ε�−k;λ ¼ −εk;λ and
ik̂ × εk;λ ¼ ð−1Þλþ1εk;λ.
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EðzÞ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Ωmð1þ zÞ3 þΩΛ

p
, where Ωm and ΩΛ are the

usual energy density parameters.3 Accordingly, we get
H2ðzÞ ¼ H2

0½Ωmð1þ zÞ þ ΩΛ� and H0ðzÞ ¼ H2
0½− 1

2
Ωm×

ð1þ zÞ þ ΩΛ�. Taking into account that H0 ∼ 10−42 GeV
and that Ωm and ΩΛ are order one parameters, we obtain
that H2=jkj2 and H0=jkj2 are at most of order
zdecH2

0=ω
2
CMB ∼ 10−55, where we used the fact that

jkj ∼ ωCMB, withωCMB ∼ 10−4 eV being the typical energy
of CMB photons and zdec ∼ 103 their (maximum) redshift
at decoupling [25].
To find how the two polarized photon states evolve in

time, we need the solution of the equation of motion (9). An
analytical expression of such a solution cannot be found in
a universe dominated by dark matter and cosmological
constant. Nevertheless and for our purpose, it suffices to
solve it in Wentzel-Kramers-Brillouin (WKB) (semiclass-
ical) approximation [26]. We find

ψ ðWKBÞ
λ ¼ cλðjkj; ~giÞe−i

R
η dη0

ffiffiffiffiffiffiffiffiffiffiffiffi
−Uλðη0Þ

p
; ð12Þ

where cλðjkj; ~giÞ is a real normalization constant whose
explicit expression is inessential for the following discus-
sion. The above solution is valid whenever jU0

λ=2U
3=2
λ j ≪ 1

[26], a condition that is certainly satisfied in our case
since jU0

λ=2U
3=2
λ j ∼ ξHðzÞ=mPl ≪ 1.

Now, the rotation angle of the polarization plane of
linearly polarized light, Δα, is defined as the phase
difference between left-handed and right-handed photons
emitted from a source at the time ηe and observed at the
time ηo. From the above WKB solution, we then get

Δα ¼
Z

ηo

ηe

dη½
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
−U2ðηÞ

p
−

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
−U1ðηÞ

p
�

¼ 2ξjkj2
mPlH0

Z
z

0

dz0
1þ z0

Eðz0Þ ; ð13Þ

where z ¼ ze is the redshift of the source (zdec for CMB
photons) which emits photons reaching the observer today
at redshift zo ¼ 0. Interestingly enough, the rotation angle
depends only on ξ. This means that only the Myers-
Pospelov Lagrangian term in Eq. (4) contributes, to the
leading order in jkj=mPl, to the effect of cosmic birefrin-
gence. Equation (13) is in agreement with the result quoted
in the literature for the Myers-Pospelov case (see, e.g., [11])
and obtained, with the aid of an appropriate redshift-
dependent scaling of the photon momentum, by extending

the exact result in Minkowski spacetime [8] to the
Friedmann-Robertson-Walker case.

III. MINKOWSKI SPACETIME

Let us now specialize some of the above results to the
case of Minkowski spacetime. In particular, we are inter-
ested in the dispersion relations of freely propagating
photons, since they are an essential ingredient for the
construction of a self-consistent Lorentz-violating, quan-
tum electrodynamic theory [27].

A. Lagrangian and equations of motion

In Minkowski spacetime, the coefficients for Lorentz
violation are constants, ∂γnμναβγ ¼ 0. (In this section,
indices in Minkowski spacetime are indicated with
Greek letters and run from 0 to 3. Latin indices from the
middle of the alphabet run from 1 to 3 and indicate spatial
components of a given tensor.) Taking into account Eq. (3)
we can then recast Lagrangian (1) in the form

Lð5Þ
em ¼ ζ

2mPl
~nμαβFμν∂αFβν þ ξ

mPl
nμFμνnα∂αnβ ~F

βν: ð14Þ

Both terms in Eq. (14) are dimension-five, CPT-odd
operators and satisfy the six Myers-Pospelov criteria (see
the Introduction). In [10], however, just the second term
was considered, and it is now known as the Myers-
Pospelov Lagrangian. Interestingly enough, it has been
shown in [28] (see also [29]) that the first term in
Lagrangian (14) can be induced through radiative correc-
tions from the fermion sector of the minimal SME.
Therefore, that term cannot be generally neglected when
constructing a low-energy, Lorenz-violating effective field
theory with dimension-five operators.
Before proceeding further, let us frame our result (14)

in the context of the SME. To this end, we rewrite

Lagrangian (1), in Minkowski spacetime, as Lð5Þ
em ¼

1
2mPl

Aλn
∘ αλμνβ∂α∂βFμν, where the external tensor n

∘ μναβγ is
antisymmetric in the second two indices and symmetric for
the interchange of the first with the last index. When
Lorentz symmetry is broken by the four-vector nμ, we have

n
∘ μναβγ ¼ ζϵγgδν½αηβ�fμnδ − ξϵαβδνnμnγnδ, where ζ and ξ
coincide with the coupling constants in Eq. (14), and
square brackets f� � �g indicate symmetrization of the
indices enclosed, e.g., Tμ1���fμiμjg���μn ¼ 1

