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We study entanglement entropy (EE) for a Maxwell field in ð2þ 1Þ dimensions. We do numerical
calculations in two-dimensional lattices. This gives a concrete example of the general results of our recent
work [1] on entropy for lattice gauge fields using an algebraic approach. To evaluate the entropies we
extend the standard calculation methods for the entropy of Gaussian states in canonical commutation
algebras to the more general case of algebras with center and arbitrary numerical commutators. We find that
while the entropy depends on the details of the algebra choice, mutual information has a well defined
continuum limit as predicted in [1]. We study several universal terms for the entropy of the Maxwell field
and compare with the case of a massless scalar field. We find some interesting new phenomena: an
“evanescent” logarithmically divergent term in the entropy with topological coefficient which does not
have any correspondence with ultraviolet entanglement in the universal quantities, and a nonstandard way
in which strong subadditivity is realized. Based on the results of our calculations we propose a
generalization of strong subadditivity for the entropy on some algebras that are not in tensor product.
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I. INTRODUCTION

In a recent paper [1] we analyzed the problem of defining
a local entropy for gauge fields. The inconveniences caused
by the constraint equations of the physical degrees of
freedom pointed to a natural setting within an algebraic
approach for states and local algebras.
The entropy on a region V of the space is usually

understood as the von Neumann entropy of the density
matrix reduced to the degrees of freedom on that region.
From the algebraic point of view, this is the entropy which
results from the density matrix on a local algebra AV
associated to the region. In general, this algebra may have a
center Z ¼ AV∩A0

V, a set of operators that commutes both
with the operators in the algebra and its commutant A0

V .
Typically, the center is produced by the constraint equa-
tions. Only the case with trivial center admits a bipartition
of the Hilbert space as tensor product HV ⊗ HV̄ of
subspaces of inner and outer degrees of freedom, and in
this case the local entropy is an entanglement entropy for a
global pure state.
Of course, there is not a unique way to assign a local

algebra to a region and different assignations give rise to
ambiguities in the entropy. Even if these ambiguities are
present in all theories, when the elementary excitations are
not point like or more precisely, the operators are attached
not to vertices but to links in the lattice, the standard
prescription of identifying the region with the subset of
operators attached to vertices within the region has to be

revised. This is the case in lattice calculations for gauge
fields, where the local gauge invariant algebra is generated
by the electric link operators andWilson loops along closed
paths. The constraint equations give extra relations among
the variables. A particular choice of local algebra with
electric center has been discussed previously in the liter-
ature in a way unrelated to the algebraic formulation [2].
In this paper we show how this general scheme applies in

a specific example. We consider a Maxwell field theory in
2þ 1 dimensions. In order to evaluate the entropies for
general algebraic prescriptions for the local algebras we
generalize the formulas for Gaussian states in canonical
commutation algebras to the case where the the commu-
tators are arbitrary matrices and the algebras have center.
The techniques can be used for free (uncompactified) gauge
fields (and more generaly massive or massless tensor fields)
in any dimensions. We avoid using Wilson loop variables
for this free model.
We are able to show in detail the main prediction of [1]:

The large ambiguities in the entropy introduced by the
uncertainties of the algebra choice and the universality
of the mutual information in the continuum limit. This
universality is a consequence of the fact that mutual
information is ordered by inclusion of algebras. More
technically, in the cases with center, we also show the
classical Shannon term is not relevant for the continuum
limit of the mutual information, and the calculation can be
reduced to a unique arbitrary sector in the central
decomposition.
Hence, the continuum limit eliminates the ambiguities in

the relation between algebras and regions. In a certain
sense, a geometric region has only meaning in terms of the
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content of the model once the continuum limit has been
achieved.
We also study some universal terms that can be obtained

from the entropy itself, as the usual logarithmically
divergent term due to the corners on the region boundary
in 2þ 1 dimensions. We find the logarithmic coefficient
has also a curious additional contribution proportional to
the number of connected components of the region. This
should be regarded as related to the peculiarities of the
gauge field in three dimensions. Surprisingly, this term is at
the same time ultraviolet divergent and nonlocal. However,
we argue the ultraviolet nature of this term is not captured
by any universal quantity in the model, i.e., the short
distance behavior of mutual information. A related loga-
rithmic term for the compactified Maxwell field in the limit
of decompactification has been discussed in the literature in
relation with the F theorem [3,4].
This three-dimensional model is dual to a “truncated”

scalar field. The algebra generated by the electric and
magnetic physical operators coincides with the one of time
and space like derivatives of the scalar field, where the field
operator itself has been removed. We compare several
universal terms of the gauge field (and truncated scalar)
model with the model of a full scalar field.
Even if with some specific choices of generating

operators the local algebras have trivial center, the con-
straints reappear in other interesting phenomena. For
example, the usual geometric expression of strong sub-
additivity (SSA) property has to be reinterpreted in alge-
braic terms and generalized with respect to its usual form.
We conclude with some discussion. In particular we

revisit the issue of defining a topological entanglement
entropy in a lattice using Levin and Wen [5] prescription in
an algebraic way. This is connected with our discussion of
strong subadditivity.

II. LATTICE MAXWELL FIELD IN 2þ 1
DIMENSIONS

The physical operators Ē and B of the ð2þ 1Þ-
dimensional Maxwell theory are written as

Ei ¼ ∂iA0 − ∂0Ai ¼ Fi0; ð1Þ

B ¼ ∂1A2 − ∂2A1 ¼ ϵij∂iAj ¼ F12; ð2Þ

in terms of the tensor field Fμν ¼ ∂μAν − ∂νAμ. The
canonical commutation relations (in Lorentz gauge)

½AμðxÞ; _Aνðx0Þ� ¼ igμνδ2ðx − x0Þ; ð3Þ

give the gauge invariant commutation relations

½BðxÞ; Ejðx0Þ� ¼ iϵjk∂kδ
2ðx − x0Þ;

½EiðxÞ; Ejðx0Þ� ¼ ½BðxÞ; Bðx0Þ� ¼ 0: ð4Þ

The Hamiltonian in terms of E and B is

H ¼ 1

2

Z
dx1dx2ðE2 þ B2Þ: ð5Þ

Now, we discretize the model in a square lattice. The
standard procedure for a gauge field is to assign the electric
field variables to the links of the lattice and elementary
Wilson loop operators to the plaquettes. For the non-
compact Maxwell field we can consider directly the
magnetic field operator (corresponding to the magnetic
flux on the plaquette) and associate it to the dual lattice
vertices in the middle of the plaquettes as shown in Fig. 1.
Using directly the electric and magnetic variables allow us
to profit from the Gaussianity of the model.
More precisely, we define the electric operators E1; E2

associated to horizontal and vertical links, respectively, as
E1
ðij;iþ1jÞ andE

2
ðij;ijþ1Þ, where ðij; i0j0Þ are the coordinates of

the initial and final points of the link. This notation is useful
but redundant since we can define the electric variables
named by the initial vertex of the vector,

E1
ij ≡ E1

ðij;iþ1jÞ; ð6Þ

E2
ij ≡ E2

ðij;ijþ1Þ: ð7Þ

The magnetic operator Bij is denoted by the left down
corner ði; jÞ of the plaquette [see Fig.(1)].
Hence, there are twice as many electric variables than

magnetic variables. However, half the electric variables are
redundant because of the constraint equations of electric
flux (Gauss law) in two dimensions. This gives the relations

X
b

Eab ¼ 0; ð8Þ

where the sum is over all links ðabÞ with common vertex a.
In this equation, it is assumed that the electric field
component is the corresponding one to the link direction
and also that links have orientation which changes the sign
of the electric field attached to it Eab ¼ −Eba.

