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When global symmetries are spontaneously broken in supersymmetric vacua, there appear quasi-
Nambu-Goldstone (NG) fermions as superpartners of NG bosons. In addition to these, there can appear
quasi-NG bosons in general. The quasi-NG bosons and fermions together with the NG bosons are

organized into chiral multiplets. Kdhler potentials of low-energy effective theories were constructed some
years ago as supersymmetric nonlinear realizations. It is known that higher-derivative terms in the
superfield formalism often encounter the auxiliary field problem; the auxiliary fields that accompanied with
space-time derivatives and cannot be eliminated. In this paper, we construct higher-derivative corrections to
supersymmetric nonlinear realizations in the off-shell superfield formalism free from the auxiliary field
problem. As an example, we present the manifestly supersymmetric chiral Lagrangian.
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I. INTRODUCTION

Low-energy field theories can be described by only light
fields when one integrates out massive particles above the
scale which one considers. In particular, when a global
symmetry of a Lagrangian or Hamiltonian is spontaneously
broken in the ground state or vacuum, there appear Nambu-
Goldstone (NG) bosons as massless scalar fields. The low-
energy dynamics of these NG bosons is solely determined
from the symmetry argument. When a symmetry group G is
spontaneously broken down to its subgroup H, the low-
energy dynamics is governed by a nonlinear sigma model
whose target space is the coset space G/H [1]. A prime
example is the chiral Lagrangian of pions which appear as
NG bosons when the chiral symmetry of QCD is sponta-
neously broken. Low-energy effective theories are usually
expanded by the number of space-time derivatives, thereby
they inevitably contain higher-derivative corrections. It is
known that the chiral perturbation theory includes deriva-
tive corrections to the chiral Lagrangian [2].

On the other hand, supersymmetry plays important roles
to control quantum corrections in field theories and
determines the exact low-energy dynamics [3]. It is also
a necessary ingredient to define consistent string theories. It
was also proposed as the most promising candidate to solve
the naturalness problem in the Standard Model. Among
other things, when a global symmetry is spontaneously
broken in supersymmetric vacua, there appear quasi-NG
fermions [4] in addition to the NG bosons. They are
required to form chiral supermultiplets as superpartners
of NG bosons. In model building of particle physics,

fnitta@phys—h.keio.ac.jp
'shin-s @kitasato-u.ac.jp

1550-7998,/2014,/90(10)/105002(13)

105002-1

PACS numbers: 12.39.Fe, 11.30.Pb

quasi-NG fermions were identified as quarks in super-
symmetric preon models [5]. The target spaces of super-
symmetric nonlinear sigma models must be Kéhler [6]
because the lowest components of chiral superfields are
complex scalar fields. When a coset space G/H is
eventually Kéhler, there are no additional massless fields.
However, G/H is not Kihler in general, and in that case,
there must appear quasi-NG bosons [7] in addition to the
NG bosons, to parametrize a Kédhler manifold. In this case,
target spaces of low-energy effective theories are enlarged
from G/H. In general, the problem to construct low-energy
effective theories of massless fields reduces to finding
G-invariant Kihler potentials. The most general framework
to construct G-invariant Kihler potentials was provided as
supersymmetric nonlinear realizations [8]. The authors of
[8] classified NG supermultiplets into P type, containing
two NG bosons, and M type, containing one NG boson and
one quasi-NG boson. In one extreme class called a pure
realization, all supermultiplets are of P type and there are
no quasi-NG bosons, which is possible only when G/H
happens to be Kéhler. In this case, the most general
G-invariant Kihler potential up to Kéhler transformations
was constructed in Refs. [8,9] (see Ref. [10] as a review),
which is unique up to finite number of decay constants
(Kéhler class). This class was studied extensively in the
literature (see, e.g., Refs. [11] and references in Ref. [10]).
In the other extreme class called a maximal realization, all
supermultiplets are of M type so that there are the same
number of quasi-NG bosons with NG bosons. The target
manifold in this case is a cotangent bundle 7*(G/H),
whose cotangent directions are parametrized by quasi-NG
bosons. For instance, the chiral symmetry breaking belongs
to this class [12]. If there is at least one quasi-NG boson, the
effective Kéhler potential is an arbitrary function of strict G
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invariants [8]. Geometrically this arbitrariness corresponds
to a degree of freedom to deform noncompact directions of
the target space, which cannot be controlled by the isometry
G [12-15]. These directions are associated with the quasi-
NG bosons. It was proved that there must appear at least
one quasi-NG boson in the absence of gauge interactions
[16—-18]. When there is a gauge symmetry on the other
hand, pure realizations without quasi-NG bosons are
possible by absorbing M-type superfields by the super-
symmetric Higgs mechanism [19].

While the superfield formalism is one of the most
powerful off-shell formulations to construct manifestly
supersymmetric Lagrangians, it often encounters an aux-
iliary field problem when higher-derivative terms exist in
the Lagrangians. For example, chiral superfields with
space-time derivatives (e.g., 0,,$) contain derivatives on
the auxiliary fields F so that they cannot be eliminated by
their equations of motion. This problem was recognized
[20,21] for a supersymmetric extension of Wess-Zumino-
Witten (WZW) term [22] in the chiral Lagrangian of
supersymmetric QCD. A supersymmetric WZW term
proposed in Ref. [23] does not have this problem.
Supersymmetric Lagrangians free from the auxiliary field
problem were also known before, such as supersymmetric
Dirac-Born-Infeld action [24], supersymmetric higher-
derivative CP! models [25,26], supersymmetric baby
Skyrme models [27,28] and supersymmetric k-field theo-
ries [29,30]. The most general model of chiral superfields
with higher-derivative terms was recently presented in
Ref. [31], where it was called a supersymmetric P(X, @)
model. The higher-derivative interaction can be written
by using a target space tensor with two holomorphic and
two antiholomorphic indices which are both symmetric.
This term was first found in Ref. [32] as a quantum
correction term in a chiral model, and the supersymmetric
WZW term in Ref. [23] also contains it [33]. The model
in Ref. [31] was extended by the introduction of a
superpotential [34] and coupling to supergravity [35,36],
and was applied to the supersymmetric Galileon inflation
models [37] and the ghost condensation [38]. In our
previous paper [39], we have classified 1/2 and 1/4
Bogomol’nyi-Prasad-Sommerfield (BPS) equations for
domain walls, lumps, baby Skyrmions and domain wall
junctions. See also Ref. [40] for further study on baby
Skyrmions.

