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We study the higher derivative chiral models with four supercharges and Bogomol’nyi–Prasad–
Sommerfield (BPS) states in these models. The off-shell Lagrangian generically includes higher powers of
the auxiliary fields F, which causes distinct on-shell branches associated with the solutions to the auxiliary
fields equation. We point out that the model admits a supersymmetric completion of arbitrary higher
derivative bosonic models of a single complex scalar field, and an arbitrary scalar potential can be
introduced even without superpotentials. As an example, we present a supersymmetric extension of the
Faddeev–Skyrme model without four time derivatives, in contrast to the previously proposed super-
symmetric Faddeev–Skyrme-like model containing four time derivatives. In general, higher derivative
terms together with a superpotential result in deformed scalar potentials. We find that higher derivative
corrections to 1=2 BPS domain walls and 1=2 BPS lumps are exactly canceled out, while the 1=4 BPS
lumps (as compact baby Skyrmions) depend on a characteristic feature of the higher derivative models.
We also find a new 1=4 BPS condition for domain wall junctions, which generically receives higher
derivative corrections.
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I. INTRODUCTION

Low-energy dynamics of field theories can be described
by only light fields such as Nambu–Goldstone modes
when one integrates out massive modes. The low-energy
effective theories are usually expanded by derivative
expansions; thereby, they inevitably contain higher
derivative terms of fields. Chiral perturbation theory is
such a theory describing low-energy pion dynamics in
QCD with a chiral symmetry breaking [1]. The Skyrme
model [2], which is a nonlinear sigma model with fourth-
order derivative terms, is one of such a class. Supergravity
as a low-energy effective theory of string theory should
have higher derivative correction terms [3]. Other exam-
ples include world-volume effective actions of solitonic
objects such as topological solitons in field theories and
D-branes in string theories [4]. The effective theory of a
D-brane is described by the Dirac–Born–Infeld (DBI)
action [5] containing an infinite number of derivatives.
Higher derivative field theories are also useful in other
areas of physics. In the cosmological context, higher
derivative theories are proposed for inflation models
such as the K inflation [6] and the Galileon inflation
[7]. These higher derivative models are known to admit
characteristic soliton solutions such as k defects [8],
compactons [9,10], and so on.
On the other hand, supersymmetry is one of the most

important tools in modern high-energy physics. It has not

only been considered as the most promising candidate to
solve the naturalness problem in the Standard Model in
the phenomenological side, but also it plays important
roles to control quantum corrections in supersymmetric
field theories, leading to determining exact low-energy
dynamics [11]. When one constructs low-energy effective
theories in supersymmetric field theories, one is required
to consider higher derivative corrections in a supersym-
metric manner. It is, however, not so easy to construct a
supersymmetric completion of general higher derivative
theories. Off-shell superfield formalisms are useful to
write down actions of supersymmetric higher derivative
models. In particular, the four-dimensional N ¼ 1 super-
field formalism that incorporates the chiral superfield Φ is
a simple starting point. It is, however, known that not all
the off-shell supersymmetric higher derivative models
exhibit good physical properties. Off-shell formulations
of higher derivative terms often encounter an auxiliary
field problem; chiral superfields with space-time deriva-
tives (e.g., ∂mΦ) sometimes introduce derivative inter-
actions of the auxiliary field F. Consequently, the
auxiliary fields become dynamical. It is hard to eliminate
them, and the on-shell structure of the action is not
obvious. For instance, the chiral Lagrangian of QCD
contains the Wess–Zumino–Witten (WZW) term to repro-
duce the quantum anomaly at low energy. However, a
supersymmetric completion of the WZW term proposed in
Ref. [12] suffers from this auxiliary field problem [13,14].
It was proposed in Ref. [15] that a supersymmetric WZW
term in superspace can be constructed without the aux-
iliary field problem if the number of chiral superfields is
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doubled.1 The auxiliary field problem would be more
problematic if one were to introduce a superpotential, so
one could not introduce a potential.
Nevertheless, supersymmetric higher derivative models

of which the building blocks are the chiral superfields are
studied in various contexts. Among other things, the chiral
models studied in Refs. [18,19] provide a good grounding
for studying supersymmetric higher derivative theories.
In this model, the auxiliary fields are not accompanied by
the space-time derivatives, and therefore they can be
eliminated by their equations of motion. In principle, it
is possible to write down the explicit on-shell actions of the
models. In particular, the scalar potential that shows up
after eliminating the auxiliary fields looks more apparent
[20]. The coupling of higher derivative chiral models to
supergravity was also achieved in this type of model
[21,22]. A supersymmetric DBI action was constructed
in Ref. [23]. The other examples include a supersymmetric
completion of the PðX;φÞ model [19], the supersymmetric
Galileon inflation models [24], and models for the ghost
condensation [25]. The same structure appears in quantum
effective actions [26,27]. A higher derivative supersym-
metricCP1 model free from the auxiliary field problem was
also considered previously as a supersymmetric extension
[28,29] of the Faddeev–Skyrme model [30] and a super-
symmetric baby Skyrme model [18,31]. The formalism in
Refs. [18,19] has been also applied to the construction of
manifestly supersymmetric higher derivative corrections to
supersymmetric nonlinear realizations [32].
In the former half of this paper, we study higher

derivative chiral models developed in Refs. [18,19] in
the superfield formalism, where higher derivative terms
can be introduced as a tensor with two holomorphic and
symmetric indices and two antiholomorphic and symmetric
indices. We find a surprising fact that has been overlooked
in past studies on the supersymmetric completions of
various higher derivative models. The model with a single
chiral superfield admits a supersymmetric extension of
arbitrary bosonic models that consist of a single complex
scalar field. As an example, we present a supersymmetric
extension of the Faddeev–Skyrme model [30]. The bosonic
part of this model does not contain four time derivatives.
This is in contrast to the previously proposed supersym-
metric extension [28,29] of the Faddeev–Skyrme model
that contains an additional four-derivative term that
includes four time derivatives. Moreover, we point out
that an arbitrary scalar potential can be introduced even
without the superpotential. We further work out the higher
derivative chiral models with superpotentials. The resulting
on-shell Lagrangians are highly nonlinear. We study
perturbative analysis revealing the possibility of the ghost
kinetic term and deformations of the scalar potential.

