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In many quantum gravity approaches, the cosmological constant is introduced by deforming the gauge
group into a quantum group. In three dimensions, the quantization of the Chern-Simons formulation of gravity
provided the first example of such a deformation. The Turaev-Viro model, which is an example of
a spin-foam model, is also defined in terms of a quantum group. By extension, it is believed that in four
dimensions, a quantum group structure could encode the presence of Λ ≠ 0. In this article, we introduce by
hand the quantum group Uqðsuð2ÞÞ into the loop quantum gravity (LQG) framework; that is, we deal with
Uqðsuð2ÞÞ-spin networks. We explore some of the consequences, focusing in particular on the structure of the
observables. Our fundamental tools are tensor operators forUqðsuð2ÞÞ. We review their properties and give an
explicit realization of the spinorial and vectorial ones. We construct the generalization of the UðNÞ formalism
in this deformed case, which is given by the quantum group UqðuðNÞÞ. We are then able to build geometrical
observables, such as the length, area or angle operators, etc. We show that these operators characterize a
quantum discrete hyperbolic geometry in the three-dimensional LQG case. Our results confirm that a quantum
group structure in LQG can be a tool to introduce a nonzero cosmological constant into the theory. Our
construction is both relevant for three-dimensional Euclidian quantum gravity with a negative cosmological
constant and four-dimensional Lorentzian quantum gravity with a positive cosmological constant.
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I. INTRODUCTION

A. Background

There are different proposals to understand the nature
of the cosmological constant Λ. It can be interpreted as
encoding some type of vacuum energy (see Refs. [1–3] and
references therein) or as a coupling constant just like
Newton’s constant G. The loop quantum gravity and
spin-foam frameworks use the latter interpretation which
is motivated by the seminal works of Witten [4], and later
those of Fock and Rosly [5], and Alekseev, Grosse, and
Schomerus [6,7]. Indeed, in a three-dimensional space-
time, one can rewrite general relativity with a (possibly
zero) cosmological constant as a Chern-Simons gauge
theory.1 The general phase-space structure of the theory
for any metric signature and sign of Λ can be treated in a
nice, unified way [8] using Poisson-Lie groups [9], the
classical counterparts of quantum groups. The quantization
procedure leads explicitly to a quantum group structure.
The full construction, from phase space to quantum group,
is usually called combinatorial quantization [5–7].
We can also quantize three-dimensional gravity using the

spin-foam approach. In this approach, three-dimensional
(3D) gravity is formulated as a BF theory. When Λ ¼ 0,
this is the well-known Ponzano-Regge model (both

Euclidian or Lorentzian), based on the irreducible unitary
representations of the relevant gauge group. When Λ ≠ 0,
the quantum group structure is introduced by hand. The
Ponzano-Regge model is deformed, using irreducible
unitary representations of the relevant quantum deforma-
tion of the gauge group. This is then called the Turaev-Viro
model [10]. The argument consolidating the incorporation
of the cosmological constant into a spin-foam model
through a quantum group comes from the semiclassical
limit. Indeed, the asymptotics of the deformed f6jgq
symbol entering into the definition of the Turaev-Viro
model goes to the Regge action with a cosmological
constant in the regime lp ≪ l ≪ R ¼ jΛj−1

2.
The third approach to quantize gravity is the canonical

approach, i.e., the loop quantum gravity approach (LQG).
In this case, by performing the classical Hamiltonian
analysis on general relativity, the cosmological constant
only appears in the Hamiltonian constraint. Upon quanti-
zation, this means that the kinematical Hilbert space is the
same whether or not Λ ¼ 0. In particular this kinematical
Hilbert space (where the Gauss constraint has been solved)
is based on the classical relevant gauge group.
Therefore at this stage, quantum groups naturally appear

only in the combinatorial quantization of Chern-Simons.
Different quantum groups appear according to the metric
signature and the sign of the cosmological constant. When
Λ ≠ 0, we obtain a q-deformed version of the gauge group2*maite.dupuis@gravity.fau.de

†fgirelli@uwaterloo.ca
1This is actually an extension of general relativity since

degenerate metrics are allowed.

