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We establish the functional renormalization group as an exploratory tool to investigate a possible phase
transition between a pregeometric discrete phase and a geometric continuum phase in quantum gravity.
In this paper, based on the analysis of Eichhorn and Koslowski [Phys. Rev. D 88, 0840156 (2013)],
we study three new aspects of the double-scaling limit of matrix models as renormalization group fixed
points. First, we investigate multicritical fixed points, which are associated with quantum gravity coupled
to conformal matter. Second, we discuss an approximation that reduces the scheme dependence of our
results as well as computational effort while giving good numerical results. This is a consequence of the
approximation being a solution to the unitary Ward identity associated to the U(N) symmetry of the
Hermitian matrix model. Third, we discuss a scenario that relates the double-scaling limit to fixed points of
continuum quantum gravity.
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I. INTRODUCTION

The functional renormalization group (FRG) is an
exploratory tool in the investigation of quantum gravity
models. In Ref. [1], we showed how the FRG can be used to
recover the double-scaling limit of matrix models for 2D
Euclidean quantum gravity as a renormalization group
(RG) fixed point. The purpose of this paper is to further
develop the use of the FRG as a tool in the investigation
of matrix models of 2D Euclidean quantum gravity.
These models are the prototype of discrete models of
quantum gravity such as Euclidean and causal dynamical
triangulations [2–4], tensor models [5,6], and group field
theories [7–10]. The ultimate goal of this research is
to provide a qualitatively well-understood and quantita-
tively precise analytical tool to study the continuum
limit in four-dimensional models of discrete quantum
spacetime.
The particular results of this paper are the following:
(1) Besides the double-scaling limit, there exists a series

of multicritical points, which correspond to the
continuum limit of pure quantum gravity coupled
to conformal matter. We discover these multicritical
points in Sec. III as fixed points of the FRG with
good matching of the critical exponents and dimen-
sionless ratios of coupling constants.

(2) It turns out that the tadpole approximation to the
beta functions does not only simplify computations,

but also leads to scheme-independent results.
Further, this approximation solves the tadpole
approximation to the unitary Ward identity. This
leads to an improvement of the numerical results for
critical exponents compared to Ref. [1], where we
found a 50% discrepancy of the critical exponent for
the pure gravity model compared to the known
analytic value. This quantitative improvement arises,
as the tadpole approximation is a good approxima-
tion for fixed points with small critical values of the
couplings. Besides, it provides a self-consistent
implementation of unitary symmetry.

(3) The continuum limit of matrix models is well
understood in terms of a lattice interpretation of
Feynman graphs of a matrix model, as a limit in
which the lattice constant approaches zero. This
straightforward geometric picture is not available in
the FRG description. Nevertheless, there is a link
between the FRG approach to matrix models and
continuum quantum gravity (see Sec. V).

Let us now revisit the foundations of the approach
of Ref. [1] before introducing their implementation
in Sec. II.

A. Renormalization group and
double-scaling limit

The idea behind the matrix- (respectively, tensor-)model
approach to quantumgravity is to express the quantumgravity
path integral as a sum over discrete triangulations or more
generally tesselations. This discrete sum can be translated into
matrix or tensor models [11]. In two-dimensional quantum
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gravity, based on the Einstein–Hilbert action1 and a summa-
tion over topologies, the correspondingmatrixmodel is of the
form

Z ¼
Z

DφeNð−1
2
Trφ2þg4

4
Trφ4Þ; ð1Þ

where φ is anN × N Hermitian matrix; for reviews, see, e.g.,
Refs. [12–16]. The continuum limit is obtainedwhenN → ∞
(i.e., infinitely many degrees of freedom contribute), and
g4 → g4c. If these two limits are taken separately, only
spherical topologies contribute to the partition function. To
include all topologies, one should observe that the partition
function admits an expansion in Feynman graph topologies,

Z ¼
X
h

ZhN2ð1−hÞ; ð2Þ

where h is the number of handles. It is possible to keep
contributions of all topologies, if the 1

N suppression of
higher topologies is compensated. This is possible, sinceZh ≈
ðg4c − g4Þð1−hÞð2−γstÞ as g4 → g4c. Thus, if one takes the
double-scaling limit [17–19]

ðg4 − g4cÞ
2−γst
2 N ¼ C; ð3Þ

whereC is a constant,whileN → ∞ and g4 → g4c, then allZh
contribute to the large-N limit of Z. To understand the
connection to the renormalization group, we realize that
the double-scaling limit dictates a particular scaling of g4
with N. We can write Eq. (3) as

g4ðNÞ ¼ g4c þ
�
N
C

�
− 2
2−γst

: ð4Þ

This is the structure of a solution to the linearized RG flow
in the vicinity of a fixed point.2 Thus, the double-scaling
limit corresponds to an interacting fixed point of the renorm-
alization group of thematrix model, in whichN plays the role
of a RG scale. The critical exponent θ ¼ 4

5
is related to the

exponent γst in the usual notion for these models by θ ¼ 2
2−γst

,

i.e., γst ¼ − 1
2
.

Note that in the two-dimensional matrix-model case the
sum (2) is not summable, so the partition function Z exists
only as a formal sum. In particular, while g4c is the radius of

convergence for the perturbative expansion of the partition
function at fixed topology, g4c plays no such role in the sum
over all topologies. Accessing the double-scaling limit as
an RG fixed point does not provide a novel way to perform
this sum.3 Instead, the FRG framework provides a way to
determine whether there exists a consistent scaling that
relates g4 andN, such that a contribution of all topologies to
the formal sum can be retained in the large-N limit. The
FRG allows us to derive a consistent scaling for the double-
scaling limit. Whether or not such a scaling exists, and what
the value of the critical exponent is, is independent of the
question of whether the partition function converges. In
particular, the RG will give meaningful results for the
scaling exponent of the double-scaling limit even in cases
where the expression for the partition function does not
converge. In higher dimensions, there are indications that
the partition function is summable in the double-scaling
limit [20–22] and contributions from higher orders in the
1=N expansion [23] can be retained consistently. The FRG
allows us to access tensor models corresponding to d ¼ 4
dimensions, where other methods that work successfully in
the matrix-model case break down. The FRG will thus
provide a method to derive the scaling exponent(s) of the
double-scaling limit. Further, the FRG can also be applied
to models with a matrix Laplacian, which are asymptoti-
cally free [24]. In these models, the FRG could be of
considerable use to study the strongly interacting “infrared”
limit, where a phase transition could lead to a “condensed”
phase of discrete building blocks; see, e.g., Ref. [25].
In this paper, we will further establish the functional

renormalization group as a useful tool to study matrix
models, providing a starting point for research on
d ¼ 4-dimensional tensor models.

B. Renormalization group scale in matrix models

Let us now expand on the use of N as a RG scale, as first
proposed in Ref. [26]; see also Refs. [27–29]. Applying
renormalization group tools in quantum gravity could seem
futile: The RG sorts quantum fluctuations according to a
scale, separating large-scale from small-scale fluctuations
and integrating them out according to this organizing
principle. In quantum gravity, where all possible geom-
etries are included in the path integral, no fixed notion of

1Note that the restriction to the Einstein–Hilbert action is
somewhat arbitrary at the microscopic level, in particular from
the FRG perspective. In fact, it could well be that the existence
of a continuum description of quantum spacetime requires
higher-order operators.

2Given a beta function βg ¼ μ∂μgðμÞ, we can linearize it
around a fixed point at g�:

∂βg
∂g jg¼g� ðg − g�Þ ¼ 0. This is solved by

gðμÞ ¼ g� þ cð μμ0Þ−θ, where θ ¼ − ∂βg
∂g jg¼g� , and c is a constant of

integration and μ0 a reference scale.

