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We examine the unitarity of a class of generalized Maxwell U(1) gauge theories in (2þ 1) dimensions
containing the pseudodifferential operator □1−α, for α ∈ ½0; 1Þ. We show that only QED3 and its
generalization known as pseudo-QED, for which α ¼ 0 and α ¼ 1=2, respectively, satisfy unitarity.
The latter plays an important role in the description of the electromagnetic interactions of charged particles
confined to a plane, such as in graphene or in heterojunctions displaying the quantum Hall effect. Possible
implications of our results on the role of unitarity in the framework of the AdS/CFT correspondence are
briefly pointed out at the end.
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I. INTRODUCTION

Unitarity is an important necessary condition for the
consistency of any quantum theory. Consider the time
evolution operator Uðt; 0Þ, defined as

jΨðtÞi ¼ Uðt; 0ÞjΨð0Þi; ð1Þ

where jΨðtÞi is the state vector at instant t. The unitarity
of the time-evolution operator, namely the property
U†U ¼ UU† ¼ I, where I is the identity operator, guar-
antees that the norm of the state vectors, chosen to be equal
to one, is preserved in time. Since the state vector can be
expanded in the eigenstates of any observable A, it follows
that its norm is equal to the sum of the probabilities for
the possible outcomes of any measurement of A. Unitarity
implies that this sum of probabilities remains equal to
one at any time, an essential condition for the probabi-
listic description of a system. For a time-independent
Hamiltonian, we have Uðt; 0Þ ¼ expð−iHtÞ. Unitarity then
implies that the Hamiltonian is a Hermitian operator and
therefore the energy eigenvalues are real. This property and
the conservation of the sum of probabilities are crucial
conditions for the stability of a quantum-mechanical
system [1].
Another consequence of the unitarity of the time-

evolution operator is that the scattering matrix, which
connects the asymptotic states after a scattering event to
the ones before it, must also be unitary. Assuming the
completeness of the asymptotic states, then it follows that
the S-matrix elements form a matrix representation of a
unitary scattering operator S ¼ 1þ iT. Unitarity of the S
operator, namely, S†S ¼ 1, implies

iðT† − TÞ ¼ T†T: ð2Þ
This relation leads to the optical theorem, which relates the
forward scattering amplitude to the total cross section of the
scatterer. A very convenient way of testing the consistency
of a theory is then provided by the optical theorem, which is
satisfied by unitary theories.
In this paper, we examine the unitarity of a class of

generalized Maxwell U(1) gauge theories in (2þ 1)
dimensions by using the optical theorem. For an appro-
priate choice of the gauge, the equations of motion for these
theories are □1−αAμ ¼ 0, for any α ∈ ½0; 1Þ. We show that
only the choices α ¼ 0 or α ¼ 1=2 corresponding, respec-
tively, to QED3 and the so-called pseudo-QED (PQED)
provide a self-consistent solution to the optical theorem.
Particularly, the choice α ¼ 1=2 is also consistent with
Huygens’ principle. The unitarity of PQED is first proven
at the tree level, and then for the interacting case.
The outline of this paper is as follows. In Sec. II we revise

PQED and propose its generalization to any α. In Sec. III we
show that onlyα ¼ 0 orα ¼ 1=2 are possible choices in order
to obtain a self-consistent solution of the optical theorem.
Both cases are considered at the tree level,with no source term
in the equation ofmotion. InSec. IVweuse the random-phase
approximation (RPA) approach to show that the version of
PQED used to describe the electronic interaction in graphene
is also unitary. In Sec. V we adopt perturbation theory up to
two loops to show that PQED is a unitary theory.