2UðgÞ is the universal enveloping algebra of the Lie algebra g
and UqðgÞ is its q-deformation.
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UqðgÞ, where g is the Lie algebra of the gauge group
G ¼ SLð2;RÞ in the Lorentzian case [SU(2) in the
Euclidean case], with q being a function of the Planck
scale and the cosmological radius R−1 ¼ ffiffiffiffiffiffijΛjp

. The
deformation parameter q can be real or complex. A nice
way to remember what is q in terms of the sign of Λ and

the signature is to consider q¼ expð− ℏG
ffiffiffi
Λ

pffiffiffiffi
c2

p Þ and posing

c2 > 0 in the Lorentzian case and c2 < 0 in the Euclidian
case [11]. Note that this trick gives q or q−1. The full
relevant quantum group arising from the combinatorial
quantization is DðUqðgÞÞ, the Drinfeld double of UqðgÞ.
When Λ ¼ 0, we get the Drinfeld double DðUðgÞÞ with a
noncommutative parameter given by κ ¼ lp in units
ℏ ¼ 1 ¼ c. A list of the different quantum groups relevant
for 3D gravity is given in Table I.
Since classically the Chern-Simons formulation and the

standard formulation of general relativity are equivalent
(modulo the degenerate metrics), we can wonder whether
the Chern-Simons combinatorial quantization formalism,
LQG, and the spin-foam framework are related in some
way. It can be shown explicitly in the Euclidian case, with
Λ > 0, that the Chern-Simons quantum model and the
Turaev-Viro model are related; more precisely, the Turaev
Viro amplitude is the square of the Chern-Simons ampli-
tude [12]. On the other hand, it seems difficult to relate the
LQG formalism, when Λ ≠ 0, to a spin-foam model based
on a quantum group if we assume that the LQG kinematical
Hilbert space is based on a classical group such as SU(2).
When Λ ¼ 0, it is also possible to relate the Chern-

Simons amplitude and the Ponzano-Regge amplitude [13],
which allows one to identify a hidden symmetry given by
the Drinfeld doubleDðUðgÞÞ in the Ponzano-Regge model.
Still, when Λ ¼ 0 explicit links between LQG and the spin-
foam framework [14] or between the Chern-Simons com-
binatorial quantization and LQG [15] have been identified.
Note also that we can identify a hidden quantum group
structure (the Drinfeld double) in LQG when Λ ¼ 0
[13,15,16], which is consistent with the other approaches.
The different cases for 3D gravity are summarized in
Table I. For more details, we refer to the excellent review
in Ref. [11].

When dealing with four-dimensional (4D) space-time,
there is no Chern-Simons theory to guide us. Hence, it is
postulated that the cosmological constant should also be
introduced through a quantum group structure. From the
spin-foam approach, one then considers the model that one
prefers3 [the Barrett-Crane (BC) or Engle-Pereira-Rovelli-
Livine and Freidel-Krasnov (EPRL-FK) model] when
Λ ¼ 0—based on the irreducible unitary representations
of the gauge group—and deforms it [19–22]. To argue
a posteriori that this is the right thing to do, we can look at
the asymptotic of the spin-foam amplitude and check that
we recover the Regge action with a cosmological constant
[23]. It is quite interesting that the current “physical” EPRL
spin-foam model defined in the Lorentzian case, with
Λ > 0, leads to a finite amplitude [21,22].
In four dimensions, we are not able to connect the

Hamiltonian constraint arising in LQG to a spin-foam
model, even when Λ ¼ 0. Just as in three dimensions, it is
not clear at all why a quantum group structure should
appear in the LQG framework. Few arguments exist that
justify this postulate [24]. We include Table II summarizing
the different quantum group models appearing in 4D
quantum gravity.
Several remarks can be made at this stage. The partition

function of the Plebanski action is invariant under the
transformation Λ → −Λ [25], which explains why we have
the same quantum group for the different signs of the
cosmological constant. This change of sign for Λ is
equivalent to q → q−1.
In the Λ ¼ 0 case, the different Lorentzian spin-foam

models are based on SLð2;CÞ, but the spin networks
describing the quantum state of space are based on SU(2),
which is seen as a subgroup of SLð2;CÞ. By analogy, the
spin-foam models in the “physical” case (Lorentzian, Λ > 0)
are based on Uqðsoð3; 1ÞÞ with q real [21,22]. We expect
then that the spin networks encoding the quantum state of
space will be defined in terms of Uqðsuð2ÞÞ, which is seen as

TABLE I. 3D quantum gravity models.