FIG. 1. The magnetic field is assigned to the center of the
plaquette and the electric fields to the links.
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In the lattice theory, the commutation relations become

½Bij; E1
ði0j0;i0þ1j0Þ� ¼ −iðδi;i0δj;j0 − δi;i0δjþ1;j0 Þ; ð9Þ

½Bij; E2
ði0j0;i0j0þ1Þ� ¼ iðδi;i0δj;j0 − δiþ1;i0δj;j0 Þ: ð10Þ

Finally, the Hamiltonian writes

H ¼ 1

2

�X
v

B2
v þ

X
l

E2
l

�
; ð11Þ

where the sum is over the vertices for the magnetic
variables and over the links for the electric ones. In contrast
to the lattice Hamiltonian for a scalar field, this
Hamiltonian is trivial as a bilinear form in the variables.
All the dynamics is hidden in the constraint equations and
nontrivial commutation relations.

A. Maxwell-scalar field duality in the lattice

In ð2þ 1Þ dimensions, the Maxwell theory is dual to the
theory of the derivatives of a massless scalar ϕ. The duality
is written

∂μϕ ¼ 1

2
ϵμνρFνρ; ð12Þ

giving the following identifications

∂0ϕ ¼ B; ð13Þ

∂iϕ ¼ −ϵijEj: ð14Þ

This gives a complete one to one map between the theories,
including the commutation relations and Hamiltonians.
Note however, that the electromagnetic fields do not
capture the full scalar theory but only the derivatives of
the field. Hence the algebra of operators is strictly smaller
than the one of the full scalar which includes ϕ.
The discrete version of the above relations is expressed

defining the scalar field variables on the sites of the dual
lattice as shown in Fig. 2. The electric link operators are
related to the differences of the scalar field operators in the
orthogonal direction in the dual lattice

ϕ~i ~j − ϕ~i ~j−1 ¼ E1
ðij;iþ1jÞ; ð15Þ

ϕ~i−1~j − ϕ~i ~j ¼ E2
ðij;ijþ1Þ; ð16Þ

and the magnetic operators are given by the corresponding
momentum operators

Bij ¼ πij: ð17Þ

B. Truncated scalar theory

The duality relations (15) and (16) show it is equivalent
to consider the gauge fields or the gradients of the scalar.

We find convenient this later expression of the model for
the entropy calculations. Summarizing, this model consists
of the subalgebra of the scalar field algebra (truncated
scalar algebra) generated by

ϕ̂1
i;j ¼ ϕi;j − ϕiþ1;j; ð18Þ

ϕ̂2
i;j ¼ ϕi;j − ϕi;jþ1; ð19Þ

πij ¼ _ϕij: ð20Þ

The commutation relations

½ϕ̂1
ij; πi0;j0 � ¼ iðδi;i0δj;j0 − δiþ1;i0δj;j0 Þ; ð21Þ

½ϕ̂2
ij; πi0;j0 � ¼ iðδi;i0δj;j0 − δi;i0δjþ1;j0 Þ; ð22Þ

are equivalent to (9) and (10). The constraint equations for
the electric field are mapped to the evident property

X
l∈p

ϕ̂l ¼ 0; ð23Þ

where the sum is over the links l on a plaquette p, with the
same orientation along a curve encircling the plaquette.
The lattice Hamiltonian for the scalar field is

H ¼ 1

2

�X
ij

πij þ ðϕ̂1
ijÞ2 þ ðϕ̂2

ijÞ2
�
: ð24Þ

From this Hamiltonian, the vacuum correlation functions
for the field and momentum operators are found to be [6]

FIG. 2. Dual lattices: The magnetic field coincides with the
momentum operator of the scalar field, and the electric field E
in some link is equal to a difference of scalar fields across the
link in the dual lattice which is perpendicular to the one
corresponding to E.
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fi;j ¼ hϕ00;ϕiji ¼
1

8π2

Z
π

−π
dx

Z
π

−π
dy

cosðixÞ cosðjyÞffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2ð1 − cosðxÞÞ þ 2ð1 − cosðyÞÞp ; ð25Þ

pi;j ¼ hπ00; πiji ¼
1

8π2

Z
π

−π
dx

Z
π

−π
dy cosðixÞ cosðjyÞ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2ð1 − cosðxÞÞ þ 2ð1 − cosðyÞÞ

p
: ð26Þ

The correlators for the new variables ϕ̂ij and πij can be
easily written in terms of the ones of the ϕ variables, for
example,

hϕ̂1
00; ϕ̂

1
iji ¼ 2fi;j − fi−1;j − fiþ1;j: ð27Þ

These correlators are equivalent to correlators for lattice
electric and magnetic fields and play an important role in
the EE calculation we discuss later in Sec. IV.

III. LOCAL ALGEBRAS AND REGIONS

A “region” in the lattice has to be defined by the physical
content of the model. That is, we must choose an algebra of
local operators that defines it. In this sense, the assignation
of algebras to regions is subject to ambiguities and several
choices are possible. In the case the lattice operators are
attached to vertices (such as a scalar field), a natural
election seems to be to choose the local algebra associated
to the region as the one generated by the operators attached
to vertices within the region. Of course, this is just one
possible choice. As we will discuss later, even in this case,
we can think in different possibilities for the local algebra.
In the case of gauge fields, we study three possible

choices defined in [1] which are shown in Fig. 3: the
algebras with electric, trivial, and magnetic center. Figure 3
also shows the equivalent description of these algebras in
terms of the dual truncated scalar algebra.
In the electric center choice, we keep all the operators,

inside and along the boundary. The constraints applied to
the sites on the boundary show the electric fields normal to
the boundary are automatically included in the algebra. As
they commute with the rest of the operators on the algebra,
they form the center. The electric center choice coincides
with some constructions developed in the literature to
define entropies in gauge theories [2].
The trivial center case, consists in choosing all the

electric and magnetic operators within the region and only
one electric link operator along the boundary. This corre-
sponds to remove the link operators along a boundary
maximal tree [1]. This election provides a good partition as
tensor product between inside and outside degrees of
freedom, giving place to a purely quantum entanglement
entropy. However, this is not unique, we still have the
possibility to vary the position of the electric field chosen at
the boundary.
The magnetic center choice corresponds to the case

where all the links along the boundary are removed. The
center then, consists in the boundary Wilson loop, or

equivalently the sum of the magnetic operators living in
the interior plaquettes.
For the truncated scalar algebra, we have analogue cases.

The electric center, where the center is given by all the
boundary links, the trivial center case, where the number of
links and momentum operators are the same, and the
magnetic case, with a one variable center given by the
sum of all momentum operators on the region.

IV. ENTROPIES OF GAUSSIAN STATES IN TERMS
OF CORRELATION FUNCTIONS

In a general algebra, the center produces superselection
sectors which cannot be changed by the local operators.
The global state is then reduced into these sectors to give a
block diagonal density matrix,

FIG. 3. Some algebra choices for a square region. The upper
three figures correspond to the gauge model and the ones at the
bottom to the truncated scalar representation of the same
algebras. Links with dashed lines mean the corresponding electric
operator does not belong to the algebra. Marked dots correspond
to magnetic operators in the algebra in the gauge model, and
momentum operators in the scalar one. The left panel shows the
electric center choice, where all electric and magnetic operators
on the square belong to the algebra. Because of constraints the
algebra also automatically contains the links coming out of the
square, and there are more independent electric generators than
magnetic ones. The central panel shows a trivial center choice,
with balanced number of electric and magnetic degree of free-
dom. The panel on the right shows the magnetic center choice.
Here, all electric operators on the boundary are missing and there
is one more magnetic degree of freedom than the number of
electric degrees of freedom.
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ρA ¼

0
BBB@

p1ρA1

. .
.

pnρAn

1
CCCA: ð28Þ

The entropy associated to the algebra A has a precise
definition given by [7]

SðVÞ ¼ −trðρA log ρAÞ ¼ HðfpkgÞ þ SQðAÞ; ð29Þ
where the first term corresponds to the classical Shannon
entropy

HðfpkgÞ ¼ −
X
k

pk logðpkÞ; ð30Þ

of the probability distribution fpkg of the variables which
simultaneously diagonalize the operators in the center. The
second term SQ is an average of the corresponding purely
quantum contributions

SQ ¼
X
k

pkSðρAk
Þ: ð31Þ

In the following, we are going to compute explicitly these
entropies for the case of Gaussian states in algebras of
coordinate and momentum operators. Hence, we consider
cases with center containing operators with continuum spec-
trum (for example q) and the above formulas are generalized
by converting the sum over discrete sectors k into integrals.

