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We study novel types of contributions to the partition function of the Maxwell system defined on a small
compact manifold, such as a torus. These new terms cannot be described in terms of the physical
propagating photons with two transverse polarizations. Rather, these novel contributions emerge as a result
of tunneling events when transitions occur between topologically different but physically identical vacuum
winding states. These new terms give an extra contribution to the Casimir pressure. The infrared physics in
the system can be described in terms of the topological auxiliary nonpropagating fields aiðkÞ governed by
Chern-Simons-like action. The system can be studied in terms of these auxiliary fields precisely in the same
way as a topological insulator can be analyzed in terms of Berry’s connectionAiðkÞ. We also argue that the
Maxwell vacuum defined on a small four-torus behaves very much in the same way as a topological
insulator with θ ≠ 0.
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I. INTRODUCTION: MOTIVATION

The main motivation for present studies is as follows. It
has been recently argued [1,2] that if the free Maxwell
theory (without any interactions with charged particles) is
defined on a small compact manifold, then some novel
terms in the partition function will emerge. These terms are
not related to the propagating photons with two transverse
physical polarizations, which are responsible for the con-
ventional Casimir effect. Rather, these novel terms occur as
a result of tunneling events between topologically different
but physically identical states. These states play no role
when the system is defined in Minkowski space-time R1;3.
But these states become important when the system is
defined on a finite compact manifold such as torus T4.
In particular, it has been explicitly shown in [1,2] that

these novel terms lead to fundamentally new contributions
to the Casimir vacuum pressure, which can not be
expressed in terms of conventional propagating physical
degrees of freedom. Instead, the new vacuum contributions
appear as a result of tunneling events between different
topological sectors jki. Mathematically, these sectors
emerge as a result of nontriviality of the fundamental
group π1½Uð1Þ� ≅ Z when the system is defined on a torus.
A crucial observation for the present studies is as

follows. While the Maxwell electrodynamics is the theory
of massless particles (photons), the topological portion of
the system decouples from dynamics of these massless
propagating photons. Indeed, as we discuss below, the total
partition function Z can be represented as a product
Z ¼ Z0 × Ztop. The conventional partition function Z0

describing physical photons is not sensitive to the topo-
logical sectors jki of the system which itself is described by
Ztop. The topological portion of the partition function Ztop

behaves very much as topological quantum field theory
(TQFT), as argued in [2]. Furthermore, it demonstrates
many features of topologically ordered systems, which
were initially introduced in the context of condensed
matter (CM) systems; see original papers [3–7] and recent
reviews [8–12].
In particular, Ztop demonstrates the degeneracy of the

system which cannot be described in terms of any local
operators. Instead, such a degeneracy can be formulated in
terms of some nonlocal operators [2]. Furthermore, our
system exhibits some universal subleading corrections to
the thermodynamical entropy which cannot be expressed in
terms of propagating photons with two physical polar-
izations. Instead, the corresponding universal contribution
to the entropy is expressed in terms of the “instantons”
describing the tunneling events between topologically
different but physically identical topological sectors jki.
As a result of these similarities, the key question

addressed in the present work is as follows. It has been
known for some time [4–12] that some key features of
topologically ordered systems can be formulated in terms
of the so-called Berry’s connection in momentum space.
Does a similar description exist for the Maxwell vacuum
defined on a compact manifold?
To address this question we formulate the topological

features of the system in terms of auxiliary fields. Such a
formulation exhibits a close mathematical similarity
between the auxiliary topological field describing the
Maxwell vacuum state and the Berry’s connection (which
is emergent, not a fundamental field) in topologically
ordered CM systems. Such a similarity looks very instruc-
tive and suggestive, and further supports our arguments [2]
that the ground state of the Maxwell theory defined on a
small compact manifold behaves as a TQFT.
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The structure of our presentation is as follows. In the next
section, we review the relevant parts of the two-
dimensional Maxwell “empty” theory which does not have
any physical propagating degrees of freedom. Still, it
demonstrates a number of very nontrivial topological
features present in the system. In Sec. III we generalize
our description for 4d Maxwell theory defined on a four-
torus. In our main section, Sec. IV, we introduce the
auxiliary fields which effectively account for the topologi-
cal sectors of the system. We study the behavior of these
auxiliary fields in the far infrared (IR) at small k → 0 in
momentum space. We observe a striking similarity of the
obtained structure with the analogous formula for the
Berry’s connection previously derived for many CM
topologically ordered systems. This analogy further sup-
ports our claim that the ground state of the Maxwell theory
belongs to a topologically ordered phase. In our concluding
section, Sec. V, we briefly mention possible settings where
such unusual topological vacuum features can be exper-
imentally studied. Furthermore, we in fact shall argue that a
topological insulator and the topological Maxwell vacuum
(studied in this work), while very different in composition,
nevertheless behave very much in the same way at large
distances.

II. MAXWELL THEORY IN TWO DIMENSIONS
AS TOPOLOGICAL QFT

The 2d Maxwell model has been solved numerous times
using very different techniques; see, e.g., [13–15]. It is
known that this is an “empty” theory in the sense that it
does not support any propagating degrees of freedom in the
bulk of space-time. It is also known that this model can be
treated as a conventional topological quantum field theory
(TQFT). In particular, this model can be formulated in
terms of the so-called “BF” action involving no metric.
Furthermore, this model exhibits many other features such
as fractional edge observables which are typical for TQFT;
see, e.g., [14]. We emphasize these properties of the 2d
Maxwell theory because the topological portion of the
partition function Ztop in our description of the 4d Maxwell
system, given in Sec. III, is identically the same as the
partition function of the 2d Maxwell system. Such a
relation between the two different systems is a result of
decoupling of physical propagating photons from the
topological sectors in the 4d system.
Our goal here is to review this “empty” 2d Maxwell

theory with nontrivial dynamics of the topological sectors
when conventional propagating degrees of freedom are not
supported by this system.

A. Partition function and θ vacua in 2d Maxwell theory

We consider 2d Maxwell theory defined on the
Euclidean torus S1 × S1 with lengths L and β respectively.
In the Hamiltonian framework we choose a A0 ¼ 0 gauge

along with ∂1A1 ¼ 0. This implies that A1ðtÞ is the only
dynamical variable of the system with E ¼ _A1. The
spectrum for θ vacua is well known [13] and it is given
by EnðθÞ ¼ 1

2
ðnþ θ

2πÞ2e2L, such that the corresponding
partition function takes the form

ZðV; θÞ ¼
X
n∈Z

e−
e2V
2
ðnþ θ

2πÞ2 ; ð1Þ

where V ¼ βL is the two-volume of the system.
We want to reproduce (1) using a different approach

based on Euclidean path integral computations because it
can be easily generalized to similar computations in 4d
Maxwell theory defined on a four-torus. Our goal here is to
understand the physical meaning of (1) in terms of the path
integral computations.
To proceed with path integral computations one consid-

ers the “instanton” configurations on a two-dimensional
Euclidean torus with total area V ¼ Lβ described as
follows [15]:Z

d2xQðxÞ ¼ k; eEðkÞ ¼ 2πk
V

; ð2Þ

where Q ¼ e
2πE is the topological charge density, k is the

integer-valued topological charge in the 2d Uð1Þ gauge
theory, and EðxÞ ¼ ∂0A1 − ∂1A0 is the field strength. The
action of this classical configuration is

