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We show that the four-loop four-point amplitudes of N ¼ 5 supergravity are ultraviolet finite in four
dimensions, contrary to expectations based on supersymmetry and duality-symmetry arguments. We
explain why the diagrams of any covariant local formalism cannot manifestly exhibit the necessary
cancellations for finiteness but instead require a new type of ultraviolet cancellation that we call an
“enhanced cancellation.” We also show that the three-loop four-point amplitudes in N ¼ 4 and N ¼ 5

supergravity theories display enhanced cancellations. To construct the loop integrand, we use the duality
between color and kinematics. We apply standard methods for extracting ultraviolet divergences in
conjunction with the FIRE5 integral reduction program to arrive at the four-loop results.
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I. INTRODUCTION

Quantum field theories of gravity are nonrenormalizable
by power counting Feynman diagrams. This leads to the
widely held belief that all unitary gravity field theories must
be ultraviolet divergent at some loop order. Indeed, no
known symmetry is powerful enough to render such
theories ultraviolet finite. On the other hand, recent years
have made it abundantly clear that scattering amplitudes
contain hidden symmetries and new structures beyond
those expected from Lagrangians. While these are not
yet fully understood, they can have profound consequences
on ultraviolet properties.
In this paper, we identify a new class of multiloop

ultraviolet cancellations that go beyond the ones estab-
lished by standard-symmetry arguments. We call these
“enhanced ultraviolet cancellations.” These are defined as
cancellations that cannot be displayed term by term in any
local covariant diagrammatic formalism. By such a for-
malism we mean that the poles in the diagram integrands
are simply the standard Feynman-propagator ones. Using
the maximal-cut conditions, as defined in Ref. [1], we can
identify terms unique to a given diagram which we can then
power count. To illustrate enhanced cancellations, we use
previous three- and four-loop calculations in N ¼ 4 super-
gravity [2,3], as well as new calculations in N ¼ 5

supergravity performed here.
The study of the ultraviolet properties of gravity theories

has a rich history, starting with the seminal work of ’t Hooft
and Veltman [4]. They showed that pure Einstein gravity is
finite at one loop but divergent with the addition of matter, a
point on which other papers elaborated as well [5]. Goroff
and Sagnotti later showed that at two loops, pure Einstein
gravity diverges [6]. With the addition of supersymmetry,
the ultraviolet behavior tends to improve: Pure ungauged

supergravities are known to have no divergences prior to
three loops [7]. However, the consensus reached from
studies in the 1980s was that all supergravity theories
would likely diverge at the third loop order (see, for
example, Ref. [8]), though one can raise the loop order
with additional assumptions [9].
The complexity of gravity theories makes it difficult to

explicitly check these expectations. This situation was
ameliorated by the advent of the unitarity method
[10,11], which makes it possible to directly determine
ultraviolet properties of gravity theories at high loop orders.
More recently, a new constraint on gauge-theory and
gravity amplitudes has been introduced—the duality
between color and kinematics found by Bern, Carrasco
and Johansson (BCJ) [12,13]—allowing additional new
nontrivial computations to be carried out.
For maximally supersymmetric supergravity (in D ¼ 4

this isN ¼ 8 supergravity) [14], explicit calculations show
that four-point amplitudes are finite at three loops for
dimensionsD < 6 [15,16] and at four loops for dimensions
D < 11=2 [17]. In D ¼ 4, these ultraviolet cancellations
were subsequently understood to follow from supersym-
metry and the E7ð7Þ duality symmetry of N ¼ 8 super-
gravity [18,19]. A purely supersymmetric explanation has
also been developed by Björnsson and Green [20] using a
field-theory version of the Berkovits pure-spinor formalism
[21]. The current consensus based on symmetry consid-
erations is that a D8R4 counterterm is valid under all
standard symmetries, leading to the expectations of a
seven-loop divergence inD ¼ 4 and a five-loop divergence
in D ¼ 24=5.
While technical difficulties have prevented the N ¼ 8

supergravity expectations from being confronted by
calculation, there is now evidence that implies even
better behavior in this case than that suggested by
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standard-symmetry arguments: Similar argumentation in
half-maximal supergravity leads to predictions of valid
counterterms in cases where no divergences exist. In
particular, at three loops, half-maximalN ¼ 4 supergravity
[22] is ultraviolet finite in four dimensions [15], while
similar supersymmetry and duality-symmetry considera-
tions suggest that it should diverge [19]. (See Ref. [23] for
string-theory arguments for finiteness.) In addition, half-
maximal pure supergravity in D ¼ 5 is ultraviolet finite at
two loops, again contrary to symmetry considerations [24].
An important question is whether it is possible that the

observed three-loop finiteness of N ¼ 4 supergravity in
D ¼ 4 can be explained using only arguments based on
supersymmetry and duality symmetry. An attempt to find
such an explanation relied on the assumption of the
existence of an appropriate non-Lorentz covariant off-shell
16-supercharge superspace [25,26]. Not surprisingly, the
assumption carries other consequences as well: In particu-
lar, it predicts additional finiteness conditions when matter
multiplets are added [26] that directly contradict sub-
sequent explicit calculations [27]. Three-loop finiteness
of pure N ¼ 4 supergravity therefore remains unexplained
by standard-symmetry arguments. Nevertheless, it remains
a key problem to understand the extent to which such
arguments can restrict divergences.
To carry out further probes of the ultraviolet properties of

supergravity theories, together with Smirnov and Smirnov,
we recently computed the four-loop four-point divergence
ofN ¼ 4 supergravity inD ¼ 4 [3], finding that the theory
does diverge at four loops. Naively, this might suggest that
all supergravity theories should diverge at some sufficiently
high loop order. However, when one looks at the details of
the divergence, a rather different picture emerges: The
divergence appears to be tied to the duality-symmetry
anomaly of N ¼ 4 supergravity found by Marcus [28].
The consequences of the anomaly on the amplitudes of
N ¼ 4 supergravity have been described in some detail in
Ref. [29]. The role of the anomaly implies that divergences
of this type should not exist in N ≥ 5 supergravity, since
these theories have no such analogous anomalies.
In this paper, we identify a subset of terms in N ¼ 8

supergravity that are ultraviolet divergent in four dimen-
sions at seven loops, reproducing the analysis of Björnsson
and Green [20] from a different perspective. To identify
irreducible terms with poor power counting, we use
maximal cuts. The expectation of a seven-loop divergence
is also consistent with other standard-symmetry arguments
[16–19]. A key question is whether there are nontrivial
enhanced cancellations between the divergent terms that
then make the amplitude as a whole ultraviolet finite.
Unfortunately, the high required loop order makes it
unfeasible at present to test for the existence of enhanced
cancellations in N ¼ 8 supergravity. Instead, here we
demonstrate the presence of enhanced cancellations in
N ¼ 4 and N ¼ 5 supergravities, since they are easier

to work with because the required loop order is lower. As
we demonstrate in this paper, enhanced cancellations are
responsible for making the four-point N ¼ 4 supergravity
amplitudes finite at three loops and N ¼ 5 supergravity
amplitudes finite at four loops. We also demonstrate three-
loop cancellations in four-pointN ¼ 5 supergravity ampli-
tudes beyond those needed for finiteness. Such cancella-
tions are reminiscent of the types of nontrivial cancellations
noticed in certain unitarity cuts [30]. The surprising aspect
is that no covariant local diagrammatic representation can
make these results manifest.
What might be behind enhanced ultraviolet cancella-

tions? In a previous paper with Huang [24], using the
duality between color and kinematics, we explicitly tied the
enhanced cancellations at two loops in half-maximal
supergravity in D ¼ 5 to corresponding cancellations in
pure Yang-Mills theory that prevent forbidden color factors
from appearing in divergences. A key feature is that the
ultraviolet cancellations occur between the planar and
nonplanar sectors of the theory. This case is particularly
simple to analyze in detail because the supergravity
amplitudes are simple linear combinations of Yang-Mills
amplitudes even after integration. Unfortunately, the sit-
uation beyond two loops is much more complex because
different sets of integrals appear in the supergravity case
than in the corresponding gauge-theory case.
To carry out our computations, we use the same

techniques as those used for three and four loops
[2,3,27] in N ¼ 4 supergravity. Our computations make
use of the many advances in constructing integrands,
including the unitarity method [10,11,31] and the duality
between color and kinematics [12,13]. While nonplanar
integrands cannot be uniquely defined, they can still be
integrated to obtain unique results. Once the integrands are
constructed, a mass is introduced as an infrared regulator.
We then series expand in small external momenta (or
equivalently large loop momenta) to focus on ultraviolet
singularities [32,33]. At four loops the resulting vacuum
integrals are nontrivial. To deal with them we use FIRE5
[34], which implements the Laporta algorithm [35], to
reduce the integrals to a basis set.1 The basis integrals are
known since they are identical to those used in the
evaluation of the four-loop QCD β function [36,37].
This paper is organized as follows. In Sec. II, we

summarize the methods used to carry out the calculations.
In Sec. III, we review the results of standard-symmetry
power counting and show that power counting maximal
cuts gives identical results. Then in Sec. IV, we exhibit the
enhanced cancellations responsible for ultraviolet finiteness
ofN ¼ 4 supergravity at three loops [2]. We also present a
new three-loop calculation inN ¼ 5 supergravity, pointing
out that it too exhibits enhanced cancellations beyond those

1We are grateful to Alexander and Volodya Smirnov for
carrying out this step for us.
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needed for ultraviolet finiteness. In Sec. V, we demonstrate
that the four-point amplitudes ofN ¼ 5 supergravity are all
ultraviolet finite and again display enhanced cancellations.
We present our conclusions in Sec. VI.

