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When global symmetries are spontaneously broken in supersymmetric vacua, there appear quasi-
Nambu-Goldstone (NG) fermions as superpartners of NG bosons. In addition to these, there can appear
quasi-NG bosons in general. The quasi-NG bosons and fermions together with the NG bosons are
organized into chiral multiplets. Kähler potentials of low-energy effective theories were constructed some
years ago as supersymmetric nonlinear realizations. It is known that higher-derivative terms in the
superfield formalism often encounter the auxiliary field problem; the auxiliary fields that accompanied with
space-time derivatives and cannot be eliminated. In this paper, we construct higher-derivative corrections to
supersymmetric nonlinear realizations in the off-shell superfield formalism free from the auxiliary field
problem. As an example, we present the manifestly supersymmetric chiral Lagrangian.
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I. INTRODUCTION

Low-energy field theories can be described by only light
fields when one integrates out massive particles above the
scale which one considers. In particular, when a global
symmetry of a Lagrangian or Hamiltonian is spontaneously
broken in the ground state or vacuum, there appear Nambu-
Goldstone (NG) bosons as massless scalar fields. The low-
energy dynamics of these NG bosons is solely determined
from the symmetry argument. When a symmetry groupG is
spontaneously broken down to its subgroup H, the low-
energy dynamics is governed by a nonlinear sigma model
whose target space is the coset space G=H [1]. A prime
example is the chiral Lagrangian of pions which appear as
NG bosons when the chiral symmetry of QCD is sponta-
neously broken. Low-energy effective theories are usually
expanded by the number of space-time derivatives, thereby
they inevitably contain higher-derivative corrections. It is
known that the chiral perturbation theory includes deriva-
tive corrections to the chiral Lagrangian [2].
On the other hand, supersymmetry plays important roles

to control quantum corrections in field theories and
determines the exact low-energy dynamics [3]. It is also
a necessary ingredient to define consistent string theories. It
was also proposed as the most promising candidate to solve
the naturalness problem in the Standard Model. Among
other things, when a global symmetry is spontaneously
broken in supersymmetric vacua, there appear quasi-NG
fermions [4] in addition to the NG bosons. They are
required to form chiral supermultiplets as superpartners
of NG bosons. In model building of particle physics,

quasi-NG fermions were identified as quarks in super-
symmetric preon models [5]. The target spaces of super-
symmetric nonlinear sigma models must be Kähler [6]
because the lowest components of chiral superfields are
complex scalar fields. When a coset space G=H is
eventually Kähler, there are no additional massless fields.
However, G=H is not Kähler in general, and in that case,
there must appear quasi-NG bosons [7] in addition to the
NG bosons, to parametrize a Kähler manifold. In this case,
target spaces of low-energy effective theories are enlarged
from G=H. In general, the problem to construct low-energy
effective theories of massless fields reduces to finding
G-invariant Kähler potentials. The most general framework
to construct G-invariant Kähler potentials was provided as
supersymmetric nonlinear realizations [8]. The authors of
[8] classified NG supermultiplets into P type, containing
two NG bosons, andM type, containing one NG boson and
one quasi-NG boson. In one extreme class called a pure
realization, all supermultiplets are of P type and there are
no quasi-NG bosons, which is possible only when G=H
happens to be Kähler. In this case, the most general
G-invariant Kähler potential up to Kähler transformations
was constructed in Refs. [8,9] (see Ref. [10] as a review),
which is unique up to finite number of decay constants
(Kähler class). This class was studied extensively in the
literature (see, e.g., Refs. [11] and references in Ref. [10]).
In the other extreme class called a maximal realization, all
supermultiplets are of M type so that there are the same
number of quasi-NG bosons with NG bosons. The target
manifold in this case is a cotangent bundle T�ðG=HÞ,
whose cotangent directions are parametrized by quasi-NG
bosons. For instance, the chiral symmetry breaking belongs
to this class [12]. If there is at least one quasi-NG boson, the
effective Kähler potential is an arbitrary function of strict G
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invariants [8]. Geometrically this arbitrariness corresponds
to a degree of freedom to deform noncompact directions of
the target space, which cannot be controlled by the isometry
G [12–15]. These directions are associated with the quasi-
NG bosons. It was proved that there must appear at least
one quasi-NG boson in the absence of gauge interactions
[16–18]. When there is a gauge symmetry on the other
hand, pure realizations without quasi-NG bosons are
possible by absorbing M-type superfields by the super-
symmetric Higgs mechanism [19].
While the superfield formalism is one of the most

powerful off-shell formulations to construct manifestly
supersymmetric Lagrangians, it often encounters an aux-
iliary field problem when higher-derivative terms exist in
the Lagrangians. For example, chiral superfields with
space-time derivatives (e.g., ∂mΦ) contain derivatives on
the auxiliary fields F so that they cannot be eliminated by
their equations of motion. This problem was recognized
[20,21] for a supersymmetric extension of Wess-Zumino-
Witten (WZW) term [22] in the chiral Lagrangian of
supersymmetric QCD. A supersymmetric WZW term
proposed in Ref. [23] does not have this problem.
Supersymmetric Lagrangians free from the auxiliary field
problem were also known before, such as supersymmetric
Dirac-Born-Infeld action [24], supersymmetric higher-
derivative CP1 models [25,26], supersymmetric baby
Skyrme models [27,28] and supersymmetric k-field theo-
ries [29,30]. The most general model of chiral superfields
with higher-derivative terms was recently presented in
Ref. [31], where it was called a supersymmetric PðX;φÞ
model. The higher-derivative interaction can be written
by using a target space tensor with two holomorphic and
two antiholomorphic indices which are both symmetric.
This term was first found in Ref. [32] as a quantum
correction term in a chiral model, and the supersymmetric
WZW term in Ref. [23] also contains it [33]. The model
in Ref. [31] was extended by the introduction of a
superpotential [34] and coupling to supergravity [35,36],
and was applied to the supersymmetric Galileon inflation
models [37] and the ghost condensation [38]. In our
previous paper [39], we have classified 1=2 and 1=4
Bogomol’nyi-Prasad-Sommerfield (BPS) equations for
domain walls, lumps, baby Skyrmions and domain wall
junctions. See also Ref. [40] for further study on baby
Skyrmions.
In this paper, we construct higher-derivative corrections

to supersymmetric nonlinear realizations for spontaneous
broken global symmetries with keeping supersymmetry.
As the leading two derivative terms for pure realizations
without quasi-NG bosons, we find that the higher-
derivative terms are unique up to constants. On the other
hand, higher-derivative terms contain arbitrary functions
in the presence of quasi-NG bosons. As one of the most
important examples, we discuss chiral symmetry breaking
in detail.