3The FRG flow is a priori a differential flow on an infinite
dimensional theory space. This statement tacitly assumes a norm
on theory space which is ideally a Banach space. This norm also
determines what a fixed point of the flow means. If we were able
to provide this Banach space structure and were able to prove that
the FRG flow is a differential flow on this space, then we could in
principle make statements about summability of our fixed points.
However, this is not what we do. Rather, as we stated in Ref. [1],
in our practical calculations, we use a finite truncation, which is
provided by a finite order of the vertex expansion, and search for
simultaneous vanishing of all beta functions in this truncation.
This explains why our present calculations are insensitive to the
question of whether the fixed-point action is summable.
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scale exists. Every configuration comes with its own notion
of scale. It thus seems that the use of RG techniques in
quantum gravity requires breaking the diffeomorphism
invariance (the symmetry that ensures background inde-
pendence) of gravity by singling out one field configuration
to organize all other quantum fluctuations into large-
scale or small-scale ones with respect to this preferred
field configuration. Hence, it seems that background
independence, a crucial requirement of quantum gravity,
is incompatible with RG techniques.
Different answers have been found to this apparent

problem: In continuum formulations, the background field
method can be used in combination with diffeomorphism
Ward identities to introduce a background and fluctuation
field [30–32], in such a way that background independence
is ensured. In these approaches, the topology and dimen-
sionality of quantum configurations are fixed, and this
background structure is sufficient to then set up a useful
background-field approach. Within causal dynamical tri-
angulations, proposals for the RG flow were recently
advanced [33,34], based on equipping each fundamental
building block with a length scale a and then proceeding
similarly to lattice field theory.
In completely background-independent approaches,

where not even fiducial background structure is allowed,
topology is not fixed, and geometry is emergent, the notion
of scale can clearly not be related to a momentum-scale as in
standard quantum field theories. The only possible notion of
scale is inherent to the model, which “knows” nothing about
momentum or length scales. The notion of scale is related to
the number of degrees of freedom that have been integrated
in the path integral. Then, a distinction of UV and IR is
possible: The model-inherent scale is infrared, if most
degrees of freedomhave been integrated out, and ultraviolet,
if most degrees of freedom are not yet integrated out. It is
then obvious that the matrix size N is the only possible
notion of scale in pure matrix/tensor models.

C. Multicritical matrix models and conformal matter

In an extension of our earlier work [1], we will discuss
models beyond the pure gravity case here, which corre-
spond to conformally coupled matter-gravity theories. The
motivation to study these is clear: Our Universe contains
both matter and gravitational degrees of freedom, which are
coupled. Thus, matter degrees of freedom are important in
the gravitational RG flow and vice versa; see, e.g., Ref. [35]
for the continuum case. It is thus highly interesting to study
matrix models which correspond to tesselations of surfaces
including dynamical matter. A model for these theories was
discovered in Ref. [36], where multicritical points for
matrix models were found. If we generalize the matrix
model to allow for a potential of the form

VðϕÞ ¼ 1

2
Trϕ2 −

g4
4
Trϕ4 −

g6
6
Trϕ6 þ…; ð5Þ

then this still corresponds to a model of random surfaces,
with the tesselations including squares, hexagons, octa-
gons, and so on. If we allow these couplings to change sign,
then some configurations will come with a negative weight,
already suggesting that this model contains more than just
gravitational degrees of freedom. For example, consider a
typical Feynman graph, which is a triangulation of a
Riemann surface, and consider a “contamination” with
squares. The additional squares can be viewed as a
soldering of two triangles, and this soldering can be
physically interpreted as a hard dimer [37]. In fact, there
exists a tower of multicritical models, which correspond to
two-dimensional gravity coupled to conformal matter. They
are specified by two integers ðp; qÞ, which determine the
central charge c ¼ 1 − 6ðp − qÞ2=ðpqÞ. In the case of
multicritical matrix models, it turns out that ðp; qÞ ¼
ð2; 2m − 1Þ, with m ¼ 2; 3;…. One can then evaluate
the critical exponent γst in Liouville theory and obtains
the result γst ¼ −mþ 3=2. For the matrix models, the
following pattern of critical points emerges: Setting gn ¼ 0
for n > nmax and letting the gn−1, gn−2, etc., alternate in
sign, with g4 < 0, leads to different universality classes in
the continuum limit. For the mth such multicritical point,
nmax ¼ 2m, which is characterized by m − 1 positive
critical exponents in the RG approach [26]. The smallest
of these takes the value γst ¼ 3

2
−m, in agreement with the

continuum result. (Note that different conventions for
the definition of γ are sometimes used in the literature.
We follow Ref. [12].) Translated to the critical exponent at
an RG fixed point, this implies θm ¼ 4

2mþ1
. The existence

of further relevant directions [26], i.e., parameters that
require tuning to reach the phase transition in the large-N
limit, is suggestive of the existence of further degrees of
freedom. One can easily conjecture that these additional
degrees of freedom are matter [36]. As a new test of our
renormalization group method, we will search for the
fixed points corresponding to the double-scaling limit at
these multicritical points; see, e.g., Ref. [38], and compare
the results for the critical exponents with the exact values.

II. FUNCTIONAL RENORMALIZATION GROUP
FOR MATRIX MODELS

The Wetterich equation [39] is a functional differential
equation for the effective average action Γk of a quantum
field theory, which contains the effect of quantum fluctua-
tions at momenta p2 > k2 and encodes the effective dynam-
ics of low-energy effective fields. For general reviews of the
method, see Refs. [40,41]. In Ref. [1] we adapted this
equation to the setting of matrix models, where no momen-
tum scale exists.We thus introduce an infrared cutoff scaleN
and write an infrared regulator RNða; bÞ as a function of the
matrix indices a; b and the cutoff scale N, such that

lim
a=N→0;b=N→0

RNða; bÞabcd > 0; ð6Þ
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lim
N=a→0;N=b→0

RNða; bÞabcd ¼ 0 ð7Þ

lim
N→Λ→∞

RNða; bÞabcd → ∞: ð8Þ

Since the quadratic term Trðϕ2Þ is dimensionless, i.e., it
scales as N0, we used a dimensionless regulator of the form

RNða; bÞ ¼
�

2N
aþ b

− 1

�
θ

�
1 −

aþ b
2N

�
; ð9Þ

in Ref. [1], that is modeled after Litim’s optimized cutoff for
the continuum case [42,43].
Including the IR-suppression term 1

2
TrðϕRNϕÞ ¼ ΔSN

into the path integral

ZN ¼
Z
Λ
dφe−S½φ�−ΔSN ½φ�þJ·φ ð10Þ

then allows us to define the effective average action by a
modified Legendre transform:

ΓN ½ϕ� ¼ sup
J
ðJϕ − lnZNÞ − ΔSN ½ϕ�: ð11Þ

The scale dependence of the effective average action is then
described by

∂tΓN ¼ 1

2
trðΓð2Þ

N þ RNÞ−1∂tRN; ð12Þ

where t ¼ lnN. Herein Γð2Þ
N ¼ ∂2

∂ϕab∂ϕcd
ΓN . The trace can be

converted into an integral by use of the Euler MacLaurin
formula. Additional terms beyond the integral will be
Oð1=NÞ [1], and we will ignore them in the N → ∞ limit.
The FRG framework gives access to the bare action in the
limit N → ∞. This is due to the widely used fact (see, e.g.,
Refs. [40,41] for reviews) that the regulator term
approaches a Dirac-delta functional in this limit, which
allows one to evaluate the path integral (10) in the saddle
point approximation, which combined with the definition
(11) gives the bare action plus terms that are suppressed in
the limit N → ∞. The FRG approach has thus access to the
bare action, and the stability of the underlaying path
integral can thus be discussed without any problem. This
is the reason for the common phrase: The effective average
action is an interpolation between the bare action in the UV
and the quantum effective action in the IR.