Meanwhile, Bogomol’nyi–Prasad–Sommerfield (BPS)
topological solitons play important roles in the study of
nonperturbative dynamics of supersymmetric field theories
since they break and preserve a fraction of supersymmetry,
belong to short supermultiplets, and consequently are stable
against quantum corrections [33]. When a BPS soliton
preserves p=q of supersymmetry, it is called a p=q BPS
soliton. For instance, Yang–Mills instantons, BPS monop-
oles, vortices, lumps, and domain walls [34] are of 1=2 BPS
and composite solitons such as domain wall junctions
are of 1=4 BPS in theories with four supercharges [35–37]
and eight supercharges [38] (see Refs. [39–41] as a review
for a fraction of supersymmetry for BPS states). BPS
solitons remain important in supersymmetric field theories
with higher derivative terms. Prime examples of such
solitons contain 1=2 BPS lumps in supersymmetric CP1

models with a four-derivative term [42]; supersymmetric
baby Skyrmions, which are compactons [18,31]; and BPS
compactons in K-field theories [43,44]. The higher deriva-
tive CP1 model in Ref. [42] appears as the effective theory
of a 1=2 BPS non-Abelian vortex [45] in supersymmetric
theories with eight supercharges. Then, the 1=2 BPS lumps
in the vortex correspond to Yang–Mills instantons in
the bulk [46]. While a few examples of BPS solitons in
higher derivative supersymmetric theories have been stud-
ied thus far, a systematic study of BPS solitons in such
theories is needed.
In the latter half of this paper, we give a general

framework to examine BPS states in supersymmetric
higher derivative chiral models. Our framework does not
only reproduce, in a unified manner, a few remarkable
previous studies of the BPS bounds in the supersymmetric
higher derivative models admitting BPS baby Skyrmions
[18,31], BPS compactons [43,44], and BPS lumps [42] but
also includes the more general cases with several new BPS
states: 1=2 BPS domain walls, 1=4 BPS domain wall
junctions, 1=2 and 1=4 BPS lumps, and baby Skyrmions. In
particular, we find BPS baby Skyrmions found in Ref. [18]
to be 1=4 BPS states. We show that 1=2 BPS domain walls
and 1=2 BPS lumps do not receive higher derivative
corrections while 1=4 BPS domain wall junctions do.
The organization of this paper is as follows. In Sec. II, we

introduce the supersymmetric higher derivative chiral
model with four supercharges. We write down the equation
of motion for the auxiliary fields and analyze the structure
of the on-shell Lagrangians. In particular, we introduce the
superpotential, and the deformation of the scalar potential
caused by the higher derivative terms is discussed. We then
examine BPS states that preserve 1=2 and 1=4 of the
original supersymmetry in subsequent sections. The 1=2
BPS domain wall and 1=4 BPS domain wall junctions are
studied in Sec. III, and 1=2 BPS and 1=4 BPS lumps are
studied in Sec. IV. Section V is devoted to conclusion and
discussions. Notations and conventions of superfields are
found in the Appendix.

1The actual form of the WZW term was derived in Refs. [16,17]
and includes a Kähler tensor discussed in the next section.
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II. HIGHER DERIVATIVE CHIRAL MODELS

In the first subsection, we present general higher deriva-
tive chiral models with multiple chiral superfields. In the
second subsection, we further work out the models with a
single chiral superfield without and with a superpotential.

A. General chiral models

We consider four-dimensional N ¼ 1 supersymmetric
higher derivative chiral models that have specific proper-
ties. The Lagrangian consists of chiral superfields Φi

(i ¼ 1;…; N), for which the component expansion in the
chiral base ym ¼ xm þ iθσmθ̄ is

Φiðy; θÞ ¼ φiðyÞ þ θψ iðyÞ þ θ2FiðyÞ; ð2:1Þ

where φi is the complex scalar field, ψ i is theWeyl fermion,
and Fi is the complex auxiliary field. The notations
and conventions of the chiral superfield are found in the
Appendix.
The supersymmetric Lagrangian with higher derivative

terms is given by

L ¼
Z

d4θKðΦi;Φ†j̄Þ

þ 1

16

Z
d4θΛikj̄ l̄ðΦ;Φ†ÞDαΦiDαΦkD̄ _αΦ†j̄D̄ _αΦ†l̄

þ
�Z

d2θWðΦiÞ þ H:c:

�
; ð2:2Þ

whereK is the Kähler potential andW is a superpotential as
usual. Higher derivative terms are produced by the second
term proportional to Λikj̄ l̄, which is a (2,2) Kähler tensor
symmetric in holomorphic and antiholomorphic indices,
of which the components are functions of Φi and Φ†ī

(admitting space-time derivatives acting on them).2 As we
will see, the most important feature of this model is that the
auxiliary fields never become dynamical; the equation of
motion for the auxiliary fields is an algebraic equation.
Now, we examine the component structure of the model

(2.2). The fourth derivative part of the Lagrangian (2.2) has
an essential property. This term is evaluated as

DαΦiDαΦkD̄ _αΦ†j̄D̄ _αΦ†l̄

¼ 16θ2θ̄2½ð∂mφ
i∂mφkÞð∂mφ̄

j̄∂mφ̄l̄Þ − 2∂mφ
iFk∂nφ̄j̄F̄l̄

þ FiF̄j̄FkF̄l̄� þ If; ð2:3Þ

where If stands for terms that contain fermion fields. Since
the bosonic part of the right-hand side of (2.3) saturates the
Grassmann coordinate θ2θ̄2, only the lowest component of
the tensor Λikj̄ l̄ contributes to the bosonic part of the

Lagrangian. Therefore, the bosonic part of the Lagrangian
(2.2) is

Lb ¼
∂2K

∂φi∂φ̄j̄
ð−∂mφ

i∂mφ̄j̄ þ FiF̄j̄Þ þ ∂W
∂φi F

i þ ∂W̄
∂φ̄j̄

F̄j̄

þ Λikj̄ l̄ðφ; φ̄Þ½ð∂mφ
i∂mφkÞð∂nφ̄

j̄∂nφ̄l̄Þ
− ∂mφ

iFk∂mφ̄j̄F̄l̄ þ FiF̄j̄FkF̄l̄�: ð2:4Þ

This Lagrangian exhibits a higher derivative model that
has the following properties: (I) the higher derivative terms
are governed by the tensor Λikj̄ l̄, and (II) the model is
manifestly (off-shell) supersymmetric and Kähler invariant
provided that K and W are scalars and Λikj̄ l̄ is a tensor.
Among other things, the auxiliary fields do not have a
space-time derivative,3 and they are eliminated by the
following equation of motion:

∂2K

∂φi∂φ̄j̄
Fi−2∂mφ

iFkΛikj̄ l̄∂mφ̄l̄þ2Λikj̄ l̄F
iFkF̄l̄þ∂W̄

∂φ̄j̄
¼0:

ð2:5Þ

This is an algebraic equation and, in principle, solvable.
However, Eq. (2.5) is a simultaneous equation of cubic
power, and it is hard to find explicit solutions Fi. We
comment that when W ¼ 0 at least Fi ¼ 0 is a solution.
In this case, the on-shell Lagrangian becomes

Lb ¼ −
∂2K

∂φi∂φ̄j̄
∂mφ

i∂mφ̄j̄ þΛikj̄ l̄ð∂mφ
i∂mφkÞð∂nφ̄

j̄∂nφ̄l̄Þ:

ð2:6Þ

In general, there are more solutions other than Fi ¼ 0,
which we will show explicitly for models with one
component field.