1

2

Z
d2xE2 ¼ 2π2k2

e2V
: ð3Þ

This configuration corresponds to the topological charge k
as defined by (2). The next step is to compute the partition
function defined as follows:

ZðθÞ ¼
X
k∈Z

Z
DAðkÞe−

1
2

R
d2xE2þ

R
d2xLθ ; ð4Þ

where θ is the standard theta parameter which defines
the jθi ground state and which enters the action with
topological density operator

Lθ ¼ iθ
Z

d2xQðxÞ ¼ iθ
e
2π

Z
d2xEðxÞ: ð5Þ

All integrals in this partition function are Gaussian and can
be easily evaluated using the technique developed in [15].
The result is

ZðV; θÞ ¼
ffiffiffiffiffiffiffiffi
2π

e2V

r X
k∈Z

e−
2π2k2

e2V
þikθ; ð6Þ

where the expression in the exponent represents the
classical instanton configurations with action (3) and
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topological charge (2), while the factor in front is due to the
fluctuations; see [1,2] with some technical details and
relevant references. While expressions (1) and (6) look
different, they are actually identically the same, as the
Poisson summation formula states:

ZðθÞ ¼
X
n∈Z

e−
e2V
2
ðnþ θ

2πÞ2 ¼
ffiffiffiffiffiffiffiffi
2π

e2V

r X
k∈Z

e−
2π2k2

e2V
þikθ: ð7Þ

Therefore, we reproduce the original expression (1) using
the path integral approach.
The crucial observation for our present study is that this

naively “empty” theory which has no physical propagating
degrees of freedom, nevertheless shows some very non-
trivial features of the ground state related to the topological
properties of the theory. These new properties are formu-
lated in terms of different topological vacuum sectors of the
system jki which have identical physical properties, as they
are connected to each other by large gauge transformation
operator T commuting with the Hamiltonian ½T ; H� ¼ 0.
As explained in detail in [1,2] the corresponding dynamics
of this “empty” theory represented by partition function (7)
should be interpreted as a result of tunneling events
between these “degenerate” winding jki states which
correspond to one and the same physical state.
It is known that this model can be treated as TQFT, e.g.,

it supports edge observables which may assume the frac-
tional values, and shows many other features which are
typical for a TQFT; see [14] and references therein. The
presence of the topological features of the model can be
easily understood from the observation that the entire
dynamics of the system is due to the transitions between
the topological sectors which themselves are determined by
the behavior of surface integrals at infinity

H
Aμdxμ. These

sectors are classified by integer numbers and they are not
sensitive to specific details of the system, such as the
geometrical shape of the system. Therefore, it is not really a
surprise that the system is not sensitive to specific geo-
metrical details and can be treated as TQFT. The simplest
way to analyze the corresponding topological features of
the system is to introduce the topological susceptibility χ
and study its properties; see the next subsection.

B. Topological susceptibility

The topological susceptibility χ is defined as follows:

χ ≡ lim
k→0

Z
d2x eikxhTQðxÞQð0Þi; ð8Þ

where Q is the topological charge density operator nor-
malized according to Eq. (2). The χ measures response of
the free energy to the introduction of a source term defined
by Eq. (5). The computations of χ in this simple “empty”
model can be easily carried out, as the partition function
ZðθÞ defined by (4) is known exactly (7). To compute χ we

should simply differentiate the partition function twice
with respect to θ. It leads to the following well-known
expression for χ, which is finite in the infinite volume
limit [2,15,16]:

χðV → ∞Þ ¼ −
1

V
·
∂2 lnZðθÞ

∂θ2
����
θ¼0

¼ e2

4π2
: ð9Þ

A typical value of the topological charge k which saturates
the topological susceptibility χ in the large volume limit is
very large, k ∼

ffiffiffiffiffiffiffiffi
e2V

p
≫ 1.

It is important to emphasize that the integrand for
the topological susceptibility (8) demonstrates a singular
behavior (see [2,15,16] for the details and related references):

hQðxÞQð0Þi ¼ e2

4π2
δ2ðxÞ: ð10Þ

It represents the nondispersive contact term which cannot be
related to any propagating degrees of freedom. In this
simplest case of the 2d Maxwell system this comment is
quite obvious as 2d Maxwell theory does not support any
propagating degrees of freedom. The δ2ðxÞ function in (10)
should be understood as a total divergence related to
the infrared (IR) physics, rather than to ultraviolet (UV)
behavior. Indeed,

χ ¼ e2

4π2

Z
δ2ðxÞd2x ¼ e2

4π2

Z
d2x∂μ

�
xμ

2πx2

�

¼ e2

4π2

I
S1→∞

dlμϵμν
�

xν
2πx2

�
¼ e2

4π2
: ð11Þ

In other words, the nondispersive contact term (10) is
determined by IR physics at arbitrary large distances rather
than UV physics, which can be erroneously assumed to be a
source of δ2ðxÞ behavior in (10). The computations of this
contact term in terms of the delocalized instantons (2)
explicitly show that all observables in this system are
originated from the IR physics.
One should also remark that the same contact term (9)

and its local expression (10) can be also computed using the
auxiliary ghost field, the so-called Kogut-Susskind (KS)
ghost, as it was originally done in Ref. [17]; see also [2,16]
for relevant discussions in the present context. This
description in terms of the KS ghost implicitly takes into
account the presence of topological sectors in the system.
The same property is explicitly reflected by summation
over topological sectors k ∈ Z in direct computations (4),
(6) without introducing any auxiliary fields.

III. TOPOLOGICAL PARTITION
FUNCTION IN 4D

Our goal here is to analyze the Maxwell system on a
Euclidean four-torus with sizes L1 × L2 × L3 × β in the
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respective directions. It provides the infrared (IR) regulari-
zation of the system. This IR regularization plays a key role
in the proper treatment of the topological terms which are
related to tunneling events between topologically distinct
but physically identical states. First, we want to review the
previously known results on the vacuum structure of this
system. As the second step, we want to reproduce these
known results on the Maxwell vacuum state using a
different technique based on the auxiliary fields to be
developed in the next section. As we argue in Sec. IV C,
precisely these auxiliary topological fields have exactly the
same mathematical properties as the emergent Berry’s
connection in topologically ordered CM systems.