In this paper, we construct higher-derivative corrections
to supersymmetric nonlinear realizations for spontaneous
broken global symmetries with keeping supersymmetry.
As the leading two derivative terms for pure realizations
without quasi-NG bosons, we find that the higher-
derivative terms are unique up to constants. On the other
hand, higher-derivative terms contain arbitrary functions
in the presence of quasi-NG bosons. As one of the most
important examples, we discuss chiral symmetry breaking
in detail.
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This paper is organized as follows. In Sec. II, we give a
brief review on supersymmetric nonlinear realizations. In
Sec. III we discuss higher-derivative corrections to non-
linear realizations. In Sec. Il A, we introduce the super-
symmetric higher-derivative chiral model with four
supercharges. We write down the equation of motion for
the auxiliary fields and analyze the structure of the on-shell
Lagrangians. In Sec. III B, we discuss higher-derivative
corrections to pure realizations in the absence of quasi-NG
bosons, for which each massless chiral superfield contains
two NG bosons and there are no quasi-NG bosons. In
Secs. III C and III D, we discuss higher-derivative correc-
tions in the presence of quasi-NG bosons. In Sec. IV, we
discuss higher-derivative corrections for supersymmetric
chiral symmetry breaking, which is a maximal realization
where each massless chiral superfield contains one NG
boson and one quasi-NG boson. Section V is devoted to
conclusion and discussions. We use the notation of the
textbook of Wess and Bagger [41].

II. SUPERSYMMETRIC NONLINEAR
REALIZATIONS: A REVIEW

In this section, we review supersymmetric nonlinear
realizations formulated in Ref. [8].

A. Global symmetry breaking in
supersymmetric theories

When a global symmetry group G is spontaneously
broken down to its subgroup H, there appear massless
Nambu-Goldstone (NG) bosons associated with broken
generators of the coset manifold G/H. At low energies,
interactions among these massless particles are described by
the so-called nonlinear sigma models, whose Lagrangians in
the leading order of derivative expansions are completely
determined by the geometry of the target manifold G/H
parametrized by NG bosons as was found by Callan,
Coleman, Wess and Zumino [1].

In four-dimensional A/ =1 supersymmetric theories,
scalar fields belong to chiral superfields ®' (i = 1,...,N)
whose component expansion in the chiral base y" = x™ +
068 is

'(y,0) = ¢'(y) + Oy’ (y) + F'(y),  (2.1)
where ¢’ is the complex scalar field, y' is the Weyl fermion
and F' is the complex auxiliary field.

When a global symmetry is spontaneously broken in
supersymmetric vacua, there appear massless fermions
as supersymmetric partners of NG bosons [4]. These
massless fermions together with NG bosons are described
by chiral superfields. Since chiral superfields are complex,
the supersymmetric nonlinear sigma models are closely
related to the complex geometry; their target manifolds,
where fields variables take their values, must be Ké&hler
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manifolds [6]. If the coset manifold G/H itself happens to
be a Kihler manifold, both real and imaginary parts of the
scalar components of chiral superfields are NG bosons. If
G/H is not a Kéhler manifold, on the other hand, there is at
least one chiral superfield whose real or imaginary part is
not a NG boson. This additional massless boson is called
the quasi-NG boson [7].

We explain how quasi-NG bosons appear. The sponta-
neous symmetry breaking of a global symmetry G in
supersymmetric theories is caused by the superpotential
W: the chiral superfields acquire the vacuum expectation
values v = (¢) as a result of the F-term condition ‘éW 0.
Since the superpotential W is holomorphlc—namely, it
contains only chiral superfields—this condition is invariant
under the complex extension of G, namely, G¢. Hence, if
we define the complex isotropy group H(c G°) by'

A

Hv = v, Ho =0 (2.2)
the target space parametrized by NG and quasi-NG bosons
can be written as a complex coset space:

=G®/H. (2.3)

In general, H is larger than H®, and it is decomposed as

H =H @B, (2:4)
where B consists of non-Hermitian generators E € H and
is called (the subalgebra of) the Borel subalgebra in H [8].2
(i) As an example, let us consider a doublet ¢ =
(1, ¢2)T of G=SU(2) and suppose that they
acquire the vacuum expectation values v =(1,0)7.

Since the raising operator

1 , 0 1
0+:§(61+162)= 0 0

satisfies o, v = 0, it is the complex unbroken gen-
erator in . On the other hand, 03 and the lowering
operator 6_(= o) are the elements of the broken
generators in G© — H.

The coset representative can be written as

E(®) =exp(i®-Z)€G°/H, ZeG°—-H, (2.5)

'"We use the calligraphic font for a Lie algebra corresponding
to a Lie group.

’In the group level, H can be written as a semidirect product
of HC and the Borel subgroup B: H = H®AB. Here the symbol
A denotes a semidirect product. If there are two elements of
H, hb and W'D, where h,' € H® and b, b’ € B, their product
is defined as (hb)(W'D') = hi' (W'~ 'bh’)b’ = (hh')(b"b), where
b" = I~'bl e B [8]. It is, however, sufficient to consider only
the Lie algebra in this paper.
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where Z are complex broken generators and ¢ are NG
chiral superfields generated by them. There are two kinds
of broken generators: the hermitian broken generators X
and the non-Hermitian broken generators E:

G —H ={7Z} = {X,E}. (2.6)
The NG superfields ® corresponding to non-Hermitian and
Hermitian generators are called P-type (or nondoubled-
type) and M-type (or doubled-type) superfields, respec-
tively [8,16]. Note that there are as many non-Hermitian
broken generators E as non-Hermitian unbroken generators
E, since they are Hermitian conjugate to each other. On a
suitable basis, E and E can be written as off-diagonal lower
and upper half matrices, respectively.