This paper is organized as follows. In Sec. II, we give a
brief review on supersymmetric nonlinear realizations. In
Sec. III we discuss higher-derivative corrections to non-
linear realizations. In Sec. III A, we introduce the super-
symmetric higher-derivative chiral model with four
supercharges. We write down the equation of motion for
the auxiliary fields and analyze the structure of the on-shell
Lagrangians. In Sec. III B, we discuss higher-derivative
corrections to pure realizations in the absence of quasi-NG
bosons, for which each massless chiral superfield contains
two NG bosons and there are no quasi-NG bosons. In
Secs. III C and III D, we discuss higher-derivative correc-
tions in the presence of quasi-NG bosons. In Sec. IV, we
discuss higher-derivative corrections for supersymmetric
chiral symmetry breaking, which is a maximal realization
where each massless chiral superfield contains one NG
boson and one quasi-NG boson. Section V is devoted to
conclusion and discussions. We use the notation of the
textbook of Wess and Bagger [41].

II. SUPERSYMMETRIC NONLINEAR
REALIZATIONS: A REVIEW

In this section, we review supersymmetric nonlinear
realizations formulated in Ref. [8].

A. Global symmetry breaking in
supersymmetric theories

When a global symmetry group G is spontaneously
broken down to its subgroup H, there appear massless
Nambu-Goldstone (NG) bosons associated with broken
generators of the coset manifold G=H. At low energies,
interactions among thesemassless particles are described by
the so-called nonlinear sigmamodels, whose Lagrangians in
the leading order of derivative expansions are completely
determined by the geometry of the target manifold G=H
parametrized by NG bosons as was found by Callan,
Coleman, Wess and Zumino [1].
In four-dimensional N ¼ 1 supersymmetric theories,

scalar fields belong to chiral superfields Φi (i ¼ 1;…; N)
whose component expansion in the chiral base ym ¼ xm þ
iθσmθ̄ is

Φiðy; θÞ ¼ φiðyÞ þ θψ iðyÞ þ θ2FiðyÞ; ð2:1Þ

where φi is the complex scalar field, ψ i is the Weyl fermion
and Fi is the complex auxiliary field.
When a global symmetry is spontaneously broken in

supersymmetric vacua, there appear massless fermions ψ i

as supersymmetric partners of NG bosons [4]. These
massless fermions together with NG bosons are described
by chiral superfields. Since chiral superfields are complex,
the supersymmetric nonlinear sigma models are closely
related to the complex geometry; their target manifolds,
where fields variables take their values, must be Kähler
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manifolds [6]. If the coset manifold G=H itself happens to
be a Kähler manifold, both real and imaginary parts of the
scalar components of chiral superfields are NG bosons. If
G=H is not a Kähler manifold, on the other hand, there is at
least one chiral superfield whose real or imaginary part is
not a NG boson. This additional massless boson is called
the quasi-NG boson [7].
We explain how quasi-NG bosons appear. The sponta-

neous symmetry breaking of a global symmetry G in
supersymmetric theories is caused by the superpotential
W: the chiral superfields acquire the vacuum expectation
values v ¼ hφi as a result of the F-term condition ∂W

∂φ ¼ 0.
Since the superpotential W is holomorphic—namely, it
contains only chiral superfields—this condition is invariant
under the complex extension of G, namely, GC. Hence, if
we define the complex isotropy group Ĥð⊂ GCÞ by1

Ĥv ¼ v; Ĥv ¼ 0; ð2:2Þ

the target space parametrized by NG and quasi-NG bosons
can be written as a complex coset space:

M ≃GC=Ĥ: ð2:3Þ

In general, Ĥ is larger than HC, and it is decomposed as

Ĥ ¼ HC⊕B; ð2:4Þ

where B consists of non-Hermitian generators E ∈ Ĥ and
is called (the subalgebra of) the Borel subalgebra in Ĥ [8].2

(i) As an example, let us consider a doublet ϕ ¼
ðϕ1;ϕ2ÞT of G ¼ SUð2Þ and suppose that they
acquire the vacuum expectation values v¼ð1;0ÞT .
Since the raising operator

σþ ¼ 1

2
ðσ1 þ iσ2Þ ¼

�
0 1

0 0

�

satisfies σþv ¼ 0, it is the complex unbroken gen-
erator in Ĥ. On the other hand, σ3 and the lowering
operator σ−ð¼ σþ†Þ are the elements of the broken
generators in GC − Ĥ.

The coset representative can be written as

ξðΦÞ ¼ expðiΦ · ZÞ ∈ GC=Ĥ; Z ∈ GC − Ĥ; ð2:5Þ

where Z are complex broken generators and Φ are NG
chiral superfields generated by them. There are two kinds
of broken generators: the hermitian broken generators X
and the non-Hermitian broken generators Ē:

GC − Ĥ ¼ fZg ¼ fX; Ēg: ð2:6Þ

The NG superfields Φ corresponding to non-Hermitian and
Hermitian generators are called P-type (or nondoubled-
type) and M-type (or doubled-type) superfields, respec-
tively [8,16]. Note that there are as many non-Hermitian
broken generators Ē as non-Hermitian unbroken generators
E, since they are Hermitian conjugate to each other. On a
suitable basis, Ē and E can be written as off-diagonal lower
and upper half matrices, respectively.

(i) In the previous example where the representative of
GC=Ĥ is given by ϕ ¼ exp iðφ3σ3 þ φσ−Þ · v, φ3 is
an M-type and φ is a P-type superfield. The non-
Hermitian broken generator Ē ¼ σ− written as a
lower half matrix is hermitian conjugate to the non-
Hermitian unbroken generator E ¼ σþ written as a
upper half matrix.

The directions parametrized by quasi-NG bosons are
noncompact, whereas those of NG bosons are compact.3

The scalar components of theM-type superfields consist of
a quasi-NG boson in addition to a NG boson, whereas those
of the P-type superfields consist of two genuine NG
bosons. This can be understood as follows: note that, for
each non-Hermitian broken generator Ē, there is a non-
Hermitian unbroken generator E. Since the vacuum is
invariant under Ĥ, we can multiply the representative of
the coset manifold by an arbitrary element of Ĥ from the
right. Hence, for any P-type superfield Φ generated by a
non-Hermitian generator Ē, there exists an element
expðiΦ†EÞ ∈ Ĥ such that

ξv ¼ exp ið� � � þ ΦĒþ � � �Þv
¼ exp ið� � � þ ΦĒþ � � �Þ expðiΦ†EÞv
¼ exp ið� � � þℜΦX1 þ ℑΦX2 þOðΦ2Þ þ � � �Þv; ð2:7Þ

where we have used the Baker-Campbell-Hausdorff
formula and defined two hermitian broken generators
X1 ¼ Ēþ E;X2 ¼ iðĒ − EÞ. Here ℜ and ℑ denote real
and imaginary parts, respectively. Therefore two scalar
components of the P-type superfield parametrize compact
directions, and hence are considered NG bosons. On the
other hand, since any M-type superfield is generated by an
hermitian generator, there is no partner in Ĥ. Therefore its
imaginary part of scalar component parametrizes a

1We use the calligraphic font for a Lie algebra corresponding
to a Lie group.

2In the group level, Ĥ can be written as a semidirect product
of HC and the Borel subgroup B: Ĥ ¼ HC∧B. Here the symbol
∧ denotes a semidirect product. If there are two elements of
Ĥ, hb and h0b0, where h; h0 ∈ HC and b; b0 ∈ B, their product
is defined as ðhbÞðh0b0Þ ¼ hh0ðh0−1bh0Þb0 ¼ ðhh0Þðb00bÞ, where
b00 ¼ h0−1bh0 ∈ B [8]. It is, however, sufficient to consider only
the Lie algebra in this paper.

