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We study the response of a class of topological systems to electromagnetic and gravitational sources,
including torsion and curvature. By using the technology of anomaly polynomials, we derive the parity-odd
response of a massive Dirac fermion in d ¼ 2þ 1 and d ¼ 4þ 1, which provides a simple model for a
topological insulator. We discuss the covariant anomalies of the corresponding edge states, from a Callan-
Harvey anomaly inflow, as well as a Hamiltonian spectral flow point of view. We also discuss the
applicability of our results to other systems such as Weyl semimetals. Finally, using dimensional reduction
from d ¼ 4þ 1, we derive the effective action for a d ¼ 3þ 1 time-reversal invariant topological insulator
in the presence of torsion and curvature, and discuss its various physical consequences.
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I. INTRODUCTION

Strong bonds between high-energy and condensed mat-
ter physics have been formed through the study of quantum
field theory anomalies. Naively, anomalies simply re-
present the breaking of a classically preserved symmetry
through quantum effects, but once one digs deeper one
realizes the deep connections between anomalies, topologi-
cal transport phenomena, bulk-boundary correspondence,
and fermion representations that lie at the heart of some of
the most interesting, and experimentally relevant, physical
phenomena. With the discovery of topological insulators
and topological phases of matter, anomalies have moved to
the forefront of condensed matter physics [1,2]. Many old
ideas from high-energy physics, for instance [3,4] etc., have
been repurposed and extended to explain properties of exotic
materials that are beingmeasured in experimental groups all
over the world [1,5–11]. One example is the connection
between the bulk Hall conductivity in 2þ 1-dimensional
electron gasses in the quantumHall state and the anomalous
properties of the 1þ 1-dimensional chiral fermion edge
states at the boundaries of the samples [12–14]. This type
of bulk-boundary connection between bulk transport prop-
erties and anomalous transport of thegapless edge degrees of
freedom underlies most of the interesting properties of
topological phases of matter. In fact, each different field
theory anomaly gives rise to a different type of transport
phenomenon, for example, electrical or thermal transport.
In recent years, there has also been a great deal of progress in
understanding anomaly induced transport phenomena in
hydrodynamics (see for instance [15–18] and references
therein).
By now there exists a mapping between most known

quantum field theory anomalies (gauge and gravitational)
and associated condensed matter phenomena in space-time
dimensions d ≤ 4 [19,20]. However, the role played by
space-time torsion in anomaly physics is still poorly
understood—a notable example is the anomaly in the

global chiral symmetry of 3þ 1-dimensional fermions
exposed to torsion [21]. This anomaly implies the non-
conservation of the chiral currentwhen certain arrangements
of dislocations and strain forces are applied to chiral
fermions; it has also been the source of some controversy
in high-energy physics, the reason for whichwewill recount
below.While dislocations and strain forces are not common-
place in our outward Universe, they are ubiquitous in
condensed matter systems. For example, effects of this
anomaly should be seen if dislocations and strain are present
in Weyl semimetal materials, which have an electronic
structure consisting of an even number of chiral fermions
in 3þ 1-d [22–26,27–37]. Related effectswill also appear in
the response properties of time-reversal invariant topologi-
cal insulators. Thus, while high-energy physicists may not
ever have to worry about resolving the torsion anomaly
puzzle in order to describe the fundamental properties of the
Universe,1 condensedmatter physicists should be concerned
because it is something that can be measured.
The goal of the present work is to resolve many of the

uncertainties surrounding torsional anomalies by studying
them in three explicit contexts analogous to the work
done by Nielsen and Ninomiya for the Adler-Bell-Jackiw
anomaly in crystals [40], and also the work of Qi-Hughes-
Zhang on the response properties of topological insulators
[19]. The three systems that we will study are the boundary
of a 4þ 1-dimensional topological insulator which can
harbor a single chiral fermion on its boundary [19], Weyl
semimetals (WSM) in which an even number of chiral
fermions must be present so that the total chirality vanishes,
and 3þ 1-dimensional time-reversal invariant topological
insulators which contain no chiral fermions, but exhibit
related response properties due to the dimensional reduc-
tion. In recent work [41] we were able to resolve a similar

1However, as we will see below, the role of torsion in anomaly
inflow mechanisms suggests that it should play a role in some
braneworld or holographic constructions [38,39].
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problem in 2þ 1-dimensional fermionic insulatorswhereby
torsional terms in the effective action of time-reversal
breaking topological insulators were shown to correspond
to Hall viscosity transport (see [41–51] and the review [52]
for a detailed exposition toHall viscosity invarious systems)
along with concomitant anomalies on the interface between
topological phases, and wewill now apply our techniques to
the 3þ 1-dimensional case.
This article is organized as follows: in Sec. II we will

review the idea of torsion, how fermions couple to it, and
its appearance in the d ¼ 3þ 1 chiral anomaly. Then in
Sec. III we will carefully derive the “Chern-Simons–like”
parity-odd effective actions for massive Dirac fermions
coupled to background curvature and torsion. In particular,
we rederive the response action for 2þ 1-dimensional time-
reversal breaking topological insulators and then present our
main result which is the response action for the 4þ 1-
dimensional topological insulator. The 4þ 1-dimensional
case might seem irrelevant at first sight from a condensed
matter perspective, but this is not so; it can be used to study
torsion effects on chiral fermions by studying the boundary
anomalies, and also the response of 3þ 1-dimensional time-
reversal invariant topological insulators by dimensional
reduction. This is what we do next—in Sec. IV, we will
carry out the five-dimensional bulk to four-dimensional
boundary Callan-Harvey anomaly inflow calculation [3]
paying careful attention to the role of torsion, and in Sec. V
we will give more microscopic Hamiltonian spectral flow
arguments for the different anomaly types which illustrate
the microscopic behavior of real material systems under the
influence of torsion. From here we will discuss some
consequences for Weyl semimetals in Sec. VI. Then in
Sec. VII, we dimensionally reduce the d ¼ 4þ 1 parity-odd
effective action to discuss some consequences for the 3þ 1-
dimensional time-reversal invariant topological insulator.
We will end with some final discussion and conclusions.

II. REVIEW OF TORSION AND THE TORSION
CONTRIBUTION TO THE CHIRAL ANOMALY

A. Informal preliminaries

In classical general relativity, torsion is simply taken to
vanish, so that the geometric degrees of freedom can be
captured solely by the metric tensor—torsion can be
regarded as a violation of the equivalence principle. In
more general formulations of general relativity,2 the types
of matter usually considered provide no source for torsion,
so even if it were allowed, one would find that it vanishes
by equations of motion. If torsion is allowed, there is no
natural choice for a (spin) connection, and both the metric

(or more precisely, the frame) and the connection must be
provided independently to specify a unique geometry.
Condensed matter physics is not governed by general

relativity. Nevertheless, it is often useful to formulate
various concepts in geometric terms. Recently, in con-
densed matter, effects that are essentially connected to
torsion have been brought to the forefront and include
things like the Hall viscosity in Chern insulators [41,47],
low-energy transport properties in topological phases [53],
and the properties of dislocations and disclinations in
topological phases [54–60]. Torsion is most intuitively
interpreted as the field strength tensor of the gauge
potentials that encode translation invariance. A magnetic
flux line of torsion is simply a dislocation, i.e., a particle
encircling the torsional magnetic flux will be translated by
an amount bA (where A ¼ 0; 1; 2…D) which is the gener-
alized Burgers vector of the dislocation. The time compo-
nent b0 is the amount of translation in time,3 and the spatial
components ba are the traditional Burgers vector translation
in space. Thus, to each torsional flux linewemust associate a
d-vector of fluxes bA instead of just a scalar flux for theUð1Þ
electromagnetic field. Since dislocations play a pivotal role
in many aspects of the theory of crystalline solids, and in
quantum-ordered crystals like charge densitywaves, the role
of torsion must be carefully considered in condensed matter
systems.
If we only consider flat space without space-time

curvature, we need only introduce geometric variables
called coframe fields eA to describe torsion. Each eA ¼
eAμdxμ (where μ ¼ t; x; y; z;… and A ¼ 0; 1;…; d − 1) is a
1-form vector potential with a label given by A. In flat space
we can choose a gauge where the spin connection 1-forms
ωAB
μ dxμ ≡ 0 so that the components of the torsion tensor

are

TA
μν ¼ ∂μeAν − ∂νeAμ ; ð1Þ

that is, TA is the field strength 2-form for the gauge potential
eA. As an example, if we have a dislocation line localized at
the origin in the xy-plane then TA

xy ¼ bAδðxÞδðyÞ. The
generalized Burgers vector bA of the localized dislocation
is the torsion magnetic flux from each eA potential, or
equivalently the circulation of eA around the dislocation in
the xy plane

bA ¼
Z

d2xϵijTA
ij ¼

I
eA: ð2Þ

To make contact with more familiar condensed matter
notation we note that the coframe fields are simply a
repackaging of conventional elastic variables based on the

2Here we refer to the first order formalism, in which the action
of general relativity (the Palatini action for example) is regarded
as depending on independent frame and connection variables.
Details will be given below.

3One can envision a spatial Burgers vector as a lattice
dislocation. A temporal Burgers vector arises, for example, in
the presence of vorticity.
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displacement vector uA (where we allow for a time dis-
placement as well). In terms of the displacement vector the
coframe fields are (to linear order in displacements)

eAμ ¼ δAμ − ∂uA
∂xμ ð3Þ

where the spatial componentswa
i ¼ ∂iua are known conven-

tionally as the distortion tensor [61]. The undeformed
system is represented by the orthonormal frames eAμ ¼ δAμ
which exist at every point in space-time.
Similarly, lattice disclinations can be viewed as sources

of curvature—traversal around a disclination results in
rotation. This effect can be encoded in link variables
ωab
i . Promoting this to space-time, we have the set of

spin connection 1-forms [valued in soðd − 1; 1Þ] ωA
B ¼

ωA
μ;Bdxμ which are gauge potentials for local Lorentz

invariance. The field strength RA
B for the spin connection

is referred to as the curvature. In fact, the spin connection
can be grouped with the translation gauge potentials eA to
form a kind of Poincaré gauge structure.4We refer the reader
to Ref. [41], and references therein, for more discussion
about the connection between the field theory variables
and conventional elasticity theory.
Now we will move on to discuss the well-known chiral

anomaly. In 1þ 1 dimensions, charged chiral fermions in
the presence of an electric field will not conserve chiral
charge. This effect is captured by the anomalous Ward
identity for the chiral (axial) current:

∂μj
μ
5 ¼

q2

4π
ϵμνFμν ð5Þ

where q is theUð1Þ charge. This is problematic in the sense
that it goes against all classical physical intuition about
charge conservation. There are two common ways in which
this problem is resolved: (i) if the chiral fermion appears as
the low-energy description of a real 1þ 1-dimensional
material then it must always appear with its antichiral
partner [a consequence of the Neilsen-Ninomiya no-go
theorem (fermion doubling)] [62] or (ii) the chiral fermion
appears as the low-energy description on the boundary of a

2þ 1-dimensional system, and the antichiral partner
appears on the opposite boundary. In this case the total
chiral charge of the two chiral fermions is passed back and
forth through the 2þ 1-dimensional bulk. One can show in
case (ii) that when an electric field is applied parallel to the
chiral edge state there is a bulk current perpendicular to
the applied electric field/edge, and the boundary chiral
anomaly is attached to a bulk Hall effect; this is an example
of the Callan-Harvey effect [3] and it appears in any
two-dimensional electron system exhibiting the integer
quantum Hall effect. In case (i) the Uð1Þ axial charge is
locally conserved but it can be converted between the
low-energy left-hand (left-moving) and right-hand (right-
moving) branches in the presence of an applied electric
field. In this case there is no notion of a perpendicular Hall
current since both chiral and antichiral fermions exist in the
same local region of space.
We note that because the frame field, and, subsequently,

the torsion 2-form, carry an extra Lorentz index A, there is
no Lorentz invariant contribution to the 1þ 1-dimensional
chiral anomaly from torsion. For a real crystalline material
or a fluid at finite density, both of which naturally break
Lorentz invariance, it is possible to generate a term of the
form ∂μj

μ
5 ∼ θAϵ

μνTA
μν for some field θA arising from the

source of Lorentz violation. For example, this type of
anomaly might be generated if we have left- and right-hand
chiral fermions with different velocities, which is allowed
in a condensed matter setting. For 1þ 1-dimensional
fermions different velocities means the density of states
of the left and right movers is different, which can lead to a
physically measurable consequence. We will not consider
these effects in what follows, though they could appear in
low-dimensional condensed matter materials and would be
interesting to study in future work.
In 3þ 1 dimensions, the next dimension that supports

chiral fermions, there is also a chiral anomaly in the
presence of background electromagnetic fields; however
it is only present when parallel electric and magnetic fields
are applied. This is captured by the anomalous Ward
identity

∂μj
μ
5 ¼

q3

32π2
ϵμνρσFμνFρσ ¼

q3

4π2
~E · ~B: ð6Þ

One can think of the anomaly as a two-step process in
which one first turns on a uniform magnetic field and then a
parallel electric field. The magnetic field will produce
Landau levels in the low-energy chiral fermions, and there
will be one Landau level that disperses chirally along the
direction of the magnetic field. This dispersive Landau
level is identical to a degenerate set of 1þ 1-dimensional
chiral fermions along the direction of the magnetic field,
one chiral branch for each magnetic flux quantum. At this
point the problem has been reduced back to decoupled
copies of the 1þ 1-dimensional case, and one can proceed

4Formally, this can be seen by considering the coupling of a
Dirac fermion (or any tensor) to a background frame and spin
connection. The covariant derivative ∇A generates translations,
and the commutator of translations takes the form

½∇A;∇B� ¼ −TC
AB∇C þ RCD;ABJCD; ð4Þ

where T is torsion, R curvature, and J the generator of Lorentz
transformations acting on the Dirac spinor. The commutator has
an interpretation in terms of traversing a “closed” path, the result
being a translation (if torsion is present) or a (Lorentz) rotation (if
curvature is present). The standard relations between eA, ωA

B,
and TA, RA

B will be given below in the following subsection.
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by applying an electric field as the second step. The electric
field will induce a nonconservation of charge for each
1þ 1-dimensional chiral branch. The resolution of the
nonconservation of chiral charge is solved using one of the
two mechanisms presented earlier. Using the nomenclature
from recent condensed matter literature, one would say that
chiral fermions occurring from case (i) appear in a Weyl
semimetal material [22–24,26–35] and from case (ii) one
would state that the chiral fermions appear at the boundary
of a 4þ 1-dimensional topological insulator state [19].
It is well known that in addition to the electromagnetic

contributions to the anomalous chiral conservation law,
new terms are generated when the space-time in which the
chiral fermion resides is curved or has torsion. As shown,
for instance in [21,63], the Ward identity is modified in the
presence of curvature and torsion to5

∂μj
μ
5 ¼

q3

32π2
ϵμνρσFμνFρσ þ

q
192π2

ϵμνρσ
1

4
Rab
μνRcd

ρσηadηbc

þ CNY; ð7Þ

where Rab
μν is the Riemann curvature tensor and the Nieh-

Yan term [64] is given by

CNY ¼ q
32π2l2

ϵμνρσðηabTa
μνTb

ρσ − 2Rab;μνeaρebσÞ ð8Þ

with l being a length scale. The consequences of the first
term are well understood, and even the curvature dependent
term has recently come under investigation in a condensed
matter setting [20,65]; however the microscopic origin, and
a clear condensed matter interpretation of the third term has
not been considered. The coefficients of the first two terms
are dimensionless and universal, while the Nieh-Yan term
has a dimensionful coefficient, related to a UV scale [21].
The reason the coefficients have different properties is that
the components of the coframe eAμ are dimensionless and
do not have the conventional natural units of L−1 befitting
the components of a connection. Thus, the torsion field (1)
only has units of L−1 and the anomalous Nieh-Yan term
needs a coefficient with units ℏ=L2 so that the entire term
has the units of action when integrated over a space-time
region. Usually, anomaly coefficients have a topological
origin and are quantized as an integer multiplying funda-
mental constants. The Nieh-Yan term however has units, is
sensitive to UV scales, and thus has no apparent universal
interpretation.
In this article we have not set out to address the Nieh-Yan

term from a fundamental perspective, but instead we will
provide a regularized derivation and a condensed matter
interpretation of the consequences of this and other new
torsional contributions to anomalies. Indeed, we do find

that one can interpret the Nieh-Yan term as a contribution to
the chiral anomaly, and its effects could possibly be
observed, for example, in Weyl semimetals.6 A related
effect also appears in the response of 3þ 1-dimensional
time-reversal invariant topological insulators to torsion
where an axion-induced Nieh-Yan term gives rise to a
surface Hall viscosity [66]. Before we get to these results,
we will review the warm-up problem of the 2þ 1-
dimensional topological insulator that was covered in
Refs. [41,47] and then step up to the 4þ 1-dimensional
topological insulator. While considering 4þ 1 dimensions
may be a stretch for condensed matter minded readers, we
can use two different properties of this system to study
lower-dimensional systems that are relevant to experiments.
We can first consider the gapless boundary modes of
the 4þ 1-dimensional topological insulator which will be
standard 3þ 1-dimensional chiral fermions as would be
found in the bulk of a Weyl semimetal, and second, we can
dimensionally reduce the 4þ 1-dimensional insulator to
obtain a time-reversal invariant strong topological insulator
in 3þ 1 dimensions using the framework set forth
by Ref. [19].

B. Formal preliminaries

Before proceeding, we present here a brief introduction
to the mathematical details of torsional gravity, fermions
coupled to torsion, the corresponding symmetries, etc. (see
[41,67] for more details). As mentioned previously, con-
ventionally, gravity is described in terms of the metric
2-tensor g ¼ gμνdxμ ⊗ dxν on space-time. However, in
order to couple fermions to gravity, it is essential that
we use the first order formalism. In this language, we
introduce the coframe, a local basis of 1-forms eAðxÞ ¼
eAμ ðxÞdxμ on space-time, such that

g ¼ ηABeA ⊗ eB: ð9Þ

The corresponding basis of tangent vector fields dual to
the coframe is called the frame eAðxÞ. In going from the
metric to the coframe, we have introduced a redundancy
in our description, namely the local Lorentz gauge
symmetry

eAðxÞ ↦ ΛA
BðxÞeBðxÞ ð10Þ

5These expressions should be taken to be schematic; the
precise results will be presented later in the paper.