Signature Λ Quantum group QG models

Euclidian Λ > 0 DðUqðsuð2ÞÞÞ, q ¼ ei
lp
R Chern-Simons↔

½11�
Turaev-Viro↔

?
LQG

Λ ¼ 0 DðUðsuð2ÞÞÞ, κ ¼ lp Chern-Simons↔
½12�

Ponzano-Regge↔
½16�

LQG↔
½14�

Chern-Simons

Λ < 0 DðUqðsuð2ÞÞÞ, q ¼ e
lp
R Chern-Simons↔

?
Turaev-Viro↔

?
LQG

Lorentzian Λ > 0 DðUqðslð2;RÞÞÞ, q ¼ e−
lp
R Chern-Simons↔

?
Turaev-Viro↔

?
LQG

Λ ¼ 0 DðUðslð2;RÞÞÞ, κ ¼ lp Chern-Simons↔
½12�

Ponzano-Regge↔
½16�

LQG↔
½14�

Chern-Simons

Λ < 0 DðUqðslð2;RÞÞÞ, q ¼ e−i
lp
R Chern-Simons↔

?
Turaev-Viro↔

?
LQG

3We focus here on the EPRL-FK and BC models since their
deformation is known. Other spin-foam models exist [17,18], but
their quantum group deformation has not been studied (to our
knowledge).
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a sub-Hopf algebra of Uqðsoð3; 1ÞÞ. By construction, we
must then deal with Uqðsuð2ÞÞ with q real. This is the case
we shall consider in the following.
We also emphasize in passing that the quantum defor-

mation of the Lorentz group (in three or four dimensions)
for complex q is not understood.

B. Motivations

A common feature of 3D and 4D quantum gravity is that
it is hard to understand why a q-deformation of the gauge
group would appear from the LQG perspective. Since we
do not know how to solve the Hamiltonian constraint
(for Λ ≠ 0) and since we would like to compare the LQG
approach with the well-known models coming from com-
binatorial quantization formalism and spin foam, we would
like to define LQG with a q-deformed group and see what
the consequences are. We hope then to identify some hints
pointing to the quantum group apparition in this context.
In particular, if LQG defined in terms of a quantum group
describes quantum curved geometries well, then this is a
good sign that this could be a useful theory to consider.
To this aim, we need to understand the structure of the

observables associated to spin networks defined using the
representations of a quantum group. Not much work has
been done in this context: LQG with a quantum group has
been explored using the loop variables by Major and
Smolin [26–28], and the algebra of cylindrical functions
behind the notion of spin networks defined in terms of a
quantum group has been studied by Lewandwoski and
Okolow [29].
When Λ ¼ 0, the structure of the observables for a spin

network (or an intertwiner) is well understood, thanks to
the spinor approach to LQG [30–32]. In particular, it is
possible to construct a closed algebra [a uðNÞ Lie algebra,
where n is the number of intertwiner legs] that generates all
the observables acting on an intertwiner. This approach not
only gives some information about the observable structure
but it has been applied to different contexts, with many
interesting results [30–32]. This formalism has shown that
spin networks can be seen as the quantization of classical
discrete geometries, the so-called twisted geometries
[33,34]. It has allowed for the construction of a new

Hamiltonian constraint in 3D Euclidian gravity [35], such
that the kernel of this constraint is given by the 6j symbol,
i.e., the Ponzano-Regge amplitude. It has provided the tools
needed to implement the simplicity constraints in a rigorous
way—using the Gupta-Bleuler method—in order to build a
spin-foam model for Euclidian gravity (Λ ¼ 0) [36].
Generalizing the spinor formalism to the quantum group

case will allow us to better understand the quantum gravity
regime with a nonzero cosmological constant. Indeed,
within this formalism we should be able to construct a
Hamiltonian constraint relating Turaev-Viro and LQG [37],
and we should be able to determine the relevant phase space
for LQG, the space of curved twisted geometries [38].

C. Main results

This generalization of the spinor formalism to the
quantum group case is the main result of this paper. We
focus on the quantum group Uqðsuð2ÞÞ with q real, which
is therefore relevant for both 3D Euclidian gravity with
Λ < 0 and the physical case, i.e., 4D Lorentzian gravity
with Λ > 0.
The key idea for this generalization is the use of tensor

operators. These are well known in the quantum-mechanical
case for SU(2) [39]. Essentially, they are sets of operators
that transform well under SU(2), i.e., as a representation.
They are known in LQG as grasping operators. However,
they have not been studied intensively in this context. We
show that considering these operators seriously naturally
leads to the spinor approach to LQG. These tensor operators
can be generalized to the quantum group case (more exactly,
they are defined for any quasitriangular Hopf algebra) [40].
Given a Uqðsuð2ÞÞ intertwiner with N legs, we identify