(1) In the previous example where the representative of
GC/H is given by ¢ = expi(p303 + po_) - v, @3 is
an M-type and ¢ is a P-type superfield. The non-
Hermitian broken generator E = ¢_ written as a
lower half matrix is hermitian conjugate to the non-
Hermitian unbroken generator E = o written as a
upper half matrix.

The directions parametrized by quasi-NG bosons are
noncompact, whereas those of NG bosons are compact.3
The scalar components of the M-type superfields consist of
a quasi-NG boson in addition to a NG boson, whereas those
of the P-type superfields consist of two genuine NG
bosons. This can be understood as follows: note that, for
each non-Hermitian broken generator E, there is a non-
Hermitian unbroken generator E. Since the vacuum is
invariant under A, we can multiply the representative of
the coset manifold by an arbitrary element of A from the
right. Hence, for any P-type superfield ® generated by a
non-Hermitian generator E, there exists an element
exp(i®'E) € H such that

Ev=expi(---+PE+ )
=expi(---+PE+ ) exp(i®'E)v
=expi(--- + RPX| + IPX, + O(P?) +---)v, (2.7)

where we have used the Baker-Campbell-Hausdorff
formula and defined two hermitian broken generators
X, =E+E, X, =i(E—E). Here % and I denote real
and imaginary parts, respectively. Therefore two scalar
components of the P-type superfield parametrize compact
directions, and hence are considered NG bosons. On the
other hand, since any M-type superfield is generated by an
hermitian generator, there is no partner in H. Therefore its
imaginary part of scalar component parametrizes a

*We use the word “compactness” in the sense of topology. The
kinetic terms of quasi-NG bosons have the same sign as those of
NG bosons.
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noncompact direction, and hence is considered to be a
quasi-NG boson.

(1) In our previous example, we can rewrite it as
expi(@303 + RNeo, + J¢o,) - v by multiplying an
appropriate factor generated by o, for sufficiently
small |@3| and |p|. The NG bosons parametrizing
§* = SU(2) are RNes3, N, Ip, whereas Jp; is the
quasi-NG boson parametrizing the radius of S°.

As a notation, we write the number of chiral superfields

Ng parametrizing the target manifold as
where the numbers of the M-type and P-type superfields
are denoted by Ny and Np, respectively. The number of
quasi-NG bosons is*

Ng = Ny = 2dim¢(G/H) — dim(G/H)

= dim(G/H) — dim B. (2.9)
Hence if there is as large Borel subalgebra as the number of
NG bosons, dimB = dim(G/H), there is no quasi-NG
boson. This case is called the “pure realization” (total
pairing or nondoubling). On the other hand, if there is no
Borel subalgebra, dim B = 0, there appear as many quasi-
NG bosons as NG bosons. This case is called the “maximal
realization” (or full doubling). It is known that a pure
realization cannot occur in the model with a linear origin
without gauge symmetry [16—18]. It was shown in Ref. [16]
that a maximal realization occurs when a field belonging
to a real representation obtains a vacuum expectation value
or when NG boson part G/H brought by a vacuum
expectation value is a symmetric space. In the presence
of a gauge symmetry, pure realizations without quasi-NG
bosons are possible, since gauge fields absorb M-type
superfields as a consequence of the supersymmetric Higgs
mechanism [19].

B. G-invariant Kéahler potentials

The kinetic term in the effective Lagrangian is described
by the Kihler potential K(®, ®") of NG chiral superfields

L= / LOLOK(D, D7)

= —gi5(¢. #)0,9'0"@’ + (fermion terms),  (2.10)

where we have eliminated the auxiliary fields F' by its
equation of motion and g;; = %(%/K (¢, @) is the Kéhler
metric. Since the Kahler potential includes both chiral and
antichiral superfields, the symmetry group of the effective

theory is still G, but not its complexification. Hence our

4 . . . .
We use ‘dim¢’ for complex dimensions and ‘dim’ for real
dimensions.
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A

FIG. 1. The G-transformation law for &
goal is to construct G-invariant Kéhler potentials of

complex coset spaces G*/H. Here the G-invariance means

K(D,0")SK (P, 07) = K(®, ") + F(D, g) + F* (D7, g).
(2.11)

where F (F*) is a (anti)holomorphic function of ® (®7)
which depends on g € G. The latter two terms in Eq. (2.11)
disappear in the superspace integral f d*0.° Since the
redefinition of the Kihler potential by adding holomorphic
and antiholomorphic functions is called the Kihler trans-
formation, we denote that it is G invariant under a Kéhler
transformation or quasi-G invariant if F(®,g) exists
in Eq. (2.11).

First of all, we note that the transformation law under G
of the representative & of the complex coset G/ H is

e = geh™' (g, ),

where ﬁ_l(g, £) is a compensator to project g& onto the
coset representative (see Fig. 1).
Bando et al. constructed the following three types of
G-invariant Kéhler potentials called A, B, and C types [8].
A type. We prepare a representation (p, V) of G in the
representation space V. If there are H-invariant vectors v,,

(2.12)

A

p(H)v, = v,, (2.13)

the transformation law of the quantity p(&)v, under G is

P(&)va=p(&)v, = p(9)p(E)p(h " v, = p(g)p(€)v,.