6In the context of topological insulators, the significance of
UV scales is somewhat subtle. As we review below for example,
the UV scale of an edge theory is related to a gap scale in the bulk.
Thus, it is possible that anomalies depending on the UV scale in
an edge theory have simple interpretations (by anomaly inflow) in
terms of physics in the bulk. We expect that the same physics can
arise in high-energy theory, for example in braneworld scenarios,
if either side of a brane corresponds to distinct topological phases.
This possibility, as far as we are aware, has not been considered in
the literature.
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where Λ is an SOð1; d − 1Þ matrix, ΛT · η · Λ ¼ η, with η
being the constant Minkowski metric. Note that the local
Lorentz transformation is not a space-time coordinate
transformation, but a rotation/boost of the local orthonor-
mal frame. In order to maintain covariance under
this gauge symmetry, we must therefore introduce a
connection 1-form ωA

B, which transforms under local
Lorentz transformations as

ωA
B ↦ ðΛ · ω · Λ−1 − dΛ · Λ−1ÞAB: ð11Þ

The connection ωA
B is often referred to as the spin

connection. Loosely speaking, we may think of eA and
ωA

B as gauge fields corresponding to local translations and
local Lorentz rotations respectively. As has been mentioned
above, the field strength 2-form corresponding to the
coframe

TA ¼ deA þ ωA
B ∧ eB ð12Þ

is called torsion, while the field strength 2-form for the spin
connection

RA
B ¼ dωA

B þ ωA
C ∧ ωC

B ð13Þ

is called curvature.7 Both torsion and curvature transform
covariantly under local Lorentz transformations,
TA ↦ ðΛ · TÞA, RA

B ↦ ðΛT · R · ΛÞAB. In standard discus-
sions of general relativity, the torsion 2-form is set to zero.
As a consequence, the spin connection is then uniquely
determined in terms of the coframe, and is called the Levi-

Civita connection, denoted herein by ω
∘ A

B. However, the
gravitational fields we will consider in this paper will be
nondynamical, and will be treated as background fields
which determine the geometry in which the fermions
propagate. As such, we will not set torsion to zero.
There are two ways to view this: first, we might want to
consider lattice systems, say, in which dislocations and
disclinations are present. These are sources of torsion and
curvature respectively, and so we would not want to set
either to zero. Second, even in the absence of torsion or
curvature in a given state of matter, we can regard eA and
ωA

B as sources for distinct operators. Thus, we can regard

what we are doing in terms of a generating functional for
correlation functions that determine transport properties,
and as such we would have no reason to impose restrictions
on sources (or their derivatives). This point is especially
important in the present discussion, because Dirac/Weyl
fermions carry spin, and as such the coframe and the spin
connection couple to independent fermion operators,
namely the stress current and the spin current respectively.
Thus, we will regard eA and ωA

B as independent back-
ground fields, and treat them on an equal footing. However,
we will find it notationally convenient to organize things in
terms of the Levi-Civita connection occasionally. For future
use, we also define the 3-form

H ¼ 1

3!
HABCeA ∧ eB ∧ eC ≡ ηABeA ∧ TB: ð16Þ

In fact, as will become clear in the following sections,
the macroscopic properties of the fermionic models we
consider organize themselves in terms of an effective

repackaged spin connection ωðcÞ
μ;AB ¼ ðω∘ μ;AB − c

2
Hμ;ABÞ,

for some constant c. Let us now move on to describe
the coupling of fermions to the frame and the spin
connection.
The Dirac action in the presence of background gravity in

d ¼ Dþ 1 space-time dimensions may be written as8

S½ψ ; e;ω� ¼ 1

D!

Z
ϵA1…Ad

eA1 ∧ … ∧ eAD

∧
�
1

2
ψ̄γAd∇ψ − 1

2
∇ψγAdψ − eAdmψ̄ψ

�
ð17Þ

¼
Z

ddxdete

�
1

2
ψ̄γA∇eA

ψ −1

2
∇eA

ψγAψ −mψ̄ψ

�

ð18Þ
where the Lorentz and gauge covariant derivative of theDirac
spinor is given by9

∇ψ ¼ dψ þ 1

4
ωABγ

ABψ þ qAψ : ð19Þ

Here we have also introduced a background electromag-
netic [i.e., Uð1Þ] connection A, with q being the fermion
charge. In odd space-time dimensions, the mass m is real,
and its sign will play a central role in determining the
character of the resulting insulating state. The classical

7In a coordinate basis of 1-forms dxμ, the component forms of
these expressions read

TA
μν ¼ ∂μeAν − ∂νeAμ þ ωA

μBe
B
ν − ωA

ν Be
B
μ ð14Þ

RA
Bμν ¼ ∂μω

A
ν B − ∂νω

A
μB þ ωA

μCω
C
ν B − ωA

ν Cω
C
μ B: ð15Þ

The Riemann tensor Rλ
ρμν ¼ eAρeλBR

A
Bμν can be expressed in

terms of the Christoffel symbols in the usual way, but in the
presence of torsion, the Christoffel symbol is not symmetric in its
lower indices.

8We have written the action in this way, because it is this form
for which the action is strictly real (not just up to a total
derivative). This is crucial if we wish to study the system on a
geometry with a boundary or other defects.

9γs with multiple indices correspond to antisymmetrized
quantities, e.g., γAB ¼ 1

2
ðγAγB − γBγAÞ.

TORSION, PARITY-ODD RESPONSE, AND ANOMALIES … PHYSICAL REVIEW D 90, 105004 (2014)

105004-5



equation of motion for the spinor field involves the Dirac
operator

D ¼ γAeμA

�
∂μ þ qAμ þ

1

4
ωμ;BCγ

BC þ Bμ

�
ð20Þ

where B≡ 1
2
TBðeA; eBÞeA. The B term arises upon inte-

gration by parts in deriving the equations of motion, and
we note that it enters in such a way that it looks like it
corresponds to an additional gauge field.10 It is not of
course independent of the spin connection, but does
vanish with the torsion. Another way to write the
Dirac operator is in terms of the Levi-Civita connection

D ¼ γAeμA

�
∂μ þ Aμ þ

1

4
ω
∘
μ;BCγ

BC

�
− 1

4

1

3!
HABCγ

ABC:

ð21Þ

The Dirac action shown above corresponds to “minimal
coupling” of the frame and spin connection to the
fermions. There is in fact another invariant term that
we could add to the action,

Z
ddx detðeÞHABCψ̄γ

ABCψ : ð22Þ

Although it is nonminimal, it occurs at the same order
in power counting as the other terms in the action. Its
inclusion has the effect of shifting the coefficient of the
H term in the Dirac operator, as in Eq. (21). Thus, there is
a “torsional charge” qT , and we take the Dirac operator
to be

D ¼ γAeμA

�
∂μ þ Aμ þ

1

4
ω
∘
μ;BCγ

BC

�
− qT

4

1

3!
HABCγ

ABC:

ð23Þ

Physically, qT can be thought of as the strength of the
torsional coupling. While in the present case it is possible
to absorb the torsion coupling into the definition of H,
this is not true in general, because different species of
fermions might have different coupling strengths.
The Dirac theory has background diffeomorphism and

local Lorentz gauge symmetry. In order to explore these,
we begin by defining the following current 1-forms

J ¼ qψ̄γAeAψ ; JA ¼ 1

2
ðψ̄γA∇ψ − ∇ψγAψÞ;

JAB ¼ 1

4
eCψ̄γCADηDBψ ð24Þ

which we will refer to as the charge current, stress current,
and spin current respectively. These couple respectively
to the Uð1Þ gauge field A, coframe eA, and spin connec-
tion ωA

B in the classical action. The components of the
current JA give a (not necessarily symmetric) notion of the
“stress-energy tensor”11 via Tμν ¼ JAμeBν ηAB. Also note that
the spin current JABμ vanishes in d ¼ 2.
Invariance of the classical action under background

diffeomorphisms follows immediately from writing it as
the integral of a top form, as in (17). We will take the action
of local diffeomorphisms on fermions and background
fields as

δψ ¼ iξ∇ψ ; δeA ¼ DξA þ iξTA;

δωAB ¼ iξRAB; δA ¼ iξF ð25Þ

where D is the Lorentz-covariant derivative,12 ξ is a vector
field with compact support, and iξ is the interior product of

ξ with a differential form.13 These transformations differ
from ordinary diffeomorphisms by local Lorentz and Uð1Þ
gauge transformations, so we will refer to these as covariant
diffeomorphisms. Using Noether’s theorem, it is straight-
forward to obtain the conservation equation

D � JA − ieATB ∧ �JB − ieARBC ∧ �JBC − ieAF ∧ �J ¼ 0:

ð26Þ

Some readers might be more familiar with the component
form of this equation, which reads

1

detðeÞDμðdetðeÞJAμÞ − eAμTB;μνJBν − eAμRBC;μνJBC;ν

− eAμFμνJν ¼ 0; ð27Þ

10In fact, as explained in [67], the classical theory possesses a
corresponding background scaling symmetry when m ¼ 0 under
which the fields and background transform as eAðxÞ ↦
eΛðxÞeAðxÞ;ωA

BðxÞ ↦ ωA
BðxÞ;ψðxÞ ↦ e−ðd−1ÞΛðxÞ=2ψðxÞ. We

note from the definition of B that under such a transformation,
B transforms like a gauge field B ↦ Bþ d−1

2
dΛ. However, this

symmetry will not play much of a role in our discussion, so we
leave it at that.

11For reasons that will become apparent below, we should
resist the temptation to symmetrize the stress-energy tensor at this
point.

12The Lorentz covariant derivative acting on a p-form with
Lorentz indices KA1…AM

B1…BN
reads

DKA1…AM
B1…BN

¼ dKA1…AM
B1…BN

þ ωA1
C1

∧ KC1…AM
B1…BN

þ � � � − ð−1ÞpKA1…AM
C1…BN

∧ ωC1
B1

þ � � �
13For α ¼ 1

p! αμ1…μpdx
μ1 ∧ …dxμp a p-form, and ξ ¼ ξμ∂μ a

vector field, the interior product is defined as

iξα ¼ 1

ðp − 1Þ! ξ
νανμ1…μp−1dx

μ1 ∧ …dxμp−1 :
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or when written in terms of the stress-energy tensor, we
have

∇ðΓÞ
μ Tμ

ρ − RBCρνJBCν − FρνJν ¼ 0:

where ∇ðΓÞ is the coordinate covariant derivative, involving
the (torsionful) Christoffel symbol.
Next, under an infinitesimal Lorentz transformation, the

spinors and background fields transform as

δψ ¼ 1

4
θABγ

ABψ ; δeA ¼ −θABeB;
δωA

B ¼ −ðDθÞAB; δA ¼ 0 ð28Þ

where θAB are the infinitesimal angles parametrizing
the transformation. Invariance of the Dirac action under
these transformations is automatic, by construction. The
corresponding Ward identity is

D � JAB − e½A ∧ �JB� ¼ 0: ð29Þ

In components, this evaluates to

eλBe
ρ
ADμJABμ þ T ½ρλ� ¼ 0; ð30Þ

where the second term is the antisymmetric part of the
stress-energy tensor. The physical interpretation of this
equation is that of conservation of net angular momentum.
This is the classical result; usually, it is interpreted to mean
that the stress tensor can be made symmetric, by adding the
appropriate “improvement” terms involving the spin cur-
rent. Note, however, that if this Ward identity is anomalous
in the quantum theory (as is indeed the case for Weyl
fermions in even dimensions), then this interpretation is
problematic, and the anomaly must correspond to an
irremovable antisymmetric part of the stress-energy tensor
(certainly this must be true in 1þ 1 dimensions, since the
fermionic Lorentz current vanishes). In such a case, the
usual improvement of the stress-energy tensor to make it
symmetric must fail, in the sense that it cannot correspond
to the addition of local counterterms. We note that this
conclusion also holds in theories which are not necessarily
Lorentz invariant, but which have any type of spin-orbit
(or orbital-orbit) coupling where the momenta couple to
matrices. This covers a large class of condensed matter
systems where the electronic degrees of freedom couple to
the geometry via the frame (or a framelike object) and spin
connection instead of purely the metric. For example, a
model of the form H ¼ ðp2

x − p2
yÞσx þ 2pxpyσ

y þmσz,
which is a continuum theory for a model with a Chern
number equal to 2, and not Lorentz invariant, will exhibit
the qualitative features we have discussed above albeit with
some important modifications that we leave to future work.

Finally, we remark that in even dimensions it is also
possible to couple chiral fermions to the frame and
connection. The action is a straightforward modification
of (18). The chiral theory also has the same symmetries as
the Dirac theory at the classical level, and the above
conservation laws carry over straightforwardly to the chiral
case. However, all the symmetries are spoiled by perturba-
tive anomalies upon quantization. Chiral fermions show up
as edge states in topological insulators, and we will see
that their anomalies are intimately related with the bulk
transport properties.

III. PARITY-ODD EFFECTIVE ACTIONS

All types of free-fermion topological insulator/
superconductor phases can be represented by massive
Dirac Hamiltonians with various symmetries, i.e.,

H ¼
XD
a¼1

paΓa þmΓ0 ð31Þ

where fΓA;ΓBg ¼ 2ηAB for A;B ¼ 0; 1; 2;…D and ηAB is
the flat Lorentz metric. In odd space-time dimensions the
Hamiltonians of insulators without additional symmetries
(called the unitary A class) are classified by an integer
topological invariant ν. Nontrivial insulators, i.e., insulators
where ν ≠ 0 are said to exhibit the D-dimensional quantum
Hall effect, or just the quantum Hall effect if D ¼ 2.
These systems are gapped in the bulk, but harbor
D − 1-dimensional chiral fermions on their boundaries
(D − 1 would give an even-dimensional boundary space-
time). The bulk remains gapped, unless the mass vanishes,
at which point there is a topological phase transition
between insulating states where ν differs by one. The
precise value of ν is not determined by Eq. (31) alone but
requires information about the regularization scheme to
uniquely define ν. Throughout this article we will use
Pauli-Villars (spectator fermion) type regularization as it
matches the structure of many simplified condensed matter
lattice-Dirac models including lattice models with Wilson
mass terms. Our convention is to choose the regularization
such that m < 0 is the topological phase with ν ¼ 1 and
m > 0 is the trivial phase with ν ¼ 0. We note that such
a regularization is required even in the absence of all
gravitational/torsional effects, as noted in Ref. [13], since
otherwise a 2þ 1-dimensional free-fermion model would
give rise to a noninteger Hall conductivity.
The topological insulator phase with ν ¼ 1 will possess

chiral boundary states that will produce anomalous currents
in the presence of background electromagnetic and gravi-
tational fields. These anomalous currents are matched by a
bulk response of the topological insulating state where all
anomalous current flowing from the boundary simply flows
through the bulk to another boundary. Even without
boundaries, the bulk of the material can respond similarly
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when background fields are present. The bulk response is
captured by topological terms that appear in the effective
action when the gapped fermions are integrated out in the
presence of background fields. For instance, the effective
action for a massive Dirac fermion in d ¼ 2þ 1 flat space-
time in the presence of background electromagnetic fields
contains the parity-odd Chern-Simons term

Sodd½A� ¼
σH
2

Z
M3

A ∧ dA ð32Þ

where σH ¼ 1
2
ð1 − signðmÞÞ q2

2π. The flow of the corre-
sponding Hall current �Jbulk ¼ σHdA into the boundary
between a trivial σH ¼ 0 phase and a topological σH ¼
q2=2π phase precisely matches the Uð1Þ anomaly of the
edge chiral fermion [Eq. (5)]. In this section, we derive such
topological response terms in the fermion effective action
in odd-dimensional space-times with curvature and torsion
from an anomaly polynomial which is naturally defined in
one higher dimension. The relevant terms are easily
identified as they violate parity and can be easily extracted.
In our discussion below, we will use the techniques
presented in [4], albeit adapted to the case with nonzero
torsion. Our main emphasis, as mentioned previously, will
be on torsional terms and the corresponding transport
physics. In particular, we will see that including torsion
results in UV divergences in the effective action, which
we will carefully regulate. Although such divergences
represent nonuniversal effects, the difference of such
quantities between distinct phases is finite and is captured
by the boundary physics.

A. The anomaly polynomial

Let us consider massive Dirac fermions on a d ¼
Dþ 1 ¼ 2n − 1-dimensional manifold-without-boundary
M2n−1, endowed (locally) with the coframe eA, spin
connection ωAB, and a Uð1Þ connection A. In Euclidean
signature, the fermionic quantum effective action is
given by

Seff ½e;ω; A� ¼ − ln det ðiD2n−1 þ imÞ: ð33Þ

Formally, we may rewrite the above as

Seff ½e;ω; A� ¼ −X
λk

1

2
lnðλ2k þm2Þ − i

X
λk

tan−1 m
λk

ð34Þ

where λk are the eigenvalues of the Dirac operator:
iD2n−1jψki ¼ λkjψki, jψki are the eigenstates. The parity
violating piece must come with odd powers of m,

Sodd½e;ω; A� ¼ −iX
λk

tan−1 m
λk
: ð35Þ

In order to compute (35) as a functional of the background
gauge and gravitational sources ðeA;ωAB; AÞ, it is conven-
ient to use the following strategy [4]: imagine a one-
parameter family of backgrounds ðeAðtÞ;ωABðtÞ; AðtÞÞ
which adiabatically interpolates between a fiducial back-
ground ðeAð0Þ;ωð0ÞAB; Að0ÞÞ and ðeA;ωAB; AÞ [see Fig. 1].14

For instance, we may choose the coframe to be

eAðtÞ¼

8>><
>>:

eAð0Þ; −∞< t<−T
1
2
½1−φðtÞ�eAð0Þ þ 1

2
½1þφðtÞ�eA; −T ≤ t≤T

eA; T < t<∞
ð36Þ

where φðtÞ is an arbitrary function which smoothly
interpolates between ½−1; 1� as t runs from −T to T,
for some large and positive T. The other sources ωABðtÞ
and AðtÞ may be chosen similarly. This gives us a
one-parameter family of Dirac operators D2n−1ðtÞ ¼
D2n−1½eAðtÞ;ωABðtÞ; AðtÞ� with eigenvalues λkðtÞ. Taking
a t derivative of Eq. (35), we obtain

dSodd
dt

ðtÞ ¼ im
X
λk

1

λ2kðtÞ þm2

dλk
dt

: ð37Þ

Exponentiating the factor of ðλ2k þm2Þ−1 and using
dλk
dt ¼ hψkðtÞji dD2n−1

dt ðtÞjψkðtÞi, we therefore find

FIG. 1. An illustration of the one-parameter family of
background coframes, which interpolates between the fiducial
coframe eAð0Þ and the coframe in which we are interested, eA.