II. METHODS

A. Duality between color and kinematics

The duality between color and kinematics and the
associated gravity double-copy property [12,13] make it
simple to construct supergravity amplitudes once corre-
sponding gauge-theory amplitudes are arranged into a form
that makes the duality manifest. (For a review of this
duality and its applications, see Ref. [38].) At loop level the
duality remains a conjecture, but we rely only on explicitly
constructed forms of N ¼ 4 super-Yang-Mills amplitudes
where the duality is manifest [13,39].
The duality between color and kinematics is usually

formulated via graphs with only cubic vertices. Any L-loop
m-point gauge-theory amplitude with all particles in the
color-adjoint representation can be written in terms of such
graphs as

AL–loop
m ¼ iLgm−2þ2L

X
Sm

X
j

Z YL
l¼1

dDpl

ð2πÞD
1

Sj

njcjQ
αj
p2
αj

:

ð2:1Þ

The sum labeled by j runs over the set of distinct
nonisomorphic graphs, while the sum over Sm is over
all m! permutations of external legs. The symmetry factor
Sj removes overcounts arising from automorphisms of the
diagrams. The product in the denominator runs over all
Feynman propagators of graph j, and the integrals are over
L independent D-dimensional loop momenta. The color
factor cj of graph j is given by dressing every three-vertex

with a group-theory structure constant, ~fabc ¼ i
ffiffiffi
2

p
fabc,

while nj is the kinematic numerator of graph j depending
on momenta, polarizations and spinors. So far this repre-
sentation involves nothing more than absorbing contact-
term contributions into graphs with only cubic vertices by
multiplying and dividing by appropriate propagators.
The nontrivial part is the all-loop-order conjecture that

there exists a form of gauge-theory amplitudes where
kinematic numerators satisfy the same algebraic relations
as color factors. These are known as BCJ representations of
amplitudes. For the theories we discuss in this paper, this
amounts to imposing the same Jacobi identities on the
kinematic numerators as those satisfied by adjoint-repre-
sentation color factors:

ci ¼ cj − ck ⇒ ni ¼ nj − nk; ð2:2Þ

where the indices i; j; k denote the diagram to which the
color factors and numerators belong. The basic Jacobi

identity is illustrated in Fig. 1 embedded in an arbitrary
diagram. The numerator factors are also required to have
the same antisymmetry properties as color factors. In
general, the duality relations (2.2) work only after appro-
priate nontrivial rearrangements of the amplitudes.
Remarkably, we can obtain corresponding gravity loop

integrands simply by replacing color factors in a gauge-
theory amplitude by kinematic numerators of a second
gauge-theory amplitude where the duality is manifest
[12,13]:

ci → ~ni: ð2:3Þ

Putting in the appropriate gravitational coupling gives us
the double-copy form of gravity amplitudes,

ML–loop
m ¼ iLþ1

�
κ

2

�
m−2þ2LX

Sm

X
j

Z YL
l¼1

dDpl

ð2πÞD
1

Sj

nj ~njQ
αj
p2
αj

:

ð2:4Þ

Only one of the two sets of numerators nj or ~nj needs to
satisfy the duality relation (2.2) [13,40]. We note that at tree
level (L ¼ 0), the duality encodes the Kawai-Lewellen-Tye
[41] relations between gauge-theory and gravity ampli-
tudes, as well as nontrivial relations between color-ordered
gauge-theory partial amplitudes [12].

B. Construction of N ¼ 5 supergravity amplitudes

In this paper we construct the three- and four-loop four-
point N ¼ 5 supergravity integrands using the procedure
presented above. We do so by starting with an N ¼ 1
super-Yang-Mills integrand and then replacing the color
factors with the BCJ forms of kinematic numerators of
N ¼ 4 super-Yang-Mills theory given in Refs. [13,39].
Similar constructions of less-than-maximal supergravity
amplitudes are found in Refs. [2,3,24,27,42]. We express

ðN ¼ 5 sugraÞ∶ ðN ¼ 4 sYMÞ ⊗ ðN ¼ 1 sYMÞ; ð2:5Þ

where “sugra” and “sYM” are shorthand for, respectively,
supergravity and super-Yang-Mills theory. We further
decompose the N ¼ 5 amplitudes into a direct sum,

FIG. 1 (color online). The basic loop-level Jacobi relation for
either color or numerator factors given in Eq. (2.2). The basic
identity can be embedded in a diagram at any loop order.

ENHANCED ULTRAVIOLET CANCELLATIONS IN … PHYSICAL REVIEW D 90, 105011 (2014)

105011-3



ðN ¼ 5 sugraÞ∶ ðN ¼ 4 sYMÞ ⊗ ðN ¼ 0 sYMÞ

⊕ðN ¼ 4 sYMÞ ⊗
�
ðN ¼ 1 sYMÞ⊖ðN ¼ 0 sYMÞ

�
;

ð2:6Þ

where “N ¼ 0 sYM” refers to ordinary pure nonsupersym-
metric Yang-Mills theory. The first term in the direct sum is
the pure N ¼ 4 supergravity amplitude, while the second
term is the difference between the N ¼ 5 and N ¼ 4
supergravity amplitudes. The second term comes from
taking the diagrams of pure N ¼ 1 super-Yang-Mills,
subtracting out the pure-gluon part, and then replacing
the color factors with the BCJ numerators of N ¼ 4 super-
Yang-Mills theory. On the N ¼ 1 super-Yang-Mills side,
this amounts to separating the pure-gluon contributions
from the contributions including also gluinos.
Following Refs. [2,3,27], we use ordinary Feynman

diagrams for the N ¼ 0 and N ¼ 1 super-Yang-Mills
integrands. While this might seem to be a poor starting
point given the complexity of such diagrams, the BCJ
construction (2.4) ensures that only a small fraction of
diagrams actually contribute. Whenever an N ¼ 4 super-
Yang-Mills diagram vanishes, we do not need to evaluate
corresponding diagrams in N ¼ 0 or N ¼ 1 super-Yang-
Mills theory. At one, two, three and four loops, the BCJ-
satisfying representations of the four-point amplitudes of
N ¼ 4 super-Yang-Mills theory have only, respectively, 1,
2, 12 and 85 nonvanishing diagrams (up to permutations of
external legs). This is already a remarkable simplification,
allowing the calculation to proceed.
The decomposition in Eq. (2.6) results in an integrand

where the N ¼ 4 supersymmetry cancellations are mani-
fest, but the N ¼ 1 ones are not. While we do not do so
here, one could simplify the N ¼ 5 supergravity integrand
to make cancellations from all supersymmetries manifest.
This could be accomplished by using the unitarity method
to systematically move terms between diagrams, subject to
maintaining the unitarity cuts. However, as we shall see
below, no covariant local representation exists either in
N ¼ 4 or N ¼ 5 supergravity that makes manifest the
complete set of ultraviolet cancellations that we find.
Because of this, there is no obvious way to avoid direct
integration to see the cancellations. We consequently call
such cancellations enhanced.

C. Extraction of ultraviolet divergences

Once we have an integrand, the next step is to extract the
ultraviolet divergences. The procedure that we use has been
described in some detail in Ref. [27], so here we only
briefly summarize it. To deal with potential ultraviolet
divergences we use dimensional reduction [43]. Rather
than evaluate integrals with their full momentum depend-
ence, it is much simpler to series expand the integrands
prior to integration in order to pick up only the desired

ultraviolet divergences [32]. This procedure introduces new
unphysical infrared singularities beyond the standard ones,
so one needs an infrared cutoff to separate the ultraviolet
divergences from the infrared ones.
An especially good choice for regulating infrared sin-

gularities is to introduce a uniform mass into all Feynman
propagators prior to expanding in external momenta
[44,45]. For the cases we study in this paper, where there
are no lower-loop divergences, the subdivergences should
all cancel amongst themselves with the use of this regulator.
The uniform mass regulator therefore greatly simplifies the
computation since we do not need to compute subdiver-
gences. We have, however, performed extensive checks
confirming that they cancel as expected. We note that if the
mass regulator were introduced later in the calculation, for
example after the expansion in external momenta and
tensor-integral simplifications, it would ruin the cancella-
tions of subdivergences between different integrals. One
would then need to include all subdivergence subtractions
to properly remove the regulator dependence, greatly
complicating the calculation.
The procedure results in a large number of vacuum

integrals. At three loops, evaluating the integrals is straight-
forward [2,45], but at four loops it is a more serious
challenge. To deal with this, we use the FIRE5 program
[34], which is a highly efficient implementation of inte-
gration-by-parts relations [33] using the Laporta algorithm
[46]. It allows us to write down any given integral as a
linear combination of a small number of so-called master
integrals. In our four-loop calculation, the reduction to
master integrals is especially nontrivial due to the high
powers of numerator loop momenta that occur in gravity.
Earlier related calculations already determined the four-
loop vacuum master integrals [35–37]; we use the master-
integral basis and values given in Ref. [37].