A. Symmetric theory space and truncation

To derive β functions from Eq. (12), wewrite the effective
action as a sum of local operators multiplied by scale-
dependent couplings. Our model has a UðNÞ × Z2 sym-
metry, such that all operators of the form Trðϕi1Þ…TrðϕinÞ
with i1 þ � � � þ in even are generated and should be included
in the effective action. The space of action functionals that are

linear combinations of these operators is the Z2 ×UðNÞ-
symmetric theory space. One now has to find a way to
truncate this space to a finite subspace that can be dealt with
in practice without throwing out those operators that are
relevant for the physical system we aim to describe. An
organizing principle in this theory space is provided by the
scaling dimensionality. In our case, where no notion of
momentumscales exists, the scalingdimensionality is related
to thematrix sizeN: The requirement of awell-defined large-
N limit of the matrix model allows us to derive a consistent
(albeit not unique) canonical scaling of couplings; for single-
trace couplings ḡi of operators Trϕi and their dimensionless
version gi we obtained in Ref. [1], see also [17]

gi ¼
ḡiN

i−2
2

Zi=2
ϕ

; ð13Þ

where Zϕ is a wave-function renormalization, occurring as
the prefactor of the quadratic term in the potential. Similarly
we have that

gi1…in ¼
ḡi1…inN

i1þ…þin
2

þðn−2Þ

Z
i1þ…þin

2

ϕ

; ð14Þ

for multitrace couplings gi1…inTrðϕi1Þ…TrðϕinÞ. Here we
have taken into account that couplings corresponding to
multitrace operators have a lower canonical dimensionality,
to account for the additional traces.
As only couplings with positive dimensionality are

relevant and correspond to free parameters, we conclude
that the theory has no free parameters at the Gaussian fixed
point. At an interacting fixed point, such as that corre-
sponding to the double-scaling limit, new operators can be
shifted into relevance as interactions modify the scaling
dimensions. The canonical dimensionality nevertheless
provides a useful organizing principle: If we assume that
the contribution of quantum fluctuations to the scaling
dimensionality, ηi, is bounded, this provides a guiding
principle to set up a truncation; it should first include
single-trace operators up to a certain number of fields and
then double- and triple-trace operators up to a given
canonical dimensionality. Note that similar considerations
have been backed up by explicit evaluations of scaling
dimensions in continuum quantum gravity [44]. We will
use this reasoning to define useful truncations.

B. Extended theory space with
symmetry-breaking operators

An IR-suppression term that divides the matrix entries
ϕab into IR and UV degrees of freedom necessarily breaks
the UðNÞ symmetry of the matrix model. To construct a
regulator that depends on matrix indices, one needs to
introduce at least a constant matrix X with components

Xab ¼ aδab; ð15Þ
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which allows one to introduce the operator ðΔϕÞab ¼
ðaþ bÞϕab as

Δϕ ≔ Xϕþ ϕX: ð16Þ

This operator is closely related to the two-dimensional
Grosse–Wulkenhaar Laplacian ðΔϕÞab ¼ ðaþ bþ 1Þϕab,
which can be used to set up a FRG approach to non-
commutative scalar field theory [45]. Because of this analogy,
we will use the term “matrix Laplacian” for this operator.
As a consequence of introducing the regulator, the rhs of

the flow equation will also contain operators with insertions
of the constant matrix X, i.e., operators of the form
Trðϕn1Xm1…Þ…Trð…Þ (with P

ini even). In other words,
the RG flow has to be set up in the extended theory space,
which is the space of linear combinations of these more
general operators, because the UðNÞ-symmetric theory
space, which is a subspace of this full theory space, is
not left invariant by the flow.
The dimensionality of the operators with additional

insertions of X can be inferred in two ways. From
inspection of Eq. (9), we realize that, as trX ∼ N, this sets
a dimensionality of 1. Alternatively, one can consider the
geometric picture that underlies the two-dimensional
Grosse–Wulkenhaar model.4 There, the matrix size N is
related to the noncommutative scale θ, which has dimen-
sion l−2, which is the same dimension as the Grosse–
Wulkenhaar Laplacian Δ. Again, one concludes that X
should carry one unit of dimension in N.
This dimensionality of X (respectively, Δ) has the useful

effect of dimensionally suppressing operators with an inser-
tion ofX compared to theUðNÞ symmetric operators that are
obtained by excising theX insertions. Thus, one expects that
the operators with X insertions will be irrelevant.5

C. Projection on a truncation

The practical use of the flow equation involves trunca-
tions of the theory space. Unfortunately, the rhs of the flow
equation will in general not be of the form of the truncation.
Thus, one needs to find a prescription to project the rhs of
the flow equation onto the monomials in the truncation. In
Ref. [1], we concerned ourselves only with the symmetric
theory space and were then able to discern the monomials
in the truncation by inserting field configurations of the
form ϕ ¼ vX, after which we where able to perform the
operator traces as simple sums. It is obvious that this simple
projection rule is not sufficient for the full theory space. We
thus refine the projection rule. In a first reading, the
following considerations can be skipped, as the approxi-
mation that we will introduce in Sec. III A and the results in
Sec. IV can equally well be obtained with the simpler
prescription in Ref. [1].
The elementary operators Trðϕn1Xm1…Þ…Trð…Þ form a

basis of theory space; i.e., a general action functional can be
expanded as a linear combination of the elementary
operators.6 We thus have to find a projection prescription
that allows us to extract the coefficients of the expansion of
a general action functional in terms of elementary oper-
ators. This algorithm has to respect linearity of the
expansion, and it has to satisfy the elementary projection
property: If the action functional is precisely one elemen-
tary operator, then the expansion coefficient of this operator
is 1, while all others vanish.7

For practical calculations we will use the expansion

ðΓð2Þ
N þ RNÞ−1 ¼

P∞
n¼0 P

−1ð−F½ϕ�P−1Þn, where P and

F½ϕ� are fixed by Γð2Þ
N ½ϕ� þ RN ¼ ∶Pþ F½ϕ� and

F½ϕ≡ 0� ≔ 0. This leads to a significant simplification,
since this ensures that the rhs of the flow equation is
“polynomial” in ϕ whenever ΓN ½ϕ� is. For polynomial
action functionals, one can proceed as follows.
Each term on the rhs of the flow equation is of the form

Tn½ϕ� ¼ ð−1Þn
2

tropðP−1 _RðP−1F½ϕ�ÞnÞ, where we defined
_R ¼ N∂NRN . We expand

Tn½ϕ� ≔
X∞
k¼1

Va1;b1;…;a2k;b2k
n;k ϕa1b1…ϕa2kb2k ; ð18Þ

where

4Note that the analogy with the Grosse–Wulkenhaar model can
only be made for the geometric structures, but not for ϕ, which is
dimensionless when treated as a 2D scalar field, whereas it is
important to the matrix model approach to quantum gravity that ϕ
possesses dimension N

1
2.

5Once one realizes that the flow equation does not preserve the
UðNÞ-symmetric theory space, it becomes a natural question to
ask what happens if one uses a standard regulator built from the
matrix Laplacian Δ, e.g., a regulator of the Litim form

RN ¼ ðN − ΔÞθ
�
1 −

Δ
N

�
: ð17Þ

In the explicit calculations that we performed for this paper, it
turned out that the flow generated using the dimensionful
regulator (17) reproduces all the qualitative features of flow
generated using the dimensionless regulator (9) and that the
quantitative differences were small. It may at first seem surprising
that the dimensionality of the regulator does not influence the
qualitative features of the flow, but it is simply a consequence of
the fact that we investigated the flow of a pure matrix model
under the change of matrix-size N and that both regulators are
“small matrix”-suppression terms.

