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Scalar fields pervade theoretical physics and are a fundamental ingredient to solve the dark matter
problem, to realize the Peccei-Quinn mechanism in QCD or the string-axiverse scenario. They are also a
useful proxy for more complex matter interactions, such as accretion disks or matter in extreme conditions.
Here, we study the collision between scalar “clouds” and rotating black holes. For the first time we are able
to compare analytic estimates and strong field, nonlinear numerical calculations for this problem. As the
black hole pierces through the cloud it accretes according to the Bondi-Hoyle prediction, but is deflected
through a purely kinematic gravitational “anti-Magnus” effect, which we predict to be present also during
the interaction of black holes with accretion disks. After the interaction is over, we find large recoil
velocities in the transverse direction. The end-state of the process belongs to the vacuum Kerr family if the
scalar is massless, but can be a hairy black hole when the scalar is massive.
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I. INTRODUCTION

Black holes (BHs) are known to be abundant objects in our
universe, with a major role in the evolution of galaxies and
star formation. As truly relativistic objects, they are powerful
sources of gravitational waves and key players in the nascent
field of gravitational wave astronomy. Astrophysical obser-
vations of BHs will give us unprecedented information
about our universe, by mapping the BH mass and spin with
exquisite precision [1–4]; by testing general relativity in the
strong-field regime [4–6]; by constraining the dark-energy
equation of state [7]; or by providing information on dark
matter distribution around BHs [8,9].
Supermassive BHs also have the unexpected ability to

provide information on ultralight bosonic degrees of free-
dom, generic predictions of beyond the standard model
physics and of modified gravity theories [10–12]. For
boson masses in the range 10−21 eV≲ μS ≲ 10−8 eV, the
Compton wavelength of these fields is of the order of the
BH size, the gravitational coupling of these two objects is
strongest, and long-lived quasi-bound states arise [13–15].
Depending on the efficiency with which the bosonic cloud
is accreted, one might observe gravitational wave “light
houses” or find gaps in the BH-Regge plane [11,15–19].
The end-state of the superradiant instability is not known,
but the prospect of finding long-lived—or even truly
stationary—“hairy” BH solutions deserves all the attention
possible [20–23].

Fundamental fields are also a useful proxy for more
complex interactions and matter. In this context, the
interaction between BHs and bosonic fields can teach us
about BH formation from gravitational collapse, interaction
with accretion disks, magnetic fields, etc. The rich phe-
nomenology of such natural theories prompted a flurry of
activity in the field, mostly confined to the linearized
regime where the spacetime is a fixed Kerr BH background.
The purpose of this paper is to take the first step towards
understanding the nonlinear development of the interaction
between BHs and fields. Unless stated otherwise, we use
geometrical units G ¼ c ¼ 1.

II. NUMERICAL SETUP AND ANALYSIS TOOLS

We consider a minimally coupled, gravitating, complex
scalar field Φ of mass μS described by the action

S ¼
Z

d4x
ffiffiffiffiffiffi
−g

p �ð4ÞR
16π

−
1

2
∂μΦ�∂μΦ −

μ2S
2
Φ�Φ

�
; ð1Þ

where ð4ÞR is the four-dimensional Ricci scalar. We employ
standard numerical relativity techniques based on the 3þ 1
splitting to solve the fully nonlinear problem [24,25]. In
this approach the time evolution of the 3-metric γij and
scalar field Φ are governed by
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dtγij ¼ −2αKij; dtΦ ¼ −αΠ; ð2Þ

where the extrinsic curvatureKij andΠ are their conjugated
momenta, and dt ¼ ∂t − Lβ. The 3þ 1 decomposition of
the equations of motion yields time evolution equations for
the extrinsic curvature and scalar field momentum