II. PQED AND ITS GENERALIZATIONS

A. The derivation of PQED

The discovery of condensed matter systems with physi-
cal properties that are essentially two-dimensional has
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fostered the investigation of (2þ 1)-dimensional theories,
which could appropriately describe them. Among these
we find the GaAs quantum wells exhibiting the quantum
Hall effect, the high-Tc cuprates and graphene [2]. In such
systems, a crucial issue is the description of the electronic
interaction, which naturally is electromagnetic (EM). For
this matter, one must consider that the interaction among
the electrons is usually mediated by a (spacially) three-
dimensional field in spite of the fact that the electron
kinematics is confined to a plane. For the sake of conven-
ience, simplicity and elegance, however, it is preferable to
provide a completely (2þ 1)-dimensional description of
the real electromagnetic interaction among the electrons.
This is achieved [3–6] by a theory, called pseudo-QED,
which was also used in the bosonization of the massless
Dirac field in (2þ 1) dimensions [7]. Dynamical mass
generation for massless electrons also was studied for this
model [8].
In this section, for the sake of completeness, we review

the main steps of the derivation contained in Ref. [3]. We
start from standard QED4, in (3þ 1) dimensions:

LQED ¼ −
1

4
FμνFμν − ejμ3þ1Aμ þ Lm; ð3Þ

where jμ3þ1 and Lm are, respectively, the electronic current
and kinetic Lagrangian. Aμ is the gauge field, and Fμν is the
usual field-strength tensor.
The electromagnetic field induces an effective current-

current interaction on the electrons, which is captured by
the functional (in Euclidean space)

ZQED½jμ3þ1� ¼ Z−1
0

Z
DAμ exp

�
−
Z

d4ξLQED

�
; ð4Þ

where ξ ¼ ðx; y; z; τÞ and Z0 is a normalization constant
which guarantees that Z½0� ¼ 1. The functional integration
above can be carried out by including a gauge fixing-term,
yielding

ZQED½jμ3þ1� ¼ exp

�
−
e2

2

Z
d4ξd4ξ0jμ3þ1ðξÞ

×Gμν
QEDðξ − ξ0Þjν3þ1ðξ0Þ

�
; ð5Þ

where Gμν
QED is the Euclidean propagator of the electro-

magnetic field, which is given by

Gμν
QEDðξ − ξ0Þ ¼ δμν

Z
d4k
ð2πÞ4

eik·ðξ−ξ0Þ

k2
þ gt; ð6Þ

where gt stands for “gauge-dependent terms.” These, by the
way, do not contribute for Eq. (5).
We now introduce the fact that the electrons are supposed

to move on a plane at z ¼ 0, thus forming a spacially

two-dimensional system. The electronic current, accord-
ingly, is given by

jμ3þ1ðξÞ ¼
�
jμðx; y; τÞδðzÞ; μ ¼ 0; 1; 2;

0; μ ¼ 3.
ð7Þ

Inserting Eq. (7) into Eq. (5) and integrating over z and z0,
we get

ZQED½jμ� ¼ exp

�
−
Z

d3ηd3η0jμðηÞ

× Gμν
QEDðη − η0; z ¼ z0 ¼ 0Þjνðη0Þ

�
; ð8Þ

where η ¼ ðx; y; τÞ and

Gμν
QEDðη − η0; z ¼ z0 ¼ 0Þ ¼ δμν

8π2jη − η0j2 þ gt: ð9Þ

The expression above is the four-dimensional QED
Euclidean propagator, calculated at z ¼ z0 ¼ 0.
Now comes a key step in our derivation. This is

the realization that Eq. (9) can be written as a three-
dimensional Fourier integral, namely

1

8π2jη − η0j2 ¼
Z

d3k3D
ð2πÞ3

eik3D·ðη−η0Þ

4
ffiffiffiffiffiffiffi
k23D

p ; ð10Þ

and this is the Euclidean propagator of PQED [3], corre-
sponding to the strictly (2þ 1)-dimensional Lagrangian

LPQED ¼ −
1

4
Fμν

�
4

ð−□Þ1=2
�
Fμν − ejμAμ þ Lm. ð11Þ

Inserting Eq. (9) and Eq. (10) into Eq. (8), we can
immediately realize that

ZQED½jμ� ¼ Z−1
0

Z
DAμ exp

�
−
Z

d3ηLPQED

�
: ð12Þ

The above derivation shows that all the electronic
properties determined by QED4, when projected on a plane
are described by a strictly (2þ 1)-dimensional theory,
namely PQED. In connection to this point, one could
argue whether PQED provides a description of the corre-
lation functions of QED4. The Aμ correlators are generated
by coupling an external source Jμ3þ1 in Eq. (4), namely

jμ3þ1 → jμ3þ1 þ Jμ3þ1;

and subsequently taking functional derivatives of ZQED

with respect to this source. Assuming it has the same
structure as the electronic current given by Eq. (7), it
follows that functional derivatives with respect to the
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(2þ 1)-dimensional external source taken in PQED will
generate the projected correlators, as it occurred with the
two-point function in Eq. (9).