6The most general action functional is an arbitrary function of
the matrix entries. However, since we use a vertex expansion to
derive the rhs of the flow equation, we restrict ourselves to action
functionals that can be expressed as linear combinations of the
elementary operators. Notice also that this expansion is formal;
i.e., we do not specify any norm in which this expansion is
assumed to converge. The specification of such a norm is a very
delicate problem, similar to summability of perturbation series.

7This statement does of course require that elementary
operators are linearly independent, which poses a restriction that
we will discuss below.
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Va1;b1;…;a2k;b2k
n;k ¼ 1

ð2kÞ!
δ2kTn½ϕ�

δϕa1b1…ϕa2kb2k

����
ϕ≡0

: ð19Þ

For instance, starting from an action of the form
ΓN ¼ trϕ2 þ g4

4
trϕ4, we will have Vn;k ∼ gn4δk;2n. We will

now use the fact that δϕab
δϕcd

¼ I, where I is the appropriate unit

matrix, e.g., I ¼ 1
2
ðδacδbd þ δadδbcÞ.8 Further, we choose

an IR-suppression term that is an index-dependent function
times the appropriate symmetrization of δ:: δ::. It thus
follows that

Va1;b1;:::;a2k;b2k
n;k ¼

X
i

fa1;b1;:::;a2k;b2kn;k;i ða1; :::; b2kÞδ::;:::::δ::;::
zfflfflfflfflffl}|fflfflfflfflffl{2k factors

ð20Þ

where each upper index of any fa1;b1;…;a2k;b2k
n;k;i is contracted

with an index of a Kronecker delta. We can thus write each
fa1;b1;…;a2k;b2k
n;k;i ða1;…; b2kÞ as a function of the indices

gða1;…; b2kÞ times a contraction pattern (which is given
by the Kronecker deltas). We now perform a Taylor
expansion of the g around vanishing index

gði1;…; i4kÞ ¼ gj~i≡0
þ ∂g
∂ij

����
~i≡0

ij

þ 1

2

∂2g
∂ij∂ik

����
~i≡0

ijik þ…

¼ g0 þ g1i1i1 þ
1

2
g2i1;i2i1i2 þ… ð21Þ

The expansion coefficients gki1;…;ik
combined with the

contraction pattern δi:;i:…δi:;i: . can be identified as being
generated by a unique product of traces of matrix products
of ϕ and X matrices: The contraction patterns determine
how many ϕ’s appear in each trace, and the dependence of
gki1;…;ik

on the indices i1;…. tells us at which positions what
powers of the X matrices have to be inserted. To project
onto the symmetric operators with no X insertions, we
would only consider the g0 term.
This procedure allows us to uniquely expand the rhs of

the flow equation in terms of the elementary monomials
Trðϕn1Xn2…Þ…Trðϕm1Xm2…Þ that we use as the coordi-
nate basis for our theory space. Two subtleties associated
with the use of this basis should be noted:
(1) Commutativity of the product of traces and cyclicity

of the trace imply the monomials Trðϕn1Xn2…Þ…
Trðϕm1Xm2…Þ are not simply labeled by the arrays

of integers ððn1; n2;…Þ;…; ðm1; m2;…ÞÞ but by
equivalence under all permutations of blocks and
cyclic permutations by an even number of steps of
numbers within a block. This means that we have
to label the coordinate basis of the theory space,
i.e., the coupling constants, by fixing a unique
representative in each equivalence class.

(2) The regulator is not an analytic function of the
indices due to the Heaviside function. This Heav-
iside function has, however, no observable effect
when the effective action is probed with “IR”
degrees of freedom (i.e., matrices ϕ that have only
the upper left N × N components nonvanishing).
Thus, for effective IR field theory, one can use the
above identification of field monomials, since
the Taylor expansion of the functions g around
vanishing index is “blind” to the Heaviside function.

III. RENORMALIZATION GROUP FLOW
AND GAUGE SYMMETRY

The above procedure would allow us to derive the RG
flow in the extended, nonsymmetric theory space. Since our
model is symmetric under UðNÞ, and the symmetry break-
ing is only introduced by the regulator, there is a Ward
identity that will impose a nontrivial constraint on the RG
flow in the extended theory space. The action of a
Hermitian pure matrix model is invariant under unitary
transformations which act on the field in the form

ϕ ↦ OTϕO ¼ ϕþ ϵ½ϕ; A� þOðϵ2Þ; ð22Þ
where A is the generator of an infinitesimal symmetry
transformation. The functional measure and the bare
action of a pure matrix model are invariant under unitary
transformations, but the change of the regulator term is

GϵΔNS ¼ ϵTrðϕ½A; RN �ϕÞ; ð23Þ

where we denoted the change of a functional F under an
infinitesimal gauge transformation by GϵF. Thus, the
effective average action satisfies the scale-dependent
Ward–Takahashi identity (WTI)

WNΓN ¼ GϵΓN − trop

� ½A;RN �
Γð2Þ
N þ RN

�
¼ 0: ð24Þ

It follows form the standard argument, see, e.g., Ref. [41],
that the RG evolution of an initial condition that satisfies
the initial WTI WNΓN ¼ 0 at an initial scale N will satisfy
the evolved WTI WN0ΓN0 ¼ 0 at a scale N0. Hence, if we
want to implement gauge symmetry, i.e., if we require
the usual WTI GϵΓ ¼ 0 to hold for the effective action,
then we have to impose the scale dependent WTI on the
flowing action ΓN . This ensures that the effective action
Γ ¼ limN→0ΓN will satisfy the usual WTI.

8The symmetrization is model dependent, e.g., an uncon-
strained real model will have no symmetrization, a real symmetric
model will require symmetrization in a; b, and complex matrix
models require decomposition into real modes and subsequent
(anti)symmetrization if the model is Hermitian.
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It is important to notice that the scale-dependent WTI
cannot be solved by a ΓN that respects the usual gauge
symmetry GϵΓN ¼ 0, because the second term of (24) does
not vanish unless N ¼ 0. Hence, to implement gauge
symmetry in the flow, one is forced to “contaminate” ΓN
by turning on just the right amount of couplings for
symmetry-breaking operators. Conversely, to implement
gauge symmetry, we have to restrict the search for RG fixed
points to solutions of the scale-dependent WTI.