dtKij ¼ −DiDjαþ αðRij − 2Kk
iKjk þ KKijÞ

þ 4παðγijðS − ρÞ − 2SijÞ; ð3aÞ

dtΠ ¼ αð−DiDiΦþ KΠþ μ2SΦÞ −DiαDiΦ; ð3bÞ

as well as the Hamiltonian and momentum constraints

H ¼ Rþ K2 − KijKij − 16πρ ¼ 0; ð4aÞ

Mi ¼ DjKj
i −DiK − 8πji ¼ 0; ð4bÞ

where Rij and R are associated to the 3-dimensional metric
and ρ; ji; Sij are, respectively, the energy density, energy-
momentum flux and spatial components of the energy
momentum tensor. In practice, we employ the Baumgarte-
Shapiro-Shibata-Nakamura formulation [26,27] of the
evolution equations (2) and (3), together with the moving
puncture gauge [28,29].
We solve the Cauchy problem for Einstein’s equations

using the COSMOS code [20]. Time evolution is realized
by a 4th order Runge-Kutta method, spatial derivatives are
computed through a 4th order finite differencing method in
Cartesian grids. The Adaptive Mesh Refinement algorithm
of moving boxes is employed in order to keep a good
resolution near the BH [30–32]. Apparent horizons are
tracked using the methods outlined in Refs. [33,34].
Parallelization is implemented with OpenMP.
We measure the scalar field amplitude Φ and the

Newman-Penrose scalar Ψ4 encoding the gravitational
radiation, at coordinate spheres of fixed radius rex, where
we project them with spherical or s ¼ −2 spin-weighted
spherical harmonics. We estimate the numerical discretiza-
tion error to be of order ≲6% in both the scalar and
gravitational waveforms. In addition, we monitor the ap-
parent horizon (AH) area AAH, the irreducible mass and the
ratio of equatorial to polar circumferences to estimate the
BH mass and spin [35,36].

III. INITIAL DATA CONSTRUCTION

In general, one needs appropriate initial data to perform
reliable and realistic simulations within numerical relativ-
ity. Following the initial data construction in Refs. [20,37],
we simplify the constraint equations by the conformal
transformation

γij ¼ ψ4ηij and Kij ≡ ψ−2 ~Aij þ
1

3
γijK; ð5Þ

where ηij is the flat metric. Assuming conformal and
asymptotic flatness, the maximal slicing condition and
setting scalar field Φðt ¼ 0Þ ¼ 0, the constraints (4)
become

H ¼ Δflatψ þ 1

8
~Aij ~Aijψ

−7 þ πψ5Π2 ¼ 0; ð6aÞ

Mi ¼ ∂j
~Aj
i ¼ 0: ð6bÞ

Let us consider first a single, non-rotating BH ð ~Aij ¼ 0Þ
and a nonzero scalar field. The momentum constraints (6b)
are trivially satisfied and the Hamiltonian constraint (6a)
yields

Δflatψ þ πΠ2ψ5 ¼ 0: ð7Þ

Using the same ansatz for the Gaussian-type spherical
scalar wave packet described in Ref. [20],

Π ¼ A0

2π
e−

r2

w2ψ−5
2 and ψ ¼ 1þ M0

2rBH
þ u0ðrÞffiffiffiffiffiffi

4π
p

r
; ð8Þ

where we take the radial coordinate r ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
x2 þ y2 þ z2

p
,

the location of BH is described by rBH ≡ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðx − xBHÞ2 þ y2 þ z2

p
and M0 denotes the BH bare

mass parameter. A regular, analytical, solution to the
Hamiltonian constraint is then

u0 ¼
A2
0w

3

16
ffiffiffi
2

p erf

� ffiffiffi
2

p
r

w

�
; ð9Þ

where we have imposed that u0 → 0 at r ¼ 0. Thus,
Eqs. (8)–(9) describe a spherically symmetric scalar cloud
and a BH a distance xBH apart.
Addition of linear and angular momenta complicates the

procedure, but can be done as follows. The momentum
constraints (6b) can be also solved analytically and we
obtain the so-called Bowen-York extrinsic curvature