III. POWER COUNTING

A. Review of standard-symmetry power counting

The restrictions supersymmetry and duality symmetry
impose on counterterms have been studied in great detail
over the years. The most recent power-counting predictions
based on symmetry considerations are collected in Table I.
InD ¼ 4, apparently valid counterterms exist at loop orders
L ¼ 7 in N ¼ 8 supergravity [18–20], L ¼ 3 in N ¼ 4
supergravity [19], and L ¼ 4 in N ¼ 5 supergravity [19].
By increasing the space-time dimensions, one can also
lower the loop order at which a potential counterterm can
correspond to a divergence. For example, in D ¼ 24=5,
maximal 32-supercharge supergravity has a valid five-loop
counterterm [20]. Similarly, half-maximal 16-supercharge
supergravity in D ¼ 5 has an apparently valid two-loop
counterterm [24,26,27]. As explained in Ref. [19], the
counterterms listed in Table I cannot be written as full-
superspace integrals of duality-invariant integrands, but

ZVI BERN, SCOTT DAVIES, AND TRISTAN DENNEN PHYSICAL REVIEW D 90, 105011 (2014)

105011-4



they do appear to be valid under all known standard-
symmetry considerations. See also Refs. [25–27] for an
attempt to put tighter restrictions on the counterterms and
the associated difficulties with doing so.
Björnsson and Green [20] constructed a first-quantized

pure-spinor formalism useful for power counting. Their
formalism exposes all supersymmetry cancellations and
gives an identical power count as other recent methods,
including those that account for duality symmetry [18,19].
Their results imply that unless there are some extra
nonstandard cancellations beyond those implied by super-
symmetry, N ¼ 8 supergravity will diverge at five loops
in D ¼ 24=5 and at seven loops in D ¼ 4, corresponding
to the first and fourth rows of Table I. We know that
through four loops in N ¼ 8 supergravity, such sym-
metry-based predictions match the explicitly computed
critical dimensions where a divergence first appears
[11,13,16,39,47]. A key question is whether this pattern
continues or whether there are cancellations beyond the
well-understood ones.
While it is not currently feasible to answer this for N ¼

8 supergravity, we can answer it for N ¼ 4 and N ¼ 5
supergravity. From previous work [2], we already know
that the three-loop R4 counterterm of N ¼ 4 supergravity
inD ¼ 4 listed on the second row of Table I does not result
in a three-loop divergence. Similarly, half-maximal 16-
supercharge supergravity at two loops in D ¼ 5 is free of
divergences [24]. As we discuss below in some detail for
the three-loop N ¼ 4 case, these cancellations are a non-
trivial manifestation of enhanced cancellations. However,
one may worry that these two cases are special and not
representative of a general pattern. In particular, N ¼ 4
supergravity in D ¼ 4 has a Uð1Þ anomaly [28] that would
not occur in theories with higher supersymmetry. The two-
loop D ¼ 5 case also has some special features: At two
loops the BCJ kinematic numerators of maximally super-
symmetric Yang-Mills four-point amplitudes are indepen-
dent of loop momenta, implying that half-maximal
supergravity amplitudes are simple linear combinations
of the corresponding pure Yang-Mills ones. To go beyond
these special cases, here we study the case of N ¼ 5
supergravity in D ¼ 4 to show that there is no divergence
associated with the counterterm listed on the third line of
Table I. This case is not entangled with any known

anomaly. Furthermore, unlike the two-loop case, the
kinematic numerators do depend on loop momenta, so
the gravity integrals are different from the corresponding
Yang-Mills ones.

B. Power counting maximal cuts

In order to describe the phenomenon of enhanced
cancellations, we turn to power counting using maximal
cuts. The terms selected by a maximal cut are a gauge-
invariant set that are unique to a diagram. Using maximal
cuts, we can incorporate all supersymmetric cancellations
into supergravity power counts using the known power
counts of super-Yang-Mills theories. Because all super-
symmetric cancellations are accounted for, this gives us a
power-counting method equivalent to the one of Björnsson
and Green [20].
The maximal cut of a given diagram is obtained by

replacing all propagators with on-shell conditions. While
the cut conditions set various terms to zero, they do allow
us to identify terms with poor behavior, in some cases
worse behavior than that of the full amplitude. Once we
have selected terms using the maximal cuts, we promote
them back to Feynman integrals, making sure that the
obtained representation has the minimum power count
consistent with the cut. If any term is then found whose
ultraviolet behavior is worse than that of the amplitude as a
whole, then by definition, we have enhanced cancellations.
Of course, some care is required to be sure that we are using
a form that has minimum power count but is also consistent
with the cut. To be clear, we are defining enhanced
cancellations entirely by their integrand power-counting
properties and not by cancellations that appear only after
integration. We do the power counting in D dimensions,
viewing D as arbitrarily large, to not include hidden
relations in the cut solutions that might lead to extra
cancellations. In this way we maintain D-dimensional
covariance.
We will show that the maximal cuts give power counts

equivalent to the potential counterterms in Table I. This
should not be too surprising given that the maximal cuts are
a gauge-invariant subset built from objects that respect all
standard symmetries of the amplitudes. As with other
power counts, the maximal cuts do not make enhanced
cancellations visible because they do not account for
nontrivial cancellations between diagrams. Indeed, at a
sufficiently high loop order, the amplitudes of every
supergravity theory necessarily have divergences in indi-
vidual terms selected by the maximal cuts. To see a better
behavior in unitarity cuts, one needs to instead look at cuts
that collect together many diagrams so as to allow can-
cellations between them. The cuts analyzed in Ref. [30]
suggesting improved all-loop behavior of the amplitudes
are examples of this.
As a warm-up, we first consider maximal cuts in N ¼ 8

supergravity. We consider the diagram in Fig. 2(a) as a

TABLE I. Selected valid counterterms based on supersymmetry
and duality-symmetry considerations [18–20,24,26,27]. Q is the
number of supercharges.

Theory Counterterm Loop order

D ¼ 4; Q ¼ 32;N ¼ 8 D8R4 7
D ¼ 4; Q ¼ 16;N ¼ 4 R4 3
D ¼ 4; Q ¼ 20;N ¼ 5 D2R4 4
D ¼ 24=5; Q ¼ 32 D8R4 5
D ¼ 5; Q ¼ 16 R4 2
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simple first example. In N ¼ 8 supergravity, a kinematic
numerator consistent with the maximal cuts is given by [15]

N3–loop
N¼8 sugra ¼ s5tuMtree

4 ; ð3:1Þ

whereMtree
4 is the four-point gravity tree amplitude, and s; t

and u are the standard four-point Mandelstam invariants.
The maximal-cut conditions have no effect on this numer-
ator since it is independent of loop momentum. Counting
the three D-dimensional loop integrals, no powers of loop
momentum in the numerator and ten propagators gives us
the power count,

D3–loop
N¼8 sugra ∼ Λ3D–20; ð3:2Þ

where Λ is an ultraviolet cutoff. The critical dimension
where an ultraviolet divergence first occurs is thus Dc ¼
20=3 for the maximal-cut terms of this diagram. However,
the N ¼ 8 three-loop amplitude also contains worse-
behaved terms. We consider instead the diagram in
Fig. 2(b). In N ¼ 8 supergravity, a kinematic numerator
consistent with the unitarity cuts of this diagram is given in
Ref. [16]:

N3–loop
N¼8 sugra ¼ s3tuMtree

4 ðl5 − k4Þ4; ð3:3Þ

where the momenta correspond to the labels in the diagram.
Applying the maximal-cut conditions, we set l25 ¼ 0 and
obtain the minimal power-counting form,

N3–loop
N¼8 sugrajmax cut ¼ s3tuMtree

4 ð2l5 · k4Þ2: ð3:4Þ

After promoting this back to the numerator of a full three-
loop Feynman integral, we count the powers of loop
momenta. Counting the threeD-dimensional loop integrals,
two powers of loop momentum in the numerator and ten
propagators gives us an overall power count for the diagram
of

D3–loop
N¼8 sugra ∼ Λ3Dþ2–20: ð3:5Þ

The critical dimension of this contribution is thus Dc ¼ 6,
which matches the critical dimension obtained from

explicit divergence calculations [2,16]. In this case then,
there are no enhanced cancellations.
Next we consider the maximal cut of the five-loop

diagram in Fig. 3(a).2 The simplest numerator consistent
with the diagram’s maximal cut in N ¼ 8 supergravity is