Then, by using strict G invariants,

Xy = vap(ET &)y, (2.15)

SHere F (P, g) is called the cocycle function, which satisfies
the cocycle condition, F(®, ¢,9,) = F(¢,®P, g1) + F(®, g5).
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we can construct a G-invariant Kéhler potential

KA(®,07) = £(X,p), (2.16)
where f is an arbitrary real function of all possible G
invariants X .

B type. Tt is sufficient to consider the fundamental
representation [8], hence we do not write p for simplicity.
We need the projection matrices, which project a funda-
mental representation space onto an H-invariant subspace.
They satisfy the projection conditions,

Mo =g (2.17)

My =1na  n.Hn, = Hy,,

Define the projected determinant as

det,A = det(nAn + 1 — 1), (2.18)

where det, stands for the determinant in the projected
space. By using these, if we construct’

Kg(®,0%) = ¢, logdet, £'¢,

a

(2.19)

it is G invariant up to a Kéhler transformation:

log det,ing—% log det, &7¢
= log det, (n¢" &'n)
= logdet, (nh'"'£'¢h™"n)
= logdet, (nh"'n&'énh~"'n)
= log det, (nh™"nn& emh~"n)
= log det, £7¢ + log det, i + log det,A™™",  (2.20)

where the last two terms include only chiral and antichiral
superfields, respectively, and disappear in the superspace
integral f d*o. (2.17).7 Here we have used Eq. (2.17).

C type. Again, the fundamental representation is suffi-

cient [8]. We define [A],! = [7An 41 —n|~", where the

inverse is calculated in the projected space. The quantities
defined by8

P, =8, [f-rf];nli’]aé-‘- (221)

®This can be rewritten as [42], Ky = >, logdet'(&n,£"),
where det’ is a determinant except zero eigen values.

"Here the cocycle function F(®,g) = log det,,lf1 (9,E(9))
satisfies the cocycle condition.

¥The meaning of P, can be understood as follows [42]. Since
P, satisfies the properties

PZ:P,p P%{:Pav trPa:trr]a’ P“|<I’:0:’7a’

P, can be considered to be the transformation of 7, from the
origin ® =0 (or £ = 1) to ® # 0 in the manifold.

PHYSICAL REVIEW D 90, 105002 (2014)

transform under G as

PSP = Enlete] g
= g&h™ " nlph™ " E ER ] nh T E g
= g&n(nh™"n)[nh™" qn& Emh™" 0l (™" Tn)nét gt
= gén[h™"],(h~"], (& &), ")) T et gt

= gPg'. (2.22)

By noting the relations
PG = En,[E7E], (Ml Ena) [E7E], 08T = Py (2.23)
P, = (7], (na&'Ena)) = trn, = const,  (2.24)

a G-invariant Kédhler potential can be constructed as

Ko (®, ) = f(tr(P,P,), tr(P,P,P,),...),  (2.25)
where f is again an arbitrary real function and all the
indices a, b, c, ... are different.

III. HIGHER-DERIVATIVE CORRECTIONS

In this section we study higher-derivative corrections to
supersymmetric nonlinear realizations. In the first subsec-
tion, we present general higher-derivative chiral models
with multiple chiral superfields. In the second subsection,
we consider pure realizations described by B-type Kihler
potentials, for which each massless chiral superfield con-
tains two NG bosons. In the third and fourth subsections,
we consider A-and C-type Kihler potentials, respectively,
for which some chiral superfields are M-type superfields,
consisting of one quasi-NG boson and one genuine
NG boson.

A. Higher-derivative chiral models

We consider higher-derivative terms generated by
multiple chiral superfields ®; in which no dynamical
(propagating) auxiliary fields exist. The supersymmetric
higher-derivative term can be given by [27,28,31,39]

Lup. = 7¢ / d*ON57(®, ©7)D*® D, DD D @1,

(3.1)
Here the supercovariant derivatives are defined as

Déz = _i - iea(am)adam7

D —
a 06

= w + i(cm)a&édam,

(3.2)

where the sigma matrices are ¢ = (1,7) with the Pauli

matrices 7 = (¢!, 7%, 7%). Since the term D,® behaves as a

vector,
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) 8<I>’i
D, 't = .
ST

D,/ (3.3)
under field redefinition &' — ®”(®), A7 can be regarded as
a (2,2) Kihler tensor symmetric in holomorphic and anti-
holomorphic indices, whose components are functions of ®*
and ®'' (admitting space-time derivatives acting on them).

We write down the bosonic components of the
Lagrangian (3.1). The component expansion of the
N =1 chiral superfield in the x basis is

. _ . _ 1 - . .
D(x,0,0) = ¢' + i06M00,,¢' + ZGZQZDgo’ +0%F',

(3.4)
where only the bosonic components are presented. Then,
the bosonic component of the supercovariant derivatives of
®' can be calculated as
D*® D, ®kD, &1 Dipt!

= 160°0° (0,60 ¢})(0, 70" 7))
1 A A S
3 Ou FE + Fo,0) 09T F + FIorg))

+ F"FjF"Fq . (3.5)
Since the bosonic part of the right-hand side of (3.5)
saturates the Grassmann coordinate 6262, only the lowest
component of the tensor A;;; contributes to the bosonic
part of the Lagrangian. Therefore the bosonic part of the
Lagrangian (2.10) with the higher-derivative term (3.1) is
i amn  OW W
Ly, = g;7(—0,0'0"@p) + F'F)+—F +—F
b = 9i5(=0n¢' 0" §’ )+ 7 T om
+ Aik}'?((p’ @)[(am(piam(pk)(an{”jan@l)
— 0, Fomp/ F! + FIFIFFFT),

(3.6)

where we have introduced the superpotential W for general-
ity. The model is manifestly (off-shell) supersymmetric and
Kihler invariant provided that K and W are scalars and
A1 1s a tensor. The auxiliary fields F " do not have space-
time derivatives and consequently can be eliminated by the
following algebraic equation of motion,
: ok T i OW
' ' %
(3.7)