some sets of operators that transform well under Uqðsuð2ÞÞ.
Due to the quantum group structure, they are much more
complicated than their classical counterparts. In particular,
their commutation relations are pretty complicated. We
clarify the construction of Uqðsuð2ÞÞ intertwiner observ-
ables. We show how there exists a fundamental algebra
generating all observables, which is a deformation of the
uðNÞ algebra. We also discuss the geometric interpretation
of some observables for 3D Euclidian LQG with Λ < 0,
pinpointing the fact that the quantum group structure

TABLE II. 4D quantum gravity models.

Signature Λ Quantum group QG models

Euclidian Λ > 0 Uqðsoð4ÞÞ, q ¼ ei2πl
2
pΛ BC or EPRL-FK⇔

?
LQG

Λ ¼ 0 ? BC or EPRL-FK⇔
?
LQG

Λ < 0 Uqðsoð4ÞÞ, q ¼ ei2πl
2
pΛ BC or EPRL-FK⇔

?
LQG

Lorentzian Λ > 0 Uqðsoð3; 1ÞÞ, q ¼ el
2
pΛ BC or EPRL-FK⇔

?
LQG

Λ ¼ 0 ? BC or EPRL-FK⇔
?
LQG

Λ < 0 Uqðsoð3; 1ÞÞ, q ¼ el
2
pΛ BC or EPRL-FK⇔

?
LQG
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encodes (as expected) the notion of curved discrete
geometry. Some of these results were already announced
in Ref. [41].

D. Outline of the paper

The paper is organized as follow. In Sec. II, we recall the
main features of Uqðsuð2ÞÞ, the q-deformed universal
enveloping algebra of SU(2), with q real. We recall as
well the notion of q-harmonic oscillators which are used to
build some tensor operators’ explicit realizations.
Section III is a review of tensor operators for Uqðsuð2ÞÞ,

the essential tools of our construction. Due to the non-
linearity of the quantum group structure, Uqðsuð2ÞÞ tensor
operators are more complicated than the standard SU(2)
case. In particular, due to the nontrivial nature of the
quantum group action, the tensor product of tensor oper-
ators is highly nontrivial, which will make the construction
of tensor operators acting on different legs of an intertwiner
quite cumbersome (but necessary).
Different explicit realizations of tensor operators for

Uqðsuð2ÞÞ are given in Sec. IV. We recall the results of
Quesne [42] regarding spinor operators, i.e., their definition
in terms of q-harmonic oscillators and their commutation
relations for spinor operators acting on different legs.
We extend this analysis to vector operators, which will
be relevant for the construction of the standard geometric
operators.
The main results of this paper are presented in Secs. V

and VI. We discuss the general construction of observables
for a Uqðsuð2ÞÞ intertwiner. We construct a new realization
of UqðuðNÞÞ in terms of tensor operators, which is also
invariant under the action of Uqðsuð2ÞÞ. We identify the
nonlinear map relating our invariant operators to the
standard UqðuðNÞÞ Cartan-Weyl generators. We construct
different geometric operators which we interpret in the
context of 3D Euclidian LQG with Λ < 0. We show how
we get a quantization of the hyperbolic cosine law, and a
quantization of the length and of the area of a triangle.
We also pinpoint how the presence of the cosmological
constant allows for a notion of a minimum angle.
In the concluding section, we discuss the possible

follow-ups of this tensor-operator approach to LQG.
We have also included some appendices to recall the

definition of the hyperbolic cosine law, as well as some
relevant formulas regarding the Uqðsuð2ÞÞ recoupling
coefficients.

II. Uqðsuð2ÞÞ IN A NUTSHELL

A. Definition of Uqðsuð2ÞÞ
In this section, we review the salient features of

Uqðsuð2ÞÞ (which we shall use extensively) to fix the
notations. We consider Uqðsuð2ÞÞ, the q-deformation of
the universal enveloping algebra of SU(2), with q real,
generated by Jz; Jþ; J−. We have the commutation relations

½Jz; J�� ¼ �J�; ½Jþ; J−� ¼ ½2Jz�; with

½Jz� ¼
qJz=2 − q−Jz=2

q1=2 − q−1=2
: ð1Þ

For q → 1 the right-hand side of the second equation of
Eq. (1) approaches 2Jz and we thus recover the usual Lie
algebra suð2Þ. Uqðsuð2ÞÞ is equipped with the structure of
a quasitriangular Hopf algebra ðΔ; ϵ; S;RÞ [9,43,44]:

(i) The coproduct Δ∶ Uqðsuð2ÞÞ → Uqðsuð2ÞÞ ⊗ Uq
ðsuð2ÞÞ encodes physically the total angular momen-
tum of a two-particle system,

ΔJz ¼ Jz ⊗ 1þ 1 ⊗ Jz;

ΔJ� ¼ J� ⊗ qJz=2 þ q−Jz=2 ⊗ J�: ð2Þ
Considering the undeformed case, we have

ðΔJσÞjj1m1;j2m2i¼ ðJσ ⊗ 1þ1⊗ JσÞjj1m1j2m2i
¼ ðJð1Þσ þJð2Þσ Þjj1m1j2m2i;

where σ¼þ;−;z: ð3Þ
In the deformed case, the addition of angular mo-
menta (2) is noncommutative, and hence the addition
of q-angular momenta depends on the order in which
we set our particles. As we shall see, the braiding
constructed using theR-matrix will allow us to relate
different orderings.

(ii) The counit ϵ∶ Uqðsuð2ÞÞ → Uqðsuð2ÞÞ is defined
such that ϵð1Þ ¼ 1; ϵðJσÞ ¼ 0 for σ ¼ þ;−; z.

(iii) The antipode S∶ Uqðsuð2ÞÞ → Uqðsuð2ÞÞ encodes
in some sense the notion of inverse angular mo-
mentum,

SJz ¼ −Jz; SJ� ¼ −q�1=2J�: ð4Þ

(iv) The R-matrix encodes the “amount” of noncommu-
tativity of the coproduct, i.e., of the addition of
angular momenta. Indeed, if we note ψ∶ Uq
ðsuð2ÞÞ ⊗ Uqðsuð2ÞÞ → Uqðsuð2ÞÞ ⊗ Uqðsuð2ÞÞ
(the permutation), then we have that

ðψ∘ΔÞX ¼ RðΔXÞR−1: ð5Þ
In terms of the Uqðsuð2ÞÞ generators, the R-matrix
can be written as (using the Sweedler notation [9])

R ¼
X

Rð1Þ ⊗ Rð2Þ

¼ qJz⊗Jz
X∞
n¼0

ð1 − q−1Þn
½n�!

× qnðn−1Þ=4ðqJz=2JþÞn ⊗ ðq−Jz=2J−Þn; ð6Þ

where ½n� denotes the q-number ½n�≡ q
n
2−q−

n
2

q
1
2−q−

1
2

. A

cocommutative product would simply mean that
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R ¼ 1 ⊗ 1, which is obtained when q → 1 in
Eq. (6). Further properties of theR-matrix are given
in Appendix B, in particular its expression in terms
of Clebsch-Gordan coefficients.
The noncocommutativity of the coproduct implies

that we have a “noncommutative” tensor product.
Essentially, we would get a symmetric two-particle
system if the permutation of the particle states does
not affect the total observable, that is, the permu-
tation leaves the coproduct invariant, ψ∘Δ ¼ Δ.
If it is noncocommutative, as in the Uqðsuð2ÞÞ

case, we can still define a deformed permutation ψR,
thanks to the existence of the R-matrix [40,44],

ψR∶ V ⊗ W → W ⊗ V;

v ⊗ w → ψRðjv; wiÞ
≡ ψðRjv; wiÞ ¼

X
ψðjRð1Þv;

Rð2ÞwiÞ ¼
X

jRð2Þw;Rð1Þvi: ð7Þ

Using the key property ðψ∘ΔÞX ¼ RðΔXÞR−1, we
have that

ψRðXðjv; wiÞÞ ¼ ψðRXðjv; wiÞÞ
¼ ψðRðΔXÞjv; wiÞ
¼ ψððψ∘ΔXÞRjv; wiÞ
¼ ðΔXÞψðRjv; wiÞ
¼ XðψRðjv; wiÞÞ:

Hence, the tensor product is only symmetric under
this deformed notion of permutation. From now on,
we shall always consider this deformed permutation
ψR, which is the natural notion of permutation in
this quasitriangular context.