14Note that this is merely a technique which facilitates the
computation. Also, t is an external parameter, and is not to be
confused with time.
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Z
∞

−∞
dt

d
dt

SoddðtÞ

¼ −m
Z

∞

−∞
dt

Z
∞

0

dsTr2n−1
dD2n−1

dt
e−sðm2−D2

2n−1ðtÞÞ

ð38Þ
where Tr2n−1 is the trace over the spectrum of D2n−1ðtÞ.
On the other hand, consider the 2n-dimensional Dirac

operator D2n on the space M2n−1 × R given by15

D2n ¼ σ1 ⊗
d
dt

þ σ2 ⊗ D2n−1ðtÞ: ð39Þ

The square of D2n is easily computed,

D2
2n ¼

d2

dt2
þ iσ3 ⊗

dD2n−1
dt

þD2
2n−1ðtÞ: ð40Þ

Also note that the 2n-dimensional chirality operator is
given by Γ2nþ1 ¼ σ3 ⊗ 1. Now define a 2n-form Pð0ÞðmÞ
on M2n−1 ×R by

Z
M2n−1×R

Pð0ÞðmÞ

¼ im
ffiffiffi
π

p Z
∞

0

dss−1=2Tr2nΓ2nþ1e−sðm2−D2
2nÞ ð41Þ

where Tr2n is trace over the spectrum of D2n defined on
M2n−1×R. Notice that Tr2nΓ2nþ1esD

2
2n is the integral over

M2n−1×R of the Atiyah-Singer index density, which is
locally exact. SinceM2n−1 is taken to be without boundary,
Pð0ÞðmÞ is a total derivative in t. Using the assumption of
adiabaticity we may carry out the trace in the t direction to
obtain

Z
M2n−1×R

Pð0ÞðmÞ

¼ −m
Z

∞

−∞
dt

Z
∞

0

dsTr2n−1
dD2n−1

dt
e−sðm2−D2

2n−1Þ þ � � � ;

ð42Þ

where � � � indicate terms with three or more t derivatives.
These terms drop out because the background fields are
asymptotically t independent [see Eq. (36)]. Comparing
with (38), we conclude that

Sodd½e;ω; A� − Sodd½eð0Þ;ωð0Þ; Að0Þ� ¼
Z
M2n−1×R

Pð0ÞðmÞ:

ð43Þ

Therefore, the parity-odd fermion effective action
Sodd½e;ω; A� in d ¼ 2n − 1 may be interpreted as the
“Chern-Simons” form correponding to the locally exact
index polynomial Pð0ÞðmÞ defined in 2n dimensions.
We will refer to Pð0ÞðmÞ as the anomaly polynomial.
We will mainly focus on computing Sodd½e;ω; A� in the

limit where the mass scale jmj is taken to be much larger
than all background curvature and torsion scales. Our
general strategy to compute Pð0ÞðmÞ in this limit will be
as follows: in the limit s ↦ 0, there exists an asymptotic
expansion

Tr2nΓ2nþ1esD
2
2n ≃X∞

k¼0

bks−n=2þk ð44Þ

where the bk are integrals over M2n of polynomials in
curvature, torsion, and their covariant derivatives. The
important point is that it suffices to use this asymptotic
expansion in order to extract terms in (41) which survive in
the limit where jmj is taken to be much larger than all
background curvature and torsion scales. Unfortunately,
as will become clear soon, the anomaly polynomial as
defined above is divergent if the background spin con-
nection is torsional. These are the same divergences that
one would encounter in a direct computation of the
2n − 1-dimensional parity-odd effective action (for in-
stance, by using Feynman diagrams) in the presence of
background torsion. In order to remedy the situation, we
introduce N Pauli-Villar’s regulator fermions with coef-
ficients Ci and masses Mi, with i ¼ 1; 2…N. For conven-
ience, we label C0 ¼ 1 and M0 ¼ m. We then define the
regularized anomaly polynomial

PðmÞ ¼
XN
i¼0

CiPð0ÞðMiÞ: ð45Þ

The Cis and Mis may be determined by requiring UV
finiteness. In a condensed matter context this type of
regulator is natural in simple lattice Dirac models which
are often used to describe topological insulators. These
models contain massive spectator Dirac fermions at loca-
tions in the Brillouin zone far away from the region
which contains the low-energy fermion(s). Indeed, upon
including the spectator fermions of the lattice Dirac model
(interpreted as Pauli-Villar’s regulator fermions), the
anomaly polynomial PðmÞ becomes finite in arbitrary even
dimensions; we postpone the proof to Appendix B.
Since the anomaly polynomial is the (exterior) derivative

of the parity-odd effective action in 2n − 1 dimensions, it
encodes the 2n − 1-dimensional transport coefficients for
the two gapped phases. Furthermore, as has been explained
in [4,41], covariant anomalies of the 2n − 2-dimensional
edge theory can be extracted out of the fermion effective
action in d ¼ 2n − 1 by computing Hall-type currents

15Here we take the Clifford matrices on M2n−1 ×R to be
Γ0 ¼ σ1 ⊗ 1;ΓA ¼ σ2 ⊗ γA.
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passing between the edges through the bulk. In this way,
PðmÞ encodes all the anomalies of the 2n − 2-dimensional
edge theory. Let us now apply the above formalism to
explicitly compute the parity-odd terms in the fermion
effective actions in d ¼ 2þ 1 and d ¼ 4þ 1.

B. d ¼ 2þ 1

We first begin with the asymptotic expansion (see
Appendix A)

Tr4Γ5esD
2 ≃

Z
M3×R

�
qT

16π2s
dH þ 1

192π2
trRð−qTÞ ∧ Rð−qTÞ

þ 1

8π2
F ∧ F þ qT

96π2
d � d � dH þOðsÞ

�

ð46Þ

where we recall that H ¼ eA ∧ TA, and we have defined
Rð−qTÞ
AB to be the curvature 2-form for the connection

ωð−qT Þ
AB ¼ ω

∘
AB þ qT

2
HABCeC: ð47Þ

The terms higher order in smay be ignored as they give rise
to negative powers of m. We may also drop the last term in
(46) as it necessarily contains three or more t derivatives,
and does not pull back to the boundary for asymptotically
t-independent backgrounds, as explained in the previous
section. The unregulated polynomial (41) is then given by

Pð0ÞðmÞ ¼ iζð0ÞH

2
dH þ iκð0ÞH

2
trRð−qT Þ ∧Rð−qT Þ þ iσð0ÞH

2
F∧F:

ð48Þ
The unregulated transport coefficients may be computed
from (41) and (46),

ζð0ÞH ðmÞ ¼ − qT
4π

�
− mffiffiffiffiffi

πϵ
p þ σ0m2

�

κð0ÞH ðmÞ ¼ 1

96π
σ0

σð0ÞH ðmÞ ¼ q2

4π
σ0; ð49Þ

where σ0 ¼ signðmÞ, and 1ffiffi
ϵ

p ∼ Λ is the UV cutoff.
Introducing the Pauli-Villar regulator fermions, and requir-
ing finiteness in the limit ϵ ↦ 0, we are led to the
constraints

XN
i¼0

Ci ¼ 0;
XN
i¼0

CiMi ¼ 0: ð50Þ

Even without the UV divergent term this action would need
to be regularized due to the fact that the Hall conductivity

σð0ÞH ðmÞ is not an integer multiple of q2

2π as it must be for a

noninteracting system [13]. One possible choice for fCig
and fMig that solves the constraints can be inferred from
the spectator fermion structure of the 2þ 1-dimensional
lattice Dirac model [68] where

Mi Ci

m þ
mþ 2Δ −
mþ 2Δ −
mþ 4Δ þ

and where the energy scale Δ is a large energy scale with
jmj ≪ Δ ≪ Λ. The regulated anomaly polynomial is then
given by16

PðmÞ ¼ iζH
2

dH þ iκH
2

trRð−qTÞ ∧ Rð−qT Þ þ iσH
2

F ∧ F

ð51Þ
with the regulated transport coefficients

ζH ¼ qTm2

2π

1 − σ0
2

κH ¼ 1

48π

1 − σ0
2

σH ¼ q2

2π

1 − σ0
2

: ð52Þ

Since the anomaly polynomial is a total derivative, we may
read off the parity-odd effective action from the above as
the corresponding Chern-Simons form

Sodd½e;ω; A� ¼
i
2

Z
M3

�
ζHeA ∧ TA þ σHA ∧ dA

þ κHtr

�
ωð−qT Þ ∧ dωð−qT Þ þ 2

3
ωð−qTÞ

∧ ωð−qTÞ ∧ ωð−qTÞ
��

: ð53Þ

Expanding Sodd to linear order in torsion, we find

Sodd½e;ω; A�

¼ i
2

Z
M3

�
σHA ∧ dAþ κHtr

�
ω
∘ ∧ dω

∘ þ 2

3
ω
∘ ∧ ω

∘ ∧ ω
∘
�

þ ζHeA ∧ TA − qTκHR
∘
eA ∧ TA þ � � �

�
; ð54Þ

16We have also canceled out a σ0-independent (and hence
independent of whether or not the system is in the topological or
trivial phase) divergence proportional to dH by adding a counter-
term. Such a counterterm is required only in d ¼ 2þ 1, and not in
higher dimensions.
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which is the same action that was derived in [41] by a more
direct computation. It might seem odd that the coefficient of
the eA ∧ TA term is a dimensionful parameter, as opposed
to the other coefficients, which are universal and quantized.
We note that this is not an obstacle to gauge invariance: the
quantization of both σH and κH is forced upon us by the
requirement of gauge invariance under large gauge trans-
formations. The eA ∧ TA term on the other hand is globally
well defined (i.e., gauge, Lorentz, and diffeomorphism
invariant), and hence requires no such quantization of its
coefficient.
We now focus on the physics of the torsional terms. The

ζHeA ∧ TA term has the interpretation of Hall viscosity, as
has been explained in [41,47]. Here we wish to delve a bit
into the curvature correction R

∘
eA ∧ TA since similar terms

will appear in higher dimensions. We may loosely interpret
this term as a local-curvature dependent Hall viscosity.
On a space-time of the form R × Σ, with Σ a constant
curvature Riemann surface of Euler characteristic χΣ and
area A, terms linear in torsion in (54) become

Sodd½e;ω; A� ¼
i
2

�
ζH − 4πqTκHχΣ

A

�Z
eA ∧ TA: ð55Þ

For curvature and area preserving deformations of the
coframe, we thus find a shift in the effective Hall viscosity
ζH relative to its flat space value

ζH ¼ ζH − 4πκHχΣ
A

: ð56Þ

This effect is reminiscent of the Wen-Zee shift of the
number density in a quantum Hall fluid in the presence of
curvature. In fact, let us define the spin density s of the
Chern insulator as

s ¼ 1

A

Z
Σ
�J12 ð57Þ

where J12 is the spatial component of the spin current
JAB. To lowest order in torsion, this may be computed
from the action17 (55), and we see that the local spin
density is also affected by the local curvature, and in fact
satisfies

ζH ¼ −s: ð58Þ

Thus, the shift due to curvature may be interpreted as a
shift in the spin density relative to its flat space value.
Equation (58) is similar to the relation between Hall
viscosity and spin presented in [43,45].

Although we will not consider them in this paper, we
note that for d ¼ 2þ 1 the parity-even terms can similarly
be computed with careful regularization. The complete
effective action then arranges into chiral gravity, namely an
SLð2;RÞ Chern-Simons term [41].

C. d ¼ 4þ 1

Since the primary goal of this article is to discuss
3þ 1-dimensional systems, let us now repeat the above
analysis for d ¼ 4þ 1, which we will subsequently use to
determine the properties of 3þ 1-dimensional chiral fer-
mions, and 3þ 1-dimensional time-reversal invariant
topological insulators. We begin with the corresponding
six-dimensional asymptotic expansion

Tr6Γ7esD
2
6 ≃

Z
R×M5

�
− qT
32π3s

F∧ dH− 1

384π3
F ∧ trRð−qTÞ

∧ Rð−qTÞ − 1

48π3
F ∧ F ∧ F

−
qT

192π3
dðF ∧ �d � dHÞ

þ qT
384π3

d � d � ðF ∧ dHÞ þOðsÞ
�
: ð59Þ

We do not consider OðsÞ terms as they lead to inverse
powers of m, and are generally of higher order in the
curvature/torsion expansion. As before, we may also drop
the last term in (59), as it does not pull back to the boundary
effective action. The unregulated anomaly polynomial is
then easily obtained,

Pð0ÞðmÞ ¼ iζð0ÞH

2
F ∧ dH þ iκð0ÞH

2
F ∧ trRð−qTÞ

∧ Rð−qT Þ þ iσð0ÞH

3
F ∧ F

∧ F þ iλð0Þ

2
dðF ∧ �d � dHÞ; ð60Þ

with the unregulated transport coefficients

ζð0ÞH ðmÞ ¼ − qqT
8π2

�
− mffiffiffiffiffi

πϵ
p þ σ0m2

�

κð0ÞH ðmÞ ¼ q
192π2

σ0

σð0ÞH ðmÞ ¼ q3

16π2
σ0

λð0ÞðmÞ ¼ qqT
96π2

σ0: ð61Þ

The structure of divergences is the same as previously
encountered in 2þ 1 dimensions—namely a linear diver-
gence. In fact, more generally the structure of divergences
(i.e., linear, quadratic, etc.) of the parity-odd effective

17In particular, JAB is obtained by varying with respect to ωAB,
holding eA fixed.
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action is identical in d ¼ 4n − 1 and d ¼ 4nþ 1 (see
Appendix B for more details). Therefore, it suffices to
use the Pauli-Villar’s regulators we used in d ¼ 2þ 1,
which gives the regulated anomaly polynomial

PðmÞ ¼ iζH
2

F ∧ dH þ iκH
2

F ∧ trRð−qTÞ ∧ Rð−qT Þ

þ iσH
3

F ∧ F ∧ F þ iλ
2
dðF ∧ �d � dHÞ ð62Þ

with the regulated transport coefficients

ζH ¼ qqTm2

4π2
1 − σ0

2

κH ¼ q
96π2

1 − σ0
2

σH ¼ q3

8π2
1 − σ0

2

λ ¼ qqT
48π2

1 − σ0
2

: ð63Þ

The parity-odd effective action in d ¼ 4þ 1 is then given by

Sodd½e;ω; A� ¼
i
2

Z
M5

�
ζHF ∧ eA ∧ TA þ 2σH

3
A ∧ F ∧ F

þ κHF ∧ tr

�
ωð−qT Þ ∧ dωð−qT Þ þ 2

3
ωð−qTÞ

∧ ωð−qTÞ ∧ ωð−qTÞ
�
þ λF ∧ �d � dH

�
:

ð64Þ

As before, we stress that this should be regarded as giving
rise to the leading (in powers of jmj) parity violating terms
in correlation functions of the charge, stress, and spin
currents. Once again, we may expand this to linear order in
torsion to obtain

¼ i
2

Z
M5

�
2σH
3

A ∧ F ∧ F þ κHF

∧ tr

�
ω
∘ ∧ dω

∘ þ 2

3
ω
∘ ∧ ω

∘ ∧ ω
∘
�

þ ζHF ∧ eA ∧ TA − qTκH

× ðR∘F þ 2FC ∧ R
∘ C þ FCDR

∘
CDÞ

∧ eA ∧ TA þ λF ∧ d � dH þ � � �
�

ð65Þ

where we have introduced the notation FA ¼ FðeAÞ;
FAB ¼ FðeA; eBÞ; R

∘
B ¼ R

∘
ABðeAÞ, and so on.

Let us focus on the second line above. The term
proportional to ζH now represents a magneto-Hall viscos-
ity, which is to say a dissipationless viscosity in the
presence of a magnetic flux through perpendicular spatial
dimensions. To be more explicit, let us consider a simple
example where we take the space-time manifold to be of the
form M5 ¼ R × Σ × ~Σ, with Σ and ~Σ being two constant
curvature Riemann surfaces with areas A and ~A (Fig. 2). If
we turn on a Uð1Þ magnetic flux of F ¼ 2πn

q ~A
vol ~Σ through ~Σ

(for n ∈ Z), then the effective dissipationless viscosity for
coframe deformations in the orthogonal surface Σ is
given by

ζH ¼ n
qTm2

2π

1 − σ0
2

: ð66Þ

Just as in 2þ 1 dimensions, we also have curvature
dependent corrections to the effective magneto-Hall vis-
cosity. For the choice ofM5 and F we are working with, the
terms linear in torsion simplify to give us the following
effective action on the subspace Σ:

SoddðΣÞ ¼
i
2

Z
R×Σ

�
ζH − qT

q
κH

�
2πnR

∘ þ 32π2nχ ~Σ
~A

��
eA

∧ TA: ð67Þ

FIG. 2 (color online). An illustration describing the field setup for a magneto-Hall viscosity response: turning on aUð1Þ flux through ~Σ
gives rise to a Hall viscosity response on Σ.
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As before, if we restrict ourselves to curvature and area-
preserving coframe deformations on Σ, we find that the
effective magneto-Hall viscosity gets shifted from its flat
space value to

ζH ↦ ζH − qT
q
κH

�
32π2nχ ~Σ

~A
þ 8π2nχΣ

A

�
: ð68Þ

Once again, the shift in the magneto-Hall viscosity may be
interpreted as a shift in the spin density on Σ relative to the
flat space value.
With the completed derivation of the 4þ 1-dimensional

parity violating terms in the effective action we are now
ready to explore measurable consequences in real condensed
matter systems. In the next two sections wewill first consider
the properties of isolated 3þ 1-dimensional boundary chiral
fermions and then discuss some aspects of the response
properties of Weyl semimetals that result from these effects.
Finally we will discuss the dimensional reduction of the
4þ 1-dimensional action to 3þ 1 dimensions that will
determine the response properties of the 3þ 1-dimensional
time-reversal invariant topological insulator.