A. Tadpole approximation

Restricting the search for RG fixed points to solutions of
the scale-dependent WTI will be dealt with in future work.
For the present paper, we make the following important
observation: If we assume that the sought-for fixed point
lies at small values of the couplings, then we can approxi-
mate the β functions by the first order in the vertex
expansion: assuming that combinatorial factors in the loop
diagrams are Oð1Þ, and the fixed-point value of all
couplings is ∼ϵ < 1, then the n-vertex diagram is sup-
pressed by a factor ϵn−1 in comparison to the tadpole
diagram. Accordingly it is a self-consistent approximation
to take into account only tadpole diagrams, if the corre-
sponding fixed-point values indeed turn out to satisfy our
requirement. We now make the following central observa-
tion: As all vertices arising within a truncation consisting of
UðNÞ invariants are themselves UðNÞ invariant, symmetry-
breaking operators cannot be generated by the tadpole
diagram. Any nontrivial index dependence on the rhs of the
flow equation can always be shifted away, as there is no
nontrivial index dependence in the vertex. This is com-
pletely analogous to the case of, e.g., standard λϕ4 theory:
As the vertex proportional to λ is momentum independent,
the tadpole diagram cannot generate a momentum-
dependent operator. Thus, no nontrivial wave-function
renormalization is generated from the tadpole diagram
∼λ. In our case, a nontrivial index dependence is analogous
to a nontrivial momentum dependence.
This reasoning can be applied to the vertex expansion of

the rhs of the flow equation as well as the vertex expansion
of the second term of the scale-dependent WTI (24). We
conclude that the scale-dependent WTI is solved by a
UðNÞ-symmetric ΓN in the tadpole approximation and,
conversely, that the tadpole approximation to the RG flow
preserves UðNÞ symmetry.
One might now wonder whether the functional renorm-

alization group will be of use to uncover the double-scaling
limit in higher-dimensional tensor models. If the critical
value of the coupling would lie at a large value, the
tadpole approximation would not be applicable. Here it
is crucial that the critical value of the coupling corresponds
to the radius of convergence of the perturbative expansion,
and as such is guaranteed to lie at values much smaller
than 1. Accordingly, the use of the tadpole approximation
is justified to explore the double-scaling limit in

higher-dimensional tensor models. An added benefit lies
in the fact that the evaluation of the β functions in a large
truncation is simplified considerably, if we restrict our-
selves to the tadpole approximation. Thus, we are confident
that our method will also allow us to successfully tackle
higher-dimensional tensor models.

IV. β FUNCTIONS AND FIXED POINTS

The considerations of the previous section suggest that
the tadpole approximation to the β functions will improve
the results of Ref. [1] for fixed points with small values
of the couplings. We now confirm this suggestion and in
this course also uncover the multicritical fixed points with
the FRG for the first time.

A. Single-trace approximation

As a first step, let us reconsider the single-trace trunca-
tion studied in Ref. [1], which is

Γk ¼ ZϕTrϕ2 þ
Xnmax

n¼2

g2n
2n

Trðϕ2nÞ; ð25Þ

where we take nmax ¼ 7 in accordance with Ref. [1].
Employing Eq. (63) in Ref. [1], restricting ourselves to
tadpole diagrams, we then obtain a set of beta functions as
follows:

η ¼ 2g4x; ð26Þ

β2n ¼ ððn − 1Þ þ n ηÞg2n − 2nxg2ðnþ1Þ; ð27Þ

where the first term in the beta functions arises from
the canonical dimensionality of the couplings and
η ¼ −N∂N lnZϕ. We have set ½ _RP−2� ¼ x in order to study
the scheme dependence of our results.
Here, we also neglect the term ∼η, that is generated by

∂NRN on the right-hand side of the flow equation.
We then obtain a set of fixed points and critical

exponents listed in Table I.
The first fixed point is the Gaussian fixed point, where

the critical exponents equal the canonical scaling dimen-
sionality of the couplings.
The second fixed point corresponds to the well-known

double-scaling limit, with one relevant direction. As in
Ref. [1], this first approximation yields a critical exponent
θ ¼ 1, instead of the analytically known exact value θ ¼ 4

5
.

1. Multicritical Points

All other fixed points correspond to multicritical points
of increasing order m. They show the well-known pattern
of alternating signs for the couplings, corresponding to
stable/unstable potentials. As expected for the mth multi-
critical point, m − 1 relevant directions exist: The largest
critical exponent corresponds to the pure-gravity case [26].
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The next critical exponents are expected to be θm−1 ¼ 2
mþ1

2

.
We obtain, similarly to Ref. [26], θm−1 ¼ 2

m.
The confirmation of the existence of the multicritical

points within the FRG approach to matrix models is one of
the main new findings of this paper.
Moreover, one can find analytic expressions for the

multicritical points in the tadpole approximation to the
single-trace truncation as follows: Assume that the g2n
vanish for all n > m, so the β2n vanish for all n > m, while
β2m ¼ 0 and η ¼ 2xg4 imply

η ¼ 1 −m
m

; g4 ¼
1 −m
2mx

: ð28Þ

The vanishing of the remaining β2n gives the linear
recursion relation g2nþ2 ¼ ðn−1n − m−1

m Þ g2n
2x . For the initial

condition (28), the solution is, in agreement with Table I,
given by

g2n ¼
ð1 −mÞn−1
ðn − 1Þ! ð2mxÞ1−n; ð29Þ

where we used the Pochhammer symbol ðaÞn ¼
aðaþ 1Þ…ðaþ nÞ.
After inserting the kth multicritical value η ¼ 1−k

k into the
tadpole approximation to the vertex expansion, one finds
that the Jacobian

∂β2n
∂g2m ¼ δn;m

�
ðn − 1Þ − n

m
ðm − 1Þ

�
− 2δnþ1;mnx ð30Þ

is triangular and independent of the couplings g2n. We can
thus recover the positive critical exponents from the
diagonal entries of the Jacobian

θðmÞ
n ¼ n

m
; where∶ n ¼ 2;…; m; ð31Þ

in agreement with Table I. (Notice that, for simplicity of
presentation, we treated η as a constant and not as a
function of g4, when we calculated the critical exponents,
which turns out not to have an effect on the result in the
single-trace approximation.)

2. Universality

We observe that, although the gn� depend on x, the
critical exponents do not. Thus, these values are universal,
i.e., independent of the choice of regularization scheme.
The dimensionful couplings themselves are not universal,
i.e., gn� ¼ gn�ðxÞ. However, we can also form universal
(dimensionless) ratios of couplings, such as g24=g6, which
accordingly are independent of x. For instance, the second
multicritical point, where g8 ¼ 0, has g24=g6 ¼ 4, which is
in reasonable agreement with the exact g24=g6 ¼ 10

3
, and in

fact corresponds exactly to the value in Ref. [26].
Note that to obtain the value g� ¼ gc ¼ − 1

12
for m ¼ 2

wewould have to set x ¼ 3, which clearly shows that fixed-
point values are nonuniversal. This is expected as in our
setting they carry a nontrivial scaling dimensionality with
N. In the same way that fixed-point values for dimensionful
couplings cannot be universal in standard quantum field
theories, no such universality is expected in our case.
A subtle difference to standard quantum field theories

arises, as the notion of scale that we introduce here
disappears, once the integration over all quantum fluctua-
tions has been completed: In the limit N → ∞, there is no
other quantity left in the matrix models that would still set a
scale. This is a major difference from standard quantum
field theories. There, two distinct notions of scale exist:
One is a renormalization group scale μ, that decides which
quantum fluctuations have been integrated out; the other is
a model-inherent momentum scale, which enters the
operators of the model, such as, e.g., the kinetic term.
Since both scales are momentum scales, the dimensionality
assigned to couplings using the model-inherent momen-
tum, or the “external” RG scale, agrees. In particular, a
nontrivial notion of dimensionality remains in the limit
μ → ∞. This is different in the case of the matrix model,
where nontrivial scaling dimensions do not exist once
N → ∞. The couplings become dimensionless in that limit.
This observation should explain, why our fixed-point
values are nonuniversal, whereas other methods that are
used to derive the double-scaling limit in matrix models
yield a universal number for g4c.