A. Construction

We follow [1,2] in our construction of the partition
functionZtop where it was employed for computation of the
corrections to the Casimir effect due to these novel types of
topological fluctuations. The crucial point is that we
impose the periodic boundary conditions on the gauge
Aμ field up to a large gauge transformation. In what follows
we simplify our analysis by considering a clear case with
winding topological sectors jki in the z direction only. The
classical configuration in Euclidean space which describes
the corresponding tunneling transitions can be represented
as follows:

~Btop ¼ ~∇ × ~Atop ¼
�
0; 0;

2πk
eL1L2

�
;

Φ ¼ e
Z

dx1dx2B
z
top ¼ 2πk ð12Þ

in close analogy with the 2d case (2).
The Euclidean action of the system is quadratic and has

the following form,

1

2

Z
d4xf~E2 þ ð~Bþ ~BtopÞ2g; ð13Þ

where ~E and ~B are the dynamical quantum fluctuations of
the gauge field. The key point is that the classical
topological portion of the action decouples from quantum
fluctuations, such that the quantum fluctuations do not
depend on topological sector k and can be computed in the
topologically trivial sector k ¼ 0. Indeed, the cross termZ

d4x~B · ~Btop ¼
2πk

eL1L2

Z
d4xBz ¼ 0 ð14Þ

vanishes because the magnetic portion of quantum fluctu-
ations in the z direction, represented by Bz ¼ ∂xAy − ∂yAx,

is a periodic function, as ~A is periodic over the domain of
integration. This technical remark in fact greatly simplifies
our analysis as the contribution of the physical propagating
photons is not sensitive to the topological sectors k. This is,

of course, a specific feature of quadratic action (13), in
contrast with non-Abelian and nonlinear gauge field
theories where quantum fluctuations of course depend
on topological k sectors. The authors of Ref. [18] arrived
at the same conclusion (on decoupling of the topological
terms from conventional fluctuating photons with nonzero
momentum), though in a different context of topological
insulators in the presence of the θ ¼ π term.
The classical action for configuration (12) takes the form

1

2

Z
d4x~B2

top ¼
2π2k2βL3

e2L1L2

: ð15Þ

To simplify our analysis further in computing Ztop we
consider a geometry where L1; L2 ≫ L3; β, similar to the
construction relevant for the Casimir effect [1,2]. In this
case our system is closely related to 2d Maxwell theory by
dimensional reduction: taking a slice of the 4d system in the
xy plane will yield precisely the topological features of the
2d torus considered in Sec. II. Furthermore, with this
geometry our simplification (12) when we consider exclu-
sively the magnetic fluxes in the z direction is justified, as
the corresponding classical action (15) assumes minimal
possible values. With this assumption we can consider a
very small temperature, but still we cannot take a formal
limit β → ∞ in our final expressions as a result of our
technical constraints in the system.
With these additional simplifications the topological

partition function becomes [1,2]

Ztop ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2πβL3

e2L1L2

s X
k∈Z

e
−2π2k2βL3

e2L1L2 ¼ ffiffiffiffiffi
πτ

p X
k∈Z

e−π
2τk2 ; ð16Þ

where we introduced the dimensionless parameter

τ≡ 2βL3=e2L1L2: ð17Þ

Formula (16) is essentially the dimensionally reduced
expression for the topological partition function (6) for
the 2d Maxwell theory analyzed in Sec. II. One should note
that the normalization factor

ffiffiffiffiffi
πτ

p
which appears in Eq. (16)

does not depend on topological sector k, and essentially it
represents our convention of the normalization Ztop → 1 in
the limit L1L2 → ∞ which corresponds to a convenient
setup for the Casimir-type experiments, as discussed
in [1,2].

B. External magnetic field

In this section we want to generalize our results for the
Euclidean Maxwell system in the presence of the external
magnetic field. Normally, in the conventional quantization of
electromagnetic fields in infinite Minkowski space, there is
no direct coupling between fluctuating vacuum photons and
an external magnetic field as a consequence of linearity of
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theMaxwell system. The coupling with fermions generates a
negligible effect ∼α2B2

ext=m4
e as the nonlinear Euler-

Heisenberg effective Lagrangian suggests; see [1] for the
details and numerical estimates. The interaction of the
external magnetic field with topological fluctuations (12),
in contrast with the coupling with conventional photons, will
lead to the effects of order of unity as a result of interference
of the external magnetic field with topological fluxes k.
The corresponding partition function can be easily

constructed for external magnetic field Bext
z pointing along

the z direction, as the crucial technical element on decou-
pling of the background fields from quantum fluctuations
assumes the same form (14). In other words, the physical
propagating photons with nonvanishing momenta are not
sensitive to the topological k sectors, nor to the external
uniformmagnetic field, similar to our discussions after (14).
The classical action for configuration in the presence

of the uniform external magnetic field Bext
z therefore takes

the form

1

2

Z
d4xð~Bext þ ~BtopÞ2 ¼ π2τ

�
kþ θeff

2π

�
2

; ð18Þ

where τ is defined by (17) and the effective theta parameter
θeff ≡ eL1L2B

z
ext is expressed in terms of the original

external magnetic field Bz
ext. Therefore, the partition func-

tion in the presence of the uniform magnetic field can be
easily reconstructed from (16), and it is given by [1,2]

Ztopðτ; θeffÞ ¼
ffiffiffiffiffi
πτ

p X
k∈Z

exp

�
−π2τ

�
kþ θeff

2π

�
2
�
: ð19Þ

This system in what follows will be referred to as the
topological vacuum (T V) because the propagating degrees
of freedom, the photons with two transverse polarizations,
completely decouple from Ztopðτ; θeffÞ.
The dual representation for the partition function is

obtained by applying the Poisson summation formula (7)
such that (19) becomes

Ztopðτ; θeffÞ ¼
X
n∈Z

exp

�
−
n2

τ
þ in · θeff

�
: ð20Þ

Formula (20) justifies our notation for the effective theta
parameter θeff as it enters the partition function in combi-
nation with integer number n. One should emphasize that
integer number n in the dual representation (20) is not the
integer magnetic flux k defined by Eq. (12) which enters
the original partition function (16). Furthermore, the θeff
parameter which enters (19), (20) is not a fundamental
θ parameter which is normally introduced into the
Lagrangian in front of the ~E · ~B operator. Rather, this
parameter θeff should be understood as an effective param-
eter representing the construction of the θeff state for each
slice in a four-dimensional system. In fact, there are three

such θeff parameters representing different slices and
corresponding external magnetic fluxes. There are similar
three θi parameters representing the external electric fluxes
as discussed in [2], such that the total number of θ
parameters classifying the system equals 6, in agreement
with the total number of hyperplanes in four dimensions.

IV. BERRY CONNECTION

The main goal of this section is to argue that our T V
configuration represents the simplest version of a topo-
logically ordered phase very similar to CM systems [4–12].
We want to reformulate the topological features of the
system (analyzed in Sec. III) in terms of the Berry’s
connection and Berry curvature normally computed in
momentum space in CM literature. Such a deep relation
between the two very different descriptions will demon-
strate once again that the ground state for the Maxwell
theory defined on a compact manifold exhibits all the
features which are normally attributed to a topologically
ordered system. We make this relation much more precise
by introducing the auxiliary topological fields which can be
identified with Berry’s connection. With such an interpre-
tation the complex phase in the dual representation (20) can
be thought of as the Berry’s phase which is known to
emerge in many quantum systems.
We start our study in Sec. IVA by reviewing the well-

knownCMresults on theBerry’s connection. InSec. IV Bwe
describe the ground state of the two-dimensional Maxwell
theory by using the auxiliary topological fields.We observe a
deepmathematical similarity between theBerry’s connection
computed for CM systems (including the monopole-type
behavior in momentum k space) and the corresponding
formulas computed for the ground state in the Maxwell
theory in terms of the auxiliary topological fields. We
generalize the corresponding construction to the four-
dimensional Maxwell system defined on a four-torus in
Sec. IV C.