2
ðTμ1���μiμj���μn þ

Tμ1���μjμi���μnÞ and Tμ1g���fμn ¼ 1
2
ðTμ1���μn þ Tμn���μ1Þ. In the

SME notations of [8], Lagrangian (14) is then obtained
by taking the nonzero coefficients for Lorentz violation

to be ðkð5ÞAFÞκμν ¼ 1
mPl

ð ~nκμν − 1
5
ηκfμ ~nανgα − 1

5
~nααfνημgκÞ ¼

− ζ
3mPl

ðnκημν− 2
5
ηκfμnνgÞ− ξ

mPl
ðnκnμnν− 2

5
n2ηκfμnνgÞ, where

we have defined ~nκμν ¼ 1
3!
εκαβγn

∘ μαβγν.

3We recall that Ωm ¼ ρð0Þm =ρð0Þcr and ΩΛ ¼ ρΛ=ρ
ð0Þ
cr , where ρð0Þm

is the present value of the energy density of matter, ρΛ ¼ Λ=8πG,
with Λ being the cosmological constant, and ρð0Þcr ¼ 3H2

0=8πG is
the actual critical energy density. Moreover, Ωm þ ΩΛ ¼ 1 in a
spatially flat Friedmann-Robertson-Walker universe.
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The equations of motion (2) can be explicitly written in
Minkowski spacetime as

∂μFμν ¼
ζ

mPl
~nναγ∂γ∂βFαβ þ ξ

mPl
~nναβðn · ∂Þ2Fαβ; ð15Þ

and then conveniently rewritten in three-dimensional vec-
torial form as

∇ ·E ¼ −½g1□þ 2g2ðn · ∂Þ2�ðn · BÞ; ð16Þ

_E −∇ ×B ¼ ½g1□þ 2g2ðn · ∂Þ2�ðn0B − n ×EÞ: ð17Þ

Here, E ¼ ðE1; E2; E3Þ and B ¼ ðB1; B2; B3Þ, where
Ei ¼ −F0i and Bi ¼ 1

2
ϵijkFjk are the electric and magnetic

fields, and a dot indicates the derivative with respect to
time. Equations (16) and (17) are the ν ¼ 0 and ν ¼ i
components of Eq. (15), respectively. The Bianchi iden-
tities are ∇ ·B ¼ 0 and _B ¼ −∇ ×E.

B. Dispersion relations

Taking the time derivative of Eq. (17) and using the
Bianchi identities, we get

□E −∇ð∇ ·EÞ þ ½g1□þ 2g2ðn · ∂Þ2�
× ðn0∇ ×E − n × _EÞ ¼ 0; ð18Þ

where nμ ¼ ðn0;nÞ. To find the photon dispersion rela-
tions, we work in momentum space by considering the
ansatz EðxÞ ¼ EðkÞe−ikx. Inserting in the above equation,
we getMijEj ¼ 0, where the Hermitian matrixMij is given
by Mij¼k2δijþkikjþ iεijl½g1k2þg2ðn ·kÞ2�ðn0kl−ωnlÞ.
The covariant dispersion relations come from the condition
detMij ¼ 0 [7] and read

ðk2Þ2 − ½g1k2 þ g2ðn · kÞ2�2½ðn · kÞ2 − n2k2� ¼ 0: ð19Þ
Writing kμ ¼ ðω;kÞ and solving for ω, one can obtain the
frequency solutions. The case g1 ¼ 0 has been fully
analyzed in [27]. There, it has been shown that for a
timelike nμ the theory is unstable and violates causality,
while for a lightlike nμ it contains extra degrees of freedom
that are nonanalytic in the perturbative parameter g2,
leading to a nonunitary evolution at the quantum level.
Nonunitarity problems are expected to appear, however,
only at high energies since, as pointed out in [8], extra
(nonanalytic) modes play a role only at Planck-scale
energies. The spacelike case, instead, is free from the
above problems.
For the case g2 ¼ 0, we obtain ω ¼ jkj for n ¼ 0, and