B. Multitrace truncation

We now investigate a truncation that takes into account
all operators up to a fixed dimensionality. In particular, we
include g4;…; g12, g22;…; g28, g44; g46 and g222; g224.
Again, we restrict ourselves to tadpole diagrams.
According to our reasoning in Sec. II, the canonical
dimensionality provides a useful organizing principle for

TABLE I. We show fixed points and critical exponents that we
obtain in a single-trace truncation including all couplings up to
g14. We include only tadpole diagrams and parametrize _RP2 ¼ x.

g4 g6 g8 g10 g12 g14 θ1 θ2 θ3 θ4 θ5 θ6

0 0 0 0 0 0 −1 −2 −3 −4 −5 −6
−1
4x

0 0 0 0 0 1 − 1
2
−1 − 3

2
−2 − 5

2

−1
3x

1
36x2

0 0 0 0 1 2
3
− 1

3
− 2

3
−1 − 4

3

−3
8x

3
64x2

− 1
512x3

0 0 0 1 3
4

1
2
− 1

4
− 1

2
− 3

4

−2
5x

3
50x2

−1
250x3

1
104x4

0 0 1 4
5

3
5

2
5
− 1

5
− 2

5

−5
12x

5
72x2 − 5

864x3
5

20736x4
− 1

248832x5
0 1 5

6
2
3

1
2

1
3
− 1

6

−3
7x

15
196x2 −

5
686x3

15
38416x4

− 3
268912x5

1
7529537x6

1 6
7

5
7

4
7

3
7

2
7
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the couplings in theory space. We thus expect that this
multitrace truncation should show improved results over
the single-trace truncation, as it will consistently take into
account all operators up to a given dimensionality.
The interesting double- and triple-trace operators are

contained in the following truncation:

ΓN ¼ Zϕ

2
Trðϕ2Þ þ

X
n≥2

g2n
2

Trðϕ2nÞ

þ
X
n≥1

g2;2n
2

Trðϕ2ÞTrðϕ2nÞ

þ
X
n≥2

g4;2n
2

Trðϕ4ÞTrðϕ2nÞ

þ
X
n≥1

g2;2;2n
2

Trðϕ2Þ2Trðϕ2nÞ: ð32Þ

The tadpole approximation to the beta functions in this
truncation is

η ¼ 2xðg4 þ g2;2Þ ð33Þ

β2n ¼ ððn − 1Þ þ n ηÞg2n − nxð2g2nþ2 þ g2;2nÞ ð34Þ

β2;2 ¼ 2ð1þ ηÞg2;2 − xðg6 þ 4g2;4 þ 3g2;2;2Þ ð35Þ

β2;4 ¼ 3ð1þ ηÞg2;4 − 2xðg8 þ 3g2;6 þ 4g4;4 þ g2;2;4Þ
ð36Þ

β2;2n ¼ ðnþ 1Þð1þ ηÞg2;2n
− 2xðg2nþ4 þ ðnþ 1Þg2;2nþ2 þ 2g4;2n þ g2;2;2nÞ;
n ≥ 3 ð37Þ

β4;4 ¼ 4ð1þ ηÞg4;4 − xðg10 þ 6g4;6Þ ð38Þ

β4;2n¼ðnþ2Þð1þηÞg4;2n−xð2g2nþ6þð2nþ2Þg4;2nþ2Þ;
n≥ 3 ð39Þ

β2;2;2 ¼ ð4þ 3ηÞg2;2;2 − xð3g2;6 þ 4g2;2;4Þ ð40Þ

β2;2;4 ¼ ð5þ 4ηÞg2;2;4 − xðg2;8 þ 3g4;6 þ 6g2;2;6Þ ð41Þ

β2;2;2n ¼ ððnþ 3Þ þ ðnþ 2ÞηÞg2;2;2n
− xðð2nþ 4Þg2;2nþ4 þ ð2nþ 2Þg2;2;2nþ2Þ; ð42Þ

where the exceptions arise due to additional symmetry
factors (e.g., the derivative of Trϕ4Trϕ4 has an additional
factor of 2 when coupling into g2;4 than the derivative of
Trϕ4Trϕ6 when coupling into g2;6.)

The general structure has already been discussed in
Ref. [1] and is as follows, cf. Fig. 1: At leading order in
1=N, only a tadpole diagram of g2;i1;…;in can couple into
gi1;…;in . Our truncation to tadpole diagrams is therefore not
a truncation, but already the full result, when it comes to the
back-coupling of higher orders in the number of traces into
the lower-order beta functions.
Furthermore, an n-trace operator can only generate an

ðnþ 1Þ-trace operator through a tadpole diagram, as the
contraction on the right-hand side of the flow equation does
not generate more than one additional trace: At most,
the structure of Γð2Þ and the subsequent contraction
permits splitting one of the Trϕi terms into two new,
Trϕi−jTrϕj terms.
We thus have a structure where only neighboring

“levels” (i.e., numbers of traces) are coupled in the beta
functions. Thus, already the three-trace terms affect the
single-trace terms only indirectly. Additionally, many
contributions that could be possible if one only counts
the number of fields are disallowed because of the trace
structure of the flow equation: For instance, just counting
the number of fields, one could expect a coupling of g4;4
into βg2;2;2 . This contribution does not exist, as the second
derivative of Trϕ4Trϕ4 cannot generate a term that sepa-
rates into three traces with two fields each upon contraction
with the propagator.
Beyond the tadpole level, two-vertex diagrams can

“span” a larger number of levels, as combinations of
vertices with i traces and vertices with iþ 2 traces can
also couple into operators with iþ 2 traces.
For our explicit solution of the fixed-point equations,

we only include up to g12. For consistency, this implies that
we have to take into account up to three-trace operators.
We thus expect to find the first five multicritical points.

level 

number of fields 

g4 g6 g8 g10

g2,2 g2,4 g2,6 g2,8

g4,4 g4,6

g2,2,2 g2,2,4 g2,2,6

g2,4,4

FIG. 1 (color online). We schematically show the structure of
the flow equation. We indicate tadpole diagrams by arrows.
Clearly only neighboring levels couple into each other’s beta
functions. Note that at higher order in the traces, the levels get
more complicated; e.g., there exist two-trace terms of the form
g2;i; g4;i; g6;i….
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It turns out that a subset of the multitrace couplings is also
nonvanishing at these multicritical points and that they have
an important effect on the critical exponents, cf. Table II.
Most importantly, the largest critical exponent which

corresponds to the pure-gravity critical exponent turns out
to be θ ∼ 0.8 for all but the first fixed point. We thus
observe that the inclusion of multitrace terms is a crucial
step toward quantitative precision in matrix models. While
the subleading critical exponents at the multicritical points
deviate more significantly from the exact values, the
leading critical exponent only deviates by a few percent
from the exact result θ ¼ 0.8. This is a major step forward
from the investigations in Ref. [1]. Already for the pure-
gravity fixed point, our result constitutes an improvement
over our previous result in a multitrace truncation, as well
as the considerable improvement over the perturbative
calculation in Ref. [27].
For the fixed-point values, we observe that universal

combinations such as g2
4

g6
depart further from the exact result

than in the single-trace approximation. We attribute this to
the fact that multitrace operators at the same order of
the fields are nonvanishing, e.g., g2;2 ≠ 0 at the m ¼ 3

multicritical point.

1. Analytic solution

If the initial condition to the flow is such that all
couplings that correspond to operators with more than
2k fields vanish, then the tadpole approximation to the RG
flow will preserve this condition, because a tadpole dia-
gram from a truncation with 2k fields will generate
operators with at most 2k − 2 fields. It is thus, in the
tadpole approximation, consistent to search for fixed points
at which the couplings for all operators with more than 2k
fields vanish. For such a fixed-point search, one can employ
the following strategy:
(1) There will be a finite number (the number of distinct

integer partitions of k) of beta functions for the
operators with 2k fields, which are of the form
βa ¼ ðdimðaÞ þ kηÞga. These imply either that
η ¼ − dimðaÞ

k for one a and all other couplings with
2k fields vanish just as in Table II or that all g…
vanish. The second case corresponds to a fixed point

with at most 2k − 2 field and is thus the same case,
but with different k.