Since NG fields are all massless, we consider the
vanishing superpotential W = 0.”In this case, F' = 0 is a

°If we consider the spontaneously breaking of approximate
symmetries, a nonzero superpotential W that provides small mass
to the pseudo-NG modes is possible.
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solution to this equation, and the on-shell Lagrangian
becomes

Ly = —g;;0,0' 0" 9 + Ny51(0,,9'0"0*) (0,07 0"P).
(3.8)

We call this canonical branch. We note that the second term
in (3.8) contains more than the fourth order of space-time
derivatives for appropriate functions A;;;. We will dem-
onstrate an example of sixth-derivative terms in Sec. IV B.
In general, there are more solutions other than F' = 0,
although an explicit solution F' is not easy to find except
for one component field. Indeed, for single superfield
models, we have other on-shell branches associated
with solutions F' # 0 [28,39]. We call this noncanonical
branch. In the noncanonical branch, the ordinary kinetic
term with two space-time derivatives vanishes and the on-
shell Lagrangian consists of only four-derivative terms.
Although it is interesting, we do not consider this branch
because we are considering derivative expansions.

B. B type (pure realizations)

When there are no quasi-NG modes, it is called a pure
realization. This is possible only when G/H is eventually
Kihler. When there is a gauge symmetry, the pure reali-
zation without quasi-NG bosons is possible [19]. From the
Borel’s theorem, compact Kéhler coset spaces G/H can be
written as

G/H =G/[H,, x U(1)"] (3.9)
with H the semisimple subgroup in H and r = rankG—
rankH ;. [43]. In this case, there exists the isomorphism

G/H = G®/H. (3.10)
The most general G-invariant Kéhler potential (up to
Kihler transformations) was shown to be written solely
by B-type Kihler potentials and A and C types were shown
not to give independent Kéhler potentials [8—10].

Now we consider higher-derivative terms. In this case,
the problem is reduced to find G-invariant (2,2) tensors
A7 on the target manifold G/H. The G-transformation on
the fields are

5P = ki, (3.11)
where ki‘ (®) (A = 1,2, ...,dim G) are holomorphic Killing
vectors generated by the isometry G, preserving the metric
Lig;; = 0. The (2,2) tensors Ay;; for higher-derivative
term must be preserved by the isometry G: £ A;;; = 0.
Then, G-invariant four-derivative terms are given by
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1 . I
L® = T d*0N;51(®, ©7)D*® D, D* D, @ DO,
Mg = w199y + waRizia + waR iRy + wagiiRa

(3.12)

where R;; and R;; are the Riemann curvature and Ricci
form, respectively, brackets (...) imply symmetrization
over holomorphic and antiholomorphic indices, and
wyo3 are real constants. The scalar curvature R is also
invariant but it is just a constant for G/H. The explicit form
of the curvature tensor can be found in Ref. [44]. In some
cases, the terms in Eq. (3.12) are not independent. For
Einstein manifolds, R;; ~ g;; holds. For instance, rank one
cases (r = 1) belong to this class.

An important fact is that there are no strict G invariants,
unlike the case with quasi-NG bosons which we discuss in
the next subsections. This is the reason why higher-
derivative terms are uniquely determined up to constants.

As for derivative terms higher than four derivatives, one
uses the covariant derivatives of tensors such as Dgl_) R
For instance, a six-derivative term can be constructed as

1 . T
£ 16 d*0D,D;R770,,290"®™" D*® D, d*
x D@D ... (3.13)

C. A type

The Kihler potential of A type is given in Eq. (2.16).
There are two ways to construct G-invariant four-derivative
terms using the A-type invariants. The first way is a
geometrical method which is the same with pure realiza-
tions, and the second way is a group theoretical method.

In the first method, G-invariant four-derivative terms are
given by

1 . e

LW = 6 d*0N;51(®, ©7)D*® D, D* D, @7 DD,
N1 = wi1(Xap)9i59a) + w2 (Xap) Rz + w3(Xap) R (iR
+ wa(Xap)9(i7Ru) - (3.14)

Unlike the B-type case, w; 34 are arbitrary functions of
the strict G invariants X,;,. The scalar curvature R is a
function of X,, and is not included.

LW =
16

PHYSICAL REVIEW D 90, 105002 (2014)

Now we introduce the second method to construct
G-invariant four-derivative terms. Here we do not write
the representation p for simplicity. First, the Maurer-Cartan
one form on G*/H is given by

iElde = (E{((I))X, + w?(@)Ha)dq)i (3.15)

with the holomorphic vielbein E(®) and the holomorphic
connection w?(®). By using this expression, we calculate

Dy¢ = Da(I)laz‘f = lé(EzI((D)XI + a)?(q))Ha)Da(I)lv
(3.16)
Dy&v, = i(EX v, E}(P)D,P". (3.17)

Then, the supercovariant derivatives of the G invariants X,
given in Eq. (2.15) can be calculated to be

DoXop = (0a€EX ) E{()D 2" (3.18)
D DoX .y = (v,E1EX X 0,) EH®)EL(®) DD D, P (3.19)

D*DoXp = (0,X[E X)) EL(®@)E} (97) D, DD,
(3.20)

DyDX DD X g = (v, X1 EX 0,) (0. X} E EXgvy)
x El(®)EK(®)EY (D) EfL (D7)

x D*® D, ®*D,d D@, (3.21)
D,D*D*D X,
= (v, X)X} & EXk X 0, EL(®)EF (D) E} (97 EfE (D7)
x D®iD &k D, dTT DiDT, (3.22)

DD X Dy DX oy = (0, EXk X10,) (0, XX ENEvy)
x El(®)E(D)EY (OT)ES" (D7)

x D*® D, ®*D,®1 DS, (3.23)