B. Chiral models of one component

Now, we consider the single chiral superfield Φ for
simplicity. The equation of motion for the auxiliary field
becomes

Kφφ̄F − 2Fð∂mφ∂mφ̄ − FF̄ÞΛðφ; φ̄Þ þ ∂W̄
∂φ̄ ¼ 0: ð2:7Þ

Here, Kφφ̄ ¼ ∂K
∂φ∂φ̄. We solve Eq. (2.7) in the W ¼ 0 and

W ≠ 0 cases separately.

2This tensor term was obtained in Ref. [17] as a part of the
supersymmetric Wess–Zumino–Witten term.

3This is true only for the purely bosonic terms. There are
derivative interactions of the auxiliary fields in the fermionic
contributions If [19]. They are irrelevant when classical con-
figurations of fields are concerned.
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1. W ¼ 0 case

When there is no superpotential, the equation for the
auxiliary field becomes

Kφφ̄F − 2Fð∂mφ∂mφ̄ − FF̄ÞΛ ¼ 0: ð2:8Þ
Then, the solutions are found to be

F ¼ 0; ð2:9Þ

FF̄ ¼ −
Kφφ̄

2Λ
þ ∂mφ∂mφ̄: ð2:10Þ

There are two different on-shell branches associated with
the solutions (2.9) and (2.10).
For the first solution (2.9), the bosonic part of the

on-shell Lagrangian is

L1b ¼ −Kφφ̄∂mφ∂mφ̄þ ð∂mφ∂mφÞð∂nφ̄∂nφ̄ÞΛ: ð2:11Þ

The first term is the ordinary kinetic term, and the second
term contains higher derivative correction terms. We call
this the canonical branch.
An example of the model is the N ¼ 1 supersymmetric

DBI action for the world-volume theory of single D3-brane.
The corresponding Kähler metric is canonical, Kφφ̄ ¼ 1,
and the function Λ is given by [23]

Λ ¼ 1

1þ Aþ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ð1þ AÞ2 − B

p ;

A ¼ ∂mΦ∂mΦ†; B ¼ ∂mΦ∂mΦ∂nΦ†∂nΦ†: ð2:12Þ

The other examples include a supersymmetric com-
pletion of the PðX;φÞ model [19], the supersymmetric
Galileon inflation models [24], and models for the ghost
condensation [25].
Another example of Λ that has been overlooked in the

literature [18,28,29,31] is

Λ ¼ κð∂mΦ∂mΦ∂nΦ†∂nΦ†Þ−1 1

ð1þ ΦΦ†Þ4
× ½ð∂mΦ†∂mΦÞ2 − ∂mΦ∂mΦ∂nΦ†∂nΦ†�; ð2:13Þ

where κ is a parameter. Then, with the Fubini–Study metric
Kφφ̄ ¼ 1

ð1þjφj2Þ2 for the CP1 model, the bosonic part of the

Lagrangian becomes

L1b ¼ −
∂mφ∂mφ̄

ð1þ jφj2Þ2 þ κ
ð∂mφ∂mφ̄Þ2 − j∂mφ∂mφj2

ð1þ jφj2Þ4 : ð2:14Þ

This is nothing but the Faddeev–Skyrme model [30]. The
previous trials to construct an N ¼ 1 supersymmetric
extension of the Faddeev–Skyrme model concluded that
one needs an extra four-derivative term containing four

time derivatives [28,29], while the Lagrangian in Eq. (2.14)
does not. It was discussed in Ref. [29] that such a
term destabilizes Hopfions (knot solitons). Therefore, the
Lagrangian (2.2) provides an N ¼ 1 supersymmetric
extension of the Faddeev–Skyrme model without four time
derivatives, which is expected to give stable Hopfions.
More generally, since the function Λ is completely

arbitrary, one can construct supersymmetric extension of
any bosonic models that consist of a complex scalar field φ.
More surprisingly, we further point out that it is also
possible to introduce an arbitrary scalar potential Vðφ;φ�Þ
even without superpotentials, by choosing Λ as

Λ ¼ −ð∂mΦ∂mΦ∂nΦ†∂nΦ†Þ−1VðΦ;Φ†Þ: ð2:15Þ

However, as we will clarify later, superpotentials play an
important role when one considers BPS solutions.
On the other hand, for the second solution (2.10), the

bosonic part of the on-shell Lagrangian is

L2b ¼ ðj∂mφ∂mφj2 − ð∂mφ∂mφ̄Þ2ÞΛ −
ðKφφ̄Þ2
4Λ

: ð2:16Þ

In this branch, the canonical kinetic term disappears.4 This
model was first studied in Ref. [18] where supersymmetric
extensions of the baby Skyrme model are discussed. We
note that the second branch (2.16) does not have the smooth
limit to the canonical theory (Λ → 0). Therefore, we call
this the noncanonical branch. Since FF̄ should be positive
semidefinite, the second solution (2.10) is consistent only
in the region

−
Kφφ̄

2Λ
þ ∂mφ∂mφ̄ ≥ 0: ð2:17Þ

We comment on the last term in Eq. (2.16). The term
ðKφφ̄Þ2=4Λ is considered as a scalar potential term since it
remains when the function Λ does not depend on fields
with space-time derivatives. For a vacuum configuration,
the condition (2.17) implies Λ < 0 for the positive definite
Kähler metric Kφφ̄ > 0. Then, the scalar potential at a
vacuum becomes negative even for the manifestly super-
symmetric construction of the model. One resolution of this
puzzle is the existence of ghosts, i.e., fields with a kinetic
term of the wrong sign. However, it is not obvious whether
ghosts exist or not since there is no kinetic term in the
Lagrangian (2.16) and no consistent free theory is defined.
In that case, K loses its meaning of the Kähler potential,
and what determines the sign of the potential energy is
the function K. When Kφφ̄ is negative, Λ and the scalar

4When Λ is chosen as Λ ¼ −ðj∂mφ∂mφj2 − ð∂mφ∂mφ̄Þ2Þ−1×
∂nφ∂nφ̄, the canonical kinetic term recovers. However quite
nonlinear higher derivative terms remain in the Lagrangian due to
the factor 1=Λ. This possibility was discussed in the context of
higher derivative supergravity models [21].
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potential become positive. Actually, choosing the functions
of K and Λ appropriately, one can construct scalar
potentials that have desired properties [18].