A. Berry phase in CM systems

In this subsection we review the computations of the
Berry connection in some CM systems. In the context of
the topological insulators and quantum Hall systems, the
corresponding studies have been carried out in two, three,
and four dimensions [4–12]; see also [2,19] with related
discussions of the ground state in 2d Maxwell theory.1

1Not to be confused with conventional CM notations, where it
is customary to count the spatial number of dimensions, rather
than total number of dimensions. For our 2d system this
convention corresponds to (D þ 1) Maxwell theory with
D ¼ 1. Similar studies have been carried out for topological
insulators for D ¼ 1 and D ¼ 3; see, e.g., [18] with many
references on the original results. For D ¼ 2 the corresponding
computations of the Berry’s connection for the quantum Hall
systems have been reviewed in [11].
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In the simplest D ¼ 1 case the expression for the
Berry’s phase (which is the accumulated geometric phase
of the band electrons under the process when the winding
of the gauge field is increased by one unit) can be computed
as follows [18]. In the physical A0 ¼ 0 gauge it corresponds

to a slow variation of gauge filed eA1 from 2πn
L to 2πðnþ1Þ

L ,
where L is the size of a torus along the x direction. The
relevant formula is given by [18]

ϕBerry ¼ i
Z

dA1hΨθj
∂

∂A1

jΨθi; ð21Þ

where jΨθi is the full wave function of the system which
can be expressed in terms of single particle wave functions.
One can explicitly demonstrate [18] that ϕBerry ¼ −2πP
with P being the polarization of the system such that θ is
shifted as follows: θ → ðθ − 2πPÞ. The key observation in
this computation is that the integration over slow-varying
gauge fields in Eq. (21) is reduced to integration over
allowed momentum k covering the whole Brillouin zone
(BZ), i.e.,

ϕBerry ¼ i
Z
BZ

dkhΨθj
∂
∂k jΨθi≡

Z
BZ

dkAðkÞ; ð22Þ

where AðkÞ is the so-called Berry’s connection in the
momentum space. A simple technical explanation of this
key technical step (related to the change of variables) is that
the large gauge transformation formulated in terms of A1

can be expressed in terms of a shift of the momentum k
when the system returns to the physically identical
(but topologically different) state.
Similar computations can be also carried out for the

integer quantum Hall system for D ¼ 2, in which case the
corresponding formula for the Berry’s connection and
Berry’s curvature takes the form (see, e.g., [11])

AjðkÞ ¼ τ

2

ϵijki
k2

; BðkÞ ¼ τ

2
δ2ðkÞ; ð23Þ

where τ ¼ �1 describes the degenerate Fermi points with
the linear dispersion relation ϵðkÞ ∼ jkj. One can identify
the behavior (23) with magnetic monopoles in momentum
space with half-integer magnetic charges. As we shall see
below in Sec. IV B, a very similar structure also emerges in
the description of the ground state of the 2d Maxwell
system, when the auxiliary topological fields play the role
of the Berry’s connection (23).
One should emphasize that in CM literature the corre-

sponding AjðkÞ fields are the emergent gauge fields. The
real source for these emergent gauge configurations is the
strongly coupled coherent superposition of the physical
electrons. In contrast, in our case a formula to be derived
below [and which is mathematically identical to Eq. (23)]
will arise from the topologically nontrivial gauge

configurations of the underlying fundamental gauge theory.
In other words, in our case the formula similar to (23) will
emerge as a result of the topologically nontrivial vacuum
gauge configurations which are present in the system
irrespective of the existence of the fermions.
In the following subsection, Sec. IV B, we reformulate

the known results about the ground θ state in the 2d
Maxwell system using the topological auxiliary (nonpro-
pagating) fields. The corresponding technique, as we shall
see below in Sec. IV C, can be easily generalized to the
four-dimensional Maxwell system, which is the main
subject of the present work.

B. Auxiliary topological fields in 2d Maxwell theory

Wewish to derive the topological action for the Maxwell
system in 2d by using a standard conventional technique
exploited, e.g., in [7] for the Higgs model in CM context or
in [20] for the so-called weakly coupled “deformed QCD.”
We shall reproduce below the well-known results for this
“empty” 2d system including a nonvanishing expression for
the topological susceptibility (9), (10) using the corre-
sponding auxiliary fields in momentum space. It turns out
that the corresponding connection and curvature computed
using these auxiliary fields play the same role as the Berry’s
connection and Berry’s curvature play in CM systems. To
be more precise, the unique topological features of the
auxiliary field are precisely the key element which allows
us to represent the accumulated geometric phase in terms of
the auxiliary field sensitive to the boundary conditions. An
explicit demonstration of such a relation between the
Berry’s phase and auxiliary topological fields is precisely
the main subject of this section.
Our starting point is to insert the delta function into the

path integral with the field bðxÞ acting as a Lagrange
multiplier,

δ

�
QðxÞ − e

2π
ϵjk∂jakðxÞ

�

∼
Z

D½b�ei
R

d2xbðxÞ·½QðxÞ− e
2πϵ

jk∂jakðxÞ�; ð24Þ

where QðxÞ ¼ e
2πEðxÞ in this formula is the topological

charge density operator. It will be treated as the original
expression for the field operator entering the action (4) with
topological term (5). At the same time akðxÞ is treated as a
slow-varying external source effectively describing the
large distance physics for a given instanton configuration.
The insertion (24) of the delta function assumes that the
path integral computations must include all the classical
k-instanton configurations (2), (3), along with quantum
fluctuations surrounding them. In other words, we treat
QðxÞ as a fast degree of freedom, while akðxÞ are
considered as slow degrees of freedom representing an
external background field.

ARIEL R. ZHITNITSKY PHYSICAL REVIEW D 90, 105007 (2014)

105007-6



One should remark here that the corresponding formal
manipulation is not a mathematically rigorous procedure,
as akðxÞ must be singular somewhere to support non-
vanishing topological charges in the system.2 The presence
of such singularity is very similar to emergent singularities
in the description of the Berry’s connection, Dirac’s string,
or the Aharonov-Bohm potential. It is not a goal of the
present work to search for more rigorous mathematical
tools for corresponding problems. The most important
argument for us that our procedure represented by
Eq. (24) is correct is the fact that the topological suscep-
tibility (29), (30) and the expectation value of the electric
field (31), (32) are precisely reproduced when computa-
tions are performed with our formal approach utilizing the
auxiliary topological fields.
Another point worth mentioning is as follows. As we

stated above, the auxiliary field akðxÞ is treated as a slow
field, while QðxÞ is treated as a fast degree of freedom. At
the same time, formally, these fields are proportional to
each other, QðxÞ ∼ ϵjk∂jakðxÞ, according to (24), and
therefore, it is not obvious how these fields could be
treated so differently. The answer lies in the observation
that our auxiliary fields akðxÞ; bzðxÞ are nondynamical
fields, have no kinetic terms, and do not propagate, in
contrast with conventional gauge fields. Formally, these
fields do not have their conjugate momenta, as they are
auxiliary nondynamical fields of the system.
The simplest way to understand this construction is

through analogy with a well-known and well-understood
model in particle physics, the so-called Nambu–Jona-
Lasinio model. In this case an auxiliary σ field without
kinetic term is introduced into the system, analogous to
(24). The σ ∼ hψ̄ψi field is treated as a slow field and in
mean field approximation represents the chiral condensate
of the Fermi fields. Our auxiliary fields akðxÞ; bzðxÞ should
be understood exactly in the same way as the σ field is
understood in the Nambu–Jona-Lasinio model.
Now we are coming back to our proposed formula (24).