N5–loop
N¼8 sugrajmax cut ¼ s5tuMtree

4 ð2l5 · l6Þ4; ð3:6Þ

where the momenta follow the labels of Fig. 3(a). The
numerator follows from the rung rule [11,31]—a rule
devised to give the correct iterated two-particle cuts—after
dropping terms that vanish with the on-shell conditions
l2i ¼ 0. Promoting the maximal-cut terms back to numer-
ators of a Feynman integral, we have five D-dimensional
loop integrals and sixteen propagators. Together with the
numerator (3.6), we then have a power count,

D5–loop
N¼8 sugra ∼ Λ5Dþ8–32: ð3:7Þ

This gives a critical dimension Dc ¼ 24=5, matching the
Björnsson and Green analysis [20]. After stepping through
the diagrams, this turns out to be the worst-behaved
contribution. If it were to turn out that the critical dimension
of the full amplitude is greater than 24=5, then by definition
there would be enhanced ultraviolet cancellations.
Similarly, we go through the same exercise for the seven-

loop diagram shown in Fig. 3(b). In this case, the simplest
form of the numerator consistent with the maximal cuts is

N7–loop
N¼8 sugrajmax cut ¼ s5tuMtree

4 ð2l5 · l6Þ8: ð3:8Þ

Together with seven D-dimensional loop integrations and
22 propagators, we obtain the power count,

D7–loop
N¼8 sugra ∼ Λ7Dþ16–44: ð3:9Þ

Thus, the critical dimension is Dc ¼ 4, again in agreement
with other power-counting methods [18–20].
While it is not yet technically feasible to directly study

enhanced cancellations in N ¼ 8 supergravity five- and
seven-loop amplitudes, we are able to study them inN ¼ 4

(a) (b)

FIG. 2. Three-loop sample diagrams (a) and (b) for maximal-
cut power counting.

(a) (b)

FIG. 3. Sample diagrams (a) and (b) for power counting
maximal cuts at five and seven loops.

2The importance of these types of cuts for power counting was
first pointed out by Henrik Johansson.
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and N ¼ 5 supergravities. We therefore turn to power
counting in these theories.
Consider N ¼ 4 supergravity at three loops. As

explained in Ref. [2], the BCJ construction of the integrand
is in terms of the 12 diagrams displayed in Fig. 5. To be
concrete, we examine diagram (a) in Fig. 2 for N ¼ 4
supergravity. The maximal-cut conditions on the kinematic
invariants are

l25 ¼ l26 ¼ l27 ¼ 0; l6 · l7 ¼ 0;

l5 · l6 ¼ 0; k2 · l7 ¼ −
s
2
− k1 · l7;

k3 · l7 ¼ 0; k2 · l6 ¼ −
s
2
− k1 · l6;

k1 · l5 ¼ −
s
2
; k2 · l5 ¼ 0: ð3:10Þ

Applying these and taking the explicit expression for the
numerator of Fig. 2(a) in N ¼ 4 supergravity obtained by
the double-copy procedure, we obtain

NðaÞ3–loop
N¼4 sugrajmax cut ¼ −64s3tAtree

N¼4
ðε1 · l5Þðε2 · l5Þðε3 · l7Þ

× ðε4 · l7Þðl5 · l7Þ2 þ � � � ; ð3:11Þ

where we kept only those terms with the largest powers of
loop momenta. The momentum labels are the ones shown
in the figure and Atree

N¼4
is an N ¼ 4 super-Yang-Mills tree

amplitude depending only on the external states and
momenta. The εi are polarization vectors of gluons. As
discussed in Sec. II, the pureN ¼ 4 supergravity states are
just the direct product of states of the two gauge theories.
The displayed term in Eq. (3.11) is irreducible in that its
power count cannot be lowered by imposing the maximal-
cut conditions (3.10). Since the term (3.11) is uniquely
assigned to the diagram, it is a lower bound on the power
count of the diagram. After including the three D-dimen-
sional loop integrals, eight powers of numerator loop
momentum and ten propagators, we obtain a power
counting for this diagram,

DðaÞ3–loop
N¼4 sugra ∼ Λ3Dþ8–20: ð3:12Þ

Thus, in D ¼ 4 this diagram has divergent terms. As a
direct confirmation of this power count, we integrated the
irreducible numerator in Eq. (3.11) after putting back the
propagators. Indeed, it is ultraviolet divergent as indicated
from the power count. This power count agrees with the
one based on standard-symmetry arguments [19].
On the other hand, explicit calculations show that the

three-loop four-pointN ¼ 4 supergravity amplitude is finite
[2]. Given that there are divergent terms in Fig. 2(a) that
can only cancel against terms that were set to zero by the
maximal-cut conditions or terms from other diagrams, the
finiteness of the amplitude as a whole is a prime example of
an enhanced cancellation.

The maximal-cut constraints can sometimes lower the
power count of diagrams below their true critical dimen-
sion. For example, for the diagram in Fig. 2(b), under the
maximal-cut conditions, all li · lj can be made to be no
worse than linear in loop momenta. By choosing the
minimal resulting power count, this results in an integrand
that is ultraviolet finite, even after including an extra power
of loop momentum from the N ¼ 4 super-Yang-Mills side
of the double copy. Another point is that after integration, it
may be possible to combine terms even from a single
diagram to get a finite result. In particular, one can imagine
taking the numerator of Eq. (3.11) and combining it with a
judiciously chosen set of terms that vanish on the cuts to
cancel the ultraviolet divergences. However, this is not
relevant for enhanced cancellations which are defined in
terms of power counting individual terms at the integrand
level. If even a single term in the integrand of a single
diagram has a worse power count compared to the actual
behavior of the full amplitude and the power count cannot
be lowered by maximal-cut conditions, then we have
identified enhanced cancellations. We also note that, by
using spinor helicity, we can set the integrated divergence
resulting from the diagram in Fig. 2(a) to zero (i.e., the
integration results in terms containing εi · εj that can be set
to zero by special reference-momentum choices). Indeed,
we shall do so later to simplify various tables. Of course,
this does not change the fact that there is a term in the
integrand that has a worse power count than the amplitude
as a whole that cannot be set to zero.
The counting for N ¼ 5 supersymmetry is similar

except that one should subtract two powers of loop
momenta from each numerator because of additional N ¼
1 supersymmetry cancellations described in Ref. [9].
Taking this into account, for the diagram Fig. 2(a), we
obtain a maximal-cut power count in N ¼ 5 supergravity
of

DðaÞ3–loop
N¼5 sugra ∼ Λ3Dþ6–20: ð3:13Þ

Thus, the critical dimension from the maximal cut of this
diagram is Dc ¼ 14=3 > 4, so we expect there to be no
obstruction to finding a covariant representation of N ¼ 5
supergravity that is manifestly ultraviolet finite in D ¼ 4 at
this loop order. Nevertheless, in Sec. IV we will show that
on top of the supersymmetric cancellations, there are
additional enhanced cancellations beyond those needed
for ultraviolet finiteness.
If we repeat the same exercise at four loops for N ¼ 4

supergravity using similar power counting on, for example,
the diagram in Fig. 4, we have the behavior,

D4–loop
N¼4 sugra ∼ Λ4Dþ12–26: ð3:14Þ

Here we count four D-dimensional loop integrals, 13
propagators, 10 powers of numerator loop momenta from
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the Yang-Mills vertices and 2 additional powers of loop
momenta from the N ¼ 4 super-Yang-Mills numerator.
This means that terms in the diagram in Fig. 4 have a
critical dimension ofDc ¼ 14=4 < 4 and that inD ¼ 4 it is
quadratically divergent by power counting.
If we increase the supersymmetry to N ¼ 5 super-

gravity, as noted above, the extra N ¼ 1 supersymmetry
decreases the maximal-cut power count by two powers of
loop momentum so that

D4–loop
N¼5 sugra ∼ Λ4Dþ10–26; ð3:15Þ

which corresponds to a critical dimension of Dc ¼ 4.
Therefore, based on the maximal-cut power counting,
we would expectN ¼ 5 supergravity to be logarithmically
divergent at four loops. This is consistent with the standard-
symmetry power count of Ref. [19], leading to an expected
counterterm on the third line of Table I. In Sec. V we show
that because of enhanced cancellations, the N ¼ 5 four-
loop four-point amplitude is, in fact, ultraviolet finite,
contrary to these power counts.