By using these relations, four-derivative terms can be
given by

d4g[glllb (an)Do'chDaDaXab + ggde(an)DdDaXadeDaXcd + ggled(an)DaDaXadeDchd

+ gaCdef(an)DaXabDaXcdDdDdXef —+ ggdeef (an)DaDaXadeXcdDdXef

abcde = =5 abcdefagh = =0
+ g (X ) DX 0y Dy DX DX o 4 g5 (X ) DX 4y Do X cg DX o DX ]

(3.24)
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with arbitrary real functions gg”
read as

- of the G invariants X,,,. From this equation, the components of A

PHYSICAL REVIEW D 90, 105002 (2014)

ikj7 can be

Aikﬂ = [gtllb (an) (vaX}XzéTéxKXIUb) + gabcd(an)(v XTfT‘}::XIUb) (chzéfoXKUd)
+ G5 (X ) (02ETEX X1 03) (0. X5 X EVEDY) + G37 T (X ) (00T EX0) (1, ETEX 0) (0, XX} ETEW)
+ G2 (X o) (vaETEX X 10y) (0. X5ETE0) (0, X[ E V) + g2 (X o) (0aEFEX ) (0, X E EX g 0) (v, X} E E0 )

+ g5 (X ) (00T EX0,) (0,8 EX g v) (0, X 58 E0,) (v, X £ )] x EL(®)EF (D) EY (9 EH(®F).

Note that Eq. (3.25) contains the multiple functions labeled by ab...,

(3.25)

implying more general than Eq. (3.14).

Derivative terms higher than four derivatives can be constructed by using space-time derivative on X ,;,. For instance,

six-derivative terms can be constructed as

ﬁ( d49 Z Y hab mn D&D(}Dal)axah + hgprd (an )D&DaxahD(}Daxcd + hg,prd (an )D(lDaxuhD(’lD&Xcd

p=12

+ habcdef(

+ habcdef( mn)D"XabDanlXCdD&X"f]

with arbitrary functions kg% of the G invariants X,,, and
the extra derivative terms Y, (p = 1,2) defined by
Yl - amamxa’b/,

Y2 - 8mXa/b/8'"XCrd/. (327)

D. C type

Here, we discuss the construction of higher-derivative
terms from the C-type invariants. In the geometrical
method, G-invariant four-derivative terms are given by

1
L&) = 6 d*OA57(®, @) D*®' D & D, D DAPT,
ANyg1 = wi(te(PaPy), .. )99 + wa(tr(PaPy), . )R5q
+wi(tr(PPp), )RR
+wy(te(PyPy), ) g7 R)- (3.28)

As the A-type case, wy 34 are arbitrary functions of the
strict G invariants tr(P,P;), tr(P,P,P.) and so on.

In the group theoretical method, four-derivative terms
can be constructed from the C-type projectors P, and the

TABLE 1.

Four-derivative terms X, (D, D; P, Py, ..

N0 abcede I =0
)DaXabDaXcdDdDaXef + hs,p f(an)DaDaXabDézXcdDaXef

(3.26)

supercovariant derivatives D, and D® All possible
G-invariant terms X4 (D, D; P,, P,, ...) including P, and
two D’s and two D’s are summarized in Table I. These
terms are classified by the number of traces and the number
of P,, where each trace should contain more than two P,’s
with different a, b, c.... Then, the four-derivative term
constructed from the C type can be written as

1

L4 =
16

d*0 > gh, (r(PPy). ...)

Asa,b,...

X XA(D,D;P,, Py, ...), (3.29)

where X,(D,D;P,, P, ...) are the G-invariant four-
derivative terms given in Table I and ¢, are arbitrary
functions of the C-type G invariants tr(P.P,), tr(P.P,P,)
and so on.

This method can be generalized to derivative terms
higher than four derivatives. It can be achieved by allowing
g‘gbm to contain linear terms including space-time deriva-
tives or allowing X, to contain space-time derivatives. For
instance, six-derivative terms can be constructed as

.) constructed from the C-type invariants. The columns

denote the number of traces, and the lows denote the number of P,. Each trace contains more than two P,’s with

different a, b, c....

#P\#hr 1 2 3

2 tr(D*DoP,D;D*Py,) non non

3 tr(P,D*D,P,DsD“P,) non non

4 t(D*P,D,PyDyP,DPP,) tr(DP,D P, )tr(DyP,D¥P,) non
w(PD"DP, - P D,DP,) tw(D°P, Dy P, )tr(DyP, D P,)

105002-8
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1

L) — _—
16

d49{ >

p=12:Aa,b,...

PHYSICAL REVIEW D 90, 105002 (2014)

habs (e (P Py), .. (Y ,)Xa(D, D5 Py, Py, ..)

+ > {H(w(PPy). .. )x(Y,D*D,P,D;D?Py) + H3b (tr(P,Py). ...) (Y ,P,D"D,P, D DP,)

p=1.2a.b,...

+ HS o (t0(PoPy), ... )tw(Y ,DP,DyPyDyP D Py) + HY (t(PPy), .. )tr(Y ,P D Do Py, - P.DyD*Py)} + - -

with arbitrary functions hg{’l')" and HX{’/,“ of the C-type G
invariants, and the extra two-derivative terms Y, (p = 1,2)
given by

Yl - 8m8mPal, Y2 - 8mPu/amPh/. (331)
The dots in Eq. (3.30) imply multi-trace terms such as
tr(0,,PyD*D P, )tr(0" Py DyD*Py,) and so on.

IV. SUPERSYMMETRIC CHIRAL
SYMMETRY BREAKING

In this section, we show an explicit example of higher-
derivative interactions of quasi-NG bosons. We consider
higher-derivative corrections for supersymmetric chiral
symmetry breaking, which is a maximal realization with
each massless chiral superfield containing one NG boson
and one quasi-NG boson.