A. Algebra of canonical conjugated variables

In order to calculate the EE for the models discussed, we
need to generalize the method (see [6,8]) for the case of
Gaussian states and canonical conjugated variables qi; pj
with trivial center,

½qi; pj� ¼ iδij; ½qi; qj� ¼ ½pi; pj� ¼ 0; ð32Þ
with i; j ∈ V. In this case, the entropy can be calculated in
terms of the correlators

hqi; qji ¼ XV
ij and hpi; pji ¼ PV

ij; ð33Þ
as

SV ¼ trððΘþ1=2Þ logðΘþ1=2Þ− ðΘ−1=2Þ logðΘ−1=2ÞÞ;
ð34Þ

where Θ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffi
XV:PV

p
, and XV , PV are the correlators

matrices (restricted to the algebra).

1. Algebra of canonical conjugated variables
with nontrivial center

The entropy of algebras with center formed by operators
with continuous spectrum suffers from ambiguities due to

the lack of a mechanism to fix the field normalization.
However, mutual information between two algebras in
tensor product (corresponding to two separated regions
in a lattice model for example) [1] is free from these
ambiguities. Here, we deduce the general expressions for a
set of coupled harmonic oscillators which we will use later
in Secs. V and VI to calculate the mutual information
between two sets for a scalar and a Maxwell field.
Consider a set of harmonic oscillators with variables

qi; pi, i ∈ V ¼ f1;…; ng. We choose the algebra as the
one generated by all the qi operators but only a subset of the
momentum operators pi with i ∈ B ¼ fkþ 1;…; ng.
Hence this algebra has a center formed by the field qi
with i ∈ A ¼ f1;…; kg.
We want to compute the entropy on this algebra for a

state in V that we assume is a Gaussian state. Then, it is
convenient to write the density matrix in V in a basis which
simultaneously diagonalizes all elements in the center. In
this case, we choose the coordinate basis. We have for a
Gaussian state

ρðq; q0Þ ¼ ce−
1
4
ðqiMijqjþq0iMijq0jþ2qiNijq0jÞ; ð35Þ

where c is a normalization constant, and due to hermiticity,
M and N are real symmetric. The relation of these matrices
with correlation functions on V follows from

hOðqi; pjÞi ¼
Z Y

i∈V
dqjOðqi;−i∂qjÞρðq; q0Þjq¼q0

: ð36Þ

We have

hqiqji≡ XV
ij ¼ ðM þ NÞ−1ij ; ð37Þ

hqipji ¼
i
2
δij; ð38Þ

hpipji≡ PV
ij ¼

1

4
ðM − NÞij: ð39Þ

All higher-point functions are obtained by Wick’s theorem
for a Gaussian state. Inversely, we have

M ¼ ð2XVÞ−1 þ 2PV; ð40Þ
N ¼ ð2XVÞ−1 − 2PV: ð41Þ

Now, the probability density of a particular value ~qA for
the variables qA on the center is again fixed by the
correlation of the field in this region A,

Pð ~qAÞ ¼ detðð2πÞXAÞ−1
2e−

1
2
~qAi ðXAÞ−1ij ~qAj : ð42Þ

The reduced density matrix in B corresponding to this value
of the variables on the center follows from (35) by fixing
these values for the fields q; q0∥A ¼ ~qA on A, and a change
on normalization,
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ρðq; q0Þ ¼ c0e−
1
4
ðqBi MBB

ij qBj þ2~qAi M
AB
ij qBj þqB0i MBB

ij qB0j þ2~qAi M
AB
ij qB0j þ2qBi N

BB
ij qB0j þ2~qAi N

AB
ij qB0j þ2qBi N

BA
ij ~qAj Þ ð43Þ

Changing variables

qB → qB − ðMBB þ NBBÞ−1ðMBA þ NBAÞ ~qA; ð44Þ

qB0 → qB0 − ðMBB þ NBBÞ−1ðMBA þ NBAÞ ~qA; ð45Þ

we get the density matrix

ρðq; q0Þ ¼ c00e−
1
4
ðqBi MBB

ij qBj þqB0i MBB
ij qB0j þ2qBi N

BB
ij qB0j Þ: ð46Þ

Evidently, this change of variables does not change the
entropy. Very conveniently, the density matrix (46) is
independent of the values of the field at the center.
Hence, the average of the quantum entropy in B over
the values of the field ~qA on the center is trivial, and we get
for the quantum part of the entropy

SQðVÞ ¼ trððΘþ 1=2Þ logðΘþ 1=2Þ
− ðΘ − 1=2Þ logðΘ − 1=2ÞÞ; ð47Þ

Θ ¼
ffiffiffiffiffiffiffiffi
~X ~P

p
ð48Þ

~X ¼ ðMBB þ NBBÞ−1 ¼ ðX−1
V jBÞ−1;

~P ¼ 1

4
ðMBB − NBBÞ ¼ PB: ð49Þ

The matrices MBB and NBB are just the restriction to B of
the matrices M and N which are in turn functions of the
correlation functions in the region according to (40)
and (41).
The whole entropy SðVÞ ¼ SQðVÞ þHðAÞ contains also

a classical Shannon termHðAÞ due to the center probability
distribution (42)

HðAÞ ¼ −
Z

ðΠi∈AdqiÞPðfqgAÞ logðPðfqgAÞÞ

¼ 1

2
trð1þ log ð2πXAÞÞ: ð50Þ

This classical Shannon term can only have unambiguous
meaning in relative entropy quantities, for example the
relative entropy of two states or a mutual information
between two regions for the same state. This is because the
normalization of the fields in the center are not fixed by the
commutation relations. For example, choosing the field q=λ
instead of q we get

1

2
trð1þ log ð2πXAÞ − 2 logðλÞÞ: ð51Þ

The mutual information between two regions V and V 0,
with centers formed by the fields inA⊆V, A0⊆V 0, is given by

IðV;V 0Þ ¼ SðVÞþ SðV 0Þ− SðVV 0Þ ¼HðA;A0Þ þ IQðV;V 0Þ

¼ 1

2
tr½logðXAÞþ logðXA0 Þ− logðXAA0 ÞÞ�

þ SQðVÞþ SQðV 0Þ− SQðVV 0Þ: ð52Þ

This gives the desired expression for the mutual information
of two algebras with center purely in terms of the correlation
function matrices.