B. Generalized PQED

We will consider here a class of theories in (2þ 1)
dimensions, which contain PQED and QED3 as particular
cases. These are given by

L ¼ −
1

4
Fμν

�
4

ð−□Þα
�
Fμν − ejμAμ þ Lm; ð13Þ

where 0 ≤ α < 1. For a proper choice of the gauge
condition, the U(1) vector field satisfies the equation

□
1−αAμ ¼ ejμ; ð14Þ

which is pseudodifferential for α ≠ 0. For α ¼ 0, the theory
above is just Maxwell QED3. In the previous section, we
have shown that the case α ¼ 1=2, namely PQED, is
relevant for the description of the electromagnetic inter-
actions of two-dimensional systems. In this case, Eq. (13)
provides a full description of the real electromagnetic
interaction for electrons confined on a plane [3].
In the above Lagrangian, the first term reads

FμνðηÞ
Z

d3η0
Z

d3k
ð2πÞ3

e−ik·ðη−η0Þ

ðk2Þα Fμνðη0Þ; ð15Þ

where k ¼ ðk;ωÞ (we excluded the index “3D” for sim-
plicity) and η ¼ ðr; τÞ. The nonlocality of the propagator is
a consequence of the dimensional reduction performed in
order to generate the (3þ 1)-dimensional propagator
within (2þ 1)-dimensional space. A similar fact occurs
when we integrate out parts of the system degrees of
freedom as, for instance, in the Caldeira-Leggett model for
dissipative quantum mechanics [9].
Nevertheless, in spite of being nonlocal, the theories

described by Eq. (13) do respect causality. Indeed, it has
been shown that the classic (retarded and advanced) Green
functions vanish outside of the light cone for any α, thus
preserving causality [5]. For the special case of α ¼ 1=2,
the classic Green functions reduce to a delta function on the
light-cone surface [5]. The interesting consequence of this
property is that the theory will obey Huygens’ principle in
this case [5,10], while QED3 does not obey it.
We see that the theories described by Eq. (13) satisfy

causality despite the apparent nonlocality, but it is not
a priori obvious whether they respect unitarity. In the
present work, we shall test the unitarity of those theories
through the application of the optical theorem.

III. UNITARITY AT TREE LEVEL

Let us investigate here the unitarity of the theories given
by Eq. (13) by considering the free Feynman propagator
(tree level) in connection to the optical theorem. We use the
Feynman prescription k2 → k2 þ iε in order to define the
gauge-field propagator corresponding to Eq. (13)

Gμν
F ðt; rÞ ¼ 1

4
PμνDFðt; rÞ; ð16Þ

where

Pμν ¼ gμν −
∂μ∂ν

□
2

ð17Þ

is the transverse projector, gμν is the Minkowski metric,
and DFðt; rÞ is the corresponding scalar propagator, in the
Minkowski space. Thus, we replace τ by t, and therefore we
have

DFðt; rÞ ¼
Z

dω
2π

Z
d2k
ð2πÞ2

e−iωteik·r

ðω2 − k2 þ iεÞ1−α : ð18Þ

This integral has been calculated in Ref. [5] (see
Appendix A therein), yielding

DFðt; rÞ ¼ −
Cα

ðt2 − r2 − iϵÞ1=2þα
; ð19Þ

where

Cα ¼
22α−1=2

ð2πÞ3=2
Γðαþ 1=2Þ
Γð1 − αÞ :

In order to probe the unitarity of the theories described
by Eq. (13), let us first consider the scalar field. Later on we
shall return to the vector-field case.
Taking the amplitude corresponding to the operator (2)

evaluated between states jii and jfi, which is written as
hijTjfi ¼ ð2πÞ3δ3ðki − kfÞDif and introducing a complete
set of intermediate states jxi on the rhs, the above unitarity
condition becomes