3We use the word “compactness” in the sense of topology. The
kinetic terms of quasi-NG bosons have the same sign as those of
NG bosons.
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noncompact direction, and hence is considered to be a
quasi-NG boson.

(i) In our previous example, we can rewrite it as
exp iðφ3σ3 þℜφσ1 þ ℑφσ2Þ · v by multiplying an
appropriate factor generated by σþ for sufficiently
small jφ3j and jφj. The NG bosons parametrizing
S3 ≃ SUð2Þ are ℜφ3;ℜφ;ℑφ, whereas ℑφ3 is the
quasi-NG boson parametrizing the radius of S3.

As a notation, we write the number of chiral superfields
NΦ parametrizing the target manifold as

NΦ ¼ NM þ NP; ð2:8Þ

where the numbers of the M-type and P-type superfields
are denoted by NM and NP, respectively. The number of
quasi-NG bosons is4

NQ ¼ NM ¼ 2 dimCðGC=ĤÞ − dimðG=HÞ
¼ dimðG=HÞ − dim B: ð2:9Þ

Hence if there is as large Borel subalgebra as the number of
NG bosons, dimB ¼ dimðG=HÞ, there is no quasi-NG
boson. This case is called the “pure realization” (total
pairing or nondoubling). On the other hand, if there is no
Borel subalgebra, dimB ¼ 0, there appear as many quasi-
NG bosons as NG bosons. This case is called the “maximal
realization” (or full doubling). It is known that a pure
realization cannot occur in the model with a linear origin
without gauge symmetry [16–18]. It was shown in Ref. [16]
that a maximal realization occurs when a field belonging
to a real representation obtains a vacuum expectation value
or when NG boson part G=H brought by a vacuum
expectation value is a symmetric space. In the presence
of a gauge symmetry, pure realizations without quasi-NG
bosons are possible, since gauge fields absorb M-type
superfields as a consequence of the supersymmetric Higgs
mechanism [19].

B. G-invariant Kähler potentials

The kinetic term in the effective Lagrangian is described
by the Kähler potential KðΦ;Φ†Þ of NG chiral superfields

L ¼
Z

d2θd2θ̄KðΦ;Φ†Þ

¼ −gij̄ðφ; φ̄Þ∂μφ
i∂μφ̄j̄ þ ðfermion termsÞ; ð2:10Þ

where we have eliminated the auxiliary fields Fi by its
equation of motion and gij̄ ≡ ∂

∂φi
∂
∂φ̄j̄ Kðφ; φ̄Þ is the Kähler

metric. Since the Kähler potential includes both chiral and
antichiral superfields, the symmetry group of the effective
theory is still G, but not its complexification. Hence our

goal is to construct G-invariant Kähler potentials of
complex coset spaces GC=Ĥ. Here the G-invariance means

KðΦ;Φ†Þ→g KðΦ0;Φ0†Þ ¼ KðΦ;Φ†Þ þFðΦ; gÞ þF�ðΦ†; gÞ;
ð2:11Þ

where F (F�) is a (anti)holomorphic function of Φ (Φ†)
which depends on g ∈ G. The latter two terms in Eq. (2.11)
disappear in the superspace integral

R
d4θ.5 Since the

redefinition of the Kähler potential by adding holomorphic
and antiholomorphic functions is called the Kähler trans-
formation, we denote that it is G invariant under a Kähler
transformation or quasi-G invariant if FðΦ; gÞ exists
in Eq. (2.11).
First of all, we note that the transformation law under G

of the representative ξ of the complex coset GC=Ĥ is

ξ→
g
ξ0 ¼ gξĥ−1ðg; ξÞ; ð2:12Þ

where ĥ−1ðg; ξÞ is a compensator to project gξ onto the
coset representative (see Fig. 1).
Bando et al. constructed the following three types of

G-invariant Kähler potentials called A, B, and C types [8].
A type. We prepare a representation ðρ; VÞ of G in the

representation space V. If there are Ĥ-invariant vectors va,

ρðĤÞva ¼ va; ð2:13Þ

the transformation law of the quantity ρðξÞva under G is

ρðξÞva→
g
ρðξ0Þva ¼ ρðgÞρðξÞρðĥ−1Þva ¼ ρðgÞρðξÞva:

ð2:14Þ

Then, by using strict G invariants,

Xab ≡ v†aρðξ†ξÞvb; ð2:15Þ

FIG. 1. The G-transformation law for ξ.

4We use ‘dimC’ for complex dimensions and ‘dim’ for real
dimensions.

5Here FðΦ; gÞ is called the cocycle function, which satisfies
the cocycle condition, FðΦ; g2g1Þ ¼ Fðg2Φ; g1Þ þ FðΦ; g2Þ.
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we can construct a G-invariant Kähler potential

KAðΦ;Φ†Þ ¼ fðXabÞ; ð2:16Þ

where f is an arbitrary real function of all possible G
invariants Xab.
B type. It is sufficient to consider the fundamental

representation [8], hence we do not write ρ for simplicity.
We need the projection matrices, which project a funda-
mental representation space onto an Ĥ-invariant subspace.
They satisfy the projection conditions,

η†a ¼ ηa; ηaĤηa ¼ Ĥηa; η2a ¼ ηa: ð2:17Þ

Define the projected determinant as

detηA≡ detðηAηþ 1 − ηÞ; ð2:18Þ

where detη stands for the determinant in the projected
space. By using these, if we construct6

KBðΦ;Φ†Þ ¼
X
a

ca log detηaξ
†ξ; ð2:19Þ

it is G invariant up to a Kähler transformation:

log detηξ†ξ→
g
log detηξ0†ξ0

¼ log detηðηξ0†ξ0ηÞ
¼ log detηðηĥ†−1ξ†ξĥ−1ηÞ
¼ log detηðηĥ†−1ηξ†ξηĥ−1ηÞ
¼ log detηðηĥ†−1ηηξ†ξηηĥ−1ηÞ
¼ log detηξ†ξþ log detηĥ

−1 þ log detηĥ
†−1; ð2:20Þ

where the last two terms include only chiral and antichiral
superfields, respectively, and disappear in the superspace
integral

R
d4θ. (2.17).7 Here we have used Eq. (2.17).