The representation theory of Uqðsuð2ÞÞ with q real is very
similar to that of suð2Þ [45]. A representation Vj is
generated by the vectors jj; mi with j ∈ N=2 and m ∈
f−j;…; jg. The key difference is that the action of the
generators on these vectors generates q-numbers,

Jzjjmi ¼ mjjmi; ð8Þ

J�jjmi ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
½j ∓ m�½j�mþ 1�

p
jjm� 1i: ð9Þ

A Casimir operator can be defined as

C ¼ JþJ− þ ½Jz�½Jz − 1� ¼ J−Jþ þ ½Jz�½Jz þ 1�: ð10Þ

The tensor product of vectors jj1m1; j2m2i can be decom-
posed into a linear combination of vectors using the
q-Clebsch-Gordan (CG) coefficients qCj1 j2 j

m1m2m
,

jj1m1; j2m2i ¼
X
j;m

qCj1 j2 j
m1m2m

jjmi;

j ¼ jj1 − j2j;…; j1 þ j2: ð11Þ

Conversely, given a representation Vj of Uqðsuð2ÞÞ we
can decompose it along two representations Vj1 and Vj2 of
Uqðsuð2ÞÞ (with jj1 − j2j ≤ j ≤ j1 þ j2),

jjmi ¼
X
m1;m2

qCj1 j2 j
m1m2m

jj1m1; j2m2i: ð12Þ

Acting with a generator Jσðσ ¼ þ;−; zÞ on the right-hand
side of Eq. (11) and with its coproduct on the left-hand side
of Eq. (11), we obtain a recursion relation for the CG
coefficients [45]. Such recursion relations can be taken as
defining the CG coefficients,

Jz⊳jj1m1; j2m2i ¼
X
j;m

qCj1 j2 j
m1m2m

Jz⊳jjmi⇔ΔJzjj1m1; j2m2i

¼
X
j;m

qCj1 j2 j
m1m2m

Jzjjmi ⇒ m1 þm2 ¼ m;

J�⊳jj1m1; j2m2i ¼
X
j;m

qCj1 j2 j
m1m2m

J�⊳jjmi⇔ΔJ�jj1m1; j2m2i

¼
X
j;m

qCj1 j2 j
m1m2m

J�jjmi ⇒ q−
m1
2 ð½j2 �m2�½j2 ∓ m2 þ 1�Þ12qCj1 j2 j

m1m2∓1m

þ q
m2
2 ð½j1 �m1�½j1 ∓ m1 þ 1�Þ12qCj1 j2 j

m1∓1m2m

¼ ð½j ∓ m�½j�mþ 1�Þ12qCj1 j2 j
m1m2m�1: ð13Þ

We refer to Appendix B for further relevant properties of CG coefficients.
Let us now introduce the notion of an intertwiner for Uqðsuð2ÞÞ, which is a fundamental object in LQG. An intertwiner is

a vector jιj1…jN i ¼
P

mi
cm1…mN

jj1m1;…; jNmNi ∈ Vj1 ⊗ … ⊗ VjN that is invariant under the action of Uqðsuð2ÞÞ,
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Jα⊳jιj1…jN i¼ ½ð1⊗…1⊗ΔÞ∘…∘ð1⊗ΔÞ∘Δ�ðJαÞjιj1…jN i
¼ 0; α¼�;z: ð14Þ

Note that since the coproduct is coassociative, there is no
issue of how to compose the coproducts. In the case of
N ¼ 3, Eq. (14) is equivalent to the recursion relations
which define the CG coefficients. A normalized 3-valent
intertwiner is then uniquely defined by

jιj1j2j3i ¼
X
mi

ð−1Þj3−m3q−
m3
2

½2j3 þ 1�12 qCj1 j2 j3
m1m2−m3

jj1m1; j2m2; j3m3i:

Another ingredient that we shall use extensively in the
following sections is the adjoint action of Uqðsuð2ÞÞ on an
operator O. It differs from the usual adjoint action of suð2Þ
given by a commutator. The Uqðsuð2ÞÞ adjoint action of the
generators Jσ is explicitly given by

Jz⊳O ¼ ½Jz;O�;
J�⊳O ¼ J�Oq−Jz=2 − q�1

2q−Jz=2OJ�: ð15Þ

The following lemma is useful for relating quantities that
are invariant under the adjoint action and the different
Casimirs that one can construct. This is especially relevant
in our case since the commutator and the adjoint action do
not coincide.
Lemma II.1 Let C ∈ Uqðsuð2ÞÞ be invariant under the

adjoint action; then, C commutes with the generators Jσ,
σ ¼ þ;−; z. Conversely, if C ∈ Uqðsuð2ÞÞ commutes with
Jσ , then it is invariant under the adjoint action.