2. W ≠ 0 case

When W ≠ 0, one eliminates F̄ in (2.7) and obtains the
equation for the auxiliary field F:

2Λðφ; φ̄Þ ∂W∂φ F3 þ ∂W̄
∂φ̄ ðKφφ̄ − 2Λðφ; φ̄Þ∂mφ∂mφ̄ÞF

þ
�∂W̄
∂φ̄

�
2

¼ 0: ð2:18Þ

When there are no higher derivative corrections Λ ¼ 0, one
recovers the ordinary F-term solution F ¼ − 1

Kφφ̄

∂W̄
∂φ̄ . Since

Eq. (2.18) is an algebraic equation of cubic power, the
solutions are obtained by the Cardano’s method [20],

F ¼ ωk

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
−
q
2
þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi�
q
2

�
2

þ
�
p
3

�
3

s
3

vuut

þ ω3−k

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
−
q
2
−

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi�
q
2

�
2

þ
�
p
3

�
3

s
3

vuut ;

k ¼ 0; 1; 2; ω3 ¼ 1; ð2:19Þ

where ω is a cubic root of unity and p and q are given by

p ¼ 1

2Λðφ; φ̄Þ
�∂W
∂φ

�
−1
�∂W̄
∂φ̄

�
ðKφφ̄ − 2Λðφ; φ̄Þ∂mφ∂mφ̄Þ;

ð2:20Þ

q ¼ 1

2Λðφ; φ̄Þ
�∂W
∂φ

�
−1
�∂W̄
∂φ̄

�
2

: ð2:21Þ

The on-shell Lagrangian is obtained by substituting the
solutions of the auxiliary field into the Lagrangian (2.4),

Lb ¼ −
∂2K
∂φ∂φ̄ ∂mφ∂mφ̄þ ð∂mφ∂mφÞð∂nφ̄∂nφ̄ÞΛ

þ ~F ~̄Fð−Kφφ̄ þ 2Λ∂mφ∂mφ̄Þ − 3ð ~F ~̄FÞ2Λ; ð2:22Þ

where ~F ( ~̄F) is one of the solutions in Eq. (2.19). Therefore,
there are three different on-shell branches in this model.
We note that, although the model is corrected by higher
derivative terms, the supersymmetry requires correction
terms in the scalar potential that do not contain derivative
terms. In particular, the scalar potential of the model is
calculated to be

VðφÞ ¼ j ~Fj2ðKφφ̄ þ 3Λð0Þj ~Fj2Þ: ð2:23Þ

Here, Λð0Þ is the function Λ where ∂mφ ¼ 0. We note that,
even for the manifestly supersymmetric Lagrangian (2.2)
with the positive Kähler metric Kφφ̄, a negative scalar
potential is possible when Λð0Þ < 0. Again, this fact would
be an indication of ghost states in the theory. As we will
see below, the on-shell Lagrangian potentially includes
ghost states.
Now, we examine the structure of the on-shell

Lagrangians in each branch. To see the effects of super-
potentials, we write down the explicit on-shell component
Lagrangian. In particular, we examine the relation between
the positive definiteness of the scalar potential and the
ghost states. A similar analysis about the scalar potential
was performed in the context of the four-dimensional
N ¼ 1 supergravity [21], in which negative potentials
are not problematic. On the other hand, negative potentials
could be problematic for the rigid supersymmetric case, on
which we focus here.
We note that when W ≠ 0 a solution F ¼ 0 is not

allowed. We first consider the canonical branch where
the solution of the auxiliary field (2.19) has the smooth
limit Λ → 0 [20]. We look for a perturbative expression of
the Lagrangian for small Λ. The solution of the auxiliary
field is expanded as

F ¼ F0 þ αF1 þ α2F2 þ � � � ; ð2:24Þ

where α is a parameter associated with the small Λ
expansion and F0 is the solution in α ¼ 0 (Λ ¼ 0). This
is given by

F0 ¼ −ðKφφ̄Þ−1W̄0: ð2:25Þ

Here, W0 ¼ ∂W
∂φ , and W̄0 is the complex conjugate of W0.

The explicit forms of F1 and F2 are obtained iteratively.
They are found to be

F1 ¼
2ΛW̄0

ðKφφ̄Þ2
�
W0W̄0

ðKφφ̄Þ2
− ∂mφ∂mφ̄

�
; ð2:26Þ

F2 ¼ −
4Λ2W̄0

ðKφφ̄Þ7
ðW̄0W0 − Kφφ̄∂mφ∂mφ̄Þ

× f3W0W̄0 − ðKφφ̄Þ2∂mφ∂mφ̄g: ð2:27Þ

Then, substituting these solutions into the auxiliary field F
in the Lagrangian (2.22), we obtain the on-shell Lagrangian
(we take α ¼ 1 for simplicity),
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Lb ¼ − Kφφ̄∂mφ∂mφ̄ −
2ΛV0

Kφφ̄
∂mφ∂mφ̄þ 8Λ2V2

0

ðKφφ̄Þ3
∂mφ∂mφ̄

þ Λj∂mφ∂mφj2 − 4V0Λ2

ðKφφ̄Þ2
ð∂mφ∂mφ̄Þ2

− V0 þ
ΛV2

0

ðKφφ̄Þ2
−
4Λ2V3

0

ðKφφ̄Þ4
þOðα4Þ: ð2:28Þ

Here, V0 ¼ 1
Kφφ̄

jW0j2 is the ordinary scalar potential in the

supersymmetric chiral models. We note that the scalar
potential is deformed by the nonzero Λ and the vacuum
structure clearly depends on the structure of the function Λ.
The examples of the deformed scalar potentials are found
in Fig. 1. The Lagrangian contains an infinite number of
the higher derivative terms that are induced by nonzero Λ
and W. The structure of the derivative terms is completely
determined by supersymmetry. We point out that, even for
the canonical kinetic term, it is deformed by Λ. Up to
OðΛ2Þ, it is given by

LK¼−
�
Kφφ̄þ

2ΛV0

Kφφ̄
−
8Λ2V2

0

ðKφφ̄Þ3
�
∂mφ∂mφ̄þOðΛ3Þ: ð2:29Þ

Since Λ is an arbitrary function, the sign of the kinetic term
can be flipped even for the positive-definite Kähler metric
Kφφ̄. If the sign of the kinetic term is changed, there appear
ghost states in the theory [47]. In that case, the model shows
instability caused by the higher derivatives. This fact leads
to the nonpositive-semidefinite potential (2.23) even for
supersymmetric theories. The sign of the kinetic term
depends on the explicit forms of the functions Λ and W.
Although it is important and interesting, we do not pursue
the (non)existence of the ghost states in this paper. We also
note that the metric of the target space of the nonlinear
sigma model in the Lagrangian (2.29) does not have to be
Kähler anymore even though it is N ¼ 1 supersymmetric.
Next, we study the effect of the superpotential in the

noncanonical branch associated with the solution (2.10).
Since we cannot take the Λ → 0 limit, we consider the

small W perturbation around W ¼ 0. The solution of the
auxiliary field is expanded as