A. Supersymmetric chiral Lagrangian

Let us consider the chiral symmetry breaking

G=SU(N), xSUN)y > H=SU(N)_,x. (4.1)
The corresponding NG modes span the coset space
SU(N SU(N
Gp = SUNIL X SUWR _ oy (42

SU(N)Lir

We denote generators of the coset by T4, € SU(N). It was
shown in Ref. [16] that a vacuum expectation value
belonging to a real representation gives rise to the same
numbers of quasi-NG bosons and NG bosons, which is a
maximal realization. The chiral symmetry breaking belongs
to this class, and the total target space is

G®/H = SU(N)® = G¢/H® = SL(N,C) = T*SU(N).

(4.3)
The coset representative is written as
M = exp(i®*T,) € G°/H, (4.4)
where the NG superfields are in the form of
4 (y,0) = 74(y) + ic* (v) + 0w (y) + OOF (),  (4.5)

(3.30)

[
with NG bosons 7z, quasi-NG bosons ¢*, and quasi-NG
fermions y*.

The nonlinear transformation law of the NG super-
multiplets is

M — M = g Mg, (9, 9r) € SU(N) x SU(N)g.

(4.6)
From the transformation
MM — g MMy, (4.7)
the simplest Kéhler potential is found to be
Ko = fAr(MMY), (4.8)

where f is a constant. Therefore, the leading order of the
bosonic part of the Lagrangian in the derivative expansion
reads

Ly = —f2tr(9,,MO"M"), (4.9)
where M is the lowest component of the NG superfield
(4.4). However, the Kihler potential in Eq. (4.8) is not
general. In fact, the most general Kihler potential can be
written as [12,15]
K = f(oe(MM"), w[(MM")?], ..., w[(MMT)N=1])  (4.10)
with an arbitrary function of N — 1 variables. The physical
reason why we have an arbitrary function is the existence of
the quasi-NG bosons. Since the isometry of the target
manifold is G but not G, the target manifold is not
homogeneous. One can deform the shape of the target
manifold along the directions of the quasi-NG bosons, with
keeping the isometry G."

If we set all quasi-NG bosons to be zero [12,13]

U= M|, € SU(N), (4.11)

"°If one requires the Ricci-flat condition on the target mani-
fold, the arbitrary function is fixed. That is known as the Stenzel
metric. This is not the scope of this paper.
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we have usual chiral Lagrangian

L =—f2r(0,,U0"U") = —f2u(U0,,U)? (4.12)
with the decay constant f, determined from f.

One interesting feature of chiral symmetry breaking in
supersymmetric vacua is that the unbroken group H =
SU(N) ,r can be further broken to its subgroup due to the
vacuum expectation value of the quasi-NG bosons [12].
Some of quasi-NG bosons change to NG bosons at less
symmetric vacua [12,15]

B. Higher-derivative terms: Supersymmetric
chiral perturbation

Let us discuss possible higher-derivative terms for the
supersymmetric chiral Lagrangian. The simplest candidate
of a four-derivative term is

1

JoiS) ——
16

PHYSICAL REVIEW D 90, 105002 (2014)
cl T / d*0A;457(®, &) D*® D, D, BT D P!

= / d*0tw(D*MDyMD MDMT), (4.13)

where components of A;;; are determined from the right-
hand side. The bosonic part of this term is

L) = w(omM M9, M,M") (4.14)

in the canonical branch with F4 = 0.

However, Eq. (4.13) is not general. As in the leading
term, we have a freedom to deform the tensor along the
directions of the quasi-NG bosons. The most general
Lagrangian can be written as

d*0A;57(®, @) D*®' D, & D ;1 DA P

= / d“e[Nz:l FKae(MM), ..., a[(MMN ") a(D*MD M D MD*MT (MMT)¥)

k=1
N-1

+ 3 (MM, ... a[ (MM 1)) u(DMD M (MM )X (D MD M (MM*)')

k=1

(4.15)

with an arbitrary functions g% and g&' of N — 1 G invariants tr(MM"), ..., tr(MM¥)N=!. The bosonic part of this term is

N—1

£y =" gk (MM, . [ (MM )e(9" MO M0, MO, M (MM )¥)

k=1
N—1

+ Z AHa(MMY), ..., a[(MMTN "D (0"MO"MT (MM ™) )tr(9,,MO,MT(MMT)").

k=1

If we set all quasi-NG bosons to be zero as in Eq. (4.11),

MM |y =UU" =1y

and the bosonic part in the canonical branch with F4 = 0 becomes

(4.16)
(r[(MM")]| o = N), (4.17)
LYo = g1otr(0"UI"U0,,UD,U*) + gy otr(0" U U")ix(0,,UD, U") (4.18)

with ;o = >} ¢f(N,....N) and g, = ;cvz_:ll glzc'l(N,-'

.,N). One notes that the term tr(9"Ud,,UT0"UD,U") or

tr(0"UD,,UNr(9"UD,UT) is not allowed as a bosonic part of the supersymmetric Lagrangian.
Next, let us construct six-derivative terms. They can be written as

N—1
£6) = / d*o {Z R (e(MMY), .. ) (0,,MO"MTD*M D MTD MD*M (MM™)*)
k=1

=

—1

+ R& (e(MMT), .. )t(9,,MO"MTD*MD oM (MM)*)tr (D MD*MT(MM™)")

~
> =
Tl

LN

-
ks
o~
~
Il

j=1

WY (e (MM, .. )te(0,,MO" Mt (MM')¥)tr(D*M DM (MM )tr (D MD*M' (MM')T) + - - -

(4.19)
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1 G invariants tr(MM?"), ...,

with arbitrary functions A%, k4!, hkl’ of N —

PHYSICAL REVIEW D 90, 105002 (2014)
tr(MM7)N=!. The dots in Eq. (4.19) imply multi-

trace terms such as tr(DaMamMTDaMDdM*(MM"")k)tr(amMDdM*(MM"")Z) and tr(0,,MD M D*MD*M" (MM")*)x

tr(D,MO"™M"(MM")"). The bosonic part of this term is

Y =3 {h (tr(MM?), .. )te(0,,MO" M 0" Mo° M 0,M,M* (MM*)X)
k=1
N—

+ Z hA (MM, ..