Our task now is to integrate out the original fast
“instantons” and describe the large distance physics in
terms of slow-varying fields bðxÞ; akðxÞ in the form of the
effective action Stop½b; ak� formulated in terms of slow
auxiliary fields bðxÞ; akðxÞ. We use the conventional well-
established procedure of summation over k-instantons
reviewed in Sec. II with final result (6). The only new
element in comparison with the previous computations is
that the fast degrees of freedom must be integrated out in
the presence of the new slow-varying background fields
bðxÞ; akðxÞ which appear in Eq. (24). Fortunately, the
computations can be easily performed for such external
sources. Indeed, one should notice that the background
field bðxÞ enters Eq. (24) exactly in the same manner as
external parameter θ enters (5). Therefore, assuming that

bðxÞ; akðxÞ are slow-varying background fields we arrive
at the following expression for the partition function:

Ztop ¼
Z

D½b�D½a�e− e2

8π2
·
R

d2x½θþbðxÞ�2−Stop ; ð25Þ

where bðxÞ represents the slow-varying background aux-
iliary field which is assumed to lie in the lowest n ¼ 0
branch, jbðxÞj < π. Correspondingly, in formula (25) we
kept only the asymptotically leading term in expansion (1)
with n ¼ 0 in the large volume limit, ðe2VÞ ≫ 1. The
topological term Stop½b; ak� in Eq. (25) reads

Stop½b; ak� ¼ i
e
2π

Z
d2x½bðxÞϵjk∂jakðxÞ�: ð26Þ

Our goal now is to consider the simplest application of
the effective low energy topological action (25), (26) we
just derived. We want to reproduce the known expression
for the topological susceptibility (9), (10) by integrating out
the b and ak fields using low energy effective description
(25), (26), rather than an explicit summation over the
instantons, which was employed in the original derivation
(9), (10). The agreement between these two drastically
different approaches will give us confidence that our formal
manipulations with the auxiliary fields are a correct and
self-consistent procedure. With this confidence, as a next
step, we will study the behavior of the auxiliary topological
fields in the IR, which corresponds to k → 0 in momentum
space. We compare the corresponding formula with the
Berry’s connection at small k → 0 to observe that both
expressions behave in a very similar way at large distances
in the IR. Such a similarity allows us to identify the
auxiliary field akðxÞ governed by the action (25), (26) with
emergent Berry’s connection AjðkÞ given by Eq. (23).
To proceed with this task, we compute the topological

susceptibility at θ ¼ 0 as follows:

hQðxÞQð0Þi ¼ 1

Z

Z
D½b�D½a�e−Stot½b;ak�

e2

4π2
· ½ϵjk∂jakðxÞ; ϵj0k0∂j0ak0 ð0Þ�; ð27Þ

where Stot½b; ak� determines the dynamics of auxiliary b
and ak fields, and it is given by

Stot½b; ak� ¼
Z

d2x

�
e2

8π2
b2ðxÞ þ i

e
2π

bðxÞϵjk∂jakðxÞ
�
:

ð28Þ

The obtained Gaussian integral (27) over
R
D½b� can be

explicitly executed, and we are left with the following
integral over

R
D½a�:2I am thankful to the anonymous referee for pointing this out.
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hQðxÞQð0Þi ¼ 1

Z

Z
D½a�e−1

2

R
d2x½ϵjk∂jakðxÞ�2

·
e2

4π2
½ϵjk∂jakðxÞ; ϵj0k0∂j0ak0 ð0Þ�: ð29Þ

The integral (29) is also Gaussian and can be explicitly
evaluated with the following final result:

hQðxÞQð0Þi ¼ e2

4π2
δ2ðxÞ;Z

d2xhQðxÞQð0Þi ¼ e2

4π2
: ð30Þ

A few comments are in order. First, formula (30) precisely
reproduces our previous expression (9), (10) derived by
explicit summation over fluxes-instantons, and without
even mentioning any auxiliary topological fields
bðxÞ; akðxÞ. It obviously demonstrates a self-consistency
of our formal manipulations with auxiliary topological
fields. As we shall see below, the reformulation of the
system in terms of the auxiliary topological fields is
extremely useful for studying some other (very nontrivial)
topological features of the gauge system.
Secondly, the expression (30) for the topological sus-

ceptibility represents the contact nondispersive term which
cannot be associated with any physical propagating degrees
of freedom as we discussed in Sec. II B. The nature of this
contact term can be understood in terms of the tunneling
transitions between topologically different but physically
identical jki states. As we already mentioned in Sec. II B
the same contact term can be also understood in terms of
the propagating Kogut-Susskind ghost [17], which effec-
tively describes the tunneling transitions in terms of an
auxiliary Kogut-Susskind ghost which, however, does not
belong to the physical Hilbert space; see [16] for the details
in the given context.
To proceed with our task of establishing the relation

between the topological auxiliary fields and the Berry’s
connection, we want to compute the expectation value for
the topological charge density operator hQi≡ h e

2πEi at
nonvanishing θ ≠ 0. The corresponding computations can
be easily performed using the same technique described
above. The only new element which occurs is the necessity
to compute the path integral at nonvanishing θ, as the entire
final result will be proportional to θ; see Eq. (31) below.
However, the presence of θ in the effective action does not
produce any technical difficulties as the emergent path
integral remains to be the Gaussian integral determined
by the quadratic action (25) even for nonvanishing θ.
The corresponding computation at θ ≠ 0 can be easily
executed by a conventional shift of variables bðxÞ; akðxÞ.
The result is

lim
k→0

Z
d2xeikxhQðxÞi ¼ lim

k→0

�
e
2π

�Z
d2xeikxhϵij∂iajðxÞi

¼ ie2θ
4π2

V; ð31Þ

where V is the total volume of the system playing the role
of the IR regulator in all computations in the 2d Maxwell
system, as reviewed in Sec. II. The obtained formula (31)
reproduces the well-known result that a nonvanishing θ
corresponds to nonvanishing background electric field
E≡ ϵij∂iaj in the system [21],

hEiEucl ¼
ieθ
2π

; hEiMink ¼
eθ
2π

; ð32Þ

see also [2] with some comments in the given context.
The nonvanishing expectation value of the gauge invari-

ant operator (31) is a highly nontrivial phenomenon, as the
operator QðxÞ itself is a total divergence. Naively, all
correlation functions with operator QðxÞ, including the
expectation value of hQðxÞi itself, must vanish in the k → 0
limit, as there are no physical massless degrees of freedom
in the system. We know that this naive conclusion is
incorrect as well-established results (8), (9), (31), (32)
explicitly show. The loophole in the aforementioned naive
conclusion is related to the generating of the nondispersive
(contact) contributions which cannot be formulated in
terms of any physical propagating degrees of freedom.
The same IR physics, as we already mentioned, can be also
described in terms of the massless Kogut-Susskind ghost
[17] which effectively (implicitly) describes the tunneling
transitions between the topological jki sectors.3
Such a strong IR sensitivity implies that the Fourier

transform of the auxiliary topological field aj saturating the
expectation value (31) has the singular behavior at small
momentum k → 0:

ajðk → 0Þ≡ 1

V

Z
d2xeikxajðxÞ →

�
eθ
2π

�
ϵijki
k2

; ð33Þ

in spite of the fact that the system does not support
any physical massless propagating degrees of freedom,
which erroneously can be associated with the pole (33).