IV. THREE LOOPS

As a warm-up to our four-loop calculation, we first
present the corresponding three-loop calculation in N ¼ 5
supergravity. We follow the same techniques summarized
in Sec. II and described in some detail in Ref. [27]. In
contrast to N ¼ 4 supergravity, in this case we should be
able to construct a covariant integrand that is manifestly
ultraviolet finite, bypassing the need for loop integration to
demonstrate that it is ultraviolet finite. However, we do not
do so here. Instead, we proceed the same way as at four
loops by first computing the N ¼ 4 supergravity diver-
gences and then adding in the extra contributions needed in
N ¼ 5 supergravity. This allows us to observe enhanced
cancellations. In fact, we are able to show finiteness with
the enhanced cancellations alone, even without accounting
for cancellations arising from the extra supersymmetry in
theN ¼ 5 theory compared to theN ¼ 4 theory. Thus, the
cancellations are stronger than those required to demon-
strate finiteness.
In the calculation, we leave two state-counting param-

eters to make it simple to switch between various super-
gravity theories. The first parameter is Ds, which is

obtained from contractions of the metric ημν from the
Lorentz algebra, while the second is nf, which counts the
number of Majorana fermions added to the pure Yang-Mills
side of the double copy. By choosing Ds ¼ 4 and nf ¼ 0,
we obtain pure N ¼ 4 supergravity. By setting the param-
eters toDs ¼ 4 and nf ¼ 1, we obtainN ¼ 5 supergravity.
We can also obtain results for N ¼ 4 supergravity with nV
matter multiplets by choosing Ds ¼ 4þ nV and nf ¼ 0,
where nV is the number of internal matter vector multip-
lets [27].
Our D ¼ 4 divergence-calculation results are summa-

rized in Tables II and III with the results corresponding to
each graph in Fig. 5 used to organize these calculations.
The 12 diagrams correspond to the nonvanishing ones of
N ¼ 4 super-Yang-Mills theory in the BCJ representation
[13]. Table II contains all contributions that do not depend
on the parameter nf, and Table III contains all the pieces
that do depend on nf. In the calculation, we take the
external states to be gluons on theN ¼ 0 orN ¼ 1 side of
the double copy, keeping the polarization vectors formal.
However, to simplify the tables we apply four-dimen-
sional spinor helicity (see Ref. [48] for a recent review) on
the polarization vectors and specify the external-gluon
states to be − −þþ. We also make convenient choices of
reference momenta: q1 ¼ q2 ¼ k3 and q3 ¼ q4 ¼ k1. This
choice makes the divergences in diagrams (a)–(d) vanish
for both tables. It also results in terms containing a factor
of n2f, from two fermion loops, to vanish individually in all
diagrams in Table III (instead of in the sum over
diagrams). We have not included subdivergence subtrac-
tions in the tables, but we have explicitly confirmed that,
with the use of the uniform mass regulator, the subdi-
vergences cancel as expected, given that there are no
lower-loop divergences. In the tables, the ζi are the
standard Riemann zeta constants. The transcendental
constant S2 appearing in the tables is

FIG. 4. A four-loop diagram whose maximal-cut power count
suggests that N ¼ 5 supergravity should diverge in four dimen-
sions, contrary to the behavior of the four-point amplitude as
a whole.

(a) (b) (c) (d)

(e) (f) (g) (h)

(i) (j) (k) (l)

FIG. 5. Contributing three-loop diagrams (a)-(l) in N ¼ 4 and
N ¼ 5 supergravity.
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S2 ¼ 4

9
ffiffiffi
3

p Cl2

�
π

3

�
; ð4:1Þ

where Cl2ðxÞ ¼ ImðLi2ðeixÞÞ is the Clausen function. As
the tables illustrate, when one sums over all diagrams, the
result is finite for any choice of the state-counting
parameters.

Although we made special helicity choices for the tables,
our calculation is based on using formal polarization states
and is therefore valid for any external state that is a direct
product of a gluon state and an N ¼ 4 super-Yang-Mills
state. This corresponds to a subset of the N ¼ 5 super-
gravity states. Nevertheless, the result also extends to
any N ¼ 5 state because the N ¼ 1 super-Yang-Mills

TABLE II. The divergences for the four-graviton amplitude inN ¼ 4 supergravity corresponding to each graph in
Fig. 5. To simplify the diagrams, we choose the helicities ð1−2−3þ4þÞ on the pure Yang-Mills side of the double-
copy decomposition, leaving the states on the super-Yang-Mills side arbitrary. On the pure Yang-Mills side, we use
spinor helicity with reference momenta q1 ¼ q2 ¼ k3 and q3 ¼ q4 ¼ k1. Each expression includes a permutation
sum over external legs and the symmetry factor appropriate to the graph. Ds is the state-counting parameter and
ϵ ¼ ð4 −DÞ=2 is the usual dimensional regularization parameter. The transcendental constant S2 is defined in
Eq. (4.1). The sum over all contributions in the table vanishes, illustrating the phenomenon of enhanced
cancellations. These results do not include subdivergence subtractions, whose sum also vanishes.

Graph ðdivergenceÞð4πÞ6=ðh12i2½34�2stAtreeðκ
2
Þ8Þ

(a)–(d) 0

(e)
�
− 77

768
þ 85Ds

768

�
1
ϵ3
þ
�

35071
55296

− 2371Ds
6912

− D2
s

64

�
1
ϵ2
þ
��

− 11815
768

þ 4367Ds
768

þ 9D2
s

32

�
S2

þ
�
− 77

512
þ 85Ds

512

�
ζ2 þ

�
10627
2304

− 1705Ds
576

�
ζ3 − 170275

110592
þ 1381Ds

1536
− 5D2

s
128

�
1
ϵ

(f)
�

397
2304

− 143Ds
2304

�
1
ϵ3
þ
�

1717
4608

þ 211Ds
4608

�
1
ϵ2
þ
��

− 1777
256

þ 263Ds
256

�
S2

þ
�

397
1536

− 143Ds
1536

�
ζ2 þ

�
− 649

288
þ 69Ds

64

�
ζ3 þ 685733

165888
− 116663Ds

82944

�
1
ϵ

(g)
�
− 23

288
− 65Ds

1152

�
1
ϵ3
þ
�
− 7919

6912
þ 4631Ds

13824
þ D2

s
192

�
1
ϵ2
þ
��

2447
96

− 2911Ds
384

− 3D2
s

32

�
S2

þ
�
− 23

192
− 65Ds

768

�
ζ2 þ

�
− 2173

768
þ 2161Ds

1152

�
ζ3 − 464957

165888
þ 51515Ds

82944
þ 23D2

s
1152

�
1
ϵ

(h)
− 3

32
1
ϵ3
þ
�
− 1841

3072
þ 59Ds

192
− D2

s
48

�
1
ϵ2
þ
��

687
64

− 21Ds
4

þ 3D2
s

8

�
S2

− 9
64
ζ2 þ

�
3347
2304

− 5Ds
384

�
ζ3 − 144431

55296
þ 13811Ds

13824
− 17D2

s
288

�
1
ϵ

(i)
�

13
128

þ Ds
128

�
1
ϵ3
þ
�

4535
6144

− 265Ds
768

þ D2
s

32

�
1
ϵ2
þ
��

− 1779
128

þ 783Ds
128

− 9D2
s

16

�
S2

þ
�

39
256

þ 3Ds
256

�
ζ2 þ

�
− 2263

2304
þ 11Ds

576

�
ζ3 þ 311953

110592
− 7691Ds

6912
þ 5D2

s
64

�
1
ϵ

(j)
�
− 3

32
− 3Ds

32

�
1
ϵ3
þ
�
− 41

32
þ 35Ds

64

�
1
ϵ2
þ
��

927
32

− 333Ds
32

�
S2

þ
�
− 9

64
− 9Ds

64

�
ζ2 þ

�
− 11

4
þ 67Ds

24

�
ζ3 − 1297

576
þ 151Ds

384

�
1
ϵ

(k)
�

1
64
þ Ds

64

�
1
ϵ3
þ
�

443
576

− 347Ds
1152

�
1
ϵ2
þ
��

− 985
64

þ 365Ds
64

�
S2

þ
�

3
128

þ 3Ds
128

�
ζ2 þ

�
247
144

− 13Ds
12

�
ζ3 þ 9167

6912
− 865Ds

2304

�
1
ϵ

(l)
�

5
64
þ 5Ds

64

�
1
ϵ3
þ
�

295
576

− 283Ds
1152

�
1
ϵ2
þ
��

− 869
64

þ 301Ds
64

�
S2

þ
�

15
128

þ 15Ds
128

�
ζ2 þ

�
149
144

− 41Ds
24

�
ζ3 þ 6397

6912
− 41Ds

2304

�
1
ϵ

Sum 0
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supersymmetry identities [49] are powerful enough to
relate all four-point amplitudes to the gluonic ones. (A
discussion of these identities at two loops is given in
Ref. [50].) It is interesting that for any values of the state-
counting parameters, the divergences vanish.
In summary, not only is N ¼ 4 supergravity ultraviolet

finite at three loops, but the extra pieces needed to obtain
N ¼ 5 supergravity using the decomposition (2.6) are
finite by themselves:

M3-loop
4 jN¼4; div ¼ 0;

M3-loop
4 jðN¼5−N¼4Þ; div ¼ 0: ð4:2Þ

The independent vanishings in Eq. (4.2) show that the extra
supersymmetry of the N ¼ 5 theory compared to N ¼ 4
theory is not needed to make N ¼ 5 supergravity finite.
While this is no surprise given the three-loop finiteness of
N ¼ 4 supergravity, it does explicitly demonstrate that

ultraviolet cancellations exist in subpieces for which there
is no power-counting argument. Thus, the N ¼ 5 case is
another explicit example of enhanced ultraviolet cancella-
tions that go beyond the ones that have been understood by
any standard-symmetry considerations.