C type. Again, the fundamental representation is suffi-
cient [8]. We define ½A�−1η ≡ ½ηAηþ 1 − η�−1, where the
inverse is calculated in the projected space. The quantities
defined by8

Pa ¼ ξηa½ξ†ξ�−1ηa ηaξ† ð2:21Þ

transform under G as

P→
g
P0 ¼ ξ0η½ξ0†ξ0�−1η ηξ0†

¼ gξĥ−1η½ηĥ−1†ξ†ξĥ−1η�−1η ηĥ−1†ξ†g†

¼ gξηðηĥ−1ηÞ½ηĥ−1†ηηξ†ξηηĥ−1η�−1η ðηĥ−1†ηÞηξ†g†
¼ gξη½ĥ−1�ηð½ĥ−1†�η½ξ†ξ�η½ĥ−1�ηÞ−1η ½ĥ−1†�ηηξ†g†
¼ gPg†: ð2:22Þ

By noting the relations

P2
a ¼ ξηa½ξ†ξ�−1ηa ðηaξ†ξηaÞ½ξ†ξ�−1ηa ηaξ† ¼ Pa; ð2:23Þ

trPa ¼ trð½ξ†ξ�−1ηa ðηaξ†ξηaÞÞ ¼ trηa ¼ const; ð2:24Þ

a G-invariant Kähler potential can be constructed as

KCðΦ;Φ†Þ ¼ fðtrðPaPbÞ; trðPaPbPcÞ;…Þ; ð2:25Þ
where f is again an arbitrary real function and all the
indices a; b; c;… are different.

III. HIGHER-DERIVATIVE CORRECTIONS

In this section we study higher-derivative corrections to
supersymmetric nonlinear realizations. In the first subsec-
tion, we present general higher-derivative chiral models
with multiple chiral superfields. In the second subsection,
we consider pure realizations described by B-type Kähler
potentials, for which each massless chiral superfield con-
tains two NG bosons. In the third and fourth subsections,
we consider A-and C-type Kähler potentials, respectively,
for which some chiral superfields are M-type superfields,
consisting of one quasi-NG boson and one genuine
NG boson.

A. Higher-derivative chiral models

We consider higher-derivative terms generated by
multiple chiral superfields Φi in which no dynamical
(propagating) auxiliary fields exist. The supersymmetric
higher-derivative term can be given by [27,28,31,39]

LH:D: ¼
1

16

Z
d4θΛikj̄ l̄ðΦ;Φ†ÞDαΦiDαΦkD̄ _αΦ†j̄D̄ _αΦ†l̄:

ð3:1Þ
Here the supercovariant derivatives are defined as

Dα ¼
∂
∂θα þ iðσmÞα _αθ̄ _α∂m; D̄ _α ¼ − ∂

∂θ̄ _α
− iθαðσmÞα _α∂m;

ð3:2Þ
where the sigma matrices are σm ¼ ð1; ~τÞ with the Pauli
matrices ~τ ¼ ðτ1; τ2; τ3Þ. Since the term DαΦi behaves as a
vector,

6This can be rewritten as [42], KB ¼ P
a log det

0ðξηaξ†Þ,
where det0 is a determinant except zero eigen values.

7Here the cocycle function FðΦ; gÞ ¼ log detηĥ
−1ðg; ξðΦÞÞ

satisfies the cocycle condition.
8The meaning of Pa can be understood as follows [42]. Since

Pa satisfies the properties

P†
a ¼ Pa; P2

a ¼ Pa; trPa ¼ trηa; PajΦ¼0 ¼ ηa;

Pa can be considered to be the transformation of ηa from the
origin Φ ¼ 0 (or ξ ¼ 1) to Φ ≠ 0 in the manifold.
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DαΦ0i ¼ ∂Φ0i

∂Φj DαΦj; ð3:3Þ

under field redefinitionΦi → Φi0ðΦÞ,Λikj̄ l̄ canbe regarded as
a (2,2) Kähler tensor symmetric in holomorphic and anti-
holomorphic indices, whose components are functions of Φi

and Φ†ī (admitting space-time derivatives acting on them).
We write down the bosonic components of the

Lagrangian (3.1). The component expansion of the
N ¼ 1 chiral superfield in the x basis is

Φiðx; θ; θ̄Þ ¼ φi þ iθσmθ̄∂mφ
i þ 1

4
θ2θ̄2□φi þ θ2Fi;

ð3:4Þ
where only the bosonic components are presented. Then,
the bosonic component of the supercovariant derivatives of
Φi can be calculated as

DαΦiDαΦkD̄ _αΦ†j̄D̄ _αΦ†l̄

¼ 16θ2θ̄2
h
ð∂mφ

i∂mφkÞð∂mφ̄
j̄∂mφ̄l̄Þ

− 1

2
ð∂mφ

iFk þ Fi∂mφ
kÞð∂nφ̄j̄F̄l̄ þ F̄j̄∂nφ̄l̄Þ

þ FiF̄j̄FkF̄l̄
i
: ð3:5Þ

Since the bosonic part of the right-hand side of (3.5)
saturates the Grassmann coordinate θ2θ̄2, only the lowest
component of the tensor Λikj̄ l̄ contributes to the bosonic
part of the Lagrangian. Therefore the bosonic part of the
Lagrangian (2.10) with the higher-derivative term (3.1) is

Lb ¼ gij̄ð−∂mφ
i∂mφ̄j̄ þ FiF̄j̄Þ þ ∂W

∂φi F
i þ ∂W̄

∂φ̄j̄
F̄j̄

þ Λikj̄ l̄ðφ; φ̄Þ½ð∂mφ
i∂mφkÞð∂nφ̄

j̄∂nφ̄l̄Þ
− ∂mφ

iFk∂mφ̄j̄F̄l̄ þ FiF̄j̄FkF̄l̄�; ð3:6Þ
where we have introduced the superpotentialW for general-
ity. The model is manifestly (off-shell) supersymmetric and
Kähler invariant provided that K and W are scalars and
Λikj̄ l̄ is a tensor. The auxiliary fields Fi do not have space-
time derivatives and consequently can be eliminated by the
following algebraic equation of motion,

gij̄F
i − 2∂mφ

iFkΛikj̄ l̄∂mφ̄l̄ þ 2Λikj̄ l̄F
iFkF̄l̄ þ ∂W̄

∂φ̄j̄
¼ 0:

ð3:7Þ
Since NG fields are all massless, we consider the

vanishing superpotential W ¼ 0.9In this case, Fi ¼ 0 is a

solution to this equation, and the on-shell Lagrangian
becomes

Lb ¼ −gij̄∂mφ
i∂mφ̄j̄ þ Λikj̄ l̄ð∂mφ

i∂mφkÞð∂nφ̄
j̄∂nφ̄l̄Þ:

ð3:8Þ

We call this canonical branch. We note that the second term
in (3.8) contains more than the fourth order of space-time
derivatives for appropriate functions Λikj̄ l̄. We will dem-
onstrate an example of sixth-derivative terms in Sec. IV B.
In general, there are more solutions other than Fi ¼ 0,

although an explicit solution Fi is not easy to find except
for one component field. Indeed, for single superfield
models, we have other on-shell branches associated
with solutions Fi ≠ 0 [28,39]. We call this noncanonical
branch. In the noncanonical branch, the ordinary kinetic
term with two space-time derivatives vanishes and the on-
shell Lagrangian consists of only four-derivative terms.
Although it is interesting, we do not consider this branch
because we are considering derivative expansions.