ω� ¼ 1

n2

�
n0k · n�

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
n2

g21
− n2jk × nj2

s �
ð20Þ

for n ≠ 0. In the latter case, there are 2 degrees of freedom
that, according to the “Reyes analyticity criterion” [27], are
nonanalytic in the perturbative parameter g1. (A frequency
solution depending on gi is nonanalytic when it goes to
infinity for gi → 0.) Accordingly, as in the case g1 ¼ 0 and
lightlike nμ, we expect that the quantum theory develops
problems of nonunitarity.
The case with both g1 and g2 different from zero cannot

be handled analytically in the general case. Nevertheless,
analytical frequency solutions can be found, separately, for
the three specific cases of timelike, lightlike, and spacelike
unit vector nμ.

(i) Timelike case (n2 ¼ 1). For the sake of simplicity,
let us consider the “isotropic” case n2 ¼ 0.4 Solving
Eq. (19) for ω, we obtain the frequency solutions

ω� ¼ jkj
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1� g1jkj
1� ðg1 þ 2g2Þjkj

s
; ð21Þ

which correspond to right-handed and left-handed
photons, respectively. To see this, we write
E�ðt;xÞ ¼ εk;�e−iωtþikx, where εk;� are the circular
polarization vectors introduced in the previous sec-
tion and� stand for λ ¼ 1; 2. Inserting in Eq. (18), we
get ½ω2 − jkj2 � ðg1 þ 2g2Þjkjω2∓g1jkj3�εk;� ¼ 0,
which is identically satisfied when ω takes on the
values (21).
For 1=ðg1 þ 2g2Þ < jkj < 1=g1, the frequency

solution ω− develops an imaginary part that, as in
the case g1 ¼ 0 discussed in [27], leads to the loss of
unitarity and to instabilities. Moreover, as it is
straightforward to check, the group velocity vg;� ¼
dω�=djkj ¼ ðω�=jkjÞ½1 � 2g1jkj þ ðω�=jkjÞ2�=
2ð1 � g1jkjÞ can exceed the speed of the light in the
case of left-handed photons introducing, then, prob-
lems of causality. (The same situation happens for the
case g1 ¼ 0 [27].)

(ii) Lightlike case (n2 ¼ 0). Let us take, for the sake of
simplicity, n0 ¼ 1. Since the expression of the six
analytical solutions of the sixth order equation (19)
are cumbersome, we write down only their asymp-
totic expressions in the limit of small momenta,

ω1;2 ¼ jkj½1� 8g2jkjsin6ðθ=2Þ þOðjkj2=m2
PlÞ�;
ð22Þ

ω3;4 ¼ −jkj½1� 8g2jkjcos6ðθ=2Þ þOðjkj2=m2
PlÞ�;
ð23Þ

4In this case, the coefficients g1 and g2 are related to the

“isotropic coefficients” ðk
∘ ð5Þ
AFÞ0 and ðk

∘ ð5Þ
AFÞ2 in the SME Lagrangian

[8] by ðk
∘ ð5Þ
AFÞ0 ¼

ffiffiffiffi
4π

p
5
ðg1 þ 3g2Þ and ðk

∘ ð5Þ
AFÞ2 ¼ −

ffiffiffiffi
4π

p
3
g1.
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ω5;6 ¼ � 1

g1 þ 2g2
½1þOðjkj2=m2

PlÞ�; ð24Þ

where θ is the angle between k and n. As in the case
g1 ¼ 0 [27], there are well-behaved solutions (ω1;2
and ω3;4) that approach the standard solutions
(ω ¼ �jkj) in the limit gi → 0, and extra solutions
(ω5;6) that are nonanalytic in the perturbative
parameters gi. The latter may introduce in the
theory problems of nonunitarity at the quantum
level.

(iii) Spacelike case (n2 ¼ −1). For the sake of simplicity,
let us consider the case n0 ¼ 0. Also in this case, the
expression of the frequency solutions are cumber-
some. Their asymptotic expressions are

ω1;2 ¼ jkj½1� g2jkjj cos θj3 þOðjkj3=m3
PlÞ�; ð25Þ

ω3 ¼
1

g1
½1þOðjkj2=m2

PlÞ�: ð26Þ

In the Myers-Pospelov case (g1 ¼ 0) [27] only the
solutions ω1;2 are present. They are well-behaved
solutions since they are analytic in g1. In our case,
instead, the first term in Lagrangian (14) introduces
an extra nonanalytic solution (ω3) that, as in the
lightlike case, may lead to nonunitarity problems.