D�
if −Dif ¼ −i

X
x

Z
dΦð2πÞ3δ3ðki − kfÞðD�

ixDxfÞ;

ð20Þ

where dΦ is the phase-space factor, which is needed for
dimensional reasons and also to ensure that the sum over
the intermediate states corresponds to the identity. The
equation above is known as the generalized optical
theorem.
Now, for i → f, the amplitude Dii becomes the Feyman

propagator,
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Dii ¼ DFðt − t0; r − r0Þ

which is given by Eq. (19). Notice that, in the Heisenberg
picture DFðt − t0; r − r0Þ ¼ hr; tjr0; t0i.
The unitarity condition, therefore, would lead to the

equation

D�
Fðt; rÞ −DFðt; rÞ

¼ −i
Z

dΦð2πÞ3δ3ð0Þ
Z

dtx
2π

Z
d2rx
ð2πÞ2

×D�
Fðtx; rxÞDFðt − tx; r − rxÞ: ð21Þ

Our strategy to test unitarity of a given theory will be to
check whether the corresponding propagator satisfies the
optical theorem. For this purpose, we Fourier transform the
above equation to energy-momentum space,

D�
Fðω;kÞ −DFðω;kÞ ¼ −iT γD�

Fðω;kÞDFðω;kÞ; ð22Þ

where DFðω;kÞ is promptly obtained from Eq. (18). In the
above expression, we used the fact that the phase-space
integral combined with δ3ð0Þ yields T γ , where T is the
characteristic time of the system and γ ¼ −2ð1 − αÞ (see
Appendix A).
Defining χα ¼ ðω2 − k2 þ iεÞ1−α, we can write the

equation above as

2ImðχαÞ
χ�αχα

¼ T −2ð1−αÞ

χ�αχα
: ð23Þ

For unitarity to be respected, we must have

2ImðχαÞ ¼ T −2ð1−αÞ: ð24Þ

However, since the rhs is a constant, for the above condition
to be consistent, ImðχαÞmust also be a constant, in the limit
ε → 0. In other words, in that limit the lhs cannot be a
function of λ ¼ ω2 − k2 for Eq. (24) to be consistent.
In order to verify this condition, we introduce a polar

representation for χα, namely, χα ¼ ðρeiθÞ1−α, with ρ2ðλÞ ¼
λ2 þ ε2 and θðλÞ ¼ sin−1ðε=ρÞ. Then, we require that

d
dλ

ImðχαÞ ¼
d
dλ

ρ sin½ð1 − αÞθ� ¼ 0: ð25Þ

Calculating the derivative, we obtain

tan½θðλÞð1 − αÞ� ¼ tan½θðλÞ�; ð26Þ

which has an obvious solution α ¼ 0. Indeed, it is clear
that for this value of α, Imðχ0Þ ¼ ε and therefore it is
independent of λ.
A less obvious solution is α ¼ 1=2, which is valid

because in this case Eq. (26) admits a solution
θðλÞ ¼ 2π − ε, which is compatible with the definition

of θðλÞ. In this case, we also find Imðχ1=2Þ ¼ ε (see
Appendix B).
We conclude that, for the theories with α ¼ 0 and

α ¼ 1=2, the two sides of Eq. (23) would coincide con-
sistently by identifying 2ε with T −2. For other values of α,
ImðχαÞ would depend on λ and, therefore, we would not be
able to find a consistent solution of Eq. (24) satisfying the
generalized optical theorem.
The demonstrations provided above were meant for the

scalar theories associated with Eq. (13). The corresponding
results for the vector propagator (16) then, follow straight-
forwardly by making T −2ð1−αÞ=4 → T 0−2ð1−αÞ and from the
fact that the transverse projector has the property: P2 ¼ P.
We conclude that out of the class of theories described

by Eq. (13), only the ones with α ¼ 0 and α ¼ 1=2, namely
QED3 and PQED are unitary.