F ¼ F0
0 þ βF0

1 þ β2F0
2 þ � � � ; ð2:30Þ

where β is a parameter associated with the small W
expansion and

F0
0 ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
−
Kφφ̄

2Λ
þ ∂mφ∂mφ̄

r
: ð2:31Þ

Here, we choose a real solution of F0. Using the Uð1ÞR
symmetry, we make the superpotential be real and positive.
Then, the solutions F0

1 and F0
2 are found to be

F0
1 ¼ −

W0

4Λ

�
−
Kφφ̄

2Λ
þ ∂mφ∂φ̄

�
−1
; ð2:32Þ

F0
2 ¼ −

3ðW0Þ2
32Λ2

�
−
Kφφ̄

2Λ
þ ∂mφ∂φ̄

�
−5
2

: ð2:33Þ

The on-shell Lagrangian is

Lb ¼ ðj∂mφ∂mφ̄j2 − ð∂mφ∂mφ̄Þ2ÞΛ −
ðKφφ̄Þ2
4Λ

− 2ðKφφ̄V0Þ12
�
−
Kφφ̄

2Λ
þ ∂mφ∂mφ̄

�1
2

−
Kφφ̄V0

16Λ

�
−
Kφφ̄

2Λ
þ ∂mφ∂mφ̄

�
−1

þOðβ3Þ: ð2:34Þ

We can observe that the scalar potential ðKφφ̄Þ2=4Λ is
deformed by the superpotential W.
Finally, a comment is in order. We started from the four-

dimensional theory. However, the lower-dimensional mod-
els, such as three-dimensionalN ¼ 2 and two-dimensional
N ¼ ð2; 2Þ theories can be easily obtained by the dimen-
sional reduction. Actually, the W ¼ 0 case corresponds
to the three-dimensional N ¼ 2 models discussed in
Ref. [18].

2 1 1 2

1

2
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2 1 1 2

1

2

3

4

2 1 1 2

1

2

3

4

5

FIG. 1 (color online). Examples of the deformed potentials VðjφjÞ for Kφφ̄;W ¼ Φ − 1
3
Φ3. The upper (blue) lines represent the

undeformed potentials, while the lower (red) lines are deformed ones. The figures correspond to the k ¼ 0 solution.
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III. BPS DOMAIN WALLS AND
THEIR JUNCTION

In this and the next sections, we study BPS configura-
tions in the supersymmetric higher derivative chiral models
discussed in the previous section. Since we consider
models with scalar fields, we focus on the BPS domain
walls and lumps in the following.
BPS equations that preserve a fraction of supersymmetry

are obtained from the condition that the on-shell super-
symmetry transformation of the fermion vanishes
δonξ ψα¼0. Here, δonξ represents the on-shell supersymmetry
transformation by parameters ξα, ξ̄ _α. The off-shell super-
symmetry transformation δoffξ of the fermion is given by

δoffξ ψα ¼ i
ffiffiffi
2

p
ðσmÞα _αξ̄ _α∂mφþ

ffiffiffi
2

p
ξαF: ð3:1Þ

By substituting a solution of the auxiliary field F into
δoffξ ψα ¼ 0 and assuming a specific field configuration
together with appropriate Killing spinor conditions on
ξα, ξ̄ _α, we find corresponding on-shell BPS equations.
Since there is the variety of branches associated with the
solutions F in our model, we study each branch separately.

A. 1=2 BPS domain walls

When a scalar field model with an ordinary canonical
kinetic term has a potential with several vacua, there is a
domain wall solution that interpolates between these vacua.
We look for 1=2 BPS domain wall solutions in the higher
derivative model (2.2). We consider domain wall configu-
rations of the complex scalar field φ. Namely, the field
depends on the one direction φ ¼ φðx1Þ. We first consider
the case in which the superpotential exists. In this case, the
solution F ¼ 0 is not allowed. Therefore, we generically
consider the F ≠ 0 branch. The Killing spinor condition for
the 1=2 BPS domain wall configuration is [34]

ξα ¼ −ieiηðσ1Þα _αξ̄ _α: ð3:2Þ

Here, η is a phase factor. Then, the off-shell BPS
equation is

∂1φ ¼ eiηF: ð3:3Þ

By plugging a solution in (2.19) into the right-hand side of
Eq. (3.3) and arranging the resulting condition by ∂1φ, we
obtain the on-shell BPS condition. Here, instead of that,
we use the equation of motion for the auxiliary field F in
order to observe the universal property of the three
solutions (2.19). Substituting the BPS condition (3.3)
into the equation of motion for F, we obtain

Kφφ̄e−iη∂1φþ f−2e−iη∂1φ · ∂1φ∂1φ̄

þ 2e−2iηð∂1φÞ2eiη∂1φ̄gΛþ ∂W̄
∂φ̄ ¼ 0: ð3:4Þ

The higher derivative terms includingΛ cancel out, and we
obtain the on-shell BPS equation

Kφφ̄∂1φþ eiη
∂W̄
∂φ̄ ¼ 0: ð3:5Þ

Equation (3.5) is nothing but the ordinary (without higher
derivative terms) BPS condition for the domain wall. This
result suggests that, even for the existence of the three
different on-shell branches in the model, the BPS domain
wall cannot distinguish them. Furthermore, the on-shell
energy density of the domain wall is evaluated as

E ¼ Kφφ̄j∂1φj2 − j∂1φj4Λ − j∂1φj2ð−Kφφ̄ þ 2Λj∂1φj2Þ
þ 3j∂1φj4Λ

¼ −e−iη∂1W þ H:c: ð3:6Þ

The last expression gives the tension of the ordinary BPS
domain wall. Therefore, we conclude that all the higher
derivative corrections to the solutions and energy are
canceled out in the BPS domain walls. This is a conse-
quence of the fact that the configuration depends on the
one direction. It is easy to confirm that the solutions to the
BPS condition (3.3) together with the equation of motion
for the auxiliary field (3.5) satisfy the full equation of
motion for the scalar field5:

−
∂3K

∂φ∂2φ̄
ðj∂mφj2 − jFj2Þ þ ∂2W̄

∂φ̄2
F̄ þ ½j∂mφ∂mφj2 − 2jFj2j∂mφj2 þ jFj4� ∂Λ∂φ̄

− ∂m

�
−Kφφ̄∂mφþ 2Λðð∂nφÞ2∂mφ̄ − jFj2∂mφÞ þ fj∂nφ∂nφj2 − 2jFj2j∂nφj2 þ jFj4g ∂Λ

∂ð∂mφ̄Þ
�
¼ 0: ð3:7Þ

Next, we consider the case in which W ¼ 0. Even
for this case, there is the scalar potential ðKφφ̄Þ2=4Λ in
the Lagrangian (2.16). This branch corresponds to the
F ≠ 0 solution (2.10). Substituting the off-shell BPS

5We have assumed that Λ does not depends on the second
space-time derivatives or higher of φ.
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condition (3.3) into the equation of motion for the
auxiliary field (2.8) and assuming F ≠ 0, the on-shell
BPS condition becomes

Kφφ̄ ¼ 0: ð3:8Þ

This condition never provides the domain wall equa-
tion. When there is no ghost, Eq. (3.8) is just a vacuum
condition of the scalar potential ðKφφ̄Þ2=4Λ. Therefore,
although there is a scalar potential in the noncanonical
branch, superpotentials are necessary for 1=2 BPS
domain wall solutions. We also note that the 1=2
BPS domain wall solution to Eq. (3.5) interpolates
between “vacua” specified by the superpotential W0 ¼ 0
as its tension stands for. We stress that the condition
W0 ¼ 0 does not always imply vacua of the scalar
potential, especially in the noncanonical branch. The
BPS domain walls remain intact even for the deforma-
tion of the scalar potential. Although there are other
vacua that originate from the singularity of the function
Λ [see Fig. 1(c)], domain walls that interpolate these
vacua are not BPS and break all the supersymmetry.