(2) The remaining beta functions are of the form

βb ¼ðdimðbÞ−dimðaÞ2nk Þgð2nÞb þxðlinear in gÞð2nþ2Þ,
where the superscript bracket denotes the number of
fields in the corresponding operator. The vanishing
of the beta functions thus gives the recursion

relation gð2nÞb ¼ dimðaÞ2nk−dimðbÞ
xðlinear in gÞð2nþ2Þ.

(3) One now sets ga ¼ α and uses the recursion relations
to derive all coupling constants with 2k − 2 fields,
2k − 4 fields, … and 4 fields as functions of α. This
provides in particular g4ðαÞ and g2;2ðαÞ. Notice that
the recursion relation is linear, which implies
that gbðαÞ ¼ αgbð1Þ.

(4) The anomalous dimension then implies that
2αxðg4ð1Þ þ g2;2ð1ÞÞ ¼ − dimðaÞ

k , which shows that

α ¼ − dimðaÞ
2kxðg4ð1Þþg2;2ð1ÞÞ.

A technical difference between the single- and multitrace
truncation is that it is easy to find the solution of the single-
trace recursion relation as a function of k [see Eq. (29)
above], while we were unable to express the solution of the
multitrace recursion relation as a function of k.

C. Two-vertex contributions

The next logical step is to include two-vertex contribu-
tions to the beta functions, which provide the leading-order
corrections to the tadpole approximation for fixed points
with small couplings. These contributions do, as we
explained above, imply that the solution to the Ward
identity requires the inclusion of nonsymmetric operators.
In the explicit symmetric truncations that we considered so
far, it turns out that the inclusion of two-vertex contribu-
tions has far-reaching effects: We observe, that none of the
multicritical points can be found after the inclusion of these
additional terms, and only the pure-gravity double-scaling
limit remains. One of course expects that the inclusion of
two-vertex diagrams will lead to an improvement once one
restricts the flow to a consistent approximation to the
solution of the Ward identity. The test of this expectation
goes beyond the scope of this paper and will be investigated
in a future paper.

TABLE II. We show the first four fixed points and critical exponents that we obtain in a multitrace truncation. We include only tadpole
diagrams and parametrize _RP−2 ¼ x. A number of further fixed points that we obtain is not shown, as they do not correspond to any
known analytical solution and are thus most probably artifacts of the truncation.

g4 g6 g8 g10 g12 g22 g24 g26 g28 g44 g46 g222 g224 θ1 θ2 θ3 θ4 θ5

− 1
4x

0 0 0 0 0 0 0 0 0 0 0 0 1 −1=2 −1 −1 −3=2
− 8

21x
2

63x2
0 0 0 1

21x
0 0 0 0 0 0 0 0.82 0.82 −0.33 −0.64 −0.67

− 51
116x

27
464x2 − 9

3712x3
0 0 15

232x − 3
464x2

0 0 0 0 0 0 0.80 0.80 0.61 −0.25 −0.5
−16448
34535x

13392
172675x2

−4608
863375x3

576
4316875x4

0 2634
34535x

−2112
172675x2

288
863375x3

0 108
172675x2

0 144
863375x3

0 0.81 0.81 0.68 0.45 −0.2
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V. CONNECTION TO CONTINUUM
β FUNCTIONS FOR GRAVITY AND THE

ASYMPTOTIC SAFETY SCENARIO

In research on quantum gravity, many approaches exist
in parallel, and it is a priori unclear whether they are in any
way related. In particular, the continuum approach based on
a quantum field theory for the metric, known as the
asymptotic safety scenario [31,46,47], for reviews see,
e.g., Ref. [48], and approaches based on a discretization
of geometry, such as matrix or tensor models, differ in
many aspects. The fundamental variables are taken to be
different (metric vs matrices/tensors), the symmetries differ
[diffeomorphism symmetry vs UðNÞ symmetry], and the
renormalization group flow is formulated with respect to
two completely different notions of scale (defined with
respect to a fiducial background metric vs matrix/tensor
size). Nevertheless, one could expect the following sce-
nario, see, e.g., Refs. [25,49] and also a related discussion
in Ref. [50], where the interacting fixed point underlying
asymptotic safety is related to a phase transition from
the “pregeometric” to the geometric phase of a tensor
model/group field theory.
To be more specific, the tentative nontrivial continuum

limit in matrix/tensor models, signaled by an interacting
fixed point, is characterized by a set of critical exponents. In
a more physical sense, that limit can also be interpreted as a
phase transition from a pregeometric phase, where no
notion of the metric exists, to a geometric phase with a
nonvanishing expectation value of the metric. The approach
to this continuous (i.e., second-order or higher) phase
transition is described by the critical exponents; see,
e.g., Ref. [4] for a recent example in causal dynamical
triangulations.
In contrast, the continuum approach known as asymp-

totic safety is based on the existence of a nonvanishing
metric and cannot easily describe the phase with a vanish-
ing expectation value of the metric; see, however, Ref. [51].
At very high momentum scales, the scaling of operators is
determined by critical exponents of an interacting fixed
point of the renormalization group flow.
These two scenarios can be interpreted as two sides of

the same picture, where the same phase transition—from a
pregeometric phase to a geometric phase—is approached
from the two sides: Matrix/tensor models are extremely
well adapted to describe the pregeometric phase and the
approach to that phase transition. On the other hand, the
physics of the geometric phase is then more straightfor-
wardly accessed in the continuum quantum field theory
setting. For this connection between the two settings to
hold, the critical exponents calculated on both sides should
agree. Further evidence for such a connection between
continuum and discrete quantum gravity could be provided
by observables, such as, e.g., the spectral dimension, which
has been found to equal 2 in the UV in both discrete [52] as
well as continuum settings [53,54].

In the following, we will review explicitly how the
fixed point in matrix models and the corresponding critical
exponent are related to the beta function of 2þ ϵ-
dimensional continuum quantum gravity [47,55]. This
provides a simple example of the relationship between
the continuum setting (i.e., the asymptotic safety scenario)
and the matrix/tensor model setting. Whether a similar
relationship exists in higher dimensions remains to be
investigated.
The well-known geometric picture that underlies the

matrix model approach to quantum gravity is the discrete
approximation of the geometry of a compact9 Riemann
surface by tesselations with indistinguishable building
blocks, e.g., by equilateral triangles or squares. A con-
tinuum geometry is attained in the limit in which the
number N of elementary building blocks diverges while
their individual size is rescaled by scaling the lattice
constant a as a=N

1
2, so the total area A of the Riemann

surface remains unchanged.
The discrete approximation at finite N defines a

regularized measure for the functional integral of two-
dimensional Euclidean quantum gravity as the sum over all
tesselations. For this one observes that the Einstein–Hilbert
action in two dimensions consists of a cosmological
constant term proportional to the total area A and a
topological term proportional to the Euler characteristic
χ. Both quantities possess simple expressions in terms of
the tesselation: The total area is Na2, and the Euler
characteristic is number of vertices V-edgesEþ facesF.
The aim of this approach is to define the functional measure
by taking the continuum limit a → 0, a=N

1
2 ¼ const.