~Aij
BY ¼ 3

2r2
ðPinj þ Pjni − ðηij − ninjÞPknkÞ

þ 3

r3
ðϵiklSknlnj þ ϵjklSknlniÞ; ð10Þ

where Pi; Si and ni are the momentum, the spin and the
unit normal vector ni ≡ xi=r, respectively. The remaining
Hamiltonian constraint is then given by

H ¼ Δflatψ þ 1

8
~Aij
BY

~ABY
ij ψ−7 þ πψ5Π2 ¼ 0: ð11Þ

To solve the Hamiltonian constraint, we use the ansatz
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ψ ¼ 1þM0

2r
þ uðxiÞ; ð12Þ

where M0 is the BH bare mass parameter and uðxiÞ is a
regular function. We set a boosted, rotating BH initially
at the origin and a scalar pulse located at x ¼ x0 apart from
the BH. The scalar cloud is again described by the Gaussian
profile

Π ¼ AP

2π
e−

r2
0

w2ψ−3: ð13Þ

whereAP andw denote the amplitude andwidth of the scalar
cloud and r0 ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðx − x0Þ2 þ y2 þ z2

p
. Equation (11)

becomes an elliptic partial differential equation for u which
is regular everywhere and can be solved with a common
elliptic-equation solver [38].

Δflatu ¼ −
1

8
~Aij
BY

~ABY
ij ψ−7 −

A2
P

4π
e−

2r2
0

w2ψ−1: ð14Þ

We always consider initial data for which the scalar field is
weak enough that it never distorts the BH to significant
levels.

IV. COLLISION OF BHs WITH
SCALAR “CLOUDS”

We have evolved a variety of different initial configu-
rations, varying the BH mass momentum and spin, and
varying the scalar-field width, location and mass μS. The
collision process is gravity-dominated, and we find that
time scales are well approximated by Newtonian free-fall
estimates. The evolution proceeds in different stages,
depending on the scalar-field mass.
Consider the massless or small μSM regime first. For low

scalar-field amplitudes, a fraction of the initial scalar cloud
is unbounded and scatters to infinity. As we increase the
Gaussian amplitude, we find that the scalar field starts self-
gravitating and a larger fraction is accreted by the BH.
These features are summarized in Fig. 1, specialized to a
width w ¼ 20M0, which we take as representative for the
rest of this work. For this setup, typically 99% of the scalar-
fieldmass escapes to infinity: the cloud is initially located far
away from theBHand is dispersing away from it. Our results
are in quantitative agreement with Bondi-Hoyle accretion
rates, they depend onlyweakly onBH spin, but scale like the
square of the scalar field amplitude, as expected. There are
two pronounced accretion phases, related to scalar cloud
evolution and its density profile, as shown in the lower panel
of Fig. 1. The final state is a Kerr BH in vacuum.
The accretion and evolution of configurations where the

scalar is massive shows qualitatively different behavior.
Massive fields are harder to disperse and try to bound.
Accordingly we find substantial more amount of scalar
field being accreted onto the BH in the massive-scalar case.

An intriguing alternative to this scenario is that—if the BH
is rotating—superradiance prevents absorption of the scalar
at the horizon and instead forms a hairy BH, with a
nontrivial external scalar field configuration and quadru-
pole moment [22,23]. Even in the absence of rotation,
extremely long-lived modes have been shown to be
possible [13–15,20]. Our results point to a possible for-
mation scenario: a cloud of scalar field scattering off a
nonrotating BH leaves behind, at late times, a BH sur-
rounded by an external long-lived scalar condensate.
Snapshots of the evolution for a scalar with μSM0 ¼ 0.4
are shown in Fig. 2. The pattern oscillates with a frequency
compatible with linearized calculations which also describe
well the spatial extent of the scalar condensate. In other

FIG. 1 (color online). Upper panel: Scalar field accretion. BH
area increases for different initial BH spin and scalar-field
amplitude. The scalar is taken to be massless, and the scalar
“cloud” is initial described by a Gaussian with w ¼ 20M0 located
at the origin for nonrotating BH and x0 ¼ 30M0 for rotating BH.
Lower panel: Snapshots of scalar-density on the x − y plane at
different instants, for a=M0 ¼ 0.0 and A0M0 ¼ 0.11. The tem-
poral density distribution explains the different accretions stages
in the upper panel.