C. Constitutive relations

An analogy between the photon sector of the minimal
SME and the electrodynamics of macroscopic media has
been pointed out in [7] and then extended to the case of the
SME in [8]. To see how this analogy works in our case, let
us introduce the displacement and magnetizing fields,
respectively, as Di ¼ −D0i and Hi ¼ 1

2
ϵijkDjk, where

Dμν is the displacement tensor introduced in Sec. II a.
The equations of motion, in terms of the these fields, read

∇ ·D ¼ 0; _D ¼ ∇ ×H; ð27Þ

where D ¼ ðD1; D2; D3Þ and H ¼ ðH1; H2; H3Þ. In
Fourier space, Dðt;xÞ ¼ R

dω
2π Dðω;xÞe−iωt and Hðt;xÞ ¼R

dω
2π Hðω;xÞe−iωt, we have

D ¼ Eþ g1∇ ×Eþ iωg2B; ð28Þ

H ¼ Bþ g1∇ ×Bþ iωg2E; ð29Þ

where we omitted the argument ðω;xÞ for the sake of
simplicity, and we restricted ourselves to the simple case of
the isotropic unit external four-vector, nμ ¼ ð1; 0; 0; 0Þ.
Equations (28) and (29), which connect the displacement
and magnetizing fields to the electric and magnetic fields,
are known, in the electrodynamic theory of continuous

media, as constitutive relations and completely determine
the propagation properties of electromagnetic signals.
If g1 ¼ 0, the above constitutive relations describe a

“reciprocal chiral medium” or Pasteur medium with electric
permittivity ε ¼ 1, magnetic permeability μ¼ð1þω2g22Þ−1,
and chirality parameter β ¼ g2. We recall that a Pasteur
medium is a special case of bi-isotropic media defined, in
the Drude-Born-Fedorov representation, by (see, e.g., [30]
and references therein)

E ¼ ε−1D − iωðβ þ iαÞB; ð30Þ

H ¼ μ−1Bþ iωðβ − iαÞD; ð31Þ

where α is the nonreciprocity parameter. Accordingly, one
could eventually gain further insight about the Myers-
Pospelov, Lorentz-violating electrodynamics by using all
the known properties of the Pasteur media. Vice versa, the
Myers-Pospelov model is an example of the Lagrangian
description of Pasteur media which is, to our knowledge,
lacking in the literature.
At energies much lower than the Planck scale, we can

recast Eqs. (28) and (29) as

D ¼ Eþ iωðg1 þ g2ÞB; ð32Þ

H ¼ B − iωðg1 − g2ÞE; ð33Þ

where we have neglected terms of order Oðω2=m2
PlÞ. Using

the equations of motion (27), we can eliminate the terms
proportional to g1 in Eqs. (32) and (33), which then
describe a Pasteur medium with ε ¼ μ ¼ 1 and β ¼ g2.
As it is well known in the literature of bi-isotropic media
[30], linearly polarized light propagating in such a medium
will experience polarization rotation proportionally to the
intensity of the chirality parameter, a result that we have
discussed, in a cosmological context, in Sec. II c.

IV. CONCLUSIONS

Working in curved spacetime, ad using symmetry argu-
ments, we have constructed the most general Lorentz-
violating photon Lagrangian based on dimension-five
operators, quadratic in the electromagnetic strength tensor
and containing one more derivative than the usual Maxwell
term. Assuming that Lorentz symmetry is broken by an
external four-vector nμ, we have shown that it contains only
two terms, both of which break CPT symmetry.
Restricting our analysis to the case of isotropic nμ, we

have then studied the generation of cosmic magnetic fields
during de Sitter inflation and cosmic birefringence in a flat
Friedmann-Robertson-Walker universe. In the former case,
we have found that the creation of magnetic fields at
inflation is highly suppressed at super-Hubble scales, so
they cannot explain the presence of large-scale magnetic
fields detected in galaxies and galaxy clusters. In the latter
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case, instead, we have found that, to the first order in the
coupling parameters, the relation between the amount of
rotation of the polarization plane of linearly polarized light
and the parameters of Lorentz violation agree with the
heuristic result quoted in the literature.
In Minkowski spacetime, both terms of the Lorentz-

violating Lagrangian give rise to a nontrivial dynamics,
with one reducing to the well-known Myers-Pospelov
Lagrangian. Except for the case of isotropic nμ, in which

case there is violation of causality, the full theory allows for
the propagation of extra degrees of freedom that are non-
analytic in the perturbative coupling parameters, indicating
that nonunitary evolution may occur at the quantum level.
Finally, we have shown, in the simple case of isotropic

nμ, that the propagation of light in empty space for the
Lorentz-violating theory is equivalent to the propagation of
light for the standard Maxwell theory in a continuous
medium, known as the Pasteur medium.
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