B. Generalization for arbitrary commutators
and constraints

In the case the variables satisfy canonical commutation
relations and the algebra has a trivial center, the entangle-
ment entropy associated to a region V, can be calculated
in terms of the correlators restricted to V according to
Eq. (34). In the case the algebra has a nontrivial center the
entropy is given by the sum of the quantum (47) and
classical (50) parts. In this section, we show how these
formulas can be extended to the case of conjugated
variables having general numeric commutators. This is
the case of the physical variables E;B in Maxwell theory, or
the variable ϕ̂, π in the truncated scalar model.
Consider an operator algebra with noncanonical com-

mutation relations

½qi; pj� ¼ iCij; ð53Þ

and correlators

hpi; pji ¼ Pi;j ð54Þ

hqi; qji ¼ Xi;j ð55Þ

hqi; pji ¼
i
2
Cij: ð56Þ

Suppose we are interested in a subalgebra without center
fqi; pig with i ∈ V. We can define new canonical variables
q̂i, pj, using

q̂i ¼ ðCVÞ−1ik qk: ð57Þ

The correlation functions restricted to the region will be

hq̂i; q̂ji≡ ðCVÞ−1XVððCVÞ−1ÞT; ð58Þ

hq̂i; pji ¼
i
2
δijjV; ð59Þ

hpi; pji≡ PV: ð60Þ
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The entropy is then calculated in terms of Θ ¼ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffihq̂; q̂i:hp; pip
as (34).

It is important to notice that the entropy is a function of
the algebra and the global state. Hence, if instead of the
variables qi, pj, we take arbitrary linear combinations of
these, we end up with the same entropy, as long as we
consistently change the correlation matrices and commu-
tators. The same can be said for the case where there are
constraints. For example, we can have more variables q
than p because some combinations of the q variables are
zero, as happens for the electromagnetic field and the
truncated scalar.1 We can eliminate the redundant variables
in many different ways and keep an equal number of
coordinate and momentum variables, and then compute the
entropy as described above. The entropy is invariant under
these “gauge fixings.” See Fig. 4.

1. The case with center

The general case in gauge theories involves algebras with
center and nontrivial commutators. The previous discussion
about the entropy can be generalized to this case. Consider
the algebra generated by qi; pj, with i ∈ V ¼ f1;…; ng
and j ∈ B ¼ fkþ 1;…; ng with B ⊂ V. We assume
½qi; pj� ¼ 0 for i ∈ A ¼ f1;…; kg, j ∈ B, in such a way
that qi, i ∈ A span the center of the algebra. Using again the
transformation (57) we arrive at the case studied in (IVA 1)
and we find the quantum contribution to the entropy is
given by

SQðVÞ ¼ trððΘþ 1=2Þ logðΘþ 1=2Þ
− ðΘ − 1=2Þ logðΘ − 1=2ÞÞ; ð61Þ

Θ ¼
ffiffiffiffiffiffiffiffi
~X ~P

p
ð62Þ

~X ¼ ðX−1
V jBÞ−1 ¼ ðCT

VBX
−1
V CVBÞ−1; ~P ¼ PB: ð63Þ

Here CVB is the commutation matrix (53) between qi with
i ∈ V and pj with j ∈ B. The classical contribution has the
same form as before

HðAÞ ¼ 1

2
trð1þ log ð2πXAÞÞ: ð64Þ

The case for a center formed by pi with i ∈ A ¼ f1;…; kg
is analyzed in the same way, interchanging P↔X.

C. Correlators for the vacuum state

We are interested in vacuum entropies. Here, we show
how to compute the correlators for simple quadratic
Hamiltonians relevant for the Maxwell field.
The vacuum correlators for Gaussian states can be

directly calculated from the kernel of the quadratic
Hamiltonian [6] for the free scalar field. It is easy to show
that this result can be generalized for the case of variables
with noncanonical commutation relations. Consider a
theory with Hamiltonian

Hðq; pÞ ¼ 1

2

�X
i

pi
2 þ

X
i;j

qiMijqj

�
; ð65Þ

for the canonical conjugated variables q̂, p, with

q̂i ¼ ðCÞ−1ik qk; ð66Þ

and C defined in (53). Changing variables, the Hamiltonian
takes the form

Hðq̂; πÞ ¼ 1

2

�X
i

pi
2 þ

X
i;j

q̂i M̂ijq̂j

�
; ð67Þ

where

M̂ ¼ CT:M:C: ð68Þ
The two point correlation functions for the fundamental

state are given in terms of C and M as [6],

hpi; pji ¼
1

2
ðM̂1=2Þij; ð69Þ

hq̂i; q̂ji ¼
1

2
ðM̂−1=2Þij; ð70Þ

hq̂i; pji ¼
i
2
δij: ð71Þ

FIG. 4. A circle on a square lattice. A maximal tree of links
inside the region gives all linearly independent link variables in
the truncated scalar model. We keep only variables in an arbitrary
maximal internal tree to make actual computations. Analogously,
in the gauge model we have to keep only the electric fields that
are orthogonal to this tree in the dual lattice.

1Redundant variables appear also if we choose to express the
entropies in terms of correlation functions in spacetime (as
opposite to space) as was recently proposed [9]. In this case,
the equations of motion play the role of the constraints on the
operators of the algebra.
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This gives for the original variables

hpi; pji ¼
1

2
ððCT:M:CÞ1=2Þij; ð72Þ

hqi; qji ¼
1

2
ðC:ðCT:M:CÞ−1=2:CTÞij; ð73Þ

hqi; pji ¼
i
2
Cij: ð74Þ

In the caseM is the identity matrix, which is relevant for the
Maxwell field, we have

hpi; pji ¼
1

2
ððCT:CÞ1=2Þij; ð75Þ

hqi; qji ¼
1

2
ðC:ðCT:CÞ−1=2:CTÞij ¼

1

2
ðC:CTÞ1=2ij ; ð76Þ

hqi; pji ¼
i
2
Cij: ð77Þ

In Sec. II B we showed how correlation functions for the
Maxwell field in 2þ 1 dimensions are obtained from scalar
correlation functions. Of course, this coincides with the
above formulas when applied directly to the gauge field.
These formulas can be used to obtain the lattice correlators
of electric and magnetic fields in other dimensions. Notice
that formulas (75) and (76) for the correlators do not have
singularities for noninvertible correlator matrix. This means
we can use them for the gauge fields directly without
necessity of solving for the constraints. Indeed we have
M ¼ 1 for the Maxwell Hamiltonian expressed in the
variables E and B where the constraints have not been
used. Then, the commutator matrix is in general rectan-
gular, but this does not affect the validity of (75) and (76).

V. SOME EXAMPLES WITH A MASSLESS
SCALAR FIELD

Before considering the gauge field and the truncated
scalar, we exemplify the methods discussed above with a
massless scalar fiels and several different algebra choices.
We consider a simple case of two square regions V and

W of size n lattice points, separated by the same number n
of lattice sites, and compute the mutual information for four
different algebras for each square as shown in Fig. 5:
(a) The full algebra A of the squares of size n with trivial

center, already studied in [10].
(b) The algebra Aϕ which results by removing all the πi

operators from the boundary with a center formed by
the remaining ϕi along the boundary.

(c) The opposite case where the removed fields are the ϕi
and we have an algebra Aπ with momentum center.

(d) The algebra ~A resulting from the elimination of all
operators of the boundary (that is, we consider squares
of side n − 2 in the center of the original squares).