FIG. 2 (color online). Snapshots of the accretion flow to a
nonrotating BH on x − y plane. The field is initially described by
a Gaussian with A0M0 ¼ 0.2, xBH ¼ −8M0, w ¼ 6M0 and has a
mass term μSM0 ¼ 0.4. Colors depict intensity of the scalar field,
at late-times the configuration settles to a very long-lived dipole
condensate outside the horizon, extending to distances of order
∼20M0 [15].
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words, we have strong evidence of a possible mechanism
for formation of what for practical purposes is a “hairy” BH
in asymptotically flat spacetime.

V. THE (ANTI-) “MAGNUS” EFFECT
IN BH PHYSICS

As the BH pierces through the cloud, accretion of matter
ensues. It is well-known that the absorption cross-section for
co- and counterrotating particles and waves is different for
spinning BHs [39,40], causing a kinematic drift of general-
relativistic origin in the perpendicular direction to the flow.
Consider theBH initially at the center of the reference frame,
spinning with angular momentum J aligned with the z–axis
andmoving in the x–direction through the scalar field cloud.
The BH accretes mass as it moves, in a spin-dependent
manner. For low-velocity collisions, accretion is governed
by the marginally bound circular orbit of radius (in “Brill-
Lindquist” coordinates [39])

R∓ ¼ 2M ∓ aþ 2
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
M2 ∓ aM

p
: ð15Þ

The upper (lower) sign applies to co-(counter)rotating
orbits. Modeled in this way then, as the BH moves through
themediumwith relative velocity v, it sweeps up a distorted,
nonsymmetric “tube” composed by two half cylinders with
radii R−; Rþ. Finding the shape of this distorted tube is an
interesting geometrical problem, which in its simplest
version amounts to equating the centroid of the projected
figure to the BH location, a problem similar inmany respects
to that found in two-dimensional rocket motion [41]. A
simple estimate can be obtained by noting that when the BH
moves a distance δx, the y–position of the center-of-mass of
this distorted cylinder is located at ∼2ρðR3

2 − R3
1Þδx=3M,

with ρ the energy density of the scalar configuration. Thus,
after accretion of the material the BH has to sit in the CM, at
δy≳ 2ρvðR3

− − R3þÞδx=3M ∼ 100Maρδx. This new effect
in BH physics, triggered by asymmetric accretion, is
responsible for the motion in the direction orthogonal to
the initial BH velocity. In this respect, it is similar to the
“Magnus effect” in fluid dynamics, a well-known corollary
of hydrodynamics with important consequences in sports,
aeronautics, etc [42].1 However, (i) the original Magnus
effect is a consequence of delicate boundary-layer effects
close to the body’s surface, whereas the BH drift we
described is a pure consequence of spacetime drag and
kinematics and (ii) theMagnus effect results, generically but
not always, in amotion in the y–direction but in the opposite

sense to the BH drift that we predict via spacetime drag and
kinematics.
Asymmetric accretion is potentially concurrent with

other effects present in our simulations. The first is an
overall momentum in the transverse direction triggered by
scalar or gravitational waves, potentially displacing the
entire BHþ cloud system. The second competing effect is
the frame-dragging of the scalar cloud, which again by
momentum conservation would rigidly rotate the system.
Both effects could mask the asymmetric accretion deflec-
tion. However, we find that whereas the asymmetric accre-
tion is expected to scale with the scalar cloud density (for a
fixed total mass say), this is no longer the case for the other
two competing effects. Nonhomogeneous media would
also give rise to asymmetric accretion and a consequent
transversal motion which would be rotation independent. In
our setup the BH lies along the symmetry axis and such
effect is nonexistent. Finally, the BH motion creates a
downstream “tail” of increased pressure leading to a drag
force on the BH. Simulations of accretion onto spinning
BHs—working with a fixed background geometry—
indicate that rotation distorts the shape of the tail and gives
rise to a transverse force acting in the same direction as the
regular Magnus force [47].
Our numerical results are summarized in Fig. 3; they are