IV. CALLAN-HARVEY ANOMALY INFLOW AND
BOUNDARY CHIRAL ANOMALIES

To study the properties of isolated chiral fermions, or
pairs of chiral fermions in a Weyl semimetal, we must
consider their anomaly structure. One nice way to organize
the anomalous currents is to consider the low-energy chiral
modes which are localized on an interface between topo-
logical and trivial phases in odd space-time dimensions.
The case of 1þ 1-dimensional edge modes on the surface
(interface between the nontrivial topological phase and the
trivial vacuum) of a 2þ 1-dimensional topological insu-
lator was discussed in detail in [41]. Here we will deal
with the case of 3þ 1-dimensional boundary modes, and
their relationship with the 4þ 1-dimensional parity-odd
transport coefficients described in the previous section.
Consider then the nontrivial phase labeled by transport

coefficients ðσH; ζH; κH; λÞ on a 4þ 1-dimensional
manifold M5, separated from the trivial phase by a
3þ 1-dimensional interface Σ4 ¼ ∂M5. One model for
this system is a 4þ 1-dimensional Dirac fermion with
mass m < 0 on M5, and m > 0 outside, with some
interpolation region, the interface Σ4, which we refer to
as the domain wall. In general, there could be multiple
fermions with mass domain walls along Σ4, and their
number decides ðσH; ζH; κH; λÞ. The domain wall hosts
3þ 1-dimensional chiral fermions, whose anomalies will
encode the differences in ðσH; ζH; κH; λÞ between opposite
sides of the domain wall.
In order to avoid complicating our discussion, we will

first explain the anomaly inflow only focusing on the first
two terms in (64), and later present the more general result.
We start with the 4þ 1-dimensional bulk effective action

Sbulk ¼ i
σH
3

Z
M5

A ∧ F ∧ F þ i
ζH
2

Z
M5

F ∧ H ð69Þ

where we recall the notationH ¼ eA ∧ TA. The first term is
the second (Abelian) Chern-Simons form and is diffeo-
morphism and Lorentz invariant, but not Uð1Þ invariant.
This gauge noninvariance must be compensated by the
consistent anomaly of the boundary/interface theory.
This means that the boundary effective action Sbdry cannot
be gauge invariant either. In fact, under a Uð1Þ gauge
transformation δA ¼ dα, we must have

δαSbdry ¼ − iσH
3

Z
Σ4

αF ∧ F ð70Þ

in order to cancel the gauge variation of the bulk Chern-
Simons term. Interestingly, the second term in (69) is
gauge, diffeomorphism, and Lorentz invariant despite its
similarity to the first term, and hence we do not expect it to
contribute to consistent anomalies in the boundary. This is
an important distinction between the two terms. Using
these constraints, the consistent Ward identities on the
boundary are18

d � Jcons ¼
σH
3
F ∧ F ð71Þ

D�Jacons− ieaTb ∧ �Jbcons− ieaRbc ∧ �Jbccons− ieaF∧ �Jcons
¼−σH

3
ieaA∧F∧F ð72Þ

D � Jabcons þ e½b ∧ �Ja�cons ¼ 0 ð73Þ

where lower-case latin indices are local Lorentz indices on
the boundary manifold Σ4. The Ward identities written in
terms of consistent currents are clearly not gauge covariant
since they depend on gauge-variant fields like the vector
potential A. To remedy the situation, we must write these in
terms of covariant currents. Consider then, the variation of
the bulk response action19

δSbulk ¼
Z
M5

ðδA ∧ �Jbulk þ δeA ∧ �JAbulk þ δωAB ∧ �JABbulkÞ

þ
Z
Σ4

ðδA ∧ �jþ δea ∧ �ja þ δωab ∧ �jabÞ:

ð74Þ

18Note that the right-hand side of Eq. (72) originates from
the fact that this Ward identity corresponds to a covariant
diffeomorphism, which involves an ordinary diffeomorphism
plus a Uð1Þ and local Lorentz gauge transformation.

19Here we will assume that the boundary values of the
variations δeA and δωAB are nonzero only when the Lorentz
indices are those of the boundary. In other words, we are ignoring
extrinsic effects here.
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The conserved Hall currents in the bulk are given by

�Jbulk ¼ σHF ∧ F þ ζH
2
dH ð75aÞ

� JAbulk ¼ ζHF ∧ TA ð75bÞ

�JABbulk ¼ − ζH
2
F ∧ eA ∧ eB ð75cÞ

while the induced currents in the boundary are

�j ¼ 2

3
σHA ∧ F þ ζH

2
H ð76aÞ

� ja ¼ ζH
2
F ∧ ea ð76bÞ

� jab ¼ 0: ð76cÞ

Define the covariant boundary currents Jcov ¼ Jcons þ j,
Jacov ¼ Jacons þ ja, and Jabcov ¼ Jabcons þ jab. Then the Ward
identities written in terms of these are

d � Jcov ¼ σHF ∧ F þ ζH
2
dH ð77Þ

D � Jacov − ieaTb ∧ �Jbcov − ieaRbc ∧ �Jbccov − ieaF ∧ �Jcov
¼ ζHF ∧ Ta ð78Þ

D � Jabcov þ e½b ∧ �Ja�cov ¼ − ζH
2
F ∧ ea ∧ eb: ð79Þ

These are referred to as the covariant anomalies in the
boundary theory. Notice that these precisely match the
fluxes of bulk Hall currents (75) into Σ4,

ΔQ ¼ σH

Z
Σ4

F ∧ F þ ζH
2

Z
Σ
dH ð80aÞ

ΔQa ¼ ζH

Z
Σ4

F ∧ Ta ð80bÞ

ΔQab ¼ −ζH
Z
Σ4

F ∧ ea ∧ eb: ð80cÞ

Thus, the charge, momentum, and spin injected into the
edge from the bulk are carried by the covariant currents
Jcov; Jacov, and Jabcov respectively.
Having described the general idea of anomaly inflow in a

simpler setting, we now give the full result for edge
anomalies. Applying the same ideas discussed above to
the full effective action (64), we get the flux of bulk charge,
stress, and spin currents into the edge

ΔQ ¼
Z
Σ4

�
σHF ∧ F þ ζH

2
dH þ κH

2
trRð−qTÞ

∧ Rð−qT Þ þ λ

2
d � d � dH

�
ð81aÞ

ΔQa ¼
Z
Σ4

ðζHF ∧ Ta þ κHea ∧ dA2 − qTκHA2

∧ Ta þ λd � d � F ∧ TaÞ ð81bÞ

ΔQab ¼ −
Z
Σ4

�
ζH
2
F − qTκH

2
A2 þ

λ

2
d � d � F

�

∧ ea ∧ eb ð81cÞ

where we have defined

A2 ¼ ðF ∧ Rð−qTÞ
ab Þðea; ebÞ

¼ ðFabRð−qTÞ
ab þ 2Fa ∧ Rð−qT Þ

a þ Rð−qT ÞFÞ: ð82Þ

These are the covariantUð1Þ, diffeomorphism, and Lorentz
anomalies of the edge theory in the presence of curvature.
Note the appearance of the dimensionful viscosity term
ζH
2
dH in the chiral Uð1Þ anomaly. This might seem

problematic given the topological character of the (inte-
grated) chiral anomaly. However, note that H is a globally
well defined 3-form (unlike, for instance A ∧ dA), and dH
is truly a total derivative. On compact 4-manifolds then, this
term drops out. On the physics side, we are interested in the
local anomaly densities—which is why it is important for
us to keep this term. In fact, this term is precisely the
Nieh-Yan term discussed earlier, and it now has a clear
meaning in the present context: its coefficient is the
difference of magneto-Hall viscosities across a 3þ 1-
dimensional interface between two different topological
phases.
Using the structure of the anomalous terms presented

here, we will now go on to show the microscopic origin of a
subset of the anomalous currents using spectral flow–type
arguments in the Hamiltonian formalism of the chiral
boundary states. This will clarify the physical origin of
the terms in which we are most interested, and will give a
nice interpretation for some of the torsional contributions to
the anomalous currents.

V. SPECTRAL FLOW

In this section we will discuss the covariant anomalies of
the boundary theory from the point of view of adiabatic
spectral flow of the Hamiltonian spectrum of chiral
boundary states. We will first review the well-known case
of the 4þ 1-dimensional Hall conductivity and spectral
flow induced by Uð1Þ fluxes, and then move on to
magneto-Hall viscosity and the chiral anomaly due to
torsion.
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A. 4þ 1-dimensional quantum Hall Effect

First we will study the effects of the Uð1Þ second
Chern-Simons term that enters the response action

Sbulk ¼
σH
3

Z
M5

A ∧ F ∧ F: ð83Þ

This term gives rise to the 4þ 1-dimensional quantum Hall
effect in which a charge current is carried through the bulk
in a direction perpendicular to applied electric and mag-
netic fields. This is reminiscent of the 2þ 1-dimensional
effect where a current is generated perpendicular to an
applied electric field. Here we have a nonlinear topological
response which requires simultaneous electric and mag-
netic fields. The reason, of course, is well known: the bulk
current is intertwined with the boundary chiral anomalies
which require parallel electric and magnetic fields on the
3þ 1-dimensional surface. In 2þ 1 dimensions the bulk
Hall current is also connected with the 1þ 1-dimensional
chiral anomaly on the edge, but in this case the anomalous
current is generated in the presence of an electric field alone.
To simplify our discussion let us consider the spatial

geometry to be Σ3 × ½0; L�, where Σ3 ¼ R × S1 × S1. We
will label the bulk direction by w ∈ ½0; L�, while the
coordinates on Σ3 will be labeled by ðx; y; zÞ with x being
the noncompact direction. The edge states will be localized
at w ¼ 0 and w ¼ L. We turn on a magnetic field B
perpendicular to the surface of the ðx; yÞ cylinder, and an
electric field Ez ¼ 2π

qLzT
(for some large and positive time

scale T and with ℏ ¼ 1). This electric field can be generated

by slowly threading magnetic flux through the hole of the
ðz; wÞ cylinder. The corresponding gauge field configura-
tion will be chosen to be

A ¼ Bxdyþ Eztdz ð84Þ
where the Uð1Þ flux is then given by

F ¼ Bdx ∧ dyþ Ezdt ∧ dz: ð85Þ
From the bulk Chern-Simons response we have the bulk
Hall current

�Jbulk ¼ σHF ∧ F ¼ q3

8π2
BEzdt ∧ dx ∧ dy ∧ dz: ð86Þ

This yields a constant current density through the bulk in
the w-direction and leads to a charge transfer over a time
period T of

ΔQ ¼
Z

T

0

Z
Σ3

�Jbulk ¼ q2
BLxLy

2π
ð87Þ

from one edge to the other. Given that the system is in
the nontrivial topologically insulating phase, we have a
left-hand chiral fermion localized at w ¼ 0 and a right-hand
chiral fermion localized at w ¼ L. From the boundary point
of view, the above charge transfer is an anomalous process,
which corresponds to the Uð1Þ chiral anomaly in the
boundary theory

d � Jcov ¼ σHF ∧ F: ð88Þ

(a) (b)

FIG. 3 (color online). The Hamiltonian energy spectrum for chiral fermions in the presence of a uniform background magnetic field in
the z-direction. The (black) gapped states are higher Landau levels, while the linear gapless (blue, red) curves are the zeroth Landau
levels for left- and right-hand fermions respectively. We can consider the left- and right-hand fermions to exist on opposite boundaries of
a cylinder. Once the energies of the linearly dispersing modes reach �jmj these states are no longer localized on the boundary and lose
their sense of chirality. (a) Before an electric field is turned on the states are filled to E ¼ 0 on both boundaries. (b) After an electric field
has acted and a single magnetic flux quantum has been threaded into the cylinder. Spectral flow has modified the level occupations such
that one additional level of fermions appears in the right-hand branch and one level of fermions is missing from the left-hand branch.
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Indeed, the anomalous charge created or destroyed on a
boundary during the above process is precisely equal to the
charge transferred across the bulk of the insulator by the
Hall current, as expected.
We can develop a more intuitive, microscopic picture of

the anomaly from the Hamiltonian energy spectra of the
chiral boundary states during the adiabatic flux threading
process. In the presence of the above gauge field configu-
ration, the low-energy spectrum on the boundary consists
of two types of states (see Appendix C): (i) positive and
negative energy towers of gapped states

Eðl; pz; σÞ ¼ �
�
ðpz − qAzÞ2 þ 2jqBj

�
lþ 1þ σ

2

��
1=2

;

l ¼ 1; 2; 3 � � � ; σ ¼ �1 ð89Þ
and (ii) one gapless branch which depends on the chirality

ELðpz; tÞ ¼ −signðqBÞðpz − qAzðtÞÞ;
ERðpz; tÞ ¼ signðqBÞðpz − qAzðtÞÞ; ð90Þ

all of which have a degeneracy of N ¼ jqΦBj
2π for every pz,

where ΦB ¼ BLxLy is the flux through the surface of the
ðx; yÞ cylinder (Fig. 3). For the purpose of our discussion, it
suffices to concentrate on the gapless states. Since the
z-direction is compactified on a circle, we may take pz ¼
2πn
Lz

ðn ∈ ZÞ and rewrite the gapless branches as

ELðpz; tÞ ¼ −signðqBÞ 2π
Lz

�
n − t

T

�
;

ERðpz; tÞ ¼ signðqBÞ 2π
Lz

�
n − t

T

�
: ð91Þ

Here T is taken to be large, and we assume that the
spectrum flows adiabatically as a function of time. We will
put the chemical potential at E ¼ 0 for convenience.
If ψð~x; tÞ is the boundary-fermion field operator [with
~x ¼ ðx; y; zÞ] then the net charge may be defined as

QðtÞ ¼ q
Z
Σ3

d3~x
1

2
hvacj½ψ†ð~x; tÞ;ψð~x; tÞ�jvaci

¼ q
2

X
fjEnj≤jmjg

signðEnÞ ð92Þ

where the summation is over all the Hamiltonian eigen-
states with jEnj ≤ jmj. The sum only includes these states
because at energies beyond the mass gap of the bulk
insulator there are no localized chiral modes on the
boundary. During the flux threading, we find that after a
period of time t ¼ rT for integral r, the spectrum returns to
itself, but after a translation by r units with respect to the
chemical potential. In fact, r is the number of magnetic
flux quanta which have been threaded through the hole of
the ðw; zÞ cylinder. For each flux quantum that is threaded,

N ¼ jqΦBj
2π states cross the chemical potential, and the charge

jumps by Nq - either increasing or decreasing depending
on the chirality. Taking into account the factor of signðqBÞ
in (91), we therefore reproduce precisely the charge transfer
in Eq. (87) due to the Uð1Þ chiral anomaly.

B. Momentum and charge transport from
magneto-hall viscosity

In this section, we will consider the momentum and
charge transport due to torsion flux. These transport
processes both arise from the term

Sbulk ¼
ζH
2

Z
M5

F ∧ eA ∧ TA: ð93Þ

To simplify the discussion of Hamiltonian spectral flow, we
will set qT ¼ 1 throughout this section. We can determine
the momentum current by varying with respect to eA and
the charge current by varying with respect to A. We focus
first on the momentum transport by turning on a Uð1Þ
magnetic flux and torsion electric field. To generate the
necessary background fields we turn on a Uð1Þ magnetic
field through the ðx; yÞ cylinder using A ¼ Bxdy. We can
thread torsion magnetic flux through the hole of the ðz; wÞ
cylinder, represented by the coframe

e0 ¼ dt; e1 ¼ dx; e2 ¼ dy;

e3 ¼ ð1þ hðtÞÞdz; e5 ¼ dw ð94Þ

where we take hðtÞ ¼ bt
LzT

, for some large and positive

time scale T. The time-dependent torsion flux threading
will generate a circulating torsion electric field in the
z-direction. For simplicity, we will set the spin connection20

ωAB ¼ 0. As a result, the above configuration is torsional
with the torsion electric field given by T3 ¼ b

LzT
dt ∧ dz.