We have for these algebras

A ⊃ Aϕ;Aπ ⊃ ~A: ð78Þ

The mutual information is monotonously increasing with
the algebra. Hence, we expect to have

IAðV;WÞ ≥ IAϕðV;WÞ; IAπ ðV;WÞ ≥ I ~AðV;WÞ;
ð79Þ

where V and W are the two squares.
In Fig. 6 we show the numerical calculation of the

mutual information between two squares of the same size
n and separated by a distance n, being n the number of
vertices, for the different algebra choices. Here, we use the
correlators (25), (26), and formula (52) to calculate the
mutual information. The figure shows the ordering relations
(79) are obeyed. We expect a convergence of the mutual
information for large n to the continuum limit. In fact, the
limit values I0 of the mutual information obtained by a fit
of the form IðV;WÞ ¼ I0 þ I1n−1 þ I2n−2 þ I3n−3 are
0.03299, 0.03302, 0.03304, and 0.03308 for the algebras
A, Aϕ, Aπ and ~A, respectively, showing a remarkably fast
convergence to a common constant value already for sets of

FIG. 5. We compute the mutual information for two squares
with different algebra choice. Upper panel: Trivial center, where
operators ϕi and πi are attached to each vertex (black dots).
Empty dots are shown with the purpose to describe the position of
the squares in the lattice and no operator are attached to them.
Middle panel: Nontrivial center. Operators ϕi and πi are attached
to black vertices. At gray vertices the corresponding π operators
are removed in Aϕ and the ϕ operators are removed in Aπ . The
center is generated by operators remaining at gray vertices. Lower
panel: The algebra ~A is the full algebra of the central square of
size n − 2 points.
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size n ¼ 35. This mutual information is a very small
number, approximately 1=20 bit for infinitely many degrees
of freedom in the continuum limit. This reflects the locality
of the theory.
Figure 6 illustrates our general argument [1] on why

mutual information must have a unique continuum limit
disregarding the details of the algebra choice for the region.
This is because some prescription for algebra choice (in this
case Aϕ and Aπ) can be bounded above and below by
another prescription with slightly different size for the
regions (in this case A and ~A). As the continuum limit is
reached, necessarily, all these prescriptions lead to the same
values.
On the other hand, regarding the entropy, different

choices of local algebra result in dramatic changes. In
ð2þ 1Þ dimensions, we expect the entropy for massless
theories and polygonal sets to have the following form as a
function of the overall size n,

S ¼ c1nþ clog log n − c0 þOðn−1Þ: ð80Þ

The coefficient clog is universal and comes from a sum over
the corners v of the region [10,11], and for each corner it
depends on the vertex angle θv,

clog ¼ −
X
v

sðθvÞ: ð81Þ

For a square region and a massless scalar field, we have
(a) Trivial center—full algebra,

clog ¼ −0.0472 ⇒ sðπ=2Þ ¼ −
clog
4

¼ 0.0118;

c1 ¼ 0.309; c0 ¼ −0.0881; ð82Þ

where we have allowed for an additional n−1 term in
the fit and taken squares of size up to n ¼ 35. The
presence of a center and in consequence, a classical
contribution to the total entropy, results in relevant
changes on the constant and area terms while the only
preserved term is the logarithmic one. This can be seen
in the coefficients we find for two different center
choices,

(b) Center of ϕ

clog ¼ −0.04706; c0 ¼ 2.36 − 2 logðλ=
ffiffiffiffiffiffiffiffi
2πe

p
Þ;

c1 ¼ −2.39 − 2 logðλ=
ffiffiffiffiffiffiffiffi
2πe

p
Þ: ð83Þ

(c) Center of π

clog ¼ −0.04703;

c0 ¼ −0.058 − 2 logðλ=
ffiffiffiffiffiffiffiffi
2πe

p
Þ;

c1 ¼ −0.014 − 2 logðλ=
ffiffiffiffiffiffiffiffi
2πe

p
Þ; ð84Þ

where λ is the normalization constant in the formula
for the Shannon entropy of the center (51).

Clearly, the area and constant terms suffer large changes
with the change of algebra prescription. Of course, these
nonuniversal terms suffer other ambiguities in the con-
tinuum limit, for example, they are not rotational invariant.
It is remarkable the area term (and hence the full entropy)
can easily turn to be negative due to the choice of the center
prescription. Negative entropies were found for nonmini-
mally coupled scalars and gauge fields in early calculations
using the replica trick [12]. The classical center hints to a
natural explanation for these puzzling results.

VI. ENTROPY AND MUTUAL INFORMATION
FOR THE GAUGE MODEL

We consider now the gauge model and calculate the
entropies and mutual information for different geometries.
Calculations are equivalently done in the dual model of
a truncated scalar described in Sec. II using the tools
developed in Sec. IV.
First, we calculate the mutual information between two

squares of equal sizes separated by a distance equal to the
squares size for the three different algebra choices of Fig. 3.
The result is shown in Fig. 7. As expected, the electric
center has larger mutual information than the trivial center,
and this is in turn larger than the magnetic center, in
agreement with the monotonicity property of mutual
information and the fact that the algebras in Fig. 3 are
ordered by inclusion.
We fit the mutual information as IðV;WÞ ¼

I0 þ I1n−1 þ I2n−2 þ I3n−3 þ I4n−4. As claimed in [1],
we find the same continuum limit for all of them, as shown
in Fig. 7 with

5 10 15 20 25 30 35
0.000

0.005

0.010

0.015

0.020

0.025

0.030

0.035

n

I
V

,W

FIG. 6 (color online). Mutual information between two square
regions of size n and separation distance n for four different
algebra choices, from top to bottomA,Aϕ,Aπ and ~A. The curves
corresponding to algebras with center Aϕ and Aπ are in between
the ones for the full algebras A and ~A. Fitting the curves with an
expansion in inverse powers on n all four curves lead to the same
n → ∞ limit IðV;WÞ≃ 0.0330.
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IE0 ¼ 0.000923; ð85Þ

IT0 ¼ 0.000924; ð86Þ

IM0 ¼ 0.000924; ð87Þ

for the electric, trivial, and magnetic centers, respectively.
The contribution of the classical Shannon term to these

universal numbers is shown in Fig. 8. We have that
HðV;WÞ goes to zero both for the electric and magnetic
centers. It falls much faster for the magnetic center because
it contains only one degree of freedom in contrast to the
electric center which contains an area increasing number of
degree of freedom. This also confirms general expectations
that HðV;WÞ has zero continuum limit [1] because it is
bounded above by the mutual information of regions on the
boundary with lattice spacing (cutoff) width and fixed
distance in the continuum interpretation. Hence, the
Shannon term does not seem to have physical meaning
in the continuum limit. This, together with the fact that all
the superselection sectors for a given center give place to
the same entropy (as shown in Sec. IV) leads us to the
conclusion that mutual information can be computed in the
continuum limit from the reduced density matrix for just
one arbitrary sector, for example, a fixed arbitrary normal
electric field at the boundary in the electric center choice.
Note the numerical value for the gauge field mutual

information is around 35 times smaller than the one
corresponding one to the same two squares for the scalar
field, I ¼ 0.033. In fact, the gauge model is (locally)
identical to a subalgebra of the scalar field, the one
generated by the gradient field. Hence, we expect the
mutual information for any two regions always satisfies

IgaugeðV;WÞ ≤ IscalarðV;WÞ ð88Þ

in d ¼ 3.

We can learn more about the similitudes and differences
between the scalar and gauge models by studying two
limits on the mutual information.
First, when two regions with parallel phases approach

each other, mutual information will diverge with the inverse
of the distance. For two squares we have [6,13]

IðV;WÞ ∼ k
R
l
þ…

l
R
≪ 1: ð89Þ

This is an area term for the mutual information in the
coincident limit. Now, we can argue that the constant
coefficient k must be the same for the scalar and the gauge
fields, as follows. The calculation of (89) for a scalar starts
by realizing that in the small l limit the term (89) is
extensive in the direction of the coordinate y parallel to the
two nearby sides of the squares. Therefore, we can replace
the two squares by two half-spaces for the sake of this
computation. Then, we can compactify the space in a circle
with large radius in the y direction without changing the
extensive part of the entropies (see [6] for details).
Decomposing the scalar into Fourier modes

ϕðx; y; tÞ ¼ eipyy ~ϕðx; tÞ ð90Þ

in the large direction, the mutual information IðV;WÞ turns
into a sum over the mutual informations of massive
1þ 1-dimensional scalar fields, where the mass is pro-
duced by the momentum in the transverse direction,
m2 ¼ p2

y. We have

kscalar ¼
1

π

Z
∞

0

dxCðxÞ ≈ 0.0397; ð91Þ

where CðrmÞ ¼ rdSðr;mÞ=dr is the entropic C function of
a massive scalar in d ¼ 2, and Sðr;mÞ is the entanglement
entropy for an interval of size r and a field of mass m.
Now, for the truncated scalar we can do the same

0 5 10 15 20
0.0000

0.0005

0.0010

0.0015

0.0020

n

H W,V

FIG. 8 (color online). Classical mutual information between the
centers of two squares in the electric center (upper curve) and
magnetic center (curve at the bottom). The horizontal line is the
continuum limit of the full mutual information of the squares.