V. FOUR LOOPS

We now consider four loops. We first summarize the
calculation of the N ¼ 4 supergravity four-point diver-
gence presented in Ref. [3], giving a few additional
intermediate results. We then turn to the corresponding
calculation in N ¼ 5 supergravity, showing that the diver-
gence vanishes.

A. Review of N ¼ 4 supergravity

The calculation of the N ¼ 4 supergravity divergence
starts from pure Yang-Mills Feynman diagrams, keeping
only those diagrams with color factors that match the 82

TABLE III. Additional diagrammatic contributions appearing in the four-graviton amplitude of N ¼ 5 super-
gravity. These contributions contain also the nf state-counting parameter. The total N ¼ 5 divergence is given by
the sum over these contributions and those in Table II. The vanishing of the sum over the entries in each table
individually is a reflection of enhanced cancellations. Subdivergences automatically cancel amongst themselves and
are not included. The choice of external helicity states and reference momenta are as in Table II.

Graph ðdivergenceÞð4πÞ6=ðh12i2½34�2stAtreeðκ
2
Þ8nfÞ

(a)–(d) 0

(e)
�

43
192

þ Ds
32

�
1
ϵ3
þ
�

821
432

− 391Ds
576

�
1
ϵ2
þ
��

− 4627
192

þ 281Ds
32

�
S2

þ
�

43
128

þ 3Ds
64

�
ζ2 þ

�
− 271

36
− 17Ds

12

�
ζ3 þ 59723

6912
− 3113Ds

3456
− 5D2

s
16

�
1
ϵ

(f)
�

109
576

− Ds
16

�
1
ϵ3
þ
�

9
128

þ Ds
36

�
1
ϵ2
þ
��

− 689
64

þ 17Ds
8

�
S2

þ
�

109
384

− 3Ds
32

�
ζ2 þ

�
425
144

þ 35Ds
144

�
ζ3 − 7649

5184
− 55Ds

1728
þ D2

s
48

�
1
ϵ

(g)
�
− 4

9
þ Ds

32

�
1
ϵ3
þ
�
− 7549

3456
þ 43Ds

64

�
1
ϵ2
þ
��

1849
48

− 361Ds
32

�
S2

þ
�
− 2

3
þ 3Ds

64

�
ζ2 þ

�
749
144

þ 163Ds
144

�
ζ3 − 160627

20736
þ 3331Ds

3456
þ 7D2

s
24

�
1
ϵ

(h)
�
− 15

128
þ Ds

24

�
1
ϵ2
þ
��

9
8
− 3Ds

4

�
S2þ

�
1
24
þ 95Ds

144

�
ζ3 þ 3481

6912
− 599Ds

1728
þ D2

s
16

�
1
ϵ

(i)
1
32

1
ϵ3
þ
�

127
384

− Ds
16

�
1
ϵ2
þ
��

− 153
32

þ 9Ds
8

�
S2þ 3

64
ζ2 þ

�
− 2

3
− 89Ds

144

�
ζ3 þ 179

2304
þ 545Ds

1728
− D2

s
16

�
1
ϵ

(j)
− 3

8
1
ϵ3
þ
�
− 97

48
þ 17Ds

24

�
1
ϵ2
þ
��

255
8
− 21Ds

2

�
S2 − 9

16
ζ2 þ

�
43
6
þ 5Ds

3

�
ζ3 − 757

96
þ 151Ds

144
þ D2

s
3

�
1
ϵ

(k)
1
16

1
ϵ3
þ
�

337
288

− 3Ds
8

�
1
ϵ2
þ
��

− 265
16

þ 45Ds
8

�
S2þ 3

32
ζ2 þ

�
− 13

6
− 5Ds

6

�
ζ3 þ 707

192
− 23Ds

48
− D2

s
6

�
1
ϵ

(l)
5
16

1
ϵ3
þ
�

245
288

− Ds
3

�
1
ϵ2
þ
��

− 245
16

þ 39Ds
8

�
S2þ 15

32
ζ2 þ

�
−5 − 5Ds

6

�
ζ3 þ 269

64
− 41Ds

72
− D2

s
6

�
1
ϵ

Sum 0

ZVI BERN, SCOTT DAVIES, AND TRISTAN DENNEN PHYSICAL REVIEW D 90, 105011 (2014)

105011-10



N ¼ 4 super-Yang-Mills diagrams displayed in Figs. 6 and
7. The color factors are then replaced by the BCJ forms of
theN ¼ 4 super-Yang-Mills numerators given in Ref. [39].
There are three additional diagrams, displayed in Fig. 8. In
pure Yang-Mills they contain ultraviolet divergences (can-
celed by infrared divergences), but in N ≥ 4 supergravity
an extra power of zero in the form of an on-shell massless
external momentum squared in the N ¼ 4 super-Yang-
Mills numerators sets such potential ultraviolet contribu-
tions to zero.
After feeding the integrand so constructed through

the integration procedure summarized in Sec. II, we

find that pure N ¼ 4 supergravity in D ¼ 4 is
divergent [3]:

M4-loop
4 jN¼4;div ¼

1

ð4πÞ8
1

ϵ

�
κ

2

�
10 1

144
ð1 − 264ζ3ÞT ;

ð5:1Þ

where ϵ ¼ ð4 −DÞ=2 is the dimensional-regularization
parameter, and

T ¼ stAtree
N¼4

ðO1 − 28O2 − 6O3Þ; ð5:2Þ

(1) (2) (3) (4) (5) (6)

(7) (8) (9) (10) (11) (12)

(13) (14) (15) (16) (17) (18)

(19) (20) (21) (22) (23) (24)

(25) (26) (27) (28) (29) (30)

(31) (32) (33) (34) (35) (36)

(37) (38) (39) (40) (41) (42)

FIG. 6. The first 42 diagrams for the four-loop four-point amplitudes of N ¼ 4 and N ¼ 5 supergravity. These correspond to the
N ¼ 4 super-Yang-Mills diagrams of Ref. [39].
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with

O1 ¼
X
S4

ðDαF1μνÞðDαFμν
2 ÞF3ρσF

ρσ
4 ;

O2 ¼
X
S4

ðDαF1μνÞðDαFνσ
2 ÞF3σρF

ρμ
4 ;

O3 ¼
X
S4

ðDαF1μνÞðDβF
μν
2 ÞF α

3σF
σβ
4 : ð5:3Þ

The sum runs over all 24 permutations of the external
legs. Fμν

j is the linearized field-strength tensor given in
terms of polarization vectors for leg j as

(43) (44) (45) (46) (47) (48)

(49) (50) (51) (52) (53) (54)

(55) (56) (57) (58) (59) (60)

(61) (62) (63) (64) (65) (66)

(67) (68) (69) (70) (71) (72)

(73) (74) (75) (76) (77) (78)

(79) (80) (81) (82)

FIG. 7. Diagrams 43–82 for the four-loop four-point amplitudes of N ¼ 4 and N ¼ 5 supergravity.

(83) (84) (85)

FIG. 8. Diagrams 83-85 are the bubble-on-external-leg dia-
grams ofN ¼ 4 super-Yang-Mills theory. They do not contribute
to N ¼ 4 or N ¼ 5 supergravity.
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Fμν
j ≡ iðkμjενj − kνjε

μ
j Þ;

DαFμν
j ≡ −kαj ðkμjενj − kνjε

μ
j Þ: ð5:4Þ

This form makes explicit the fact that each state of pure
N ¼ 4 supergravity corresponds to a direct product of a
color-stripped state of N ¼ 4 super-Yang-Mills theory
and of pure nonsupersymmetric Yang-Mills theory.
By taking linear combinations, the divergences can be

separated into distinct helicity classifications:

O−−þþ ¼ O1 − 4O2;

O−þþþ ¼ O1 − 4O3;

Oþþþþ ¼ O2: ð5:5Þ

Each of the obtained operators are nonvanishing only
for the indicated helicity configurations and their
parity conjugates and relabelings. The helicity labels
refer to those of the polarization vectors used in
Eq. (5.4) on the pure Yang-Mills side and not the
supergravity states, which are obtained by a direct
product of these states with those of N ¼ 4 super-
Yang-Mills theory. For explicit helicity states in D ¼ 4,
we have

O−−þþ ¼ 4s2t
h12i4

h12ih23ih34ih41i ;

O−þþþ ¼ −12s2t2
½24�2

½12�h23ih34i½41� ;

Oþþþþ ¼ 3stðsþ tÞ ½12�½34�
h12ih34i ; ð5:6Þ

using four-dimensional spinor-helicity notation.
As explained in Ref. [3], the appearance of the diver-

gences in the three independent helicity configurations in
Eq. (5.5) is unexpected and points to the source of the
divergence being the Marcus Uð1Þ duality-symmetry
anomaly [28]. Without the anomaly, the −þþþ and
þþþþ helicity sectors would vanish. Reference [29]
explains how the anomaly leads to poor ultraviolet behavior
even in the − −þþ sector.
In Table IV we have collected together groups of

diagrams in order to display the nontrivial cancellations
between diagrams. The first three entries correspond
to the sums over diagrams 1–30, 31–60 and 61–82,
while the final one gives the sum over all diagrams. The
final sum displays an enormous cancellation between
the diagrams to yield a remarkably simple result. We
do not include subdivergences which automatically
cancel amongst themselves. In the table, the ζi are
the standard Riemann zeta constants. The value of S2 is
already defined in Eq. (4.1), while the other constants
are [37]

T1ep ¼ −
45

2
−
π

ffiffiffi
3

p
log23
8

−
35π3

ffiffiffi
3

p

216
−
9

2
ζ2 þ ζ3 þ 6

ffiffiffi
3

p
Cl2

�
π

3

�
− 6

ffiffiffi
3

p
Im

�
Li3

�
e−iπ=6ffiffiffi

3
p

��
;

D6 ¼ 6ζ3 − 17ζ4 − 4ζ2log22þ
2

3
log42þ 16Li4

�
1

2

�
− 4

�
Cl2

�
π

3

��
2

: ð5:7Þ

As noted earlier, Cl2ðxÞ ¼ ImðLi2ðeixÞÞ is the Clausen
function. These transcendental constants arise from our
use of an infrared mass regulator and, as expected, cancel
from the final ultraviolet divergence [44,45].