The bulk stress current from the term (93) in the action, in
the presence of our set background fields, is

�J3bulk ¼ ζHF ∧ T3 ¼ q
m2Bb
4π2LzT

dt ∧ dz ∧ dx ∧ dy:

ð95Þ

In order to compute the momentum transferred due to this
current over a time period t, we introduce a covariant
Killing vector field ξAeA ¼ ∂z. Then the rate of momentum
transfer from one edge to the other due to the constant
stress-current density is

20In particular, we are supposing that the curvature RA
B

vanishes. Consequently, ωA
B is pure gauge, and we are choosing

it to be zero here.
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dP3

dt
¼

Z
Σ3

ξA � JAcov ¼ signðqBÞm
2N
2π

�
1þ bt

LzT

�
b
T

ð96Þ

where N ¼ jqΦBj
2π ¼ jqBjLxLy

2π . From the boundary point of
view, this set of background fields gives rise to the
diffeomorphism anomaly

d � ðξAJAcovÞ ¼ ζHF ∧ ξATA: ð97Þ

In order to understand this from the Hamiltonian point of
view, it suffices once again to focus on the gapless
boundary state branches for left- and right-hand chiral
fermions in the presence of the uniform background
magnetic field:

ELðpz; tÞ ¼ −signðqBÞ pz

ð1þ bt
LzT

Þ ;

ERðpz; tÞ ¼ signðqBÞ pz

ð1þ bt
LzT

Þ ð98Þ

with degeneracy of N ¼ jqΦBj
2π for every pz. Note that

these Hamiltonian spectra differ from the usual spectra
(for a trivial coframe field) via a scaling of the momenta
(or from another point of view a scaling of the velocity),
on account of the torsional electric field. In analogy
with the boundary charge, we define the boundary
momentum by

P3ðtÞ ¼
Z
Σ3

d3~x
1

2
hvacj½ψ†ð~x; tÞ; P̂3ψð~x; tÞ�jvaci

¼ 1

2

X
fjEnj≤jmjg

signðEnÞpz
n ð99Þ

where we recall that the summation is over all Hamiltonian
eigenstates with jEnj ≤ jmj. Using this, we can compute the
net momentum along ξ on both the edges at a time t

P3
LðtÞ ¼ −signðqBÞm

2NLz

4π

�
1þ bt

LzT

�
2

;

P3
RðtÞ ¼ signðqBÞm

2NLz

4π

�
1þ bt

LzT

�
2

ð100Þ

where now we have taken Lz to be large. From here, we get
the rate of momentum change

dP3
L

dt
¼ −signðqBÞm

2N
2π

�
1þ bt

LzT

�
b
T

ð101Þ

dP3
R

dt
¼ signðqBÞm

2N
2π

�
1þ bt

LzT

�
b
T
: ð102Þ

Comparing with Eq. (96), we find a precise agreement of
the momentum transfer rates. Note that in contrast with the
charge anomaly discussed in the previous section, the
momentum anomaly in the present case is generated by
a spectral rotation/stretching about E ¼ 0 which pushes
some edge states to energies jEj > jmj, thus causing them
to get lost in the sea of gapped bulk states (see Fig. 4).
We will now look at one final anomalous transport

process. Interestingly, because of the mixed dependence of
Sbulk ¼ ζH

2

R
M5

F ∧ eA ∧ TA on eA;ωAB, and A, we can also
generate a charge current with a certain arrangement of
background geometry fields. This is unusual as this type of
transport does not occur in the 2þ 1-dimensional effective
action. Let us turn on a torsion magnetic field T3 ¼ Cdx ∧
dy on the ðx; yÞ cylinder, and thread torsion magnetic flux
(i.e., a dislocation) through the hole of the ðz; wÞ cylinder to
generate the torsion electric field T3 ¼ b

LzT
dt ∧ dz. This

can be achieved through the coframe

e0 ¼ dt; e1 ¼ dx; e2 ¼ dy;

e3 ¼
�
1þ bt

LzT

�
dzþ Cxdy; e4 ¼ dw ð103Þ

upon choosing ωAB ¼ 0. From the bulk response action we
get the bulk charge current

�Jbulk ¼
ζH
2
dðeA ∧ TAÞ ¼

qm2

8π2
bC
LzT

dt ∧ dx ∧ dy ∧ dz:

ð104Þ

Just like in the case of the 4þ 1-dimensional quantum Hall
effect this gives a constant current density in the w-direction
which transfers charge from one boundary to the other at
a rate

dQ
dt

¼ qm2bΦT

8π2T
: ð105Þ

From the perspective of the boundary fermions, this current
is due to another manifestation of the Uð1Þ chiral anomaly
d � Jcov ¼ ζH

2
Ta ∧ Ta for the chiral boundary states. This is

of course the Nieh-Yan contribution to the (covariant) chiral
anomaly, discussed previously.
Let us now explore how the anomaly can be understood

microscopically from a Hamiltonian point of view. Once
again, it suffices to focus on the lowest energy part of the
spectrum of the chiral fermions in the background frame
field (see Appendix C for a derivation):

ELðtÞ ¼ −signðCpzÞ
pz

ð1þ bt
LzT

Þ ;

ERðtÞ ¼ signðCpzÞ
pz

ð1þ bt
LzT

Þ ð106Þ
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with degeneracy Nðpz; tÞ ¼ jpzΦT j
2πð1þ bt

LzT
Þ. From the definition

Q ¼ q
Z
Σ3

d3~x
1

2
hvacj½ψ†ð~xÞ;ψð~xÞ�jvaci

¼ q
2

X
fjEnj≤jmjg

signðEnÞ ð107Þ

we see that the net left- and right-hand charges at a time t
are given by (taking the large Lz limit)

QL ¼ − qLz

2π

Z
mð1þ bt

LzT
Þ

0

dpz
ΦT

2π

pz

ð1þ bt
LzT

Þ

¼ − qm2ΦTLz

8π2

�
1þ bt

LzT

�
ð108Þ

QR ¼ qLz

2π

Z
mð1þ bt

LzT
Þ

0

dpz
ΦT

2π

pz

ð1þ bt
LzT

Þ

¼ qm2ΦTLz

8π2

�
1þ bt

LzT

�
: ð109Þ

From here, we find the rates of change of net charge are
given by

dQL

dt
¼ − qm2bΦT

8π2T
;

dQR

dt
¼ qm2bΦT

8π2T
ð110Þ

which precisely agrees with the previous result in
Eq. (105).
We see here that the reason that the Nieh-Yan term can

contribute to the covariant Uð1Þ anomaly is due to the
structure of the low-energy chiral fermion branches in the
presence of a uniform torsional magnetic field (see
Appendix C). As a comparison, we know that in the case
of a conventional Uð1Þ magnetic field the low-energy
states of a single Weyl node become quasi–one-
dimensional branches that disperse chirally, i.e., the states
coming from a left-hand (right-hand) Weyl node have a
positive (negative) group velocity (if qB < 0) E ¼ �vpz.
Heuristically, the magnetic field acts to convert a
3þ 1-dimensional Weyl fermion into a highly degenerate
quasi–one-dimensional Weyl fermion at low energy
which only disperses along the direction of the applied
uniform magnetic field. The torsional magnetic field
(which for instance can be thought of as a density of
screw dislocations) acts differently. Instead it generates
quasi–one-dimensional upward dispersing or downward
dispersing branches depending on the chirality of the
3þ 1-dimensional Weyl node E ¼ �vjpzj (Fig. 5). These
branches contain both left and right movers but they have
a fixed chirality. For example, for torsional field C > 0 the
downward dispersing branch of the low-energy modes is
made up of left-hand modes alone, whereas the upward
dispersing branch contains only right-hand modes. The
degeneracy also depends on the value of the momentum
pz as the torsional magnetic field is effectively stronger
for larger pz charge. This seems a bit strange at first, but

(a) (b)

FIG. 4 (color online). The Hamiltonian energy spectrum for chiral fermions in the presence of a uniform background magnetic field in
the z-direction. The (black) gapped states are higher Landau levels, while the linear gapless (blue, red) curves are the zeroth Landau
levels for left- and right-hand fermions respectively. We can consider the left- and right-hand fermions to exist on opposite boundaries of
a cylinder. Once the energies of the linearly dispersing modes reach �jmj these states are no longer localized on the boundary and lose
their sense of chirality. (a) The initial state before the torsion electric field is applied. (b) A later state after some amount of torsional flux
is threaded through the cylinder and the torsion electric field has had time to act on the system. The spectral rotation/stretching around
E ¼ 0 pushes some occupied chiral modes outside of the topological insulator mass gap which causes them to be lost into the sea of
gapped bulk states. The overall process changes the momentum localized on each edge since each chiral fermion state lost to the bulk
carries momentum that originally was localized on the boundary.
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we can see that the microscopic calculation precisely
matches the bulk anomaly calculation and thus it is a
consistent interpretation. In the next section we will
illustrate how this spectrum might be regularized if
both chiralities are present, as must be the case, e.g., in
3þ 1-dimensional Weyl semimetals.

VI. PROPERTIES OF WEYL SEMIMETALS
WITH TORSION

So far our work has focused on the general structure of
the torsion anomalies associated to 3þ 1-dimensional
Weyl fermions. While such fermions can occur at the
boundary of a 4þ 1-dimensional topological insulator,
they can also appear in a 3þ 1-dimensional material, the
so-called Weyl semimetal. However, unlike the 4þ 1-
dimensional boundary modes, bulk Weyl fermions must
always appear in pairs due to the Nielsen-Ninomiya no-go
theorem [62]. Thus, our results do not immediately carry
over to the discussion of the Weyl semimetals. However,
we can utilize the viewpoint taken by much of the recent
work on the electromagnetic response properties of Weyl
semimetals, which casts the 3þ 1-dimensional Weyl semi-
metal as a 2þ 1-dimensional family of Chern insulator
Hamiltonians [23,33,69]. Since we know the torsional
response properties of the 2þ 1-dimensional system, we
can use those results to write down the correct response
for the 3þ 1-dimensional Weyl semimetal in a manner
analogous to what has already been done for the Hall
conductance [23,33,69]. We will first briefly review the

electromagnetic case before proceeding to the geometric
response.
The properties of WSM have been the focus of a large

number of recent articles [22–24,26–37,70–72]. As men-
tioned above, these materials are gapless in the bulk and
have isolated pointlike degeneracies between the valence
and conduction bands. Each of these degeneracy points is a
Weyl node, i.e., a bulk, 3þ 1-dimensional Weyl fermion,
and the total chirality of all the nodes in a single material
must vanish. So, while the right- and left-hand 3þ 1-
dimensional Weyl fermions are spatially separated on the
surfaces of a 4þ 1-dimensional topological insulator, there
is no such spatial separation for the Weyl fermions in a
WSM. To illustrate the basic physics, let us assumewe have
the simplest example of a WSM, i.e., one with two Weyl
nodes that are separated in momentum space along the pz

axis and located at ~pL;R ¼ ð0; 0;�pzcÞ (see Fig. 6). Let us
define the quantity ~b ¼ 1

2
ð~pL − ~pRÞ ¼ ð0; 0; pzcÞ. If the

left- and right-hand nodes are not degenerate in energy we
can also define an energy separation b0 ¼ 1

2
ðϵL − ϵRÞ

where ϵL;R are the energies of the nodes at ~p ¼ ~pL;R

respectively. We can combine these two quantities into a
1-form bμdxμ. This definition is useful21 because the qua-
sitopological electromagnetic response properties of WSM
have been investigated, and it was found that the low-energy
effective action takes the form [22,33]

(a) (b)

FIG. 5 (color online). The Hamiltonian energy spectrum for chiral fermions in the presence of a uniform background torsion
magnetic field in the z-direction. The (black) states are higher torsion Landau levels, while the linear gapless (blue, red) curves are the
zeroth Landau levels for left- and right-hand fermions respectively. We can consider the left- and right-hand fermions to exist on
opposite boundaries of a cylinder. Once the energies of the linearly dispersing modes reach �jmj these states are no longer localized
on the boundary and lose their sense of chirality. Note that something unusual happens here compared to the previous two figures. In a
torsion magnetic field one chirality disperses upward while the other disperses downward. (a) The Hamiltonian spectrum before
the application of a torsion electric field. (b) The spectral modification induced by an additional torsion electric field along the
z-direction.

21We note that we have chosen the factors of 1
2
in the definition

of bμ to match the convention in the literature.
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q2

8π2

Z
ðg−1dgÞ ∧ A ∧ dA ð111Þ

for the space-time translation group element g ¼
expðið2bμÞxμÞ. This is usually written in terms of compo-
nents as

q2

4π2

Z
d4xϵμνρσbμAν∂ρAσ: ð112Þ

which is similar to the Lorentz-violating Chern-Simons terms
discussed in Refs. [73,74].
The origin of this response can be understood from the

simple limit of two Weyl nodes. Let us also assume that they
are degenerate in energy. Then, except for pz ¼ −pzc or
þpzc, the system is gapped, and thus every fixed-pz plane is
a 2þ 1-dimensional insulator apart from the two critical
values of pz. Since at fixed pz the low-energy model near
each Weyl node is that of a 2þ 1-dimensional Dirac model
with a mass given by the magnitude of pz away from the
node, every fixed-pz plane is either a trivial or topological
2þ 1-dimensional Chern insulator. For the continuum
models we have been considering, it only makes sense that
the planes between the critical values would be in the
topological phase, i.e., for −pzc < pz < pzc. This implies
that there is a finite contribution of Hall conductance given
by σxy ¼ q2

2π for each value of pz ∈ ½−pzc; pzc� which is
exactly what Eq. (111) encodes when b0 ¼ 0. If instead
the region of pz outside of the range −pzc < pz < pzc,
but inside the Brillouin zone boundaries (assuming a lattice

model), was topologically nontrivial, then the Hall conduct-
ance would differ by the addition of an amount e2=h per
layer, i.e., the quantized amount due to fully occupied bands
carrying a weak topological index [26,75–77]. The WSM
response action for a lattice system only uniquely determines
the fractional piece of the response, i.e., only the piece
corresponding to 2~bmod ~G where ~G is the set of reciprocal
lattice vectors.
For a generic set of Weyl nodes located at a 3-momentum

PðαÞ, with energy ϵðαÞ, and chirality χα ¼ �1 we can
construct the 4 component 1-form bμ ¼ 1

2

P
αχαPðαÞ;μ where

PðαÞ
μ ≡ ðϵðαÞ;PðαÞÞ. We can also represent this using the

generic translation group element g ¼ exp ½iPαðχαPðαÞ
μ Þxμ�.

We note that for a lattice system the spatial translations
can only take values in the real-space lattice which implies
that the response only captures the fractional piece of theP

αχαP
ðαÞ which is less than a reciprocal lattice vector, i.e.,

it does not uniquely determine the response due to fully
occupied bands. This is why it is not so important to specify
which region of momentum space is topological and which
is trivial (as in the simple example above), because they
differ by an amount due to fully filled bands.
After having reviewed the electromagnetic response it is

easy to see that this type of argument holds for more than
just this case. Considering a family of Chern insulators
parametrized by an additional momentum immediately
leads us to the appropriate geometric responses. Terms
with quantized coefficients (i.e., ones that only depend
on the sign of the Dirac mass) such as the gravitational
Chern-Simons term will yield

κH
2π

Z
b ∧ tr

�
ω
∘ ∧ dω

∘ þ 2

3
ω
∘ ∧ ω

∘ ∧ ω
∘
�
: ð113Þ

However, for the torsional term, the Hall viscosity coef-
ficient depends on the magnitude of the mass, i.e., ζHðpzÞ
depends on pz in a complicated fashion. In the context of
the simple WSM discussed above this means that each
2þ 1-dimensional Hamiltonian parametrized by pz yields
a different contribution to the Hall viscosity, and thus the
value of the Lorentz-violating 1-form that enters the
response is not trivially determined from the energy-
momentum locations of the Weyl nodes as is the Hall
conductance. In our simple example, since σxyðpzÞ is just a
piecewise constant function which is quantized to be q2=2π
for −pzc < pz < pzc, and zero otherwise, we find that
2bz ¼ 2π

q2
R
dpzσxyðpzÞ ¼ pzc − ð−pzcÞ ¼ 2pzc. However,

we need to define a separate parameter for the torsion
response λ ¼ λμdxμ such that 2λz ¼

R
dpzζxyðpzÞ for our

simple example. The 1-form λ will generically be a
complicated function of the Weyl-node positions, and
has units of L−3 in natural units. With this definition we
see that λ will contribute to the torsion response as

P

P

P

x

y

z

1

0

FIG. 6 (color online). Momentum space description of a simple
Weyl semimetal with two Weyl nodes of opposite chirality (red
and blue spheres) separated in the pz direction. The two planes
represent two gapped 2þ 1-dimensional insulator subspaces of
the three-dimensional Brillouin zone. The grey plane has a Hall
conductance of 0 and the magenta plane has a Hall conductance

of 1 in units of q2

2π. In fact the entire family of planes parametrized
by pz that lies between the two Weyl nodes will each carry Hall

conductance of q2

2π while the planes outside the nodes and inside
the Brillouin zone boundaries carry no Hall conductance.
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1

2π

Z
λ ∧ ea ∧ Ta ð114Þ

where a ¼ 0; 1; 2; 3. For the simple WSM we can use an
almost identical argument as above to indicate that the
collection of topological insulator planes will carry a total
three-dimensional Hall viscosity given by ζxy ¼ λzLz

2π .
An interesting phenomenon also occurs when the Weyl

nodes are nondegenerate in energy. In this case, one finds
the analog of the chiral magnetic effect (a nonzero electric
current in the presence of a nonzero magnetic field but
vanishing electric field), but for torsion. This would imply
that with the insertion of a dislocation line, there should be
a momentum current flowing in the direction of the
Burgers’ vector even without the application of a torsion
electric field though there may be some subtleties.22

For example, to generate a typical chiral magnetic effect
one must violate the effective Lorentz invariance by either
doping the system away from charge neutrality to induce a
background density or turning on a weakly time-dependent
magnetic field and slowly taking the DC limit. These
considerations will also enter the discussion of the chiral
dislocation effect. We should also note that Ref. [78]
predicts a chiral heat effect at finite temperature which is
related to the curvature response of a 3þ 1-dimensional
Weyl fermion, which is also contained in our bulk response
calculation. The 3þ 1-dimensional anomalous Hall vis-
cosity and the chiral dislocation effect are two prominent
geometric response features of theWeyl semimetal. Wewill
delay a more detailed discussion of the geometric response
properties of Weyl semimetals to future work.
Before moving on to discuss 3þ 1-dimensional time-

reversal invariant topological insulators we want to illus-
trate one other interesting property of the Weyl semimetal
along the lines of the seminal Nielsen-Ninomiya paper that
discussed the chiral anomaly in a crystal [40]. We know that
because of the vanishing chirality in the semimetal we
cannot have an overall chiral anomaly. However, since the
Weyl nodes are separated in momentum (and possibly in
energy) we can have anomalous current flows in momen-
tum space between the nodes. We will now illustrate this
behavior for the anomaly due to the Nieh-Yan term, i.e., we
will illustrate the anomalous chiral current due to parallel
torsion electric and torsion magnetic fields arising from the
anomalous Ward identity:

∂μjmu
5 ¼

Z
q

32π2l2
ϵμνρσðηabTa

μνTb
ρσ − 2Rab;μνeaρebσÞ:

ð115Þ

To calculate the anomalous current flow we need to
understand the spectrum of a Weyl semimetal in the
presence of a uniform background torsion magnetic field.
Suppose that the torsion magnetic field is applied using the
coframe

e0 ¼ dt; e1 ¼ dx; e2 ¼ dy;

e3 ¼ dzþ fðxÞdy: ð116Þ

The frame is torsional if we set the spin connection to zero
(assuming zero curvature), with T3 ¼ de3 ¼ f0ðxÞdx ∧ dy,
and hence ea ∧ Ta ¼ f0ðxÞdx ∧ dy ∧ dz. The Dirac oper-
ator is then given by

iD ¼ iγaeμa∂μ

¼ iðγ0∂t þ γ1∂x þ γ2ð∂y − fðxÞ∂zÞ þ γ3∂zÞ: ð117Þ

We can project onto left-chiral modes, obtaining23

iγ0DPL ¼ ði∂t þ iσ1∂x − σ2ðpy − fðxÞpzÞ − σ3pzÞ
ð118Þ

where, because py; pz are good quantum numbers, we have
Fourier transformed in the y; z directions.
Since we want to represent a Weyl semimetal whose

nodes are shifted in the pz direction, we introduce a vector
b in momentum space, such that the Dirac operator gets
shifted to iD ¼ iγaeμað∂μ þ iγ5bμÞ, and take ba ¼ eμabμ ¼
ð0; 0; b3Þ. In this case,

iγ0DPL ¼ði∂tþ iσ1∂x−σ2ðpy−fðxÞpzÞ−σ3ðpzþb3ÞÞ:
ð119Þ

Upon solving the resulting Dirac equation, we find that
the low-energy spectra of the left- and right-hand gapless
modes shift as

EL ¼ −signðCÞjðpz þ b3Þj; ER ¼ signðCÞjðpz − b3Þj
ð120Þ

but the degeneracies remain unchanged,

NL ¼
				pzΦT

2π

				; NR ¼
				pzΦT

2π

				: ð121Þ

The higher energy modes now do not completely shift; they
simply get gapped and distorted (see Fig. 7),

22There has been some controversy in the literature about the
existence of the chiral magnetic response in real systems and also
the role played by the boundary states [26,32–36,70]. These same
complications may arise in the geometric response as well.