5 10 15 20 25 30 35
0.000

0.001

0.002

0.003

0.004

n

I V,W

FIG. 7 (color online). Mutual information between two equal-
sized square regions separated by a distance equal to the squares
sides. From top to bottom: Electric, trivial, and magnetic center
choices.
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calculation. For any mode with py ≠ 0 in (90) the 1þ 1
model produced by the truncated scalar is the same as the
one of the full scalar. This is because for nonzero
momentum the operators ~ϕðx; tÞ in (90) belong to the
truncated algebra as well, since the integral of these modes
on the y direction is exactly zero. Hence, the coefficient k
for the truncated scalar and the gauge field are given by the
same integral (91), differing only in a measure zero set at
m ¼ 0, and we have

kgauge ¼ kscalar ≈ 0.0397: ð92Þ

The second limit we want to look at is when the two
regions V and W have large separations. For two squares
this is the limit of l=R ≫ 1, with l the separation distance.
In this case we have that mutual information falls as the
square of the correlation function of the lowest-dimension
operator [14] (see also [6] for the scalar case). This is ϕ
for the scalar model and Fμν for the gauge field. Thus,
we expect

Iscalar ∼ as

�
l
R

�
−2
;

l
R
≫ 1; ð93Þ

Igauge ∼ ag

�
l
R

�
−6
;

l
R
≫ 1: ð94Þ

We can confirm these expectations for two squares in
Fig. 9, where we have plotted mutual information against
l=R. The short and long distance behavior nicely
approach (89) and (93), (94). For two squares we can
get the coefficients in (93), (94) approximately as
as ∼ 0.09, ag ∼ 0.021.
Summarizing, the mutual information for the scalar is

always larger than the one for the gauge model. At short
distances they have the same leading ultraviolet divergent
term (area law) because they have the same ultraviolet
modes, while at larger distances the scalar field has much
larger mutual information. This is because the gauge field
does not contain the scalar “center of mass”mode,

P
i∈Vϕi,

which controls the largest share of mutual information for
large distances.

A. Logarithmic term in the entropy

Let us compute the logarithmic terms on the entropy for
different choices of center. These are generally universal
terms, and we have seen they do not depend on the center
for the scalar field. Again we calculate the entropy for
squares as in Fig. 3 and fit with a function of the
form S ¼ c1nþ clog logðnÞ þ c−1n−1 þ c−2n−2 þ… with
squares of size up to 35 points. We get for the trivial center
case (see Fig. 10)

clog ¼ 0.4521; ð95Þ

clog − cslog ¼ 0.4521þ 0.0472 ¼ :4993 ≈
1

2
; ð96Þ

where cslog is the logarithmic coefficient for a scalar.
Surprisingly, for the gauge model we get 1=2 plus the
logarithmic coefficient for the scalar on the square. For the
electric and magnetic centers we get similarly

cElog ¼ 0.4519; ð97Þ

cMlog ¼ 0.4517: ð98Þ

Thus, the logarithmic term is independent of the center
choice. We have also checked it is rotational invariant in the
lattice (that is, it does not change for rotated squares).
However, as we have pointed out, the entropies for

algebras with continuum center are not well defined, in the
sense that its classical contribution (64) can vary with field
normalizations. To understand the validity of these results
for the logarithmic term we notice that a change in
normalization by a factor λ changes the entropy of the
square by −DC logðλÞ, where DC is the number of degrees
of freedom in the center. This grows with the area in the
electric center and is just one for the magnetic center.
Hence, no changes in the logarithmic term are expected if
we change the normalization by a factor independent of the
number of points in the square. Changing the normalization
by a factor depending on n does not seem to be fair, in the
sense that it would be a prescription for doing computations
which includes information a priori on the object on which
one wants to compute the entropy.
In this regard, it is interesting to note that the classical

entropy of the center for the electric choice does indeed

l R

I V,W
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FIG. 9 (color online). Log log plot of the mutual information
for two squares of side R separated by a distance l, as a function
of l=R. The curve at the top is the mutual information for the
scalar and the lower one in the mutual information of the gauge
model. The dashed lines are asymptotic behaviors. For small l=R
we expect IðV;WÞ ∼ :0397R=l for both models, while for large
distances we expect IðV;WÞ ∼ ðl=RÞ2 for the scalar and
IðV;WÞ ∼ ðl=RÞ6 for the Maxwell field.
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give a nonzero contribution to the logarithmic term (this is
in fact a large fraction of the logarithmic term). Hence, even
if the mutual information does not depend on the classical
terms in the continuum limit, the logarithmic term in the
entropy is sensible to the classical contributions.
To discern how is this contribution related to the

presence of angles in the square, we have computed the
logarithmic term for several other shapes illustrated on
Fig. 11. Here, we list the results for clog for the different
regions and compare with the cslog coefficient for the same
regions in the full massless scalar theory (which is always a
sum over the contributions of the different angles):
(a) Entropy of two equal squares separated by a distance

of the size of the square:

clog ¼ 0.9044; ð99Þ
clog − cslog ¼ clog þ 8sðπ=2Þ ¼ 0.999 ≈ 1: ð100Þ

(b) Square of size 3n, with a centered square hole of size n:

clog ¼ 0.4052; ð101Þ

clog − cslog ¼ clog þ 8sðπ=2Þ ¼ :4996 ≈
1

2
: ð102Þ

(c) Square of size 3nwith a removed corner square of sizen:

clog ¼ 0.4294; ð103Þ

clog − cslog ¼ clog þ 6sðπ=2Þ ¼ 0.498 ≈
1

2
: ð104Þ

In Fig. 10 we also show the logarithmic term in the
entropies of circles in the square lattice. In this case, no angle
term is expected and we get Slog ¼ 0.504 logðnÞ for circles
of radius up to n ¼ 30. Of course, we have considerable
noise for circles, but still the logarithmic term is clearly seen
and can be extracted from the data with good precision.
From the above results and many other checks, including

triangular regions with angles different from π=2, we
conclude the general form of the logarithmic coefficient is

clog ¼
Nc

2
þ cslog ¼

Nc

2
−
X
v

sðθvÞ; ð105Þ

where Nc is the number of connected components in the
region, and sðθvÞ is exactly the same function giving the
logarithmic coefficient due to the angles in the full scalar
theory. The presence of the same ultraviolet logarithmic term
depending on the angles as in the scalar case can be explained
by the same argument as for the coefficient k in the mutual
information (previous subsection). This is because the coef-
ficient sðθÞ is computed bydimensional reduction in spherical
symmetry [10] and all relevant dimensionally reduced modes
for the scalar coincide with the ones for the truncated scalar.
On the other hand, the new contribution is topological

and “counts” the number of components of the region
independently of the shape. This contribution to the entropy
is rather puzzling in two respects. The first one is that this is
a term proportional to logðR=ϵÞ and hence apparently has
an ultraviolet origin, but at the same time it does not look
local on the boundary on geometrical grounds.2 However, it
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FIG. 10 (color online). Left panel: Entropy of a square of size n where the linear term in a fit S ¼ c1nþ c0 þ slog logðnÞ has been
subtracted. The logarithmic term is shown with a solid line. Right panel: Entropy of circles of radius n in the square lattice, computed
with 1=10 steps for the radius. The linear term has been subtracted. Both figures are for a trivial center.