B. N ¼ 5 supergravity

Next we turn to N ¼ 5 supergravity in D ¼ 4. As
discussed in Sec. II B, we obtain N ¼ 5 supergravity from
N ¼ 4 supergravity by adding in the contributions from the
BCJ construction based on the direct product of N ¼ 4
super-Yang-Mills with additional contributions from add-
ing a single Majorana fermion to the pure-gluon theory.
The calculation is somewhat more complicated than the
pure N ¼ 4 supergravity calculation because of the long
fermion traces that appear at four loops.
Because N ¼ 5 supergravity has no duality-symmetry

anomaly, we expect it to be ultraviolet finite at four loops.

Indeed, additional N ¼ 1 supersymmetry identities are
sufficient to show amplitudes and any associated potential
ultraviolet divergences vanish in the −þþþ and þþþþ
helicity sectors in Eq. (5.6). Only the − −þþ sector gives
nonvanishing amplitudes and therefore needs checking,
although we have calculated the other two sectors as well.
We have only computed the case where the external N ¼ 5

supergravity states are those obtained from a direct product
of N ¼ 4 super-Yang-Mills and pure Yang-Mills states (i.e.
the subset of states that are also in the pure N ¼ 4

supergravity spectrum). However, as mentioned in Sec. IV,
N ¼ 1 and N ¼ 4 supersymmetry identities in the direct
product [49,50] allow us to express any of the four-point
amplitudes in terms of one of them, so ruling out divergences
in this sector rules out all four-point divergences.
We find that the four-loop four-point amplitudes of

N ¼ 5 supergravity are finite. This may be unsurprising
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given that the additional supersymmetry compared to the
N ¼ 4 supergravity case should improve the ultraviolet
properties. However, the fact remains that, at present, there
is no standard-symmetry explanation for the finiteness. In
addition, as we explain in Sec. III, no covariant diagram-
matic formalism can display the cancellations manifestly,
so the vanishing of the divergence is another example of
enhanced cancellations.
In Table V we give the extra contributions to the potential

divergence coming from the additional states that are
present in N ¼ 5 supergravity compared to N ¼ 4 super-
gravity. As can be seen from the final entry in the table, the
contribution is equal and opposite to the contribution that

comes solely from the N ¼ 4 supergravity states given in
Table IV. Therefore the total divergence vanishes:

M4-loop
4 jN¼5;div ¼ 0: ð5:8Þ

The nontrivial way the cancellations occur in the sum of the
entries in Tables IV and V suggests that there should be a
better way to see them. While it may be simple to state the
obvious, as already explained in Sec. III, finding a
formalism that makes these cancellations manifest is non-
trivial, given that no covariant diagrammatic representation
exists that does so.

TABLE IV. The divergence in the four-graviton amplitude of pure N ¼ 4 supergravity. The first three entries
correspond to the sum over diagrams 1–30, 31–60 and 61–82 listed in Figs. 6 and 7, while the final row gives the
sum over all diagrams. Subdivergences automatically cancel amongst themselves and are not included. Our choice
of external helicity states and reference momenta are as in Table II.

Graphs ðdivergenceÞ × uð4πÞ8=ð−h12i2½34�2stAtreeðκ
2
Þ10Þ

1–30 − 1
ϵ4
½ 297863
3981312

s2 þ 7115179
7962624

stþ 1230523
2654208

t2� þ 1
ϵ3
½183507269
318504960

s2 − 121097629
106168320

st − 125340203
159252480

t2�
þ 1

ϵ2
½ζ3ð− 54780317

3686400
s2 − 364821169

22118400
st − 19297919

7372800
t2Þ − ζ2ð 2978631990656

s2 þ 7115179
3981312

stþ 1230523
1327104

t2Þ
− S2ð1602535

73728
s2 þ 10330175

442368
st − 14079343

442368
t2Þ − 80222068879

28665446400
s2 − 949461174731

57330892800
st − 17877740021

19110297600
t2�

þ 1
ϵ ½ζ5ð4216571392160

s2 þ 12876011
9216

stþ 10040753
46080

t2Þ þ ζ4ð11626097372800
s2 þ 183267071

14745600
stþ 110749763

14745600
t2Þ

− ζ3ð1050651840898371663616000
s2 þ 30289233413171

71663616000
st − 2013863213191

35831808000
t2Þ − ζ2ð970317931159252480

s2 þ 59367181
5898240

st

− 719420377
79626240

t2Þ − T1epð1602535
995328

s2 þ 10330175
5971968

st − 14079343
5971968

t2Þ − S2ð33354691993
53084160

s2

þ 19386147397
10616832

stþ 9723954001
8847360

t2Þ − D6ð4137589
552960

s2 þ 2283701
184320

stþ 527011
138240

t2Þ
− 20252328329611

143327232000
s2 − 534679988685821

1146617856000
st − 8363829769903

1146617856000
t2�

31–60 1
ϵ4
½1788617
3981312

s2 þ 20728021
7962624

stþ 2452169
2654208

t2� þ 1
ϵ3
½527762531
318504960

s2 þ 1120727089
106168320

stþ 122147731
53084160

t2�
þ 1

ϵ2
½ζ3ð6081287345600

s2 þ 13983243
819200

stþ 98182043
22118400

t2Þ þ ζ2ð17886171990656
s2 þ 20728021

3981312
stþ 2452169

1327104
t2Þ

þ S2ð3516907
73728

s2 þ 31188941
442368

st − 15998365
442368

t2Þ þ 545203990507
28665446400

s2 þ 4109230335503
57330892800

stþ 142686680113
19110297600

t2�
þ 1

ϵ ½ζ5ð− 160438583
245760

s2 − 311758955
147456

st − 119748949
368640

t2Þ − ζ4ð5925797921600
s2 þ 460780679

14745600
stþ 126445477

14745600
t2Þ

þ ζ3ð1166290549145953747712000
s2 þ 54035183618969

71663616000
stþ 8467395805631

214990848000
t2Þ þ ζ2ð3059935571159252480

s2 þ 789428243
17694720

st

− 197819569
26542080

t2Þ þ T1epð3516907
995328

s2 þ 31188941
5971968

st − 15998365
5971968

t2Þ þ S2ð2658637313
53084160

s2

þ 2611873009
10616832

stþ 23301734753
26542080

t2Þ þ D6ð6050189
552960

s2 þ 10479103
552960

stþ 233987
46080

t2Þ
þ 455464156513

1911029760
s2 þ 173334911330293

229323571200
stþ 673760034799

25480396800
t2�

61–82 − 1
ϵ4
½248459
663552

s2 þ 756269
442368

stþ 610823
1327104

t2� þ 1
ϵ3
½− 17781745

7962624
s2 − 5553497

589824
st − 24110299

15925248
t2�

þ 1
ϵ2
½ζ3ð− 30260233

11059200
s2 − 1590799

2764800
st − 20144143

11059200
t2Þ − ζ2ð248459331776

s2 þ 756269
221184

stþ 610823
663552

t2Þ
− S2ð53177

2048
s2 þ 3476461

73728
st − 319837

73728
t2Þ − 38748493469

2388787200
s2 − 9752373953

176947200
st − 31202235023

4777574400
t2�

þ 1
ϵ ½ζ5ð28798009147456

s2 þ 35247593
49152

stþ 876065
8192

t2Þ þ ζ4ð154145892457600
s2 þ 11563067

614400
stþ 7847857

7372800
t2Þ

− ζ3ð15920366514887214990848000
s2 þ 4001452799633

11943936000
stþ 20550575084777

214990848000
t2Þ − ζ2ð522404413981312

s2 þ 30566335
884736

st

þ 12596167
7962624

t2Þ − T1epð53177
27648

s2 þ 3476461
995328

st − 319837
995328

t2Þ þ S2ð767401367
1327104

s2

þ 1397856199
884736

stþ 587012725
2654208

t2Þ − D6ð47815
13824

s2 þ 22675
3456

stþ 17495
13824

t2Þ
− 434546648527

4478976000
s2 − 9221628964379

31850496000
st − 5488842949013

286654464000
t2�

sum 1
ϵ su

1
72
ð264ζ3 − 1Þ
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Besides the information given in Tables IV and V, in
accompanying Mathematica attachments [51], we give the
divergences for each diagram for pure N ¼ 4 supergravity
as well as for the additional contributions needed for
N ¼ 5 supergravity. As in the tables, we do not include
subdivergences in these files since they automatically
cancel amongst themselves in our calculation.
We note that while our calculation proves that there

are no four-loop four-point divergences in N ¼ 5 super-
gravity, it does not rule out five-point R5-type divergences.
It would of course be interesting to study these as well in
the future.