The discrete partition function at finite N can be
represented as a matrix model. The underlying observation
is that the Feynman graphs of a matrix model possess an
interpretation in terms of tesselations, which arise as the
dual to the ribbon graphs of the matrix model. Starting from
the matrix-model action S ¼ NTrð− 1

2
ϕ2 þ gϕ4Þ, one sees

that each closed loop contributes a factor N due to the
summation of a free index, while the Feynman rules assign
each vertex a factor N and each propagator a factor N−1.
Thus, we obtain a factor NV−EþF ¼ Nχ for each Feynman
diagram.
It follows that in matrix models the matrix size N is

related to the bare Newton coupling by

N ¼ e
1

4G0 ; ð43Þ

as 1
4G0

is the prefactor of χ in the action.
Furthermore, the relation

g4 ¼ e−Λa
2 ð44Þ

9Strictly speaking we demand compact without boundary.
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holds for the dynamical triangulation; see, e.g., Ref. [16].
This follows from the fact that each configuration is
weighted by e−ΛA ¼ e−Λa

2n, where n is the number of
squares. On the other hand, each discrete configuration,
corresponding to a Feynman diagram, is weighted by
gn4 . We then translate to a dimensionless cosmological
constant, λ ¼ a−2Λ.
Accordingly, the double-scaling limit for pure gravity

translates into the requirement10

ðg4 − g4cÞ5=4N ¼ ðe−λ − e−λcÞ5=4e 1
4G0 ¼ const: ð45Þ

This establishes the correspondence between the double-
scaling limit and the continuum limit. We see that taking
the lattice spacing a → 0, while physical quantities, such as
the renormalized cosmological constant, ΛR, are held
fixed; i.e., ΛR ¼ a−2ðλ − λcÞ is equivalent to taking the
double-scaling limit of the matrix model.
For λ − λc ≪ 1, we then obtain that

ðΛRa2Þ5=4e
1

4G0 ¼ const: ð46Þ

Taking the lattice spacing to zero then requires us to
adjust the bare Newton coupling G0 appropriately, i.e.,
G0 ¼ G0ðaÞ. It is then straightforward to derive the scale
dependence of G0 from Eq. (46):

−a∂aG0ðaÞ ¼ −10G2
0: ð47Þ

Since a∂a ¼ −μ∂μ where μ is a renormalization group
momentum scale, we finally obtain

βG ¼ μ∂μG ¼ −10G2: ð48Þ

Note that the numerical value of the coefficient depends of
course on whether the action is defined as R

G, or
R

16πG. Let us
comment on the connection with continuum field theory: In
2þ ϵ dimensions, where quantum gravity based on the
Einstein–Hilbert action on a fixed topology is no longer
trivial, one can obtain a nontrivial beta function from a
standard quantum field theory calculation [55]. Its main
feature is a term ∼G2 with a negative sign. Together with
the term arising from a nontrivial dimensionality in
d ¼ 2þ ϵ, this term is responsible for the existence of a
UV attractive interacting fixed point.
Here, we have a similar result, with a term ∼G2 with a

negative sign, which corresponds to asymptotic freedom.
As a difference to the results in Refs. [47,55], it arises in
d ¼ 2. Crucially, it does not follow from a simple scaling
limit, where g4 → g4c. Instead, it originates from the
double-scaling limit, where all topologies with higher
Euler character contribute. One could thus interpret the

existence of asymptotic freedom in d ¼ 2-dimensional
quantum gravity as stemming from topological fluctua-
tions. Most interestingly, going to d ¼ 2þ ϵ, a term ϵG
will arise from the canonical dimensionality of the cou-
pling. The nontrivial term ∼G2 will then again induce a
nontrivial fixed point, making quantum gravity in 2þ ϵ
dimensions asymptotically safe.
This result exemplifies a tentative scenario in which the

double-scaling limit in tensor models describes the same
phase transition as a non-Gaussian fixed point in the
asymptotic safety scenario in continuum gravity; i.e., both
could be different sides of the same picture, as indicated by
the possibility to derive a beta function for G featuring an
asymptotically safe fixed point from the double-scaling
limit.
An even more interesting scenario would be if both

matter and gravitational degrees of freedom could be
encoded in the dynamics of a tensor model. The existence
of multicritical points in matrix models, corresponding to
conformal matter coupled to gravity, shows that such a
scenario works in two dimensions. To understand whether a
similar scenario could work in four dimensions, one should
compare the critical exponents obtained on the tensor
model side to those obtained within asymptotic safety
under the coupling to matter. On the continuum side, some
critical exponents for gravity in the presence of matter
degrees of freedom are known [35], and also critical
exponents corresponding to matter operators at the inter-
acting fixed points are (partially) known. While currently a
complete catalog of all relevant operators at the interacting
fixed point of gravity and matter is still work in progress, its
availability would open the door to investigate a scenario
where matter and gravity degrees of freedom are both
encoded in a tensor model.

VI. CONCLUSIONS

In this paper we advance the functional renormalization
group as an exploratory tool for the continuum limit in
matrix and tensor models for quantum gravity.
In particular, we develop a new, self-consistent approxi-

mation which allows us to obtain useful results: The use of
the matrix size N as a renormalization group scale implies a
breaking of the UðNÞ invariance of the matrix model,
which is encoded in the Ward identity Eq. (24). We find
indications that the systematic deviation of the relevant
critical exponent we found in Ref. [1] is due to breaking of
this Ward identity. TheWard identity tells us that in order to
obtain a UðNÞ symmetric continuum limit we have to
consider truncations that include a fine-tuned amount of
symmetry-breaking operators.
A crucial new observation in this paper is that a

restriction to tadpole diagrams allows us to solve the
Ward identity in a self-consistent approximation with a
truncation that contains only symmetric operators. Thus,
the effect of symmetry-breaking terms can be consistently

10The following results were communicated to us by Jan
Ambjorn.
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neglected when approximating the Wetterich equation by
its tadpole part. Most importantly, this approximation is
well adapted to discover the double-scaling limit in matrix
and tensor models, since the fixed-point value of the
couplings corresponds to the radius of convergence of
the perturbative expansion of the partition function, and
therefore lies at small values. At the corresponding RG
fixed point, all couplings are thus much smaller than 1,
and loop diagrams with a higher number of vertices are
therefore suppressed.
As an added bonus, the restriction to the tadpole approxi-

mation very significantly reduces the computational com-
plexity, in particular at the level of multiple-trace operators.
Moreover, the restriction to the tadpole approximation

enables us for the first time to confirm the existence of
multicritical points for matrix models within the FRG
framework, both numerically and by analytic considera-
tions. These RG fixed points correspond to continuum
limits of quantum gravity coupled to conformal matter
degrees of freedom. It is particularly reassuring that, within
the tadpole approximation, we find the numerical value of
the leading critical exponent within about 1% of its
analytical value 4=5 for the third and fourth multicritical
points. This is a significant improvement over our previous
results [1] and shows that the FRG framework is not only a
qualitative exploratory tool but also a useful framework
to obtain quantitative results with comparatively little
computational effort.
We then discuss a tentative connection between the

double-scaling limit in matrix and tensor models, and the
asymptotic safety scenario, which provides an ultraviolet
completion for continuum quantum gravity. It is conceiv-
able that both describe the same phase transition, albeit

seen from different phases: Coming from the pregeometric
phase, described by a matrix model, a “condensation” of
spacetime building blocks occurs at a phase transition to a
geometric phase. This phase can be described using
continuum fields such as the metric. The phase transition
is then visible as a fixed point of the renormalization group
flow in this phase. While currently there is no solid
evidence for such a scenario in four dimensions, we discuss
hints for its realization in two dimensions: There, one can
explicitly derive the beta function for the Newton coupling
from the double-scaling limit. It contains a term ∼G2 with a
negative coefficient, which, in d ¼ 2þ ϵ, induces an
interacting fixed point for G. This is precisely the result
that can be obtained explicitly by calculating the beta
function in the continuum and thus provides a hint that the
double-scaling limit—or more generally continuum limit—
of matrix models could be related to asymptotic safety.
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