B. 1=4 BPS domain wall junctions

We next consider 1=4 BPS domain wall junctions [35].
The scalar field depends on the two spacial directions x1 and
x2. First, we consider theW ≠ 0 case. We impose the Killing
spinor conditions on the supersymmetry parameters,

1

2
ðσ1þ iσ2Þα _αξ̄ _α¼0;

1

2
ðσ1− iσ2Þα _αξ̄ _α¼ ie−iηξα; ð3:9Þ

where η is a phase factor. Then, we obtain the BPS condition
from the supersymmetry transformation (3.1),6

∂̄φ ¼ eiηF: ð3:10Þ

Here, F in the right-hand side is one of the solutions in
(2.19). This is the 1=4 BPS condition. Substituting the
condition (3.10) into the equation of motion (2.7) for
the auxiliary field, we obtain the on-shell BPS equation
on the scalar field:

Kφφ̄∂̄φ − ∂̄φðj∂φj2 − j∂̄φj2ÞΛþ eiη
∂W̄
∂φ̄ ¼ 0: ð3:11Þ

When Λ ¼ 0, the on-shell BPS equation (3.11) becomes that
of the ordinary BPS domain wall junctions [35] of which
the analytic solutions are studied in Ref. [37]. Different from
the 1=2 BPS domain wall case, the higher derivative
corrections do not cancel in Eq. (3.11). The solutions are

deformed from the ones in Ref. [37] in general and depend
on the explicit form of the function Λ.
Now, we confirm that the BPS solutions to (3.10) satisfy

the full equation of motion for the scalar field (3.7). Using
the BPS condition (3.10), we find the following terms
in (3.7) vanish:

j∂mφ∂mφj2 − 2jFj2j∂mφj2 þ jFj4 ¼ 0: ð3:12Þ

By using the BPS equation and the equation of motion
for the auxiliary field, we find that the other terms in (3.7)
also vanish:

−
∂3K

∂φ∂2φ̄
ðj∂mφj2 − jFj2Þ þ ∂2W̄

∂φ̄2
F̄

− ∂m

�
−

∂2K
∂φ∂φ̄ ∂mφþ 2Λðð∂nφÞ2∂mφ̄ − jFj2∂mφÞ

�
¼ 0:

ð3:13Þ

Therefore, we conclude that the solutions to the deformed
BPS equation (3.11) actually satisfy the full equation of
motion in Eq. (3.7).
The energy density of the domain wall junction is

evaluated as

E ¼ Kφφ̄∂iφ∂iφ̄ − ð∂iφ∂iφÞð∂jφ̄∂jφ̄ÞΛ
− jFj2ð−Kφφ̄ þ 2Λ∂iφ∂iφ̄Þ þ 3jFj4Λ

¼ 1

2
Kφφ̄ðj∂φj2 − j∂̄φj2Þ − 2Re

�
e−iη

∂W
∂z̄

�
: ð3:14Þ

This is nothing but the expression of the ordinary (without
higher derivative terms) domain wall junctions. After
integration over the ðx1; x2Þ plane, the first term gives
the junction charge, and the second term gives the tension
of the domain walls. They are evaluated on the boundary at
the infinity of the ðx1; x2Þ plane. Again, the junction charge
and the domain wall tension are solely determined by the
asymptotic boundary conditions of the scalar field and
the superpotential and do not depend on the function Λ.
Although the expression of the Bogomol’nyi bound of the
energy is not deformed by the higher derivative terms, we
stress that the solutions of the 1=4 BPS domain wall
junction are potentially deformed in general.
Finally, we examine 1=4 BPS domain wall junctions in

theW ¼ 0 noncanonical branch. The Killing spinor and the
off-shell BPS conditions are given by Eqs. (3.9) and (3.10).
The solution of the auxiliary field is given in Eq. (2.10).
Then, the on-shell BPS equation is found to be

1

2
ðj∂φj2 − j∂̄φj2Þ ¼ Kφφ̄

2Λ
: ð3:15Þ

Equation (3.15) is supplemented by the consistency con-
dition in Eq. (2.17). Again, the higher derivative corrections

6We define the complex coordinate z ¼ 1
2
ðx1 þ ix2Þ and

derivatives ∂ ¼ ∂
∂z ¼ ∂1 − i∂2. ∂̄ is the complex conjugate of ∂.
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to the on-shell 1=4 BPS condition are not canceled. We will
comment on this equation in the next section.

IV. BPS LUMPS AND BABY SKYRMIONS

Next, we consider lumps in W ¼ 0 higher derivative
models. We look for the BPS equation for lumps that
depend on x1 and x2. Recall that for the W ¼ 0 case the
solutions of the auxiliary field are given by

F ¼ 0; ð4:1Þ

F ¼ eiα
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
−
Kφφ̄

2Λ
þ ∂mφ∂mφ̄

r
; ð4:2Þ

where α is a phase factor. There are the canonical and
noncanonical branches associated with the solutions in
Eqs. (4.1) and (4.2), respectively. In the following sub-
sections, we examine BPS lump equations in each
branch.