VI. CONCLUSIONS

In this paper, we described the phenomenon of enhanced
ultraviolet cancellations in supergravity theories. By def-
inition, when all covariant local diagrammatic representa-
tions of an amplitude contain terms that have a worse power
count than the amplitude as a whole, we have enhanced
cancellations. To illustrate this phenomenon, we first
discussed N ¼ 4 supergravity in four dimensions at three
loops. By power counting maximal cuts, we identified
terms in the four-point amplitude that are divergent at
three loops, in agreement with supersymmetry and

TABLE V. The additional contributions in N ¼ 5 supergravity. These include internal states that arise from a
direct product of the N ¼ 4 sYM states and a Majorana fermion. The sum of these contributions together with the
ones in Table IV vanishes, showing that the N ¼ 5 supergravity amplitude is ultraviolet finite. Subdivergences
automatically cancel amongst themselves and are not included. Our choice of external helicity states and reference
momenta are as in Table II.

Graphs ðdivergenceÞ × uð4πÞ8=ð−h12i2½34�2stAtreeðκ
2
Þ10Þ

1–30 1
ϵ4
½ 607
1990656

s2 − 1323773
1990656

st − 14255
41472

t2� þ 1
ϵ3
½ 4865671
19906560

s2 þ 149977
3317760

st − 20170049
19906560

t2�
þ 1

ϵ2
½ζ3ð− 3733153

230400
s2 − 5900609

276480
stþ 3883097

691200
t2Þ þ ζ2ð 607

995328
s2 − 1323773

995328
st − 14255

20736
t2Þ

− S2ð625357
36864

s2 þ 5161189
110592

st − 1428583
55296

t2Þ − 7648139167
3583180800

s2 − 22568882383
3583180800

st − 55681241
59719680

t2�
þ 1

ϵ ½ζ5ð− 225641
1024

s2 − 12931021
18432

st − 2378855
18432

t2Þ − ζ4ð4044329460800
s2 þ 3646153

921600
st − 2056603

153600
t2Þ

þ ζ3ð607657561815717915904000
s2 þ 3396579085657

3583180800
stþ 2089036585637

8957952000
t2Þ − ζ2ð514164599953280

s2 þ 801749
51840

st

− 65544931
9953280

t2Þ − T1epð625357
497664

s2 þ 5161189
1492992

st − 1428583
746496

t2Þ − S2ð8055438013
16588800

s2

þ 555755309
414720

stþ 555207793
614400

t2Þ − D6ð715513
138240

s2 þ 718247
76800

stþ 285839
172800

t2Þ
þ 1916368326173

71663616000
s2 þ 7258817218703

71663616000
stþ 3175133834231

35831808000
t2�

31–60 1
ϵ4
½ 509381
1990656

s2 þ 3991391
1990656

stþ 242555
331776

t2� þ 1
ϵ3
½50554927
19906560

s2 þ 13023425
1327104

stþ 8356667
3317760

t2�
þ 1

ϵ2
½ζ2ð509381995328

s2 þ 3991391
995328

stþ 242555
165888

t2Þ þ ζ3ð99094957600
s2 þ 570691

1382400
st − 10906963

691200
t2Þ

þ S2ð1380997
36864

s2 þ 9202651
110592

st − 821453
27648

t2Þ þ 65553264229
3583180800

s2 þ 27992599379
447897600

stþ 12366245939
1194393600

t2�
þ 1

ϵ ½ζ5ð1024048123040
s2 þ 96847583

92160
stþ 3535453

30720
t2Þ þ ζ4ð81664376800

s2 − 6008467
307200

st − 51227
2048

t2Þ
− ζ3ð823518262538313436928000

s2 þ 25298224196579
17915904000

stþ 11561841643253
53747712000

t2Þ þ ζ2ð1748446579953280
s2 þ 31428727

663552
st

− 8072393
1658880

t2Þ þ T1epð1380997
497664

s2 þ 9202651
1492992

st − 821453
373248

t2Þ þ S2ð2385329963
16588800

s2

þ 1077896293
3317760

stþ 1501624967
2073600

t2Þ þ D6ð233051
46080

s2 þ 4649023
691200

stþ 77389
172800

t2Þ
− 273686499733

2654208000
s2 − 10212410685517

35831808000
st − 501121685203

4777574400
t2�

61–82 − 1
ϵ4
½ 42499
165888

s2 þ 148201
110592

stþ 128515
331776

t2� þ 1
ϵ3
½− 27710299

9953280
s2 − 21805693

2211840
st − 29969953

19906560
t2�

þ 1
ϵ2
½ζ3ð− 25627

25600
s2 þ 1607353

76800
stþ 3511933

345600
t2Þ þ ζ2ð− 42499

82944
s2 − 148201

55296
st − 128515

165888
t2Þ

þ S2ð− 10495
512

s2 − 673577
18432

stþ 71441
18432

t2Þ − 9650854177
597196800

s2 − 7458218987
132710400

st − 11252621119
1194393600

t2�
þ 1

ϵ ½ζ5ð− 10327117
46080

s2 − 1788471
5120

stþ 321979
23040

t2Þ þ ζ4ð− 855529
460800

s2 þ 10835777
460800

stþ 892711
76800

t2Þ
þ ζ3ð1490807859106153747712000

s2 þ 1396836736049
2985984000

st − 972377870569
53747712000

t2Þ þ ζ2ð− 61714099
4976640

s2 − 35277233
1105920

st

− 17110573
9953280

t2Þ þ T1epð− 10495
6912

s2 − 673577
248832

stþ 71441
248832

t2Þ þ S2ð113402161
331776

s2

þ 1122715393
1105920

stþ 119104427
663552

t2Þ þ D6ð 409
3456

s2 þ 2269
864

stþ 4169
3456

t2Þ
þ 2736085919309

35831808000
s2 þ 1462778758259

7962624000
stþ 1166557609583

71663616000
t2�

Sum − 1
ϵ su

1
72
ð264ζ3 − 1Þ
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duality-symmetry arguments [19], when, in fact, the
amplitude is three-loop finite in D ¼ 4 [2]. The theory
does diverge at four loops [3], but it appears to be due to a
rigid Uð1Þ duality-symmetry anomaly [28,29]. Such
anomalies are not present in N ≥ 5 supergravity theories,
suggesting that these theories cannot have similar diver-
gences. This motivated us to study the four-loop four-point
amplitudes of N ¼ 5 supergravity. Again in this case,
power counting maximal cuts identifies divergent terms in
D ¼ 4, consistent with standard-symmetry considerations
[19]. However, explicit calculations performed in this paper
show this amplitude is ultraviolet finite, again illustrating
enhanced ultraviolet cancellations. If similar enhanced
ultraviolet cancellations hold in N ¼ 8 supergravity, then
this theory will be finite at seven loops as well, contra-
dicting predictions based on power counting [18–20].
The underlying reason for enhanced ultraviolet

cancellations is not fully understood. There are some
indications that the duality between color and kinematics
[12,13] is responsible. An explicit study shows that this
duality is responsible for improved ultraviolet behavior in
the relatively simple two-loop case of half-maximal super-
gravity inD ¼ 5 [24]. An important challenge is to push this
understanding to higher loop orders. Another important
question is whether there might be an explanation for
enhanced cancellations based on supersymmetry or duality
symmetry. Such an explanation would have to be novel,
given that enhanced ultraviolet cancellations are nonstand-
ard. The potential three-loop R4 counterterm of N ¼ 4
supergravity and four-loop D2R4 counterterm of N ¼ 5

supergravity cannot be written as full-superspace integrals
[19]. An interesting open question is whether this plays any
role in the vanishing of the associated divergences.
While we do not yet know if perturbatively ultraviolet-

finite unitary field theories of gravity exist, based on the
results of this paper it is clearly premature to conclude
otherwise. More generally, nontrivial multiloop enhanced
cancellations in gravity theories are a new and surprising
phenomenon, contrary to expectations based on standard-
symmetry considerations which suggest viable counter-
terms. The existence of these cancellations gives us con-
fidence that further nontrivial surprises await us as we
probe supergravity theories to ever higher loop orders using
modern tools.
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