IV. UNITARITY OF PQED
IN THE RPA

Next, we consider PQED, the case for which α ¼ 1=2.
As we have seen, it describes the EM interaction of the
particles coupled to it. Having graphene in mind we
describe the electrons as massless Dirac fermions under-
going the EM interaction mediated by the gauge field Aμ.
The Lagrangian in this case reads [11]

L ¼ 1

4
Fμν

�
4ffiffiffiffiffiffiffiffi
−□

p
�
Fμν þ ψ̄ði∂ þ eγμAμÞψ ; ð27Þ

where e is the dimensionless coupling constant, ψ is the
Dirac field, and γμ are Dirac matrices which can be either
two- or four-dimensional, since we are in (2þ 1)
dimensions.
The corrections to the gauge-field propagator are

expressed in terms of the the vacuum polarization
ΠμνðpÞ. The one-loop expression for this has been
calculated in Ref. [12] and is given by

ΠμνðkÞ ¼
ffiffiffiffiffi
k2

p �
−
e2

16
Pμν þ

e2

2π

�
nþ 1

2

�
ϵμνα

kαffiffiffiffiffi
k2

p
�
; ð28Þ

where n is an integer. The result above is for two-
dimensional Dirac matrices.
According to Eq. (18), the free gauge-field propagator in

momentum space reads

G0;μνðkÞ ¼
1

4

PμνðkÞffiffiffiffiffi
k2

p : ð29Þ

We include the vacuum-polarization corrections by using
the RPA, where the corrected propagator is given by the
geometrical series
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Gμν ¼ G0;μα½δα;ν þ ΠαβG0;βν þ ΠαβG0;βσΠσγG0;γν þ � � ��:
ð30Þ

Because of the peculiar momentum dependence of the
vacuum-polarization tensor, the corrected propagator has
basically the same momentum dependence as the free one

GμνðkÞ ¼
1ffiffiffiffiffiffiffiffiffiffiffiffiffiffi

k2 þ iϵ
p

�
A1PμνðkÞ þ A2

ϵμναkαffiffiffiffiffi
k2

p
�
; ð31Þ

where A1 and A2 are constants depending on the coef-
ficients of the vacuum-polarization tensor. Note that we use
the Feynman prescription as we did before. Unitarity of the
theory is guaranteed provided the optical theorem (20) is
still respected.
The propagator above can be conveniently written as

GμνðkÞ ¼ CμνðkÞDFðkÞ; ð32Þ

where

CμνðkÞ ¼ A1PμνðkÞ þ A2

ϵμναkαffiffiffiffiffi
k2

p ; ð33Þ

with DFðkÞ given by Eq. (18) for α ¼ 1=2.
The optical theorem now reads

G�
μνðt; rÞ −Gμνðt; rÞ

¼ −i
Z

dΦð2πÞ3δ3ð0Þ
Z

dtx
2π

Z
d2rx
ð2πÞ2

×G�
μαðtx; rxÞGανðt − tx; r − rxÞ: ð34Þ

Next, we adopt the same strategy as for the noninteract-
ing case and perform a Fourier transform on both sides
of the above equation, again, considering that the Fourier
transform of a convolution is a product. We obtain

G�
μνðω;kÞ −Gμνðω;kÞ ¼ −iT −1G�

μαðω;kÞGανðω;kÞ:
ð35Þ

The lhs of Eq. (35) is given by

CμνðkÞ2iImðχ1=2Þ
½ðω2 − k2Þ2 þ ϵ2�1=2 ; ð36Þ

whereas the rhs of Eq. (35) reads

−iT −1CμαðkÞCανðkÞ
½ðω2 − k2Þ2 þ ϵ2�1=2 ; ð37Þ

where

C2
μνðkÞ ¼ ðA2

1 − A2
2ÞPμνðkÞ − 2A1A2

ϵμναkαffiffiffiffiffi
k2

p : ð38Þ

We now consider Eq. (36) and Eq. (37). Since both are
proportional to the operators PμνðkÞ and ϵμναkα=

ffiffiffiffiffi
k2

p
,

therefore, we have to compare the corresponding coeffi-
cients of both terms. Using the result of Appendix B, we
conclude that the optical theorem will be obeyed and
consequently, unitarity will be preserved, provided we
make the choices

ð2εÞ1=2 ¼ A2
1 − A2

2

2A1

T −1; ð39Þ

in the PμνðkÞ term and

ð2ε0Þ1=2 ¼ A1T −1; ð40Þ

in the ϵμναkα=
ffiffiffiffiffi
k2

p
term.