23The choice of representation for the Dirac matrices is

γ0 ¼
�
0 1

1 0

�
; γi ¼

�
0 −σi
σi 0

�
; γ5 ¼

�
1 0

0 −1
�
:
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En;� ¼ �ððpz � b3Þ2 þ 2njCpzjÞ1=2; n ¼ 1; 2;…

ð122Þ

If we now add a torsion electric field then wewill see that
chiral charge is transferred between the two low-energy
branches of the Weyl nodes in the uniform torsion magnetic
field. The calculation is identical to that presented at the end
of Sec. V B which culminates with Eq. (110) so we will not
reproduce it here.

VII. 3þ 1-DIMENSIONAL TOPOLOGICAL
INSULATOR VIA DIMENSIONAL

REDUCTION

Given our derivation of the 4þ 1-dimensional response
action we can now discuss the properties of the 3þ 1-
dimensional time-reversal invariant strong topological
insulator [76,77,79]. As shown in Ref. [19], if one knows
the anomaly structure in odd space-time dimensions, one
can dimensionally reduce the relevant effective actions to
study the properties of topological phases in one or two
dimensions lower. There is a cost for this, namely one
expects to have to make symmetry constraints on the lower-
dimensional system in order to have a robust topological
phase, and the integer topological invariants of the higher-
dimensional systems get reduced to Z2 invariants in the
lower-dimensional systems.
As an example, let us briefly review the theory for

electromagnetic response of the 4þ 1-dimensional topo-
logical insulator reduced to 3þ 1 dimensions. We will be a
little imprecise here, but the overall picture is correct

(for more detail see Ref. [19]). The action for the 4þ 1-
dimensional topological insulator is

Seff ½A� ¼
q3C2

24π2

Z
d5xϵabcdeAa∂bAc∂dAe ð123Þ

which is the second Chern-Simons term, where a; b; c;
d; e ¼ 1; 2…5, and C2 is the second Chern number, the
value of which is an integer which depends on the phase of
the underlying massive fermions of the topological insu-
lator. To dimensionally reduce this system we can assume
that the fields do not depend on the fourth spatial
coordinate w (which we have compactified to a circle with
circumference L). Then we can take the limit as Lw → 0
from which we find the action

Seff ½A� ¼ 3
q2

24π2

Z
d4x

�Z
dwqC2Aw

�
ϵμνρσ∂μAν∂ρAσ

¼ q2

8π2

Z
d4xθϵμνρσ∂μAν∂ρAσ ð124Þ

where θ≡ R
dwqC2Aw which gives us the amount of flux

threaded through the w circle. For example, for one flux
quantum θ ¼ 2π.
Since we want to consider time-reversal invariant insula-

tors in 3þ 1 dimensions there is a constraint on θ. Under
time reversal θ → −θ. However θ is only well defined mod
2π∶ θ≡ θ þ 2πn for some integer n. Thus, if we require
time reversal then θ ¼ 0 or θ ¼ π are the only two allowed
values. So while the 4þ 1-dimensional insulator was
classified by an integer C2 and there were no required
symmetries, it turns out that the time-reversal invariant
3þ 1-dimensional case is classified by the Z2 invariant θ.
The physical consequence of this term is as follows. If θ is a
constant in space-time then our dimensionally reduced
action is a total derivative and thus there is no measurable
response. There are two exceptions to this: (i) when
magnetic monopoles exist then this term attaches an
electric charge qmonopole ¼ qθ

2π to the monopole via the
Witten effect [80] and (ii) if we have a boundary to the
vacuum or trivial insulator then θ necessarily changes from
π to 0 and the action will have a nonzero contribution. For
case (ii) the effect of this action is to endow the boundary
with a quantum Hall effect localized at the boundary with a
half Hall conductance σ ¼ q2

4π. Generically at such a 2þ 1-
dimensional boundary, a θ term will attach its correspond-
ing Chern-Simons action to that localized region. For
topological insulators the coefficient of the Chern-
Simons term can be half of that required for a properly
regularized intrinsically 2þ 1-dimensional system. These
are the general features of the dimensional reduction.
Given the general anomaly structure in 4þ 1 dimensions

we now want to dimensionally reduce the effective
response action to find the relevant action for 3þ 1-
dimensional time-reversal invariant topological insulators

1 0 1
2

1

0

1

2
E

Pz

Pzc-Pzc

FIG. 7 (color online). The low-energy spectrum of a simple
Weyl semimetal in the presence of a uniform background torsion
magnetic field. The Weyl nodes are located at pz ¼ �pzc in the
absence of a field. The solid lines are from Eqs. (120) and (122)
for the first few values of n. The dotted lines are a conjectured
continuation of the levels that show how they might be regular-
ized in a lattice model. The red and blue colors represent left- and
right-hand Weyl nodes. One can compare this to Fig. 5 which
shows the energy spectra of the Weyl nodes when they are both
located at the same point in momentum space.
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in the presence of curvature and torsion. The calculation
here is more complicated since our fields are intimately
related to the geometry. Thus, to perform this reduction we
need to split the fields up into appropriate pieces. We take
the following coframe, frame, and connections:

ea ¼ badwþ ~eai dx
i

e4 ¼ Ndw

ea ¼ ~ea

e4 ¼ N−1ð∂w − ba ~eia∂iÞ
A ¼ Θdwþ ~Aidxi

ωa
b ¼ θabdwþ ~ωa

i;bdx
i

ωa
4 ¼ 0 ð125Þ

where a ¼ 0; 1; 2; 3, and the intrinsic 3þ 1-dimensional
coframe, frame, and connections are now labeled by a tilde.
As usual for a dimensional reduction, all the fields are only
allowed to depend on the intrinsic 3þ 1-dimensional
coordinates, but not on the fourth spatial direction w.
Also note that we have set ωa

4 ¼ 0 because this is related
to extrinsic geometric effects, which are not of interest to
us here.
We want to compute our fermion effective action with

this choice, which we will now do term by term. Let us
begin with A ∧ F ∧ F which we already calculated above
in component notation. Using

F ¼ dΘ ∧ dwþ ~F ð126Þ
we obtain

1

L

I
A ∧ F ∧ F ¼ 3Θ ~F ∧ ~F − 2dðΘ ~A ∧ ~FÞ ð127Þ

where the integral above is over the w-direction. Next, for
the F ∧ eA ∧ TA term, we need to use

Ta ¼ ~Dba ∧ dwþ ~Ta þ θabdw ∧ ~eb ð128Þ

T4 ¼ dN ∧ dw ð129Þ

and we find

1

L

I
F ∧ eA ∧ TA ¼ Θdð~ea ∧ ~TaÞ þ 2ba ~F ∧ ~Ta

− ~F ∧ ~ea ∧ ~ebθab − dðΘ~ea ∧ ~TaÞ
− dðba ~ea ∧ ~FÞ: ð130Þ

Notice above that terms linear in Θ; ba, and θab seem to
be related to 3þ 1-dimensional covariant anomalies. Of
course, this is no coincidence, and we will return to this
point shortly in Sec. VII A.

Next, we need to deal with the curvature terms. These are
quite complicated in general, and involve many terms
which are not easy to interpret physically. In order to
avoid cluttering our discussion, we will defer some of these
calculations to Appendix D. Nevertheless, there is a
straightforward way to extract the dimensionally reduced
action to linear order in ba and θab. Fortunately, these are
also the most interesting terms from the point of view of our
discussion so far.

A. Linear terms and covariant anomalies

The choice of frame and connections in Eq. (125) can be
broken up into the separable background

ea ¼ ~ea e4 ¼ Ndw A ¼ ~A

ωab ¼ ~ωab ωa4 ¼ 0 ð131Þ

and the perturbations about this background,

δea ¼ badw; δA ¼ Θdw; δωab ¼ θabdw: ð132Þ

Note that all of these are proportional to dw. Since we are
interested in computing the intrinsic d ¼ 3þ 1 effective
action, we need terms in the 4þ 1-dimensional Lagrangian
density of the form dw ∧ ð� � �Þ. If further we decide to
focus on terms linear in Θ; ba, and θab, then the terms of
interest are precisely

L4þ1 ¼ δA ∧ �Jbulk þ δea ∧ �Jabulk þ δωab

∧ �Jabbulk þOðb2; θ2Þ: ð133Þ

Performing the integration over w, we then arrive at the
intrinsic 3þ 1-dimensional Lagrangian density

L3þ1 ¼ Θ�Jbulkjbg þ ba�Jabulkjbg þ θab�Jabbulkjbg
þOðb2; θ2Þ ð134Þ

where the subscript bg means that these currents are to
be evaluated on the separable background (131). Indeed,
the currents above are precisely the covariant Uð1Þ, diffeo-
morphism, and Lorentz anomalies in 3þ 1 dimensions, as
calculated from the Callan-Harvey argument. Having
computed these anomalies previously [see Eq. (81)], we
merely state the result,24

24In this language, boundary terms such as those present in
Eqs. (127) and (130) are the same as the induced boundary
currents (or Bardeen-Zumino terms) from the Callan-Harvey
discussion. These are however not important in what follows.
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L3þ1 ¼
q2

8π2
Θ ~F ∧ ~F þ qTm2

8π2
Θdð~ea ∧ ~TaÞ þ 1

192π2
Θtr ~Rð−qT Þ ∧ ~Rð−qT Þ

þ qT
96π2

Θd � d � dð~ea ∧ ~TaÞ þ qqTm2

4π2
ba ~F ∧ ~Ta þ q

96π2
ba ~ea ∧ dA2

−
qTq
96π2

baA2 ∧ ~Ta þ qqT
48π2

bad � d � ~F ∧ ~Ta −m2qqT
8π2

θab ~F ∧ ~ea ∧ ~eb

þ qqT
96π2

θabA2 ∧ ~ea ∧ ~eb − qqT
96π2

θabd � d � ~F ∧ ~ea ∧ ~eb þOðb2; θ2Þ ð135Þ

where we recall the definition

A2 ¼ ð ~F ∧ ~Rð−qTÞ
ab Þð~ea; ~ebÞ:

Unfortunately there are still a lot of terms to understand,
though some of them are simpler than others. The first three
terms are variations on the electromagnetic Θ term action
found in 3þ 1-dimensional time-reversal invariant topo-
logical insulators. As explained above, all three terms can
be interpreted as giving rise to 2þ 1-dimensional response
coefficients on the surface (domain wall of Θ) of the
topological insulator. Explicitly, the terms

q2

8π2
Θ ~F ∧ ~F þ qTm2

8π2
Θdð~ea ∧ ~TaÞ

þ 1

192π2
Θtr ~Rð−qT Þ ∧ ~Rð−qT Þ ð136Þ

give rise to a surface Hall conductivity, a surface Hall
viscosity, and a surface gravitational Chern-Simons term
respectively. Perhaps one can view the third term as a
response of angular momentum to intrinsic curvature defor-
mations of the surface. That is, at locations on the surface
where there is a nonzero curvature, the gravitational Chern-
Simons term may bind spin/angular momentum to that
location similar to the charge Chern-Simons term binding
electric charge on locations with nonzero magnetic flux
[Uð1Þ curvature]. In addition to this interpretation, Ref. [78]
shows that at finite temperature the surface gravitational
Chern-Simons term is related to a thermal response.
Although there is a large number of terms, they can be

organized in a way which is easier to interpret. Besides the
Uð1Þ anomaly term, the other types of terms can each be
grouped into (i) a leading order piece which goes as m2,
(ii) a curvature dependent universal piece, and (iii) a higher-
order derivative piece. There are three separate groupings I,
II, and III which depend on the parameters Θ; ba, and θab
respectively:

I∶
qT
8π2

Θ
�
m2dð~ea ∧ ~TaÞ þ 1

24qT
tr ~Rð−qTÞ ∧ ~Rð−qT Þ

þ 1

12
d � d � dð~ea ∧ ~TaÞ

�
ð137Þ

II∶
qTqba
4π2

�
m2 ~F ∧ ~Ta þ 1

24qT
ð~ea ∧ dA2 − qTA2 ∧ ~TaÞ

þ 1

12
d � d � ~F ∧ ~Ta

�
ð138Þ

III∶ − qqTθab
8π2

�
m2 ~F ∧ ~ea ∧ ~eb − 1

12
A2 ∧ ~ea ∧ ~eb

þ 1

12
d � d � ~F ∧ ~ea ∧ ~eb

�
: ð139Þ

Grouping I shows the response terms which all depend
on the parameter Θ. In the bulk of a nontrivial Z2 3þ 1-
dimensional topological insulator Θ is quantized to be an
odd multiple of π, while outside the material Θ ¼ 0. Thus,
as has been mentioned above, these terms imply that on the
surface of a topological insulator (if time-reversal sym-
metry is weakly broken by a magnetic layer) there will be a
surface quantum Hall viscosity and its associated curvature
correction. If we assume that at a given surface Θ varies
like a step function from π inside to zero outside then the
effective surface action becomes

Ssurf ¼
Z
bdry

− qT
8π

�
m2 ~ea ∧ ~Ta þ 1

24qT
CS½ωð−qT Þ�

þ 1

12
� d � dð~ea ∧ ~TaÞ

�
ð140Þ

where CS is the Chern-Simons 3-form. This means the
surface of a 3þ 1-dimensional topological insulator has a
viscosity coefficient which is exactly half that found in
2þ 1 dimensions. This is similar to the surface Hall
conductance which also carries exactly half the value of
the bulk Hall conductance of a 2þ 1-dimensional Chern
insulator. Note that the gravitational Chern-Simons
term can be expanded in powers of torsion, to obtain the
Levi-Civita Chern-Simons term plus the curvature correc-
tion to surface Hall viscosity, etc. While we havewritten the
higher derivative term as well, this term (a) depends on the
metric (through the bulk Hodge star operator) and thus is
not a topological response term, and (b) captures effects
which are extrinsic to the surface.
The second grouping is a response when the parameter

ba is nonvanishing. We know that 3þ 1-dimensional
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time-reversal invariant topological insulators have a
nonvanishing Θ; however it is not known what materials
would have a nonvanishing ba, though it seems they must
somehow be anisotropic. For now let us assume we have a
material in which ba ≠ 0 inside, and we will calculate the
consequences (assuming the vacuum has ba ¼ 0). From the
first term in this grouping we see that in such a material
we will find a localized charge density at places where
dislocation lines intersect the surface, but only if the
Burgers vector of the dislocation is not orthogonal to ba.
We can see this for the simple case where we set the spin
connection to zero, i.e., in flat space. If we assume ba
changes as a step function at a surface we find that the
leading order term in the surface action contains the mixed
Chern-Simons term

Ssurf ¼
qTqm2Δba

4π2

Z
bdry

~A ∧ d~ea ð141Þ

� j ¼ qTqm2

4π2
Δbad~ea: ð142Þ

Thus for a dislocation line with Burgers vector Ba that
intersects the surface, there will be a bound charge density
ρ ¼ qm2

4π2
ΔbaBa. Conversely, magnetic flux lines will carry

momentum density along the direction Δba at points where
they intersect the surface. As usual, the second term in
Eq. (138) can then be thought of as a universal curvature
correction to this mixed Chern-Simons response.
The sensitivity to dislocations reminds one of the

properties of weak topological insulators which have been
shown to trap low-energy modes on dislocations [54].
In fact, naively, an action of the form S ∼ ba ~F ∧ ~Ta looks
like the action for a massive 1þ 1-dimensional Dirac
fermion bound to dislocation lines with Burgers vectors
parallel to ba. However, despite the similarity, we must
resist, for now, the temptation to identify ba with a weak
topological index (e.g., by letting ba be proportional to half
a reciprocal lattice vector) until we more carefully consider
the properties of ba. The weak invariant arises purely from
the Lorentz-violating lattice structure which is not taken
into account so far. Additionally, ba has units of length, not
inverse length as would be required for a weak invariant.
We could consider the quantity m2ba instead which does
have the correct units. If one chose to quantize the inverse
area scale m2 to be proportional to a lattice plaquette area,
and have ba proportional to the lattice constant in the ath
direction, as would be appropriate for a spatial lattice
vector, then this combined number would have the correct
units and structure. Thus, it could be that for lattice models
with discrete translation symmetry we would find a
quantized ba, but in our continuum calculations this is
not yet obvious. In fact, since the spatial components of ba
are odd under time reversal it should vanish identically in
the dimensionally reduced time-reversal invariant insulator.