A. 1=2 BPS lumps

We first focus on the canonical branch associated
with the solution (4.1). Hopfions in the supersymmetric
higher derivative CP1 model of this type were discussed
before [28,29]. BPS lumps in the supersymmetric higher
derivative CP1 model were discussed in Ref. [42]. BPS
lumps in the higher derivative CPn nonlinear sigma
models were discussed in a different context without
supersymmetry [48].
In this branch, the BPS lump equation is obtained by

imposing the first condition in (3.9) on the spinor ξ̄ _α, as can
be seen in, e.g., Refs. [39–41]. Then, the BPS equation for
lumps is given by [49]

∂̄φ ¼ 0: ð4:3Þ

This is nothing but the ordinary 1=2 BPS lump condition.
This is confirmed by the Bogomol’nyi bound of the energy
density. For the canonical branch, we have the energy
density

E ¼ Kφφ̄j∂iφj2 − j∂iφ∂iφj2Λ
¼ j∂̄φj2ðKφφ̄ − j∂φj2ΛÞ − iKφφ̄εij∂iφ∂jφ̄

≥ −iKφφ̄εij∂iφ∂jφ̄; ð4:4Þ

where we have assumed the condition Λ ≤ Kφφ̄=j∂φj2 for
the positive-semidefiniteness of the energy E. The right-
hand side is nothing but the topological charge density for
the 1=2 BPS lump. The energy bound is saturated provided
the condition (4.3) is satisfied. Then, we find that the
higher derivative corrections to the solutions and the energy
bound are canceled out in this branch. It is confirmed that
solutions to Eq. (4.3) satisfy the full equation of motion for

the scalar field (3.7). When we consider the Fubini–Study
metric for the CP1 model and take the function Λ as

Kφφ̄ ¼ 1

ð1þ jφj2Þ2 ; Λ ¼ 1

ð1þ jφj2Þ4 ; ð4:5Þ

the bound (4.4) becomes just the BPS bound obtained in
the context of the effective theory on a non-Abelian
vortex [42].
In summary, although the Lagrangian contains higher

derivative corrections, the 1=2 BPS lump solution to
Eq. (4.3) (which is a holomorphic function with appropriate
boundary conditions) does not receive any corrections in
the canonical branch (2.11).

B. 1=4 BPS lumps as compact baby Skyrmions

We next consider the noncanonical branch. Since this is
associated with the F ≠ 0 solution (4.2) even for W ¼ 0,
we need to impose both of the two conditions in (3.9) in
order to obtain the BPS equation from the variation of the
fermion. Then, the BPS equation is

∂̄φ ¼ eiη
0

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
−
Kφφ̄

2Λ
þ 1

2
ðj∂φj2 þ j∂̄φj2Þ

r
; ð4:6Þ

where η0 ¼ ηþ α ∈ R is a phase factor. This is the 1=4
BPS equation. Again, the BPS lump does not cancel the
higher derivative corrections generally. We can make the
deformed BPS equation (4.6) into the following form:

1

2
ðj∂φj2 − j∂̄φj2Þ ¼ Kφφ̄

2Λ
: ð4:7Þ

We confirm that the solutions to the BPS equation (4.6)
satisfy the full on-shell equation of motion for the scalar
field (3.7). In the noncanonical branch, we have the
Bogomol’nyi completion of the energy:

E ¼ −ðj∂iφ∂iφj2 − ð∂iφ∂iφ̄Þ2ÞΛþ ðKφφ̄Þ2
4Λ

¼ Λ

�
1

2
ðj∂φj2 − j∂̄φj2Þ − Kφφ̄

2Λ

�
2

þ Kφφ̄

2
ðj∂φj2 − j∂̄φj2Þ

≥ −iKφφ̄εij∂iφ∂jφ̄: ð4:8Þ

Since we have Λ > 0 for static configurations from the
consistency condition (2.17) of the solution, the energy
bound is saturated by the topological charge density of
lumps provided that the BPS condition (4.7) is satisfied.
It is obvious that the expression of the topological charge
is not corrected by the higher derivative terms.
In the noncanonical branch, the Lagrangian does not

contain ordinary canonical kinetic term. An example of
such a kind of noncanonical model is the extremal (BPS)
baby Skyrme model. The model consists of the fourth
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derivative term and potential terms in (2þ 1) dimensions.
More concretely, if we take the Kähler potential and Λ as
in (4.5), then the Lagrangian (2.16) is nothing but the fourth
derivative part of the baby Skyrme model with an irrelevant
constant term. In Ref. [18], the authors found specific
Kähler potentials and constructed the potentials of the
baby Skyrme model. Actually, the condition (4.7) was first
found in the supersymmetric baby Skyrme model [18].
Equation (4.7) is the same as the one found in the previous
section, Eq. (3.15). The difference of solutions is specified
by boundary conditions. However, the energy bound in
(4.8) suggests that there are no BPS domain walls junctions
in the noncanonical branch. The example of solutions to
Eq. (4.7) are the compact baby Skyrmions [9,10] that are
solitons with compact support. The BPS states in the higher
derivative chiral models are summarized in Table I.

V. CONCLUSION AND DISCUSSIONS

In this paper, we have studied BPS states in the four-
dimensional N ¼ 1 supersymmetric higher derivative chi-
ral model of which the Lagrangian is given in Eq. (2.2). The
model is governed by a (2,2) Kähler tensor Λijk̄ l̄ symmetric
in holomorphic and antiholomorphic indices, in addition
to the Kähler potential K and the superpotential W. They
are functions of the chiral superfields Φi. In particular, the
tensor Λijk̄ l̄ determines the higher derivative interactions
of the models. A specific feature of the model is that the
auxiliary fields Fi do not have space-time derivatives on
them and can be eliminated by their equation of motion
algebraically. One can explicitly write down the on-shell
Lagrangian of the model at least for a single chiral
superfield. Since the equation of motion for the auxiliary
fields is no longer a linear equation, there are several
on-shell branches in this model. This fact deserves new
nontrivial BPS equations that include higher derivative
corrections.
When there is no superpotential, there are two distinct

on-shell branches. One is the canonical branch associated
with the solution F ¼ 0. An example of this model is the
supersymmetric DBI model [23]. We have shown that this
branch, in fact, allows a supersymmetric extension of any
bosonic models of complex scalar fields. We have exhibited
the explicit function Λ, which corresponds to the super-
symmetric extension of the Faddeev–Skyrme model with-
out four time derivatives, which is in contrast to the

previous studies [28,29] concluding that such a term is
necessary for supersymmetry. The other branch is the
noncanonical one corresponding to the solution F ≠ 0.
In this branch, the ordinary canonical kinetic term dis-
appears, and the Lagrangian starts from the forth-order
derivative terms. An example of this model is the extremal
(BPS) baby Skyrme model. This branch was discussed in
Refs. [18,19]. Although the W ¼ 0 case has been essen-
tially discussed in the literature [18,19], things get more
involved when one introduces a superpotential W. In this
case, a solution F ¼ 0 is not allowed. There are three
on-shell branches associated with the three different sol-
utions of the auxiliary field equation [20–22]. The resulting
on-shell Lagrangians have highly nonlinear expressions.
Perturbative analysis reveals the possibility of ghost kinetic
terms and deformations of the scalar potential.
Even though the on-shell Lagrangian is complicated