B. B type (pure realizations)

When there are no quasi-NG modes, it is called a pure
realization. This is possible only when G=H is eventually
Kähler. When there is a gauge symmetry, the pure reali-
zation without quasi-NG bosons is possible [19]. From the
Borel’s theorem, compact Kähler coset spaces G=H can be
written as

G=H ¼ G=½Hs:s: ×Uð1Þr� ð3:9Þ

with Hs:s: the semisimple subgroup in H and r≡ rankG−
rankHs:s:. [43]. In this case, there exists the isomorphism

G=H ≃GC=Ĥ: ð3:10Þ

The most general G-invariant Kähler potential (up to
Kähler transformations) was shown to be written solely
by B-type Kähler potentials and A and C types were shown
not to give independent Kähler potentials [8–10].
Now we consider higher-derivative terms. In this case,

the problem is reduced to find G-invariant (2,2) tensors
Λikj̄ l̄ on the target manifoldG=H. TheG-transformation on
the fields are

δΦi
A ¼ kiA; ð3:11Þ

where kiAðΦÞ (A ¼ 1; 2;…; dimG) are holomorphic Killing
vectors generated by the isometry G, preserving the metric
Lkgij̄ ¼ 0. The (2,2) tensors Λikj̄ l̄ for higher-derivative
term must be preserved by the isometry G: LkΛikj̄ l̄ ¼ 0.
Then, G-invariant four-derivative terms are given by

9If we consider the spontaneously breaking of approximate
symmetries, a nonzero superpotentialW that provides small mass
to the pseudo-NG modes is possible.
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Lð4Þ ¼ 1

16

Z
d4θΛikj̄ l̄ðΦ;Φ†ÞDαΦiDαΦkD̄ _αΦ†j̄D̄ _αΦ†l̄;

Λikj̄ l̄ ¼ w1gðij̄gkl̄Þ þ w2Rij̄kl̄ þ w3Rðij̄Rkl̄Þ þ w4gðij̄Rkl̄Þ;

ð3:12Þ

where Rij̄kl̄ and Rij̄ are the Riemann curvature and Ricci
form, respectively, brackets (…) imply symmetrization
over holomorphic and antiholomorphic indices, and
w1;2;3 are real constants. The scalar curvature R is also
invariant but it is just a constant for G=H. The explicit form
of the curvature tensor can be found in Ref. [44]. In some
cases, the terms in Eq. (3.12) are not independent. For
Einstein manifolds, Rij̄ ∼ gij̄ holds. For instance, rank one
cases (r ¼ 1) belong to this class.
An important fact is that there are no strict G invariants,

unlike the case with quasi-NG bosons which we discuss in
the next subsections. This is the reason why higher-
derivative terms are uniquely determined up to constants.
As for derivative terms higher than four derivatives, one

uses the covariant derivatives of tensors such as DgD̄h̄Rij̄kl̄.
For instance, a six-derivative term can be constructed as

Lð6Þ ¼ 1

16

Z
d4θDgD̄h̄Rij̄kl̄∂mΦg∂mΦ†h̄DαΦiDαΦk

×D̄ _αΦ†j̄D̄ _αΦ†l̄þ��� : ð3:13Þ

C. A type

The Kähler potential of A type is given in Eq. (2.16).
There are two ways to construct G-invariant four-derivative
terms using the A-type invariants. The first way is a
geometrical method which is the same with pure realiza-
tions, and the second way is a group theoretical method.
In the first method, G-invariant four-derivative terms are

given by

Lð4Þ ¼ 1

16

Z
d4θΛikj̄ l̄ðΦ;Φ†ÞDαΦiDαΦkD̄ _αΦ†j̄D̄ _αΦ†l̄;

Λikj̄ l̄ ¼ w1ðXabÞgðij̄gkl̄Þ þ w2ðXabÞRij̄kl̄ þ w3ðXabÞRðij̄Rkl̄Þ
þ w4ðXabÞgðij̄Rkl̄Þ: ð3:14Þ

Unlike the B-type case, w1;2;3;4 are arbitrary functions of
the strict G invariants Xab. The scalar curvature R is a
function of Xab and is not included.

Now we introduce the second method to construct
G-invariant four-derivative terms. Here we do not write
the representation ρ for simplicity. First, the Maurer-Cartan
one form on GC=Ĥ is given by

iξ−1dξ ¼ ðEI
iðΦÞXI þ ωa

i ðΦÞHaÞdΦi ð3:15Þ

with the holomorphic vielbein EI
iðΦÞ and the holomorphic

connection ωa
i ðΦÞ. By using this expression, we calculate

Dαξ ¼ DαΦi∂iξ ¼ iξðEI
iðΦÞXI þ ωa

i ðΦÞHaÞDαΦi;

ð3:16Þ

Dαξva ¼ iðξXIvaÞEI
iðΦÞDαΦi: ð3:17Þ

Then, the supercovariant derivatives of theG invariants Xab
given in Eq. (2.15) can be calculated to be

DαXab ¼ ðvaξ†ξXIvbÞEI
iðΦÞDαΦi ð3:18Þ

DαDαXab ¼ ðvaξ†ξXJXIvbÞEI
iðΦÞEJ

j ðΦÞDαΦiDαΦj ð3:19Þ

D̄ _αDαXab ¼ ðvaX†
Jξ

†ξXIvbÞEI
iðΦÞE�J

j ðΦ†ÞDαΦiD̄ _αΦ†j̄;

ð3:20Þ

D̄ _αDαXabD̄ _αDαXcd ¼ ðvaX†
Jξ

†ξXIvbÞðvcX†
Lξ

†ξXKvdÞ
× EI

iðΦÞEK
k ðΦÞE�J

j ðΦ†ÞE�L
l ðΦ†Þ

×DαΦiDαΦkD̄ _αΦ†j̄D̄ _αΦ†l̄; ð3:21Þ

D̄ _αD̄ _αDαDαXab

¼ ðvaX†
JX

†
Lξ

†ξXKXIvbÞEI
iðΦÞEK

k ðΦÞE�J
j ðΦ†ÞE�L

l ðΦ†Þ
×DαΦiDαΦkD̄ _αΦ†j̄D̄ _αΦ†l̄; ð3:22Þ

DαDαXabD̄ _αD̄ _αXcd ¼ ðvaξ†ξXKXIvbÞðvcX†
JX

†
Lξ

†ξvdÞ
× EI

iðΦÞEK
k ðΦÞE�J

j ðΦ†ÞE�L
l ðΦ†Þ

×DαΦiDαΦkD̄ _αΦ†j̄D̄ _αΦ†l̄: ð3:23Þ

By using these relations, four-derivative terms can be
given by

Lð4Þ ¼ 1

16

Z
d4θ½gab1 ðXmnÞD̄ _αD̄ _αDαDαXab þ gabcd2 ðXmnÞD̄ _αDαXabD̄ _αDαXcd þ gabcd3 ðXmnÞDαDαXabD̄ _αD̄ _αXcd

þ gabcdef4 ðXmnÞDαXabDαXcdD̄ _αD̄ _αXef þ gabcdef5 ðXmnÞDαDαXabD̄ _αXcdD̄ _αXef

þ gabcdef6 ðXmnÞDαXabDαD̄ _αXcdD̄ _αXef þ gabcdefgh7 ðXmnÞDαXabDαXcdD̄ _αXefD̄ _αXgh� ð3:24Þ
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with arbitrary real functions gab…# of the G invariants Xmn. From this equation, the components of Λikj̄ l̄ can be
read as