(c)(b)(a)

FIG. 11. Different regions with different topologies and differ-
ent numbers of corners. Both of these features contribute to the
logarithmic term for the gauge model.

2A dimensionless quantity which is a local integral on the
boundary is − 1

2π

R
∂V dsγðsÞ ¼ 2Nc − Nb, where γðsÞ ¼

ηðsÞ: d2ðxðsÞÞds2 is the local oriented curvature of the boundary curve,
xðsÞ parametrizes the curve by length, and ηðsÞ is the outwards
pointing normal unit vector at the boundary. Here Nb is the
number of disjoint boundaries of the region. It is interesting to
note this means the number of connected components we find in
the logarithmic coefficient is then equivalent, up to local terms, to
the number of boundaries [15]. This resembles the topological
entanglement entropy dependence on the region. We thank
Tatsuma Nishioka for this comment.
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is important to realize that this term is only apparently
ultraviolet, and no short distance entanglement conse-
quence of this term can be seen in the universal mutual
information. In general we expect that divergent terms in
the entropy can be re-obtained, in a regularization inde-
pendent way, using the mutual information between the
region V and an external region W that surrounds V, in the
limit of small distance δ between these two regions. For
example, for the scalar we have

IðV;WÞ ¼ k
R
δ
þ 2 logðδÞ

X
v

sðθvÞ þOðδ0Þ; ð106Þ

where R is the region perimeter. For the truncated scalar we
should have the same formula, with the same coefficients,
plus the term − logðδÞNc. However, this last term is clearly
impossible, since the mutual information of the truncated
scalar is bounded above by the one of the scalar, and this
term would violate this inequality for small enough δ. A
direct check of this on the lattice is difficult because we
have to go to the small δ limit but having first reached the
continuum limit. We will say a bit more about this topic and
its possible relation with the c theorem in d ¼ 3 [3,4] in the
discussion section.
The second puzzle is the positive sign of the logarithmic

term Slog ¼ Nc=2 logðR=δÞ. This is rather startling because
the negative sign for the logarithmic terms coming from the
vertices in d ¼ 3 [see for example formula (82)] is a general
property imposed by strong subadditivity. We left for the
next section the solution of the paradox on how strong
subadditivity is preserved against all odds for this entropy
function.

VII. STRONG SUBADDITIVITY AND ALGEBRAS

Historically, SSA was first proposed in order to prove
the stability of the matter through concavity of the
entropy function in translation invariant systems [16]. It
was formulated for the case of Hilbert spaces that can be
written as tensor products. ConsiderH ¼ H1 ⊗ H2 ⊗ H3,
then [17]

Sðρ123Þ þ Sðρ2Þ ≤ Sðρ12Þ þ Sðρ23Þ; ð107Þ

where Sðρ12Þ ¼ −TrH12ρ12 log ρ12, etc.. In general this is
supposed to give place to the geometric inequality

SðAÞ þ SðBÞ − SðA∪BÞ − SðA∩BÞ ð108Þ
for the entropy of regions. However, we have to be more
careful in the gauge field case, since the tensor product
decomposition may not be possible.
The Maxwell field in 2þ 1 dimensions gives a clear

example. Suppose we have two horseshoe-like regions A
and B, intersecting in two disjoint squares, and having an
annulus shaped union as in Figs. 12 and 13. According to

the previous discussion, the entropy for these regions has
some divergent terms: An area term, a logarithmic term
which is a sum over the different angles, and a logarithmic
term proportional to the number of connected components.
The first two terms cancel in the combination (108), while
the last one would give

SðAÞ þ SðBÞ − SðA∪BÞ − SðA∩BÞ
¼ −

1

2
logðR=ϵÞ þ const < 0; ð109Þ

for some macroscopic size R, violating strong
subadditivity.

FIG. 13. The figures at the top show two horseshoe regions A
and B, and their union and intersections A∪B, A∩B (once A and
B became superimposed as in Fig. 12). The figures at the bottom
show the algebras AA, AB, AA∨AB and AA∧AB in the truncated
scalar model (magnetic center in this example). The intersection
of the algebras contains an additional nonlocal link with respect to
the algebra corresponding to the intersection A∩B. This nonlocal
link crossing between the two components makes the intersection
of the algebras an effective one component set.

FIG. 12. Two horseshoe like regions intersect each other. The
operators

P
ϕ̂ summed along each of the two lines joining the

two marked points are equal due to the constraint relation (telling
the sum of ϕ̂ along any closed curve is zero).
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The first problem with this argument is again the
ambiguities in the assignation of algebras to regions.
What are the algebras corresponding to the different regions
in (108) and how they are related to each other? With the
usual assignations of the algebras for regions there is no
way to choose the local algebras for the regions in (109) to
eliminate the remaining logarithmic term. This term comes
with the wrong sign, and SSA in this form does not hold.
As it happens, what is wrong here is the idea that strong

subadditivity can be applied to algebras assigned to regions
as in the left-hand side of (109). Instead of that, the set
operations of intersection and union have to be applied to
the algebras themselves. We propose the inequality

FðAA;ABÞ ¼ SðAAÞ þ SðABÞ − SðAA∨ABÞ
− SðAA∧ABÞ ≥ 0: ð110Þ

Here AA∧AB is the intersection of algebras (which is
another algebra) and AA∧AB ¼ ðAA∪ABÞ00 is the algebra
generated by the two (the smallest algebra containing the
two). In the present form, strong subadditivity holds for the
two horseshoe regions. The reason is that the intersection of
the two algebras of the horseshoe regions is the algebra of a
region with two square components but there is an addi-
tional extra long distance link ϕ1 − ϕ2 on the algebra of the
intersection (in the truncated scalar formulation, see
Fig. 13), where ϕ1 and ϕ2 are any two field operators
localized in each of the two separated squares forming the
intersection. This is because the two strings of fields shown
in Fig. 12 are the same operator due to the constraint
equations. Therefore, this string belongs both to AA and
AB. In the gauge formulation the long link represents the
global flux of electric field normal to the line. Because of
this extra link, the intersection effectively looses one
component, and in fact the calculation of the logarithmic

term gives the same result than for a one component region.
As a consequence, divergent pieces cancel exactly in (110),
and it turns out the combination is positive.3 This is shown
in Fig. 14 where this quantity is calculated for A and B with
the magnetic, trivial and electric center algebras. As shown
in Fig. 14, all cases have the same continuum limit. Fitting
the curves we obtain the constant limit4