3Furthermore, one can argue that the topological auxiliary field
aiðkÞ introduced above can be expressed in terms of the Kogut-
Susskind ghost. Apparently, such a relation is a very generic
feature of many gauge theories. In fact, an analogous relation can
be explicitly worked out in four-dimensional gauge theory, in the
so-called weakly coupled “deformed QCD” where the auxiliary
topological fields, similar to aiðxÞ; bðxÞ fields from (28), are
related to the Veneziano ghost [20]. The Veneziano ghost was
postulated in QCD long ago [22] with the sole purpose of
saturating the nondispersive (contact) term in topological sus-
ceptibility, similar in structure to Eq. (30). As it is known, this
contact term plays the key role in the resolution of the so-called
Uð1ÞA problem in QCD [22,23].
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The source of this pole is obviously related to the same
topological instantonlike long ranged configurations (2)
saturating the contact term in the topological susceptibility
(11). The singular behavior (33), which simply represents a
nonvanishing expectation value (31), (32), obviously
implies that the integral in momentum space around
k ∼ 0 does not vanish. Indeed, using k → 0 behavior
(33), one arrives at the following relation,

1

e

I
jkj→0

ajðkÞdkj ¼
1

e

Z
d2k½ϵij∂kiajðkÞ�

¼ θ

Z
d2k∂ki

�
ki

2πk2

�

¼ θ

Z
d2kδ2ðkÞ ¼ θ; ð34Þ

which essentially represents the same well-known state-
ment about the nonvanishing gauge invariant expectation
value (31), (32), but written in different terms involving the
auxiliary topological fields in momentum space.
From (34) one can easily recognize that the auxiliary

field 1
e a

jðkÞ in momentum space strongly resembles the
Berry’s connection (23), while 1

e ϵ
ij∂kiajðkÞ can be thought

as the Berry’s curvature discussed previously in CM
physics; see, e.g., [11] for review. The fundamental differ-
ence between the analysis of our system and the compu-
tations of the Berry phase in CM literature is that the Berry
connection (23) in CM systems is a collective phenomenon
with accumulation of the geometric phase of the band
electrons. It is represented, as a matter of convenience
rather than necessity, in terms of the emergent gauge field
AiðkÞ. In contrast, in our case, the topological fields aiðkÞ
represent some fundamental (though auxiliary, nonpropa-
gating) fields describing the ground state of the underlying
gauge theory. These fields are present in the system even
without any matter fields. The topological features of the
auxiliary fields in our case emerge as a result of the
summation of the topological sectors in path integral
formulation rather than a result of a complex interaction
of the band electrons in CM systems.
Nevertheless, as we observed above, there is very strong

mathematical similarity between these two, physically very
different, entities. These similarities, in particular, include
the following features: while aiðkÞ and AiðkÞ are gauge-
dependent objects, the corresponding integrals (22) and
(34) are gauge invariant (modulo 2π) observables describ-
ing the same property related to the polarization. The 2π
periodicity for all observables in both systems also has a
very simple physical explanation. For our system the 2π
periodicity follows from the partition function (1), (7),
while in CM context [11,18] the 2π periodicity corresponds
to the adiabatic process when the many body wave function
returns to its physically identical (but topologically differ-
ent) state. Furthermore, the main features of the systems are

formulated in terms of global rather than local behavior, as
formulas (22) and (34) suggest. One should comment here
that explicit computations of the Berry’s connection for a
specific CM system very often require some tedious
microscopic local computations, though the final result
in fact describes the global behavior of the system, not
sensitive to any local characteristics.
We conclude this section with the following general

comment. We have not produced any new physical results
in this section, as the relevant questions in 2d QED, such as
the expectation value of the electric field at nonzero θ
[represented by Eqs. (31), (32)] or a nondispersive (contact)
contribution to the topological susceptibility (30), were
computed long time ago.4 Our contribution in this section is
much more modest. We reproduced these known results by
using a different technique: we expressed the relevant
correlation functions in terms of the auxiliary topological
fields aiðkÞ. We established the physical meaning of these
fields and argued that these auxiliary objects play the same
role as Berry’s connection AiðkÞ in CM systems.
As we shall discuss below, the technical tools developed

and tested in this subsection (by reproducing the known
results) will be very useful in our study of a similar
phenomena in physically relevant four-dimensional
Maxwell theory formulated on the torus. This mathematical
similarity occurs as a result of dimensional reduction (to be
used below) which essentially translates the corresponding
4d problems into the 2d analysis developed in the present
section.

C. Auxiliary topological fields in 4d Maxwell system

We wish to derive the topological action for the 4d
Maxwell system by using the same technique exploited in
the previous subsection, Sec. IV B. Our starting point is to
insert the delta function, similar to Eq. (24), into the path
integral with the field bzðxÞ acting as a Lagrange multiplier

δ½BzðxÞ − ϵzjk∂jakðxÞ�

∼
Z

D½bz�eiL3β
R

d2xbzðxÞ·½BzðxÞ−ϵzjk∂jakðxÞ�; ð35Þ

where BzðxÞ in this formula is treated as the original
expression for the field operator entering the action (13),
including all classical k-instanton configurations (12), (15)
and quantum fluctuations surrounding these classical con-
figurations. In other words, we treatBzðxÞ as fast degrees of
freedom. At the same time, akðxÞ is treated as a slow-
varying external source effectively describing the large
distance physics for a given instanton configuration. Our
task now is to integrate out the original fast “fluxes” (12),
(15) and describe the large distance physics in terms of

4In particular, formula (30) can be derived using the Kogut-
Susskind ghost formalism [17].
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slow-varying fields bzðxÞ; akðxÞ in the form of the effective
action similar to (28) derived for the 2d system. The
physical meaning of these formal manipulations is
explained in Sec. IV B after Eq. (24), and we shall not
repeat it here.
To proceed with computations, we use the same pro-

cedure by summation over k-instantons as described in
Sec. III. The only new element in comparison with the
previous computations is that the fast degrees of freedom
must be integrated out in the presence of the new slow-
varying background fields bzðxÞ; akðxÞ which appear in
Eq. (35). Fortunately, the computations can be easily
performed if one notices that the background field bzðxÞ
enters Eq. (35) exactly in the same manner as the external
magnetic field enters (19). Therefore, assuming that
bzðxÞ; akðxÞ are slow-varying background fields we arrive
at the following expression for the partition function for our
T V system:

Ztopðτ; θeffÞ ¼
ffiffiffiffiffi
πτ

p X
k∈Z

Z
D½bz�D½a�e−S−Stop ; ð36Þ

where quadratic action S½bz; ak� is defined as

S½bz; ak� ¼ π2τ

Z
T2

d2x
L1L2

�
kþ ϕðxÞ þ θeff

2π

�
2

; ð37Þ

while the topological term Stop½bz; ak� in Eq. (36) reads

Stop½bz; ak� ¼ iL3β

Z
T2

d2x½bzðxÞϵzjk∂jakðxÞ�: ð38Þ

In formula (37) we rescale the slow-varying background
auxiliary bz field such that ϕðxÞ≡ eL1L2bzðxÞ. Parameter
θeff ≡ eL1L2Bext

z represents the external magnetic field
while T2 represents the two tori defined on the (1,2) plane.
The topological action (38) in all respects is very similar

to the topological action derived for the 2d system (26).
Therefore, we anticipate that all consequences discussed in
Sec. IV B for the 2d system will have their analogues in the
4d system, including the relation between the Berry’s
connection and auxiliary fields in momentum space in
the IR at k → 0.
Before we proceed with computations to establish such a

connection, we want to make the following comment. The
topological term (38) which emerges as an effective
description of our system is in fact a Chern-Simons-like
topological action. In our simplified setting we limited
ourselves by considering the fluxes along the z direction
only. It is natural to assume that a more general construction
would include fluxes in all three directions, which would
lead to a generalization of action (38). Therefore, it is quite
natural to expect that the action in this case would assume
a Chern-Simons-like form iβ

R
T3
d3x½ϵijkbiðxÞ∂jakðxÞ�

which replaces (38). A similar structure in CM systems
is known to describe a topologically ordered phase.
Therefore, it is not really a surprise that we observed in
[2] some signatures of the topological order in the Maxwell
system defined on a compact manifold. The emergence of
the topological Chern-Simons action (38) further supports
this basic claim that the Maxwell system on a compact
manifold belongs to a topologically ordered phase, as the
auxiliary topological fields entering (38) play the same role
as the Berry’s connection in topologically ordered CM
systems.
Now we can follow the same procedure which we tested

for the 2d system in Sec. IV B to compute the expectation
value of the magnetic field at nonvanishing θeff . The
corresponding result is known [1]: it has been derived
by using conventional computation of the path integral by
summation over all “fluxes-instantons.” Our goal now is to
reproduce this result by using the auxiliary topological
fields governed by the action (38). We follow the same
procedure as before and define the induced magnetic field
in the system in the conventional way:

hBz
indðτ; θeffÞi ¼ −

1

βV

∂ lnZtopðτ; θeffÞ
∂Bext

¼ 2π

eL1L2

�
kþ θeff þ ϕðxÞ

2π

	
; ð39Þ

where the last expectation value must be evaluated using
the partition function (36). The corresponding Gaussian
integral over auxiliary ϕðxÞ field can be easily executed
with the result

hBz
indðτ; θeffÞi ¼ lim

k→0

Z
d2x
L1L2

eikxh−iϵzjk∂jakðxÞi; ð40Þ

where the corresponding expectation value h…i should be
computed using the following partition function deter-
mined by the action Stot½ak� (which includes both the
quadratic and topological terms):

Stot½ak� ¼
L3β

2

Z
T2

d2xðϵzjk∂jakðxÞÞ2

− ið2πkþ θeffÞ
L3β

eL1L2

Z
T2

d2xðϵzjk∂jakðxÞÞ:

ð41Þ

The path integral (40) is Gaussian and can be executed by a
conventional shift of variables in the action Stot½ak� defined
by (41):

ðϵzjk∂ja0kðxÞÞ ¼ ðϵzjk∂jakðxÞÞ − i
ð2πkþ θeffÞ

eL1L2

: ð42Þ
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Exact evaluation of the Gaussian path integral (40) with
action (41) leads to the following final result for hBz

indi:

hBz
indi ¼

2π

eL1L2

ffiffiffiffiffi
πτ

p
Ztop

X
k∈Z

�
kþ θeff

2π

�
e−π

2τðkþθeff
2π Þ

2

; ð43Þ

where the partition function Ztop for our T V system in this
formula5 is determined by Eq. (19). As expected, the
expression (43) exactly reproduces the corresponding
formula derived in Ref. [1] by explicit summation over
fluxes-instantons. We reproduced the results of Ref. [1]
using a drastically different technique, as our computations
(43) in this section are based on calculation of the path
integral defined by the partition function (36) formulated in
terms of the auxiliary topological fields bzðxÞ; aiðxÞ.
Agreement between the two approaches obviously supports
the consistency of our formal manipulations with the path
integral and auxiliary fields.
An important new point (which could not be seen within

the computational technique of Ref. [1]) is the expression
(40) for the induced field hBz

indi in terms of the auxiliary
object aiðxÞ. As we shall see in a moment, precisely this
connection allows us to identify the auxiliary topological
nonpropagating field aiðkÞ in momentum space with the
Berry’s connection AiðkÞ from Sec. IVA, as both entities
have very similar properties.
Before we proceed to establish such a connection, we

would like to make few comments. First, as one can see
from (43) the expression for hBz

indi accounts for the total
field in the system, including the external field as well as
the induced field due to the interference of the external field
with the topological fluxes (12). However, in the absence of
the external field θeff ≡ eL1L2B

z
ext ¼ 0 the contributions to

the expectation value (43) from the fluxes with positive and
negative signs cancel each other, and hBz

indi vanishes. For
θeff ≠ 0 the cancellation does not hold, and the field
hBz

indi ≠ 0 will be obviously induced.
The effect must vanish when the tunneling transitions

due to the fluxes are suppressed at e → 0 which corre-
sponds to large τ ≫ 1. It is very instructive to see how it
happens. The corresponding expression which is valid for
τ ≫ 1 and small but finite θeff ≪ 1 reads

hBz
indi ¼

θeff
eL1L2

�
1 −

4πe−π
2τ sinhðπτθeffÞ
θeff

�
: ð44Þ

One can explicitly see from Eq. (44) that the tunneling
effects are suppressed in the large τ limit, and the magnetic
field in this case in the system is entirely determined by an
external source, hBz

indi → Bz
ext at τ ≫ 1, as expected.

The key point for the present analysis is the expression
(40) for hBz

indi in terms of the auxiliary fields akðxÞ. This
formula in all respects is very similar to expression (31)
previously analyzed in the 2d system. One can follow the
same logic of that analysis to arrive at the conclusion that
the auxiliary field akðxÞ can be thought as the Berry’s
connection [similar to (33) from the 2d analysis] with the
following singular behavior at small k → 0 in momentum
space,

aiðk → 0Þ≡ 1

L1L2

Z
d2x
2π

eikxaiðxÞ

¼ hBz
indi

ϵzijkj
2πk2

⇒

�
θeff

eL1L2

�
ϵzijkj
2πk2

; ð45Þ

where in the last line we use the asymptotical behavior (44)
which is valid for large τ ≫ 1.
The behavior (45) also suggests that ϵzij∂kiajðkÞ ∼

δ2ðkÞ plays the same role as the Berry’s curvature in
CM physics; see (23) and [11] for review. One should
emphasize that these similarities in the IR behavior in two
very different systems should not be considered as a pure
mathematical curiosity. In fact, there is a very deep physical
reason why these two, naively unrelated entities must
behave very similarly in the IR. Indeed, as it is known
the Berry’s phase in CM systems effectively describes the
variation of the θ parameter θ → θ − 2πP as a result of the
coherent influence of strongly interacting fermions which
polarize the system, i.e., P ¼ �1=2; see, e.g., [18]. The
auxiliary topological field aiðxÞ in our T V system with
similar IR behavior essentially describes the same physics.
To be more precise, the interference between the external
magnetic field and fluxes leads to the magnetic polarization
formulated in terms of aiðxÞ fields, similar to the generation
of polarization P ¼ �1=2 in CM systems expressed in
terms of the Berry’s connectionAiðxÞ. Our key observation
is that the polarization features of the T V system in our
case are represented by Eqs. (40), (45). These equations
play the same role as Eqs. (22), (23) in CM systems.
This close analogy (mathematical and physical), in fact,

may have some profound observational and experimental
consequences as an electrically charged probe inserted into
our system characterized by θeff would behave very much
in the same way as a probe inserted into a CM system
characterized by a nonvanishing Berry’s phase. In other
words, our T V system must demonstrate a number of
unusual features which are typical for topologically ordered
phases in CM systems. One of these properties, the
degeneracy of the system, which cannot be described in
terms of any local operator (but rather is characterized by a
nonlocal operator) has been already established [2]. There