Λikj̄ l̄ ¼ ½gab1 ðXmnÞðvaX†
JX

†
Lξ

†ξXKXIvbÞ þ gabcd2 ðXmnÞðvaX†
Jξ

†ξXIvbÞðvcX†
Lξ

†ξXKvdÞ
þ gabcd3 ðXmnÞðvaξ†ξXKXIvbÞðvcX†

JX
†
Lξ

†ξvdÞ þ gabcdef4 ðXmnÞðvaξ†ξXIvbÞðvcξ†ξXKvdÞðveX†
JX

†
Lξ

†ξvfÞ
þ gabcdef5 ðXmnÞðvaξ†ξXKXIvbÞðvcX†

Jξ
†ξvdÞðveX†

Lξ
†ξvfÞ þ gabcdef6 ðXmnÞðvaξ†ξXIvbÞðvcX†

Jξ
†ξXKvdÞðveX†

Lξ
†ξvfÞ

þ gabcdefgh7 ðXmnÞðvaξ†ξXIvbÞðvcξ†ξXKvdÞðveX†
Jξ

†ξvfÞðvgX†
Lξ

†ξvhÞ� × EI
iðΦÞEK

k ðΦÞE�J
j ðΦ†ÞE�L

l ðΦ†Þ: ð3:25Þ

Note that Eq. (3.25) contains the multiple functions labeled by ab…, implying more general than Eq. (3.14).
Derivative terms higher than four derivatives can be constructed by using space-time derivative on Xab. For instance,

six-derivative terms can be constructed as

Lð6Þ ¼ 1

16

Z
d4θ

X
p¼1;2

Yp½hab1;pðXmnÞD̄ _αD̄ _αDαDαXab þ habcd2;p ðXmnÞD̄ _αDαXabD̄ _αDαXcd þ habcd3;p ðXmnÞDαDαXabD̄ _αD̄ _αXcd

þ habcdef4;p ðXmnÞDαXabDαXcdD̄ _αD̄ _αXef þ habcdef5;p ðXmnÞDαDαXabD̄ _αXcdD̄ _αXef

þ habcdef6;p ðXmnÞDαXabDαD̄ _αXcdD̄ _αXef� ð3:26Þ

with arbitrary functions hab…#;p of the G invariants Xmn and
the extra derivative terms Yp (p ¼ 1; 2) defined by

Y1 ¼ ∂m∂mXa0b0 ; Y2 ¼ ∂mXa0b0∂mXc0d0 : ð3:27Þ

D. C type

Here, we discuss the construction of higher-derivative
terms from the C-type invariants. In the geometrical
method, G-invariant four-derivative terms are given by

Lð4Þ ¼ 1

16

Z
d4θΛikj̄ l̄ðΦ;Φ†ÞDαΦiDαΦkD̄ _αΦ†j̄D̄ _αΦ†l̄;

Λikj̄ l̄ ¼ w1ðtrðPaPbÞ;…Þgðij̄gkl̄Þ þ w2ðtrðPaPbÞ;…ÞRij̄kl̄

þ w3ðtrðPaPbÞ; � � �ÞRðij̄Rkl̄Þ
þ w4ðtrðPaPbÞ; � � �Þgðij̄Rkl̄Þ: ð3:28Þ

As the A-type case, w1;2;3;4 are arbitrary functions of the
strict G invariants trðPaPbÞ, trðPaPbPcÞ and so on.
In the group theoretical method, four-derivative terms

can be constructed from the C-type projectors Pa and the

supercovariant derivatives Dα and D̄ _α. All possible
G-invariant terms XAðD; D̄;Pa; Pb;…Þ including Pa and
two D’s and two D̄’s are summarized in Table I. These
terms are classified by the number of traces and the number
of Pa, where each trace should contain more than two Pa’s
with different a; b; c…. Then, the four-derivative term
constructed from the C type can be written as

Lð4Þ ¼ 1

16

Z
d4θ

X
A;a;b;…

gAab…ðtrðPcPdÞ;…Þ

× XAðD; D̄;Pa; Pb;…Þ; ð3:29Þ

where XAðD; D̄;Pa; Pb;…Þ are the G-invariant four-
derivative terms given in Table I and gAab… are arbitrary
functions of the C-type G invariants trðPcPdÞ, trðPcPdPeÞ
and so on.
This method can be generalized to derivative terms

higher than four derivatives. It can be achieved by allowing
gAab… to contain linear terms including space-time deriva-
tives or allowing XA to contain space-time derivatives. For
instance, six-derivative terms can be constructed as

TABLE I. Four-derivative terms XAðD; D̄;Pa; Pb;…Þ constructed from the C-type invariants. The columns
denote the number of traces, and the lows denote the number of Pa. Each trace contains more than two Pa’s with
different a; b; c….

#Pn#tr 1 2 3

2 trðDαDαPaD̄ _αD̄ _αPbÞ non non
3 trðPaDαDαPbD̄ _αD̄ _αPcÞ non non
4 trðDαPaDαPbD̄ _αPcD̄ _αPdÞ trðDαPaDαPbÞtrðD̄ _αPcD̄ _αPdÞ non

trðPaDαDαPb · PcD̄ _αD̄ _αPdÞ trðDαPaD̄ _αPbÞtrðDαPcD̄ _αPdÞ
5 � � � � � �
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Lð6Þ ¼ 1

16

Z
d4θ

� X
p¼1;2;A;a;b;…

hab…A;p ðtrðPePfÞ;…ÞtrðYpÞXAðD; D̄;Pa; Pb;…Þ

þ
X

p¼1;2;a;b;…

fHab…
1;p ðtrðPePfÞ;…ÞtrðYpDαDαPaD̄ _αD̄ _αPbÞ þHab���

2;p ðtrðPePfÞ;…ÞtrðYpPaDαDαPbD̄ _αD̄ _αPcÞ

þHab…
3;p ðtrðPePfÞ;…ÞtrðYpDαPaDαPbD̄ _αPcD̄ _αPdÞ þHab…

4;p ðtrðPePfÞ;…ÞtrðYpPaDαDαPb · PcD̄ _αD̄ _αPdÞg þ � � �
�

ð3:30Þ

with arbitrary functions hab…A;p and Hab…
A;p of the C-type G

invariants, and the extra two-derivative terms Yp (p ¼ 1; 2)
given by

Y1 ¼ ∂m∂mPa0 ; Y2 ¼ ∂mPa0∂mPb0 : ð3:31Þ

The dots in Eq. (3.30) imply multi-trace terms such as
trð∂mPa0DαDαPaÞtrð∂mPb0D̄ _αD̄ _αPbÞ and so on.

IV. SUPERSYMMETRIC CHIRAL
SYMMETRY BREAKING

In this section, we show an explicit example of higher-
derivative interactions of quasi-NG bosons. We consider
higher-derivative corrections for supersymmetric chiral
symmetry breaking, which is a maximal realization with
each massless chiral superfield containing one NG boson
and one quasi-NG boson.