+ h"” tr(MM?)

If we set all quasi-NG bosons to be zero, these terms
reduce to

L), _o=hy otr(8,UIUTO"U°UD,U0,U")
+ Iy otr (9, UG U 0" UD, U e (9,U0°U™)
I otr(9, U™ UM (97U, Ut (9, U° U
o (4.21)

with Ay g = Zi\/:_ll h]f(N N), hyo= Z;(VI 11 hk I(Nv -++,N)
and hyo = N1 KSY(N,--- N).

We can construct the eight- or higher-derivative terms in
the same way.

V. CONCLUSION AND DISCUSSIONS

In this paper we have constructed higher-derivative
correction terms for massless NG and quasi-NG bosons
and fermions in the manifestly supersymmetric off-shell
formalism. In general, when a global symmetry is broken in
supersymmetric vacua, massless quasi-NG bosons and
fermions appear. Low-energy effective theories are gov-
erned by supersymmetric nonlinear sigma models of the NG
and quasi-NG fields. The number of the quasi-NG fields
is determined by the structure of the coset group G/ H. The
G-invariant Kéhler potentials of the nonlinear sigma models
are classified into A, B, and C types. We have shown the
G-invariant quantities and examples of Kihler potentials.

In superfield formalism, the higher-derivative term in the
chiral model is given by a (2,2) Kihler tensor A;;;
symmetric in holomorphic and antiholomorphic indices,
whose components are functions of the chiral superfields
®'. By using this formalism we have constructed higher-
derivative corrections to supersymmetric nonlinear realiza-
tions. The tensors A, ;7 are constructed by the G-invariant
Kihler metrics in the A, B, and C types. Remarkably, in the
A and C types, the tensors A, ;7 include degrees of freedom
for the strict G-invariant quantities X, and tr(P,P, - -).
For the B type, this is the pure realization, and there are no
quasi-NG modes. We have found that the higher-derivative

(D, MO M (MM )t (8" MO, M (MM

e (0,,MO"MTO"MO,M" (MM )*)tr(9,M°MT(MM™)")

I (0,M°MT(MM))| +---.  (4.20)

|

terms are unique up to constants. For the A and C types, there
are quasi-NG modes and higher-derivative terms contain
arbitrary functions which depends on the strict G invariants.
We have also constructed the higher-derivative terms in
purely group theoretical manners. As a practical example,
we have further studied the case of chiral symmetry breaking
in more detail.

Several discussions are addressed here.

In this paper, we have studied spontaneous breaking of
exact symmetry leading to exactly massless NG bosons and
quasi-NG bosons (fermions). For approximate symmetry,
an explicit breaking term should be introduced which give
NG bosons masses. Consequently, they become pseudo NG
bosons, such as pions for the chiral symmetry breaking. In
supersymmetric theory, a symmetry breaking potential term
can be introduced by the superpotential W. The introduc-
tion of the superpotential can be treated perturbatively,
which was done at least for single component cases [34,39].

As for another future work, the inclusion of the super-
symmetric WZW term [23,33] should be discussed for
supersymmetric chiral perturbation theory. For supersym-
metric chiral perturbation theory with general target
spaces, Kdhler normal coordinates [45] should be useful
as in Ref. [33].

A BPS Skyrme model was discovered some years back
[46], which consists of only the sixth-order higher-derivative
term as well as appropriate potentials. Our result should be
useful to investigate supersymmetric version of this model.

In this paper, we have considered the canonical branch
with F = 0 for solutions to the auxiliary field equations. It
is known for the CP' model that there is also a nonca-
nonical branch with F' # 0 [28,39]. While the usual kinetic
term disappears in this case, the theory admits a baby
Skyrmion [28], which was shown to be a 1/4 BPS state
[39]. Investigating noncanonical branches and 1/4 BPS
baby Skyrmions for general Kihler G/H are one of
interesting future directions.

The supersymmetric CPY~' model with four super-
charges also appears as the world-volume effective action
of a BPS non-Abelian vortex in N/ = 2 supersymmetric
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U(N) gauge theory with N hypermultiplets in the funda-
mental representation [47]. Higher-derivative corrections to
the effective action were calculated in Ref. [48]. It was
shown that 1,/2 BPS lumps (sigma model instantons) are not
modified in the presence of higher-derivative terms [39,48].
This should be so because a composite state of lumps inside
anon-Abelian vortex is a 1 /4 BPS state and it is nothing but a
Yang-Mills instanton in the bulk point of view [49]. See
Refs. [50-52] for a review of BPS composite solitons.

As this regards, some other Kihler G/H manifolds are
realized on a vortex in supersymmetric gauge theories with
gauge groups G [53]. In particular, the cases of G =
SO(N),USp(N) were studied in detail [54]. Therefore,
1/2 BPS lumps in sigma models on Kihler G/H with
higher-derivative terms describe instantons in gauge theo-
ries with gauge group G. It should be checked whether
higher-derivative corrections for lumps in these cases are
canceled out.

The supersymmetric chiral Lagrangian studied in Sec. [V
also appears as the effective theory on BPS non-Abelian

PHYSICAL REVIEW D 90, 105002 (2014)

domain walls in A/ =2 supersymmetric U(N) gauge
theories with 2N hypermultiplets in the fundamental
representation with mass £m [55]. A four-derivative
correction was partly derived in Ref. [56].

A general framework of a superfield formulation of
the effective theories on BPS soliton world-volumes
with four supercharges was formulated in Ref. [57]. This
should be generalized to the case with higher-derivative
corrections.
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