5We note that k-independent numerical factor
ffiffiffiffiffi
πτ

p
enters both

Eqs. (19) and (43). This numerical factor simply represents our
normalization’s convention and does not affect the computations
of any expectation values, such as (43). Our normalization
corresponds to the following behavior of the topological partition
function: Ztop → 1 in the limit L1L2 → ∞. Such a convention
corresponds to the geometry of the original Casimir setup
experiment; see [1] for the details.
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must be other interesting experimentally observable effects
in 4d Maxwell theory, similar to a number of profound
effects which are known to occur in topologically ordered
phases in CM systems [4–12]. We leave this subject for
future studies.

V. CONCLUSION AND FUTURE DIRECTIONS

In this work we discussed a number of very unusual
features exhibited by the Maxwell theory formulated on a
four-torus, which was coined the topological vacuum (T V).
All these features are originated from the topological
portion of the partition function Ztopðτ; θeffÞ and cannot
be formulated in terms of conventional E&M propagating
photons with two physical transverse polarizations. In
other words, all effects discussed in this paper have a
nondispersive nature.
The computations of the present work along with

previous calculations of Refs. [1,2] imply that the extra
energy (and entropy), not associated with any physical
propagating degrees of freedom, may emerge in the gauge
systems if some conditions are met. This fundamentally
new type of energy emerges as a result of dynamics of pure
gauge configurations at arbitrary large distances. This
unique feature of the system when an extra energy is
not related to any physical propagating degrees of freedom
was the main motivation for a proposal [16,24,25] that the
vacuum energy of the Universe may have, in fact, precisely
such nondispersive nature.6 This proposal when an extra
energy cannot be associated with any propagating particles
should be contrasted with a conventional description when
an extra vacuum energy is always associated with some
new physical propagating degree of freedom, such as the
inflaton.
The main motivation for the present studies is to test

these ideas (about a fundamentally new type of vacuum
energy) using a simple quantum field theory setting which
nevertheless preserves the crucial element, the degeneracy
of the topological sectors, responsible for this novel type of
energy. This simplest possible setting can be realized in the
Maxwell theory formulated on a four-torus. Most impor-
tantly, the effect with this simplest setting can be, in
principle, tested in a tabletop experiment if the correspond-
ing boundary conditions can be somehow imposed in real

physical systems. Otherwise, our construction should be
considered as the simplest possible 4d QFT model when
extra vacuum energy is generated. The crucial point is that
this extra vacuum energy cannot be associated with any
physical propagating degrees of freedom, as argued in the
present work.
Essentially, the proposal [16,24,25] identifies the

observed vacuum energy with the Casimir type energy,
which however is originated not from dynamics of the
physical massless propagating degrees of freedom, but
rather, from the dynamics of the topological sectors which
are always present in gauge systems, and which are highly
sensitive to arbitrary large distances. The vacuum energy in
this case can be formulated in terms of the auxiliary
topological fields which are similar in spirit to
bzðxÞ; akðxÞ fields from (28), (38) and which effectively
describe the dynamics of the topological sectors in the
expanding background [25]. As we discussed at length in
Sec. IV C these auxiliary topological fields play the same
role as the Berry’s connection in CM systems. The
bzðxÞ; akðxÞ fields do not propagate, but they do contribute
to the vacuum energy. It would be very exciting if this new
type of the vacuum energy not associated with propagating
particles could be experimentally measured in a laboratory,
as we advocate in this work.
Aside from testing the ideas on vacuum energy of the

Universe, the Maxwell system studied in the present work
is an interesting system on its own. Indeed, being a “free”
Maxwell theory, it nevertheless shows a number of very
unusual features which are normally attributed to a CM
system in a topologically ordered phase. In particular, it
shows the degeneracy of the system which cannot be
detected by any local operators, but is characterized by a
nonlocal operator [2]. Furthermore, in the present work we
argued that the auxiliary topological fields bzðxÞ; akðxÞ
fields in 4d Maxwell system behave very much in the same
way as the Berry’s connection in CM systems. More than
that, a charged probe particle inserted into our system
would feel the topological features of the bzðxÞ; akðxÞ
fields in the same way as a probe inserted into a CM system
characterized by a nontrivial Berry’s connection AiðxÞ.
Therefore, it would be very exciting if one could find a

system where a charged probe inserted into our four-torus
(filled by vacuum) would behave similarly to a probe
inserted into a much more complicated CM system,
where the corresponding nontrivial Berry’s connection is
emergent as a result of a coherent many body physics.
The simplest possible setup we can imagine is as follows.

Normally, in condensed matter literature, one considers a
junction between a conventional insulator (I) and topo-
logical insulator (T I). One can also consider the T I which
is sandwiched between two conventional insulators; i.e.,
one can consider a system like I − T I − I . Our claim
essentially is that the T I in this system can be replaced by
the T V configuration considered in this work. In other

6There are two instances in the evolution of the Universe when
the vacuum energy plays a crucial role. The first instance is
identified with the inflationary epoch when the Hubble constant
H was almost constant, which corresponds to the de Sitter type
behavior aðtÞ ∼ expðHtÞ with exponential growth of the size aðtÞ
of the Universe. The second instance, when the vacuum energy
plays a dominating role, corresponds to the present epoch when
the vacuum energy is identified with the so-called dark energy
ρDE, which constitutes almost 70% of the critical density. In the
proposal [16,24,25], the vacuum energy density can be estimated
as ρDE ∼HΛ3

QCD ∼ ð10−4 eVÞ4, which is amazingly close to the
observed value.
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words, one considers a system like I − T V − I . Our claim
is that this system would behave very much as the
I − T I − I , because T V behaves very much in the same
way as a T I , as advocated in this work.7 These similarities
include such nontrivial features as the degeneracy
(characterized by a nonlocal operator), the Berry’s con-
nection, and the presence of the effective θeff state, among
many others things. Therefore, it is natural to expect that
while I − T I − I and I − T V − I systems are very

different in composition, the behavior of these systems
will be very much the same in the IR. We leave this exciting
subject on possible applications of our T V system, which
we believe belongs to a topologically ordered phase, for
future investigations.
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7The conducting (or superconducting) edges of the T V portion
in I − T V − I sandwiched in the form of a closed circle support
the periodic boundary conditions up to the large gauge trans-
formations. This freedom in terms of large gauge transformation,
or what is the same, a finite probability to form the “fluxes-
instantons” in the bulk of the system, eventually leads to the
emergence of the partition function (16) with all its consequences
discussed in the present work. fluxes-instantons (12) also satisfy
the boundary condition B⊥ ¼ 0 on the superconducting edges.
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