We will discuss this further in the next subsection where we
show that imposing a lattice structure induces a modular/
periodic structure in ba that allows it to be nonvanishing
even in a system with time-reversal symmetry. We will also
see in the next subsection that in 3þ 1 dimensions the
parameter ba intrinsically arises from chiral translations in
space (time) and for translationally invariant systems it
gives rise to a momentum dependence of the chiral mass
angle Θ.
The third grouping of terms is harder to physically

interpret. These terms arise in a material where θab is
nonzero, but we know of no such material. Just as the
parameter ba is related to translations, θab is related to
rotations, and so similar terms to those in grouping III
might appear in materials with topological phases deter-
mined by discrete rotation symmetries. It is possible that
topological crystalline insulators/superconductors [57,59,
60,81–93] might generate such a response, or even sec-
ondary weak topological systems which have a nontrivial
antisymmetric tensor as a topological invariant [55,59].
For these cases dislocation (torsion) and disclination
(curvature) defects may have bound charges, e.g., electric
charge, momentum, or spin. The spatial components of θab
are also odd under time reversal (a; b both spatial) and thus
must vanish unless an additional symmetry structure is
added such that θab is only well-defined modulo some
quantized amount. We will leave further discussion of this
to future work.

B. Intrinsic point of view

In addition to understanding how these terms arise from
dimensional reduction, it is also important to understand
how they appear intrinsically in 3þ 1 dimensions without
reference to a 4þ 1-dimensional parent system. We will
carry out this calculation now. The Dirac operator in
d ¼ 4þ 1 is given by

∇ð5Þ ¼ γAeμA

�
∂μ þ

1

4
ωμ;ABγ

AB þ Aμ þ Bμ

�
ð143Þ

where we remind the reader that B≡ 1
2
TBðeA; eBÞeA.

For the choice of frame in (125), we find

∇ð5Þ ¼ γa ~eia

�
∂i þ

1

4
~ωi;abγ

ab þ ~Ai þ ~Bi

�
þ 1

N
γ4∂t

− 1

N
γ4bi

�
∂i þ

1

4
~ωi;abγ

ab þ ~Ai

�

þ 1

N
γ4Θþ 1

4N
γ4γabθab þ

1

2N
γa∂aN

− 1

2N
γ4ð ~Daba þ 2 ~BabaÞ ð144Þ

where we have used
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Ba ¼ ~Ba þ
1

2N
∂aN

B4 ¼
1

2N
~Daba − 1

N
bc ~Bc: ð145Þ

The w-independent modes of the parent fermions Ψ can be
written in terms of d ¼ 3þ 1 fermions ψ as Ψ ¼ 1ffiffiffiffiffi

LN
p ψ ,

where L is some length scale. The intrinsic Dirac action
becomes

S3þ1½ψ � ¼
Z
M4

vol4

�
iψ̄ ~∇ð4Þψ −mψ̄ψ

þ i
NL

ψ̄γ5
�
Θ − bi ~∇i þ

1

4
θabγ

ab

− 1

2
ffiffiffiffiffi
g5

p ∂ið ffiffiffiffiffi
g5

p
biÞ

�
ψ

�
ð146Þ

where
ffiffiffiffiffi
g5

p ¼ N detð~eÞ, and we have relabeled γ4 as γ5.
From the 3þ 1-dimensional point of view, the first two
terms look like the action of a Dirac fermion. The
remaining γ5 terms can be gauged away by performing a
chiral gauge transformation, a chiral diffeomorphism, and
a chiral Lorentz transformation with parameters Θ, ba, and
θab respectively. However, these chiral transformations are
anomalous in d ¼ 3þ 1, and the removal of the γ5 terms
from the above action can be done at the cost of accounting
for the corresponding anomaly contributions in the effec-
tive action. These are precisely the terms which appear in
the action (135) which we derived previously from dimen-
sional reduction. If we consider a trivial flat space geometry
then the action reduces to

S3þ1½ψ � ¼
Z
M4

vol4

�
iψ̄∂ð4Þψ −mψ̄ψ

þ imψ̄γ5
�
Θ − bi ~∂i þ

1

4
θabγ

ab

�
ψ

�
ð147Þ

where we have used the convention that NL ¼ 1=m. If we
chose a different convention then we would have to rescale
Θ; bi, and θab so that their periodicity relations take simple
forms, e.g., Θ≡ Θþ 2π.
Let us now try to understand the intrinsic meaning of the

Θ; bi, and θab parameters in a 3þ 1-dimensional time-
reversal invariant topological insulator, which is repre-
sented by this action. Under time reversal it is well known
that Θ transforms to −Θ. Thus, if time reversal is a required
symmetry, we must have the constraint that Θ ¼ −Θ or
2Θ ¼ 0. If Θ is defined uniquely there is only one solution,
i.e., Θ ¼ 0. However, there is a physical ambiguity such
that Θ is only well defined up to a multiple of 2π and thus
the symmetry condition becomes 2Θ ¼ 0mod 2π. This
equation has two solutions: Θ ¼ 0; π which represent the
trivial and topological time-reversal invariant insulator
classes respectively. At the surface of the topological

insulator phase Θ changes from π to 0 which has the
effect of binding a half-quantum Hall effect to the region
where Θ is varying. The ambiguity in Θ can be understood
from the boundary perspective where we can add extra
two-dimensional layers to the surface that can change the
quantized Hall conductance by an integer amount. If we
add a layer with Hall conductance σ ¼ n q2

2π then effectively
Θ → Θþ 2πn. The physical property determined by the
time-reversal invariant bulk is the parity of Θmod π which
is not changed by adding extra integer layers onto the
surface. Thus, the parity of ðΘπ mod 2Þ determines a Z2

topological invariant.
Since we will need this type of argument soon, let us

recount the periodicity argument for Θ. Once we have
integrated out the fermions we recall that we produce the
term in the effective action

Seff ¼
q2

8π2ℏ

Z
d4xΘϵμνρτ∂μAν∂ρAτ

¼ q2Θ
2πh

Z
d4x~E · ~B

¼ ℏNϕE
NϕB

Θ; ð148Þ

where NϕE=B
are the integer numbers of electric and

magnetic fluxes (where we have assumed all of the
space-time directions are compact and only Ez and Bz
are nonzero for simplicity). This means that the phase
picked up by this term in a path integral is

exp

�
i
ℏ
Seff

�
¼ exp ½iNϕE

NϕB
Θ� ð149Þ

from which we clearly see that Θ is only defined mod 2π.
Now, we want to consider the other intrinsic quantities bi

and θab. We also find that the spatial components of bi and
the components of θab where a; b are both spatial indices
are odd under time reversal. If these intrinsic quantities are
uniquely defined it implies that they must vanish identically
in a time-reversal invariant insulator. However, if we
require discrete spatial symmetries it is possible to induce
periodicity relations such that we can find nontrivial values
even in a time-reversal symmetric system. As an example,
let us impose a discrete translation symmetry with spatial
lattice vectors ~a1; ~a2, and ~a3 such that the system is
symmetric under the discrete translations by ~Rmap ¼ m~a1 þ
n~a2 þ p~a3 for any m; n; p ∈ Z. For every spatial lattice
there is a corresponding reciprocal lattice spanned by
~G1; ~G2, and ~G3 which satisfies ~ai · ~Gj ¼ 2πδij.
For ba we will focus on one piece of the effective action:

Seff ¼
qTqm2ba

4π2

Z
d4xϵμνρτ∂μAν∂ρeaτ ð150Þ

¼ ℏ
qTm2bi
2π

NϕE
Bi; ð151Þ
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where NϕE
is the integer number of electric flux quanta and

Bi is the total Burgers vector coming from the torsion
magnetic flux (where again we have assumed all of the
space-time directions are compact and only Ez and Ti

xy
were nonzero for simplicity). This means that in a path-
integral formalism the phase picked up due to this term is

exp

�
i
qTm2

2π
NϕE

biBi

�
ð152Þ

from which we see that qTm
2biBi

2π is only defined mod 2π.
To clearly see the implications of this condition let us
rewrite the phase as GiBi (which is defined mod 2π) where

we have defined Gi ¼ qTm2

2π bi.
Now under time reversal Gi → −Gi, and thus we must

have GiBi ¼ −GiBi for a time-reversal invariant insulator.
Because of the periodicity we can have GiBi ¼ nπ for some
integer n. Since the total Burgers vector Bi is itself a real-
space lattice vector this constraint implies that Gi is either a
reciprocal lattice vector (for n even) or a half-reciprocal
lattice vector (for n odd). The latter is the nontrivial case,
and is the familiar result of a weak topological invariant.
One consequence of this result can be determined from

this effective action. Let us assume that Gi is no-vanishing
such that the term in the effective action above becomes

Seff ¼
q
2π

Z
d4xGiϵ

μνρτ∂μAν∂ρeiτ: ð153Þ

For a straight dislocation line localized at the origin in the
xy-plane, and extended in the z-direction with Burgers
vector Bi, we can evaluate the action to find

q
2π

Z
dzdtGiBiϵμν∂μAν ð154Þ

where now μ; ν ¼ t; z. This is exactly ND ¼ 1
π GiBi copies

of the response action for a one-dimensional Dirac fermion
localized on the dislocation coupled to a scalar/axion field.
This result matches what was found using more conven-
tional methods in Ref. [54]. Thus, for a lattice system with
discrete translation symmetry we can interpret the vector
bi as being connected to a weak topological invariant. This
hints that θab might be nonzero in systems with time-
reversal symmetry and discrete rotation symmetries. We
will leave the treatment of these systems to future work.

VIII. DISCUSSION AND CONCLUSION

In this article we set out to understand the response of
several classes of condensed matter systems to geometric
perturbations. By utilizing the anomaly polynomial tech-
nology in a high space-time dimension, we were able to
cleanly derive the response coefficients of the charge,
stress, and spin currents in the presence of the full range

of geometric and electromagnetic perturbations including
curvature and torsion contributions. Our results include
both universal quantized responses, e.g., the Hall conduct-
ance, gravitational Chern-Simons response, and curvature
corrections to the Hall viscosity, and seemingly less
universal quantities, e.g., the leading order Hall viscosity
term, the magneto-Hall viscosity, and the torsion contri-
bution to the chiral anomaly. These latter response coef-
ficients all share a dependence on a (possibly nonuniversal)
intrinsic length scale of the system and are not generically
quantized since they are attached to terms in the effective
action which are completely gauge, diffeomorphism, and
Lorentz invariant. This invariance does not allow for the
enforcement of a quantizing constraint in contrast to what is
found, for example, for a non-Abelian Chern-Simons term
under gauge transformations.
In addition to providing the bulk response coefficients,

we presented a spectral-flow/Callan-Harvey analysis for
many of the different types of responses. One of the most
interesting examples is the explanation of how 3þ 1-
dimensional Weyl fermions are anomalous in the presence
of torsion. This anomaly is encoded in the Nieh-Yan term
and can be explained by considering the low-energy
physics of a Weyl fermion in a uniform background torsion
magnetic field. Such a field generates torsional Landau
level–type states and there is a special zeroth Landau level.
For the more conventional configuration of Weyl fermion
in a uniform Uð1Þ magnetic field, this zeroth Landau level
has a 1þ 1-dimensional chiral dispersion along the direc-
tion of the magnetic field. The resulting low-energy theory
has many degenerate copies of a 1þ 1-dimensional chiral
fermion, which are anomalous in the presence of an electric
field due to the 1þ 1-dimensional chiral anomaly. For the
torsional case, the dispersion is not linear. In fact, for a
Weyl node with a fixed chirality, the low-energy theory
in the presence of a torsion magnetic field has 1þ 1-
dimensional modes with group velocities parallel and
antiparallel to the field. It is exactly this difference which
allows for the anomaly when a torsion electric field is
applied as we discussed earlier. The torsion electric field
deforms the velocities of the low-energy modes and trans-
fers states past the high-energy cutoff which, in total,
results in an anomalous process.
Finally we provided two possible applications of our

calculations in the viscoelastic response of Weyl semimet-
als and 3þ 1-dimensional time-reversal invariant topologi-
cal insulators. For the Weyl semimetals we showed that
there is both a three-dimensional anomalous Hall viscosity
and an analog the chiral magnetic effect in which momen-
tum current flows along dislocation lines in the absence
of an applied torsional electric field. For the 3þ 1-
dimensional topological insulator we showed that the
surface, in the presence of a time-reversal breaking per-
turbation, will exhibit a half Hall viscosity (though the half
just means that the regularized coefficient is half of the

TORSION, PARITY-ODD RESPONSE, AND ANOMALIES … PHYSICAL REVIEW D 90, 105004 (2014)

105004-27



coefficient for a regularized bulk 2þ 1-dimensional Dirac
fermion, and not that it is quantized), and in fact all of the
2þ 1-dimensional geometric responses, but with half of
the coefficient of the intrinsic, bulk 2þ 1-dimensional
Dirac fermion. We also found anisotropic response terms
that have not previously been discussed. We argued that
these anisotropic responses are connected to topological
phases protected by translation and rotation symmetries.
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APPENDIX A: ASYMPTOTIC EXPANSIONS
FROM SUPERSYMMETRIC QUANTUM

MECHANICS

In Sec. III we encountered traces of the form

Tr2nΓ2nþ1esD
2
2n ðA1Þ

and in particular, their asymptotic expansions (in powers of
s) in the limit s → 0. We can use N ¼ 1 supersymmetric
quantum mechanics (SQM) to evaluate these expressions.
We will not provide details, but rather only sketch the
essential ideas involved; see [63,94–96] for details. We also
note that the use of N ¼ 1 SQM in computing Chiral
anomalies or Atiyah Singer index densities on torsional
backgrounds has been discussed before in [97] (see also [98]),
and in the special case of vanishing Nieh-Yan four form
in [99–101] (see also the older works like [102,103] etc.).
Let Σ be a manifold with metric gij, a torsional con-

nection ωi;ab, and a Uð1Þ gauge field A. The action for
N ¼ 1 SQM in the presence of torsion is given by

SSQM ¼
Z

ds

�
1

2
gij _xi _xj þ

i
2
χaðδab _χb þ _xkω

∘
k;abχ

bÞ

− i
qT
4

_xkχaχbHkab − qT
2

1

4!
Nabcdχ

aχbχcχd

þ ic̄ð_cþ i_xkAkcÞ þ
i
2
c̄Fabχ

aχbc

�
ðA2Þ

where xi are local coordinates on Σ, χa are one-component
real fermions, while c and c̄ are one-component complex
fermions, and the notation _xj ≡ ∂sxj. We have also
introduced the notation N ¼ dH, and F ¼ dA. The theory
is invariant under the supersymmetry transformations
δxi ¼ iϵχi; δχi ¼ −ϵ_xi, with the supercharge

Q ¼ iχaeia

�
pi − i

2
ω
∘
i;bcχ

bχc þ c̄Aic

�

− qT
2

1

3!
Ha;bcχ

aχbχc ðA3Þ

(pi being the momentum conjugate to xi), and the
Hamiltonian H ¼ −Q2. Upon quantization, we must
replace pi → −i∂i and χa → 1ffiffi

2
p γa. The supercharge

becomes Q ¼ 1ffiffi
2

p Dþ � � �, while the Hamiltonian is

H ¼ − 1
2
D2 þ � � �, up to operator ordering ambiguities

indicated by � � �. Further, the fermion number operator in
SQM, ð−1ÞF, is proportional to the chirality matrix Γ2nþ1.
This is what allows us to compute traces of the type

(A1)—the Hilbert space of N ¼ 1 SQM essentially
furnishes a representation of Dirac fermions on Σ.
In fact, the trace (A1) is proportional to the Witten index
of supersymmetric quantum mechanics

Trð−1ÞFe−βĤ ðA4Þ

with s ¼ 1
2
β. Such a trace over the Hilbert space is easiest to

compute using the path-integral representation. To handle
the operator ordering ambiguities, we follow the time-slicing
prescription for the path integral [94], at the expense of the
counterterms

Lct ¼
1

8
gijΓ

∘ k
ilΓ
∘ l

jk þ
1

16
ωðqTÞ

i;abω
ðqTÞi;ab

− qT2

16

1

3!
Ha;bcHa;bc: ðA5Þ

The path integral corresponding to Trð−1ÞFe−βĤ is then
given by

Trð−1ÞFe−βĤ ¼
Z
PBC

½dxidχadaidbidci�e−
R

0

−β dsLE ðA6Þ

where ai are commuting ghosts, bi and ci are anticom-
muting ghosts,25 and LE is the Euclidean time Lagrangian
given by

LE ¼ 1

2
gij _xi _xj þ

1

2
δabχ

a _χb þ 1

2
_xkωðqTÞ

k;bcχ
bχc

þ qT
2
Nabcdχ

aχbχcχd þ c̄ð_cþ _xkAkcÞ

− i
2
c̄Fabχ

aχbcþ 1

2
gijðaiaj þ bicjÞ þ Lct: ðA7Þ

Here xi and ai have periodic boundary conditions, χa have
periodic boundary conditions because of the ð−1ÞF in the

25The ghosts are introduced to exponentiate factors of detðeÞ
which arise due to insertion of a complete set of position
eigenstates in the discretized path integral.
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trace (which is what the subscript PBC indicates), and
bi; cj; c, and c̄ all have antiperiodic boundary conditions.
In the absence of ð−1ÞF, χa acquire antiperiodic boundary
conditions (APBC). Finally, the β → 0 limit is just the
weak coupling limit in SQM, where we can do perturba-
tion theory. In this way,N ¼ 1 SQM allows us to compute
the asymptotic expansions in (A1) using standard tech-
niques of field theory. For instance, using the method
described above, we find the asymptotic expansion for
Tr4Γ5esD

2

in four dimensions is given by

Tr4γ5esD
2
4 ≃

Z
Σ4

�
qT

16π2s
dH þ 1

8π2
F ∧ F

þ 1

192π2
trRð−qT Þ ∧ Rð−qT Þ

þ qT
96π2

d � d � dH þOðsÞ
�
: ðA8Þ

The same procedure can be applied for computing such
asymptotic expansions in higher dimensions. For instance,
in six dimensions we get