A. Supersymmetric chiral Lagrangian

Let us consider the chiral symmetry breaking

G ¼ SUðNÞL × SUðNÞR → H ¼ SUðNÞLþR: ð4:1Þ
The corresponding NG modes span the coset space

G=H ¼ SUðNÞL × SUðNÞR
SUðNÞLþR

≃ SUðNÞ: ð4:2Þ

We denote generators of the coset by TA ∈ SUðNÞ. It was
shown in Ref. [16] that a vacuum expectation value
belonging to a real representation gives rise to the same
numbers of quasi-NG bosons and NG bosons, which is a
maximal realization. The chiral symmetry breaking belongs
to this class, and the total target space is

GC=Ĥ ≃ SUðNÞC ¼ GC=HC ≃ SLðN;CÞ≃ T�SUðNÞ:
ð4:3Þ

The coset representative is written as

M ¼ expðiΦATAÞ ∈ GC=Ĥ; ð4:4Þ
where the NG superfields are in the form of

ΦAðy; θÞ ¼ πAðyÞ þ iσAðyÞ þ θψAðyÞ þ θθFAðyÞ; ð4:5Þ

with NG bosons πA, quasi-NG bosons σA, and quasi-NG
fermions ψA.
The nonlinear transformation law of the NG super-

multiplets is

M → M0 ¼ gLMgR; ðgL; gRÞ ∈ SUðNÞL × SUðNÞR:
ð4:6Þ

From the transformation

MM† → gLMM†g†L; ð4:7Þ

the simplest Kähler potential is found to be

K0 ¼ f2πtrðMM†Þ; ð4:8Þ

where fπ is a constant. Therefore, the leading order of the
bosonic part of the Lagrangian in the derivative expansion
reads

L0 ¼ −f2πtrð∂mM∂mM†Þ; ð4:9Þ

where M is the lowest component of the NG superfield
(4.4). However, the Kähler potential in Eq. (4.8) is not
general. In fact, the most general Kähler potential can be
written as [12,15]

K ¼ fðtrðMM†Þ; tr½ðMM†Þ2�;…; tr½ðMM†ÞN−1�Þ ð4:10Þ

with an arbitrary function of N − 1 variables. The physical
reason why we have an arbitrary function is the existence of
the quasi-NG bosons. Since the isometry of the target
manifold is G but not GC, the target manifold is not
homogeneous. One can deform the shape of the target
manifold along the directions of the quasi-NG bosons, with
keeping the isometry G.10

If we set all quasi-NG bosons to be zero [12,13]

U ¼ MjσA¼0 ∈ SUðNÞ; ð4:11Þ

10If one requires the Ricci-flat condition on the target mani-
fold, the arbitrary function is fixed. That is known as the Stenzel
metric. This is not the scope of this paper.
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we have usual chiral Lagrangian

L ¼ −f2πtrð∂mU∂mU†Þ ¼ −f2πtrðU†∂mUÞ2 ð4:12Þ

with the decay constant fπ determined from f.
One interesting feature of chiral symmetry breaking in

supersymmetric vacua is that the unbroken group H ¼
SUðNÞLþR can be further broken to its subgroup due to the
vacuum expectation value of the quasi-NG bosons [12].
Some of quasi-NG bosons change to NG bosons at less
symmetric vacua [12,15]

B. Higher-derivative terms: Supersymmetric
chiral perturbation

Let us discuss possible higher-derivative terms for the
supersymmetric chiral Lagrangian. The simplest candidate
of a four-derivative term is

Lð4Þ
0 ¼ 1

16

Z
d4θΛikj̄ l̄ðΦ;Φ†ÞDαΦiDαΦkD̄ _αΦ†j̄D̄ _αΦ†l̄

¼
Z

d4θtrðDαMD̄ _αM†DαMD̄ _αM†Þ; ð4:13Þ

where components of Λikj̄ l̄ are determined from the right-
hand side. The bosonic part of this term is

Lð4Þ
0;b ¼ trð∂mM∂nM†∂mM∂nM†Þ ð4:14Þ

in the canonical branch with FA ¼ 0.
However, Eq. (4.13) is not general. As in the leading

term, we have a freedom to deform the tensor along the
directions of the quasi-NG bosons. The most general
Lagrangian can be written as

Lð4Þ ¼ 1

16

Z
d4θΛikj̄ l̄ðΦ;Φ†ÞDαΦiDαΦkD̄ _αΦ†j̄D̄ _αΦ†l̄

¼
Z

d4θ

�XN−1

k¼1

gk1ðtrðMM†Þ;…; tr½ðMM†ÞN−1�ÞtrðDαMD̄ _αM†DαMD̄ _αM†ðMM†ÞkÞ

þ
XN−1

k;l¼1

gkl2 ðtrðMM†Þ;…; tr½ðMM†ÞN−1�ÞtrðDαMD̄ _αM†ðMM†ÞkÞtrðDαMD̄ _αM†ðMM†ÞlÞ
�

ð4:15Þ

with an arbitrary functions gk1 and gkl2 of N − 1 G invariants trðMM†Þ;…; trðMM†ÞN−1. The bosonic part of this term is

Lð4Þ
b ¼

XN−1

k¼1

gk1ðtrðMM†Þ;…; tr½ðMM†ÞN−1�Þtrð∂mM∂nM†∂mM∂nM†ðMM†ÞkÞ

þ
XN−1

k;l¼1

gkl2 ðtrðMM†Þ;…; tr½ðMM†ÞN−1�Þtrð∂mM∂nM†ðMM†ÞkÞtrð∂mM∂nM†ðMM†ÞlÞ: ð4:16Þ

If we set all quasi-NG bosons to be zero as in Eq. (4.11),

MM†jσA¼0 ¼ UU† ¼ 1N ðtr½ðMM†Þk�jσA¼0 ¼ NÞ; ð4:17Þ
and the bosonic part in the canonical branch with FA ¼ 0 becomes

Lð4Þ
b jσ¼0 ¼ g1;0trð∂mU∂nU†∂mU∂nU†Þ þ g2;0trð∂mU∂nU†Þtrð∂mU∂nU†Þ ð4:18Þ

with g1;0 ¼
P

N−1
k¼1 gk1ðN;…; NÞ and g2;0 ¼

P
N−1
k;l¼1 g

k;l
2 ðN;…; NÞ. One notes that the term trð∂mU∂mU†∂nU∂nU†Þ or

trð∂mU∂mU†Þtrð∂nU∂nU†Þ is not allowed as a bosonic part of the supersymmetric Lagrangian.
Next, let us construct six-derivative terms. They can be written as

Lð6Þ ¼
Z

d4θ

�XN−1

k¼1

hk1ðtrðMM†Þ;…Þtrð∂mM∂mM†DαMD̄ _αM†DαMD̄ _αM†ðMM†ÞkÞ

þ
XN−1

k;l¼1

hkl2 ðtrðMM†Þ;…Þtrð∂mM∂mM†DαMD̄ _αM†ðMM†ÞkÞtrðDαMD̄ _αM†ðMM†ÞlÞ

þ
XN−1

k;l;j¼1

hklj3 ðtrðMM†Þ;…Þtrð∂mM∂mM†ðMM†ÞkÞtrðDαMD̄ _αM†ðMM†ÞlÞtrðDαMD̄ _αM†ðMM†ÞjÞ þ � � �
�

ð4:19Þ
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with arbitrary functions hk1; h
kl
2 ; h

klj
3 of N − 1 G invariants trðMM†Þ;…; trðMM†ÞN−1. The dots in Eq. (4.19) imply multi-

trace terms such as trðDαM∂mM†DαMD̄ _αM†ðMM†ÞkÞtrð∂mMD̄ _αM†ðMM†ÞlÞ and trð∂mMD̄ _αM†DαMD̄ _αM†ðMM†ÞkÞ×
trðDαM∂mM†ðMM†ÞlÞ. The bosonic part of this term is

Lð6Þ
b ¼

XN−1

k¼1

�
hk1ðtrðMM†Þ;…Þtrð∂mM∂mM†∂nM∂oM†∂nM∂oM†ðMM†ÞkÞ

þ
XN−1

k;l¼1

hkl2 ðtrðMM†Þ;…Þtrð∂mM∂mM†∂nM∂oM†ðMM†ÞkÞtrð∂nM∂oM†ðMM†ÞlÞ

þ
XN−1

k;l;j¼1

hklj3 ðtrðMM†Þ;…Þtrð∂mM∂mM†ðMM†ÞkÞtrð∂nM∂oM†ðMM†ÞlÞtrð∂nM∂oM†ðMM†ÞjÞ
�
þ � � � : ð4:20Þ

If we set all quasi-NG bosons to be zero, these terms
reduce to

Lð6Þ
b jσ¼0¼h1;0trð∂mU∂mU†∂nU∂oU†∂nU∂oU†Þ

þh2;0trð∂mU∂mU†∂nU∂oU†Þtrð∂nU∂oU†Þ
þh3;0trð∂mU∂mU†Þtrð∂nU∂oU†Þtrð∂nU∂oU†Þ
þ���: ð4:21Þ

with h1;0¼
P

N−1
k¼1 h

k
1ðN;� �� ;NÞ, h2;0¼

P
N−1
k;l¼1h

k;l
2 ðN; � � �;NÞ

and h3;0 ¼
P

N−1
k;l;j¼1 h

k;l;j
3 ðN; � � � ; NÞ.

We can construct the eight- or higher-derivative terms in
the same way.

V. CONCLUSION AND DISCUSSIONS

In this paper we have constructed higher-derivative
correction terms for massless NG and quasi-NG bosons
and fermions in the manifestly supersymmetric off-shell
formalism. In general, when a global symmetry is broken in
supersymmetric vacua, massless quasi-NG bosons and
fermions appear. Low-energy effective theories are gov-
erned by supersymmetric nonlinear sigmamodels of the NG
and quasi-NG fields. The number of the quasi-NG fields
is determined by the structure of the coset groupGC=Ĥ. The
G-invariant Kähler potentials of the nonlinear sigmamodels
are classified into A, B, and C types. We have shown the
G-invariant quantities and examples of Kähler potentials.
In superfield formalism, the higher-derivative term in the

chiral model is given by a (2,2) Kähler tensor Λijk̄ l̄
symmetric in holomorphic and antiholomorphic indices,
whose components are functions of the chiral superfields
Φi. By using this formalism we have constructed higher-
derivative corrections to supersymmetric nonlinear realiza-
tions. The tensors Λijk̄ l̄ are constructed by the G-invariant
Kähler metrics in the A, B, and C types. Remarkably, in the
A and C types, the tensors Λijk̄ l̄ include degrees of freedom
for the strict G-invariant quantities Xab and trðPaPb � � �Þ.
For the B type, this is the pure realization, and there are no
quasi-NG modes. We have found that the higher-derivative

terms are unique up to constants. For theA andC types, there
are quasi-NG modes and higher-derivative terms contain
arbitrary functions which depends on the strictG invariants.
We have also constructed the higher-derivative terms in
purely group theoretical manners. As a practical example,
we have further studied the case of chiral symmetry breaking
in more detail.
Several discussions are addressed here.
In this paper, we have studied spontaneous breaking of

exact symmetry leading to exactly massless NG bosons and
quasi-NG bosons (fermions). For approximate symmetry,
an explicit breaking term should be introduced which give
NG bosons masses. Consequently, they become pseudo NG
bosons, such as pions for the chiral symmetry breaking. In
supersymmetric theory, a symmetry breaking potential term
can be introduced by the superpotential W. The introduc-
tion of the superpotential can be treated perturbatively,
which was done at least for single component cases [34,39].
As for another future work, the inclusion of the super-

symmetric WZW term [23,33] should be discussed for
supersymmetric chiral perturbation theory. For supersym-
metric chiral perturbation theory with general target
spaces, Kähler normal coordinates [45] should be useful
as in Ref. [33].
A BPS Skyrme model was discovered some years back

[46], which consists of only the sixth-order higher-derivative
term as well as appropriate potentials. Our result should be
useful to investigate supersymmetric version of this model.
In this paper, we have considered the canonical branch

with F ¼ 0 for solutions to the auxiliary field equations. It
is known for the CP1 model that there is also a nonca-
nonical branch with F ≠ 0 [28,39]. While the usual kinetic
term disappears in this case, the theory admits a baby
Skyrmion [28], which was shown to be a 1=4 BPS state
[39]. Investigating noncanonical branches and 1=4 BPS
baby Skyrmions for general Kähler G=H are one of
interesting future directions.
The supersymmetric CPN−1 model with four super-

charges also appears as the world-volume effective action
of a BPS non-Abelian vortex in N ¼ 2 supersymmetric
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UðNÞ gauge theory with N hypermultiplets in the funda-
mental representation [47]. Higher-derivative corrections to
the effective action were calculated in Ref. [48]. It was
shown that 1=2BPS lumps (sigmamodel instantons) are not
modified in the presence of higher-derivative terms [39,48].
This should be so because a composite state of lumps inside
a non-Abelianvortex is a 1=4BPS state and it is nothing but a
Yang-Mills instanton in the bulk point of view [49]. See
Refs. [50–52] for a review of BPS composite solitons.
As this regards, some other Kähler G=H manifolds are

realized on a vortex in supersymmetric gauge theories with
gauge groups G [53]. In particular, the cases of G ¼
SOðNÞ; USpðNÞ were studied in detail [54]. Therefore,
1=2 BPS lumps in sigma models on Kähler G=H with
higher-derivative terms describe instantons in gauge theo-
ries with gauge group G. It should be checked whether
higher-derivative corrections for lumps in these cases are
canceled out.
The supersymmetric chiral Lagrangian studied in Sec. IV

also appears as the effective theory on BPS non-Abelian

domain walls in N ¼ 2 supersymmetric UðNÞ gauge
theories with 2N hypermultiplets in the fundamental
representation with mass �m [55]. A four-derivative
correction was partly derived in Ref. [56].
A general framework of a superfield formulation of

the effective theories on BPS soliton world-volumes
with four supercharges was formulated in Ref. [57]. This
should be generalized to the case with higher-derivative
corrections.
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