FðAA;ABÞ ¼ 0.08583; electric center; ð111Þ

FðAA;ABÞ ¼ 0.08575; trivial center; ð112Þ

FðAA;ABÞ ¼ 0.08579; magnetic center: ð113Þ

For SSA in the usual form (107) the relation (110) is
clear since all algebras involved are in tensor products. The
SSA relation for algebras with center but still in tensor
products is shown in [7]. But the crucial point in this
example, is that given the algebras of AA and AB in the
gauge model, with any of the possible choices, we get
FðAA;ABÞ ≥ 0, even if the tensor product decompositions
in three algebras as in (107) cannot be achieved.
We could not find in the literature the statement (110) for

strong subadditivity and naturally wonder about the con-
ditions for its validity. It is clear it is not valid in full generality
as shown by the example of two canonical variables, where
AA ¼ fq1; p1g, AB ¼ fq1 þ ϵq2; p2 þ ϵp2g, AA∨AB ¼
fq1; p1; q2; p2g and AA∧AB ¼ 1. In this case if the first
pair of canonical variables are in a pure state decoupled from
the second pair, and this second pair has large entropy, we
have SðAAÞ ∼ SðABÞ ∼ 0, SðAA∨ABÞ is large and
SðAA∧ABÞ ¼ 0. Then (110) does not hold.Another example
is given by time like separated regions in QFT. We want to
exclude these cases.
A possible condition is as follows. The case of tensor

products (107) is characterized algebraically by the fact that
the following “commutator” algebra5 is trivial

0 10 20 30 40 50
0.00
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F

FIG. 14 (color online). FðAA; ABÞ ¼ SðAAÞ þ SðABÞ −
SðAA∨ABÞ − SðAA∧ABÞ for the configuration of Fig. 13 as a
function of the overall size in the lattice (here the side n of the big
square for the union of the two regions). The curves are for
algebras with magnetic, trivial, and electric center (from top to
bottom).

3Note that for theories with charges the intersection does not
contain the flux of the electric field on a line joining the two
regions. This is because the constraint has an additional piece of
the charge contained inside the closed loop which effectively
decouples the two fluxes on the two horseshoe algebras.
According to the present discussion, this means no divergent
term proportional to logðR=ϵÞ can appear for charged theories.

4Note in the electric center case the center is formed by
boundary links, but the center of the union has an additional large
distance link connecting the two boundaries.

5This is the terminology in the theory of orthomodular lattices
[18], which has strong connections with von Neumann algebras
and the relations between causal regions in spacetime [19,20]. In
the orthomodular lattice of causal regions the relation analogous
to (114) means that the causal sets A and B have a common
Cauchy surface [20].
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CðAA;ABÞ≡ðAA∨ABÞ∧ðAA∨A0
BÞ∧ðA0

A∨ABÞ∧ðA0
A∨A0

BÞ
¼1: ð114Þ

This is not the case of our lattice algebras nor of the above
example with two canonical pairs. However, for the
example with two canonical variables we get

CðAA;ABÞ ¼ AA∨AB: ð115Þ

For the algebras of our lattice simulations, we get a milder
modification of (114), namely that

CðAA;ABÞ ¼ Z; ð116Þ

with Z a commuting algebra. For the lattice algebras, Z is in
fact generated by operators localized at the boundaries of A
and B which commute to each other (however they do not
necessarily belong to the center of AA and AB, which can
be full algebras). Hence, in certain sense, the modification
of the conditions for SSA is again a detail at the boundaries,
and in algebraic terms the condition (116) should be read as
equivalent to the condition for regions A and B (as
represented in the model by their algebras) to be lying
in the same Cauchy surface, or not to be time-like to
each other. Hence, we are tempted to propose (116) as the
mathematical condition of validity of SSA in the
form (110).

VIII. FINAL COMMENTS

We have shown that it is possible to make numerical
computations of entanglement entropy for free gauge fields
in a lattice with the same computational complexity as for a
scalar field.
Our main general conclusion is that ambiguities on the

algebra choice in the gauge model disappear in the
continuum limit for the same terms in the entropy that
are universal for other fields. We have also seen the
classical Shannon term is not relevant for the continuum
limit of mutual information. In fact, at least for the free
models, the calculation of quantities of the continuum, can
as well be reduced to the quantum term on a single arbitrary
sector in the central decomposition of local algebras with
center.
We were compelled to propose a form of strong sub-

additivity which is written in algebraic terms. We con-
jecture some particular condition for this relation to be
valid, with generalizes the usual strong subadditive inequal-
ity for tensor products. Note that the proof of the existence
of an entropy density for translational invariant states [16],
which was the historical motivation to introduce SSA,
would need of this enlarged form of SSA to be freely
applied to gauge fields.

A. A. Topological entanglement entropy

The discussion of strong subadditivity for the two
horseshoe like regions in Sec. VII has close connections
with the topological entanglement entropy [5,21]. This
geometric arrangement was used to define the topological
entanglement entropy by Levin and Wen,

SðAÞ þ SðBÞ − SðA∪BÞ − SðA∩BÞ ¼ γtopo ð117Þ

for gapped models in 2þ 1 dimensions. However, as we
have seen, the quantity on the left-hand side, has to be
defined in an algebraic way as FðAA;ABÞ. We compute
this quantity in a topological Z2 gauge model following our
previous calculations [1] (see also [2,22]). We find that
for all prescriptions of the local algebras we get
FðAA;ABÞ ¼ 0, essentially because the number of degrees
of freedom in the centers of AA and AB are equal to the
ones in AA∨AB and AA∧AB. This suggests topological
entanglement entropy needs UV degree of freedom to be
well defined (see however [23]). That is, we need some
degree of freedom in the UV which allow the continuum
limit to be taken. If the topological model is a long distance
limit of some other theory at the UV we expect FðAA;ABÞ
to give the topological entropy for large regions.

B. Logarithmic term and c theorem

We have found a logarithmic term 1=2 logðR=ϵÞ in the
entropy with topological coefficient. However, this term is
not reproduced by the mutual information (see Fig. 15). In
this calculation, we have the region V surrounded by the
regionW at a distance δ, acting as an UV cutoff, andW has
a maximal size ΛIR acting as an infrared cutoff. As δ → 0,
we found that there cannot be any ∼ − logðδÞ term in the
mutual information, since mutual information of the gauge
model is bounded above by the one of the scalar, which
does not have such term (while it has the same coefficient
for the area term). We expect however, the behavior
1=2 logðRÞ to be reproduced in the mutual information
at least as the infrared size ΛIR goes to infinity. This is the

FIG. 15. The region W encircles V at a distance δ. The large
radius ΛIR is used as an infrared cutoff.
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geometric regularization of (twice the) entropy by mutual
information [24]. Since the only finite available sizes in this
construction are R and ΛIR we expect to have a term

IðV;WÞlog ∼ logðR=ΛIRÞ: ð118Þ

Note that as ΛIR ≫ R this term is negative. Hence, we have
to take δ ≪ R;ΛIR for this to make sense. Taking the limit
of large ΛIR at fixed δ, this term cannot appear because it
would make mutual information negative.
Equation (118) would nicely fit with the results of [3].

There, the authors computed the entropy for a disc and a
compactified Maxwell field and found a logarithmic term
1=2 logðRg2Þ, with g the gauge coupling constant, in the
entanglement entropy, in the limit of Rg2 ≪ 1. This can be
thought as a large positive term in the c function RS0ðRÞ −
SðRÞ of the d ¼ 3 c theorem [25] (see also [26]). As
pointed out in [4] a logarithmically divergent term in the c
function in the limit of uncompactified Maxwell field
(Rg2 ≪ 1) is necessary for the validity of the c theorem
due to a possible running of the Maxwell theory at the UV
to a Chern Simmons theory in the infrared.

This is also consistent with the observation [27] that the
correct definition of the c function is in terms of the
constant term in the expansion of mutual information in
powers of δ, IðR − δ=2; Rþ δ=2Þ ∼ 2c1 R

δ − 2c0 þ… The
large ΛIR limit has to be taken after the small δ limit
(though in general we expect these limits to commute).
Note c0 cannot be directly extracted from the entropy by the
formula c0 ¼ RS0ðRÞ − SðRÞ in this particular model,
because it contains a large but negative term.
Unfortunately, to check these expectations with some

precision in the square lattice seems to be difficult. We
left for a future work the relevant calculation in a radial
lattice.
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