Tr6Γ7esD
2
6 ≃

Z
Σ6

�
− qT
32π3s

F ∧ dH − 1

384π3
F ∧ trRð−qT Þ

∧ Rð−qT Þ − 1

48π3
F ∧ F ∧ F

−
qT

192π3
dðF ∧ �d � dHÞ

þ qT
384π3

d � d � ðF ∧ dHÞ þOðsÞ
�
: ðA9Þ

APPENDIX B: DIVERGENCES IN
HIGHER DIMENSIONS

In this section, we discuss the torsional divergences in
anomaly polynomials in arbitrary dimensions, and their
Pauli-Villar’s regularization. As we noted in Sec. III,
divergences of the anomaly polynomials in d ¼ 4n and d ¼
4nþ 2 are the same. Therefore, to study the cancellation of
divergences, it suffices to focus on the anomaly polyno-
mials in d ¼ 4n. We have dealt with the case of n ¼ 1
explicitly in Sec. III, so we now take n > 1. Now in d ¼ 4n
we have the asymptotic expansion

Tr4nΓ4nþ1esD
2
4n ≃ 1

sn
X∞
k¼0

bksk ¼
1

sn
Xn
k¼0

bksk þOðsÞ ðB1Þ

where the bk are 4n-form polynomials made out of
curvature, torsion, and their covariant derivatives [see
Eqs. (46) and (59)]. For instance, in d ¼ 4n we have
b0 ∝

R
M4n

ðdHÞn, while in d ¼ 4nþ 2 we have
b0 ∝

R
M4nþ2

F ∧ ðdHÞn.26 As before, we will not consider
OðsÞ terms because these lead to 1=m corrections in the

anomaly polynomial. The unregulated anomaly polynomial
thus takes the form

Pð0ÞðmÞ ¼ lim
ϵ→0

i
ffiffiffi
π

p
m
Xn
k¼0

Γϵ

�
−nþ 1

2
þ k;m2

�
bk ðB2Þ

where

Γϵðα; m2Þ ¼
Z

∞

ϵ
sα−1e−sm2 ðB3Þ

with ϵ ¼ 1
Λ2. Therefore, the UV divergences of the anomaly

polynomial in d ¼ 4n are contained in
�
mΓϵ

�
−nþ 1

2
þ k;m2

��
; 0 ≤ k < n ðB4Þ

where ϵ ¼ 1
Λ2. Let us examine these integrals schematically:

mΓϵ

�
−nþ 1

2
þ k;m2

�

¼ aðkÞ0 mΛ2n−2k−1 þ aðkÞ1 m3Λ2n−3−2k

þ � � � aðkÞn−k−1m2n−1−2kΛþ aðkÞn−ksignðmÞm2n−2k ðB5Þ

where the aðkÞl are finite numerical coefficients. As before,
we introduce Pauli-Villar’s regulator fermions with masses
MI and parities CI , where I ¼ 1; 2…N. For convenience,
we label the original low-energy fermion as I ¼ 0 with
M0 ¼ m and C0 ¼ 1. From Eq. (B5), it is amply clear that
to cancel all the UV divergences we must require

XN
I¼0

CIMI ¼ 0;
XN
I¼0

CIM3
I ¼ 0; � � � ;

XN
I¼0

CIM2n−1
I ¼ 0:

ðB6Þ

Additionally, we must check the finiteness of the remaining
Λ-independent coefficients

α0 ¼
XN
I¼0

að0Þn CIsignðMIÞM2n
I ;

α1 ¼
XN
I¼0

að1Þn−1CIsignðMIÞM2n−2
I ; � � � ;

αn ¼
XN
I¼0

aðnÞ0 CIsignðMIÞ ðB7Þ

in both the topological and trivial phases, where we note

that aðkÞn−k ¼ ~Γð−nþ kþ 1
2
Þ, where ~Γ stands for analytic

continuation of the gamma function. Having done so, the
regulated anomaly polynomial is

26The explicit form of bk is difficult to compute in arbitrary
dimension in the presence of torsion.
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PðmÞ ¼
Xn
k¼0

αkðmÞbk: ðB8Þ

In order to see that the constraints in (B6) can be satisfied,
and that the coefficients fαkg are finite, we go back to the
lattice Dirac model in d ¼ 4n − 1. We will work with the
lattice Hamiltonian

H ¼
X
~k

c†~k

�
mþ μbw

�
4n − 2 − X4n−2

μ¼1

cosðkμÞ
�
γ4n−1

þ vF
X4n−2
μ¼1

sinðkμÞγμ
�
c~k: ðB9Þ

The Hamiltonian has 24n−2 Dirac points—the one at ~k ¼
ð0; 0; � � � ; 0Þ will be labeled by I ¼ 0 and interpreted as the
low-energy Dirac fermion, while the other fermions will be
labeled by I from 1 to 4n − 2 and interpreted as Pauli-
Villar’s regulator fermions. The fermions have a degenracy
of NI ¼ ð4n−2I Þ, parities CI ¼ ð−1ÞI , and masses
MI ¼ ðmþ 2IμbwÞ. Now in this model, all of the UV
constraints (B6) translate to

X4n−2
I¼0

CINI ¼ 0;
X4n−2
I¼0

CINII ¼ 0;

X4n−2
I¼0

CINII2 ¼ 0 � � � ;
X4n−2
I¼0

CINII2n−1 ¼ 0: ðB10Þ

These constraints are obviously satisfied on account of the
following identity:

X4n−2
I¼0

�
4n − 2

I

�
ð−1ÞIIk ¼

�
x
∂
∂x

�
k
ð1 − xÞ4n−2

				
x¼1

¼ 0;

∀ 0 ≤ k ≤ 2n − 1: ðB11Þ

Moving on to the finiteness of the coefficients (B7), we
have to deal with these separately for m < 0 and m > 0.
For m > 0, these are all zero (for n > 1) as a result of
identity (B11). On the other hand for m < 0, we get

αk ¼ −2m2n−2k ~Γ
�
−nþ kþ 1

2

�
: ðB12Þ

This proves that the parity-odd fermion effective action for
the lattice Dirac model is finite in arbitrary dimensions even
in the presence of torsion, provided we take into account
the contributions from spectator fermions.

APPENDIX C: ENERGY SPECTRA FOR
3þ 1-DIMENSIONAL WEYL

FERMIONS

1. Uð1Þ magnetic field

Let us consider the energy spectra of isolated Weyl
fermions in the presence of a uniform Uð1Þ magnetic field.
This result is well known but we recount it here to compare
it with the case of the torsional magnetic field. We take the
spatial geometry to be Σ3 ¼ R × S1 × S1, parametrized by
xi ¼ ðx1; x2; x3Þ respectively. TheUð1Þ gauge field is taken
to be A ¼ fðxÞdy. We chose the Weyl basis for gamma
matrices

γ0 ¼
�
0 1

1 0

�
; γi ¼

�
0 −σi
σi 0

�
; γ5 ¼

�−1 0

0 1

�
:

ðC1Þ
With this, the Dirac equation for the left and right modes

ψL ¼ 1−γ5
2

ψL, ψR ¼ 1þγ5

2
ψR becomes

ið∂0 − σið∂i þ iqAiÞÞψR ¼ 0;

ið∂0 þ σið∂i þ iqAiÞÞψL ¼ 0: ðC2Þ

Let us now concentrate on the left-hand modes, and we will
drop the L subscript from here on. If ψ is a zero mode of
∂0 þ σið∂i þ iqAiÞ, then so is ð∂0 − σið∂i þ iqAiÞÞψ
(because the Ai are time independent), and hence we try
to solve the second order equation27

ð∂2
0 − σið∂i þ iqAiÞσjð∂j þ iqAjÞÞψ ¼ 0: ðC3Þ

Using σiσj ¼ δij þ iϵijkσk and the fact that p2; p3 are good
quantum numbers, we find that energy eigenfunctions
must satisfy
�
−∂2

1 þ ðp2 þ qA2Þ2 þ p2
3 þ

q
2
ϵijkFijσ

k

�
ψ ¼ E2ψ :

ðC4Þ
Now let us consider the special case of a uniform

magnetic field. Choose A ¼ Bx1dx2 corresponding to a
uniform magnetic field B parallel to x3. Substituting into
Eq. (C4) we find�
−∂2

1 þ ðqBÞ2
�
x1 þ p2

qB

�
2

þ p2
3 þ qBσ3

�
ψ ¼ E2ψ

ðC5Þ
which is the simple harmonic oscillator equation with
frequency jqBj. The dispersion relations are (Fig. 8)

27Eventually, we should be careful to discard solutions of
ð∂0 − σið∂i þ iqAiÞÞψ ¼ 0.
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Eðl; p3; σ3Þ ¼ �
�
p2
3 þ 2jqBj

�
lþ 1

2

�
þ qBσ3

�
1=2

;

l ¼ 0; 1; 2;…; σ3 ¼ �1 ðC6Þ

and the wave functions are

ψðl; p3; σ3Þ ¼ Aleip3x3þip2x2e−jqBjx21=2Hl

×

� ffiffiffiffiffiffiffiffiffi
jqBj

p �
x1 þ p2

qB

��
jσ3i ðC7Þ

with Al ¼ 1
2ll! ðjqBjÞ1=4 being the normalization.

The solutions corresponding to l ¼ 0; σ3 ¼ −signðqBÞ
are the gapless modes Eðp3Þ ¼ �p3. But note that we still
need to eliminate the spurious solutions which satisfy
ði∂0 − iσið∂i þ iqAiÞÞψ ¼ 0, i.e.,

�
Eþ p3 ðp1 − ieBðx1 þ p2=qBÞÞ

p1 þ iqBðx1 þ p2=qBÞ E − p3

�

× ψðl; p3; σÞ ¼ 0: ðC8Þ

Thus, the E ¼ signðqBÞp3 mode gets eliminated, and we
are left with only one gapless branch

E ¼ −signðqBÞp3: ðC9Þ

The number of states for each p3 is given by jqΦBj
2π , which

comes from demanding − L1

2
< p2

qB < L1

2
; here ΦB is the

magnetic flux. If we had chosen to study the right-hand
chirality then −signðqBÞp3 would have been eliminated
and the remaining mode would be E ¼ þsignðqBÞp3.

2. Torsion magnetic field

Now set the Uð1Þ magnetic field to zero, and consider
the following coframe and its dual frame

e0 ¼ dt; e1 ¼ dx1; e2 ¼ dx2;

e3 ¼ dx3 þ fðx1Þdx2; e0 ¼ ∂0; e1 ¼ ∂1;

e2 ¼ ∂2 − fðx1Þ∂3; e3 ¼ ∂3: ðC10Þ

Wewill set the spin connection to zero for simplicity. In this
case, the above coframe is torsional with T3 ¼ de3 ¼
∂1fðx1Þdx1 ∧ dx2. The Dirac operator becomes

iD ¼ iðγ0∂0 þ γ1∂1 þ γ2ð∂2 − fðx1Þ∂3Þ þ γ3∂3Þ: ðC11Þ

For the left-hand Weyl fermions, the Dirac equation
reduces to

ið∂0 þ σ1∂1 þ σ2ð∂2 − fðx1Þ∂3Þ þ σ3∂3ÞψL ¼ 0; ðC12Þ

and since p2; p3 are good quantum numbers, we can write
the above as

ði∂0 þ iσ1∂1 − σ2ðp2 − fðx1Þp3Þ − σ3p3ÞψL ¼ 0:

ðC13Þ

We notice that this looks exactly like the Dirac equation
with a Uð1Þ gauge field A ¼ − p3

q fðx1Þdx2 ¼ − p3

q δe3 and
field strength F ¼ − p3

q T3. Thus (C4) becomes

�
−∂2

1 þ ðp2 − p3δe32Þ2 þ p2
3 − p3

2
ϵijkT3

ijσ
k

�
ψ ¼ E2ψ :

ðC14Þ

To understand the spectrum, we first notice that for p3 ¼ 0,
the spectrum is just Eðp1; p2; p3 ¼ 0Þ ¼ �ðp2

1 þ p2
2Þ1=2.

This must be the case because the p3 ¼ 0 mode is not
sensitive to translations/torsion. In order to proceed, we
choose fðx1Þ ¼ Cx1; this leads to a uniform torsion mag-
netic field T3 ¼ Cdx1 ∧ dx2. The spectrum for p3 ≠ 0 is
similar to the case of the uniform magnetic field (Fig. 9)

Eðl; p3; σ3Þ ¼ �
�
p2
3 þ 2jCp3j

�
lþ 1

2

�
− Cp3σ

3

�
1=2

l ¼ 0; 1; 2…; σ3 ¼ �1: ðC15Þ
Notice that for l ¼ 0; σ3 ¼ signðCp3Þ, the spectrum is
simply given by E ¼ �p3. But once again we have to be
careful to eliminate the spurious zero mode. This is delicate,
so let us work this out explicitly; the spurious mode satisfies
�

Eþ p3 p1 − iðp2 − Cp3x1Þ
p1 þ iðp2 − Cp3x1Þ E − p3

�
ψ ¼ 0:

ðC16Þ

FIG. 8 (color online). An illustration of the energy spectrum for
a left-hand Weyl fermion in the presence of a uniform back-
ground Uð1Þ magnetic field. The linear dispersing mode is the
zeroth Landau level and the gapped modes are higher Landau
levels (or bulk states). We have drawn a mass cutoff �jmj to
represent the energy at which the low-energy chiral modes begin
to couple with the bulk modes in the gapped topological insulator
and lose their chirality and boundary localization properties.
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We find that E ¼ −signðCp3Þp3 should be eliminated. Thus
the remaining gapless (p3 ≠ 0) mode is

E ¼ signðCp3Þp3; σ3 ¼ signðCp3Þ: ðC17Þ
The opposite chirality mode will have E ¼ −signðCp3Þp3;
σ3 ¼ −signðCp3Þ. This is different from the case of the
Uð1Þ magnetic field in two important ways. First, the

number of states for each p3 ≠ 0 is now given by jp3ΦT j
2π ,

where ΦT ¼ CL1L2 is the torsion magnetic flux. Second
the right-hand and left-hand fermions do not give rise to
1þ 1-dimensional fermion branches with a constant group
velocity. In fact, one chirality disperses upward and the other
chirality disperses downward. The fact that the association
between the different 1þ 1-dimensional branches and the
chirality is modified is exactly what gives rise to the torsional
contribution to the chiral anomaly.

APPENDIX D: DIMENSIONAL REDUCTION
OF CURVATURE TERMS

In Sec. VII, we performed the dimensional reduction from
the 4þ 1-dimensional topological insulator to the 3þ 1-
dimensional topological insulator. Here, we wish to dem-
onstrate the additional terms which arise due to curvature.
We recall the form of the geometry fields we employ,

ea ¼ badwþ ~eai dx
ie4 ¼ Ndwea ¼ ~eae4

¼ N−1ð∂w − ba ~eia∂iÞA ¼ Θdwþ ~Aidxiωa
b

¼ θabdwþ ~ωa
i;bdx

iωa
4 ¼ 0; ðD1Þ

where a ¼ 0; 1; 2; 3 and the intrinsic 3þ 1-dimensional
coframe, frame and connections are now labeled by a tilde.
For simplicity, we will take N to be constant.

Now we wish to compute the dimensional reduction of
the Levi-Civita Chern-Simons term, but this can be
straightforwardly done for the full torsional case as well.
We start by computing the dimensionally reduced Levi-
Civita connection. Using

ω
∘
AB ¼ 1

2
fdeAðeB; eCÞ − deBðeA; eCÞ − deCðeA; eBÞgeC

ðD2Þ
we find

ω
∘
ab ¼ ~ω

∘
ab þ K½ab�dw ðD3Þ

ω
∘
a4 ¼ − 1

N
KðacÞð~ec þ bcdwÞ ðD4Þ

and we have defined Kab,

Kac ¼ ð ~D
∘
baÞð~ecÞ ¼ ðdba þ ~ω

∘
adbdÞð~ecÞ: ðD5Þ

The Levi-Civita curvature 2-form is given by

R
∘
ab ¼ ~R

∘
ab þ ~D

∘
K½ab� ∧ dw − 1

N2
KðacÞKðbdÞð~ec þ bcdwÞ

∧ ð~ed þ bddwÞ ðD6Þ

R
∘
a4 ¼ − 1

N
ð ~D
∘
KðacÞ ∧ ~ec þ ~D

∘
ðKðacÞbcÞ ∧ dw

þ K½ac�dw ∧ KðcdÞ ~edÞ ðD7Þ

where we note that ~D
∘
Kab ¼ dKab þ ½ ~ω

∘
; K�ab.

Let us now proceed to computing the LC Chern-Simons
term in the effective action. Up to unimportant boundary
terms, we findI

F ∧ CS½ω∘ � ¼
I

F ∧ ðCS½ω∘ ab� þ 2ω
∘
a4 ∧ R

∘
4aÞ

¼ −dΘ ∧ CS½ ~ω
∘
� þ 2 ~F ∧ K½ab� ~R

∘
ba

− 2

N2
dΘ ∧ Ka ∧ ~D

∘
Ka

−
2

N2
KðacÞbc ~F ∧ ~D

∘
Ka

þ 1

N2
K½ab� ~F ∧ Ka ∧ Kb ðD8Þ

where we have introduced the 1-form Ka ¼ KðabÞ ~eb.
Note that up to terms of Oðb2Þ, we findI

F ∧ CS½ω∘ � ¼ −dΘ ∧ CS½ ~ω
∘
� þ ba ~ea ∧ dA

∘
2 þOðb2Þ

ðD9Þ
where A

∘
2 ¼ ð ~F ∧ ~R

∘
abÞð~ea; ~ebÞ, which is the result we

arrived at previously, albeit in the presence of torsion.

FIG. 9 (color online). An illustration of the energy spectrum for
a 3þ 1-dimensional left-hand Weyl fermion in the presence of a
uniform background torsion magnetic field. The downward
dispersing (blue) curve represents the zeroth Landau level while
the nonlinear (black) curves represent higher Landau levels as
given in Eq. (C15). This should be compared with the result for a
Uð1Þ magnetic field shown in Fig. 8.
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