This concludes our proof of the unitarity of PQED of
massless electrons in the RPA.

V. BEYOND THE RPA

Within the RPA, the one-loop expression for the
vacuum-polarization tensor, Eq. (28) is used in the geo-
metrical series that corrects the free propagator of the
gauge field. This approach can be improved by adding the
two-loop correction for the vacuum-polarization tensor, as
calculated by Teber [4],

Πð2Þ
μν ðkÞ ¼ −

ffiffiffiffiffi
k2

p

16

�
92 − 9π2

18π

�
αgPμν; ð41Þ

where αg ≈ 300=137 ¼ 2.189 is the fine-structure constant
of graphene. Considering that ð92 − 9π2Þ=18π ≈ 0.056, we
see that the two-loop correction is sensible. There is no
correction to the Chern-Simon term due the Coleman-Hill
theorem [13].
Observe that, remarkably, the two-loop correction has

precisely the same functional dependence as the one-loop
one. As a consequence, the only effect of the two-loop
correction to the vacuum polarization is to redefine the
constant A1 in Eq. (31). Therefore, it immediately follows
that the optical theorem, and consequently, unitarity are
respected in the two-loop extension of the RPA.

VI. CONCLUSIONS

We have tested the unitarity of a class of field theories in
2þ 1 dimensions containing fractional powers (1 − α) of
the d’Alembertian operator, which despite being nonlocal,
respect causality. QED3 and PQED are particular cases,
respectively, with α ¼ 0 and α ¼ 1=2.
Our strategy is to verify whether the propagator satisfies

the optical theorem. We first considered the free propagator
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for generic α and showed that only when α ¼ 0 and
α ¼ 1=2, namely, for QED3 and PQED, unitarity is
respected.
We then considered the case of PQED coupled to

massless Dirac fermions, which is the model for graphene.
We have shown that the propagator corrected both within
the RPA and in its two-loop extension satisfies the optical
theorem, and hence unitarity is preserved in both cases.
The fact that unitarity holds only for two theories among

the ones studied here, namely, PQED and QED3 may have
far-reaching consequences. Since the former is a conformal
invariant gauge theory in 2þ 1 dimensions, it is conceiv-
ably related to a gravity theory with an anti–de Sitter
solution in 3þ 1 dimensions, in the framework of the AdS/
CFT correspondence. QED3, conversely, is not conformal
invariant. Within this approach, therefore, it could be
somehow related to the conformal anomaly [14]. We shall
explore these ideas elsewhere.
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APPENDIX A: THE PHASE-SPACE FACTOR

Here we are going to determine the phase-space factor [1].
Let us consider Eq. (21) and write

Z
dΦð2πÞ3δ3ð0Þ≡ T γ; ðA1Þ

where T is the characteristic time scale of the system.
For dimensional reasons, we have γ þ 3 ¼ 2ðαþ 1=2Þ
and consequently γ ¼ −2ð1 − αÞ. This justifies the γ
dependence in Eq. (22).

APPENDIX B: THE Imðχ αÞ
Let us show here that, for α ¼ 0; 1=2, indeed, the

expression of ImðχαÞ relevant for the optical theorem, is
given by ε; ε1=2, respectively, and therefore just depends
on ε.
Using χα ≡ ðω2 − k2 þ iεÞ1−α, we have, for α ¼ 0,

χ0 ¼ ðω2 − k2 þ iεÞ and evidently Imðχ0Þ ¼ ε ∝ T −2.
For the case α ¼ 1=2, notice that the condition for the

optical theorem to be satisfied is

2Imðχ1=2Þ
½ðω2 − k2Þ2 þ ε2�1=2 ¼

KT −1

½ðω2 − k2Þ2 þ ε2�1=2 ; ðB1Þ

for some dimensionless constant K. Squaring this equation
and multiplying both the numerators by ε, we obtain that
both sides are proportional to δðω2 − k2Þ. As a conse-
quence, we must equate the numerators at ω2 − k2 ¼ 0,
namely,

2Imðχ1=2Þjω2¼k2 ¼ ð2εÞ1=2 ¼ KT −1; ðB2Þ

which completes the proof for α ¼ 1=2.
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