consistent with a tail distortion previously reported in the
literature at linearized level, but they also indicate that this
effect is subdominant. The upper panel shows the puncture
position along the y-axis as a function of time. These results
are gauge-dependent and a simple overall coordinate shift in
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FIG. 3 (color online). The gravitational “anti-Magnus” effect.
Upper panel: BH (puncture) y–coordinate as a function of time,
showing two significant stages where the BH moves downwards.
These two stages are consistent with the accretion pattern of
Fig. 1. Middle panel: Difference between proper length from
the BH to the upper and lower edge of the scalar cloud in the
y-direction, for a=M0 ¼ 0.5, APM0 ¼ 0.15. The overall pattern is
that of a relative downward movement of the BH relative to the
cloud. Lower panel: Total BH angular momentum J for
a=M0 ¼ 0.5, APM0 ¼ 0.15. It decreases at late times.

1Magnus-like effects were also reported for Abrikosov vortices
[43] and an “optical”Magnus effect was predicted (and observed)
to exist as well, by Zeldovich and collaborators [44,45]; simi-
larities with general-relativistic equations of motion were put
forward in Ref. [46]. The effect we describe here is no analogy, it
is a purely general relativistic effect.
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the negative y-direction would masque it. We have therefore
also measured the proper distance in the y-direction from
the BH to the outer boundaries of the cloud, defined as the
points for which the density decreases to 1% of its central
value. If the BH really moves downwards with respect to
the cloud, then the distance to the upper part of the cloud
should be larger than the distance to the lower part of the
cloud. This is in fact the overall pattern seen in the middle
panel of Fig. 3. Thus, an overall shift of the system does not
explain our numerical results. The lower panel of Fig. 3
shows the time evolution of the total angularmomentum J of
the BH. In line with the predicted preferred absorption of
counterrotating particles, J decreases. Finally, our results are
proportional to density, spin and velocity, as expected for the
asymmetric accretion scenario we propose.
This effect is not a particularity of scalar fields, but a

rather general feature of BH interaction with matter. An
order of magnitude estimate for astrophysically realistic
sources is given by

vy ∼ 10−2
f11=20Edd

~r15=8

�
0.1
α

�
7=10

�
M

108M⊙

�
13=10 a

M
;

where we take as reference value the density of thin
accretion disks close to supermassive BHs, fEdd is the
Eddington luminosity, α is the disk’s viscosity parameter
and ~r≡GMr=c2 is the distance of the BH from the center
of the disk [48,49].
These numbers are encouraging, and open-up the pos-

sibility to actually observe the gravitational anti-Magnus
effect. This deflection is all the more interesting as it can in
addition provide an evidence for the existence of horizons:
compact stars or any other object with a surface will
presumably be subjected to an ordinary Magnus effect.

We also observe large “kicks” in the transverse direction
after the BH ceased interacting with the scalar cloud. These
kicks, presumably imparted by gravitational waves, are
already apparent in the puncture position. Their magnitude
depends on the scalar cloud amplitude and width. Further
exploration of this effect is necessary to understand whether
it is a viable recoil mechanism in realistic astrophysical
scenarios.

VI. CONCLUSIONS

We reported on the first steps toward understanding the
interaction between fields and BHs. Much remains to be
understood, but we think our setup will be useful in
exploring fundamental issues such as fully nonlinear
investigations of gravitational drag, turbulent wakes, spin
alignment and spin precession during the interaction of
BHs with matter.
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