and becomes highly nonlinear in the W ≠ 0 case, one can
derive the off-shell BPS conditions from the supersym-
metry transformation of fermions. These conditions are
supplemented by the equation of motion for the auxiliary
field giving rise to the on-shell conditions. We have
analyzed the properties of BPS states. For the 1=2 BPS
domain wall case, the higher derivative corrections are
exactly canceled out in the W ≠ 0 case. The solution
to the BPS equation satisfies the full equation of motion
for the scalar field. We have shown that the tension of the
domain wall does not receive any higher derivative
corrections. In the W ¼ 0 noncanonical branch, the
1=2 BPS condition does not provide the domain wall
equation. For the 1=4 BPS domain wall junction in the
W ≠ 0 case, the on-shell BPS equation receives higher
derivative corrections. This is a new 1=4 BPS equation
for domain wall junctions. The solution is deformed
by the higher derivative effects, and it is confirmed that
the solution satisfies the full equation of motion. The
expression of the energy bound is shown to be the same
as the ordinary (without higher derivative terms) theory,
namely, the sum of the junction charge and the tension.
For lump configurations in the W ¼ 0 case, there are two
on-shell BPS equations. One is the 1=2 BPS lumps
associated with the F ¼ 0 solution, where all the deriva-
tive corrections are canceled out. The other is the 1=4
BPS lumps associated with the F ≠ 0 solution. The
on-shell BPS equation is deformed by the higher deriva-
tive corrections. This is nothing but the equation
studied in Ref. [18]. An example of solutions to this
equation is compactons in the extremal (BPS) baby
Skyrme model.
While we were able to solve explicitly auxiliary field

equations (2.5) only for one chiral superfield, reducing the
third-order algebraic equation (2.7), the multicomponent
equation (2.5) has yet to be solved. When the target space
has a large isometry, it should be possible to solve it.
Construction of more general target spaces, for instance, a

TABLE I. BPS states in theW ¼ 0 andW ≠ 0 higher derivative
chiral models. Corresponding solutions of the auxiliary field F
(whether they vanish or not) are also presented.

1=2 BPS 1=4 BPS

W ¼ 0 Lumps (F ¼ 0) Compact lumps (F ≠ 0)
W ≠ 0 Domain walls

(F ≠ 0)
Deformed domain wall junctions

(F ≠ 0)
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higher derivative CPn model and its BPS solitons, remains
as a future problem.
While we have exhausted all BPS states that are already

known in conventional N ¼ 1 supersymmetric theories
without higher derivatives, there may still remain unknown
BPS states particular for higher derivative theories. In fact,
1=4 baby BPS Skyrmions do not exist in conventional
theories. A sine-Gordon kink inside a domain wall
(corresponding to a baby Skyrmion in the bulk) [50], a
baby Skyrmion inside a domain wall (corresponding to a
three-dimensional Skyrmion in the bulk) [51], or a baby
Skyrmion string ending on a domain wall [52] or stretched
between domain walls [40,53] is one of possibilities of
composite BPS states.
It should be important to generalize our formalism

to theories with extended supersymmetries such as eight
supercharges. Although only four out of eight supercharges
are manifestly realized in the N ¼ 1 superfield formalism,
this is still useful to study the off-shell effective theory
of BPS solitons in models with eight supercharges [54].
Supersymmetric theories with eight supercharges are
known to admit plenty of composite BPS states [39,40].
In particular, a classification of all possible BPS states in
supersymmetric theories with eight supercharges was
given in Ref. [41]. It is an interesting future problem to
explore which BPS states (do not) receive higher derivative
corrections.
As this problem concerns, 1=2 BPS topological solitons

in theories with eight supercharges preserve four super-
charges on their world volume. Off-shell effective actions
of the 1=2 BPS domain wall and vortex were obtained in
d ¼ 3þ 1, N ¼ 1 superfield formalism at the leading
order [54]. The formulation presented in this paper should
be useful to obtain the off-shell action of higher derivative
corrections to these effective actions. For instance, as
mentioned in Eqs. (4.3) and (4.4), the CP1 model with a
four-derivative term appearing as the effective theory of a
non-Abelian vortex admits 1=2 BPS lumps [42], corre-
sponding to Yang–Mills instantons in the bulk [46]. In the

same way, an SUðNÞ principal chiral model with the
Skyrme term appears [55] on a non-Abelian domain
wall [56]. The off-shell higher derivative corrections to
the effective theories on these solitons are some of future
directions.

ACKNOWLEDGMENTS

The authors would like to thank Masahide Yamaguchi
for discussions. The work of M. N. is supported in part by
Grant-in-Aid for Scientific Research (Grant No. 25400268)
and by the “Topological Quantum Phenomena” Grant-in-
Aid for Scientific Research on Innovative Areas (Grant
No. 25103720) from the Ministry of Education, Culture,
Sports, Science and Technology (MEXT) of Japan. The
work of S. S. is supported in part by Kitasato University
Research Grant for Young Researchers.

APPENDIX: NOTATION AND CONVENTIONS

We use the notation of the textbook of Wess and Bagger
[57]. The component expansion of the N ¼ 1 chiral
superfield in the x basis is

Φðx; θ; θ̄Þ ¼ φþ iθσmθ̄∂mφþ 1

4
θ2θ̄2□φþ θ2F; ðA1Þ

where only the bosonic components are presented. The
supercovariant derivatives are defined as

Dα ¼
∂
∂θα þ iðσmÞα _αθ̄ _α∂m;

D̄ _α ¼ −
∂
∂θ̄ _α

− iθαðσmÞα _α∂m: ðA2Þ

The sigma matrices are σm ¼ ð1; ~τÞ. Here, ~τ ¼ ðτ1; τ−2; τ3Þ
are Pauli matrices.
The bosonic component of the supercovariant derivatives

of Φi are

DαΦiDαΦj ¼ −4θ̄2∂mφ
i∂mφj þ 4iðθσmθ̄Þð∂mφ

iFj þ Fi∂mφ
jÞ − 4θ2FiFj

þ 2θ2θ̄2ð□φiFj þ Fi
□φj − ∂mφ

i∂mFj − ∂mFi∂mφjÞ; ðA3Þ

D̄ _αΦ†īD̄ _αΦ†j̄ ¼ −4θ2∂mφ̄
ī∂mφ̄j̄ − 4iðθσmθ̄Þð∂mφ̄

īF̄j̄ þ F̄ī∂mφ̄
j̄Þ þ 4θ̄2F̄īF̄j̄

þ 2θ2θ̄2ðF̄ī
□φ̄j̄ þ□φ̄īF̄j̄ − ∂mφ̄

ī∂mF̄j̄ − ∂mF̄ī∂mφ̄j̄Þ; ðA4Þ

DαΦiDαΦkD̄ _αΦ†j̄D̄ _αΦ†l̄ ¼ 16θ2θ̄2
�
ð∂mφ

i∂mφkÞð∂mφ̄
j̄∂mφ̄l̄Þ− 1

2
ð∂mφ

iFk þ Fi∂mφ
kÞð∂nφ̄j̄F̄l̄ þ F̄j̄∂nφ̄l̄Þ þ FiF̄j̄FkF̄l̄

�
:

ðA5Þ
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