B. q-harmonic oscillators and the
Schwinger-Jordan trick

To account for the deformation, we consider a pair of
q-harmonic oscillators, comprised of annihilation operators
αi ¼ a; b, creation operators α†i ¼ a†; b†, and number
operators Nαi ¼ Na; Nb, to construct representations of
Uqðsuð2ÞÞ. They are defined as follows:

½αi; αj� ¼ ½αi; α†j � ¼ 0; with i ≠ j;

½αi; α†i �q�1
2
¼ q

∓Nαi
2 ; ½Nαi ; α

†
j � ¼ δijα

†
i ;

½Nαi ; αj� ¼ −δijαi; ð16Þ
where ½A; B�qn ≡ AB − qnBA. Let us point out that the
operator α†i αi is not the number operator Nαi ; rather, it is
equal to ½Nαi �. From Eq. (16), we also have that

qNαi
=2α†i ¼ q1=2α†i q

Nαi
=2; qNαi

=2αi ¼ q−1=2αiq
Nαi

=2;

α†i αi ¼ ½Nαi �; αiα
†
i ¼ ½Nαi þ 1�: ð17Þ

The harmonic oscillator αi, α
†
i , Nαi acts on the Fock space

Fi ¼ fPnicni jniig with vacuum j0i,

αij0i ¼ 0; αijnii ¼
ffiffiffiffiffiffiffi
½ni�

p
jni − 1i; with ni ≥ 1;

and α†i jnii ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
½ni þ 1�

p
jni þ 1i: ð18Þ

The generators of Uqðsuð2ÞÞ can be realized in terms of
the pair of q-harmonic oscillators ða; bÞ, their adjoint, and
their number operator [46,47],

Jz ¼
1

2
ðNa − NbÞ; Jþ ¼ a†b; J− ¼ b†a;

C ¼
�
1

2
ðNa þ NbÞ

��
1

2
ðNa þ NbÞ þ 1

�
:

ð19Þ

Using this representation together with Eq. (16), we can
recover the commutation relations (1). We can also use the
Fock space F ∼ Fa ⊗ Fb ¼ fP cnanb jna; nbi; cnanb ∈ Rg
of this pair of q-harmonic oscillators to generate the
representations of Uqðsuð2ÞÞ by setting

j ¼ 1

2
ðna þ nbÞ; m ¼ 1

2
ðna − nbÞ: ð20Þ

The states jjmi are then homogenous polynomials in the
operators αi; α

†
i ,

jjmi ¼ ða†Þjþmðb†Þj−mffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi½jþm�!½j −m�!p j0; 0i: ð21Þ

III. TENSOR OPERATORS FOR Uqðsuð2ÞÞ
We now introduce the concept of tensor operators. The

general definition of tensor operators for a general quasi-
triangular Hopf algebra was given in Ref. [40]. We use their
formalism in the specific case of Uqðsuð2ÞÞ. These objects
are the building blocks of our construction of observables
for LQG defined with Uqðsuð2ÞÞ as the gauge group. We
will show in Sec. V that the use of tensor operators allows
us to build any observables associated to an intertwiner
(of a quantum or a classical group) in a straightforward
manner.

A. Definition and Wigner-Eckart theorem

Definition III.1. Tensor operators [40].
Let V and W be two representations of Uqðsuð2ÞÞ (not

necessarily irreducible), and let LðWÞ be the set of linear
maps on W. A tensor operator t is defined as the
intertwinning linear map

t∶ V → LðWÞ;
x → tðxÞ: ð22Þ

If we take V ≡ Vj (the irreducible representation of rank j
spanned by vectors jj; mi), then we note that tðjj; miÞ≡
tjm. tj ¼ ðtjmÞm¼−j…j is called a tensor operator of rank j.
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The fact that a tensor operator is an intertwining map for
the action of Uqðsuð2ÞÞ means that tjm transforms at the
same time as an operator under the adjoint action of
Uqðsuð2ÞÞ and as a vector jjmi. This is encoded in the
equivariance property,4

Jz⊳tjm ¼ ½Jz; tjm� ¼ mtjm;

J�⊳tjm ¼ J�t
j
mq−

Jz
2 − q�1

2q−
Jz
2 tjmJ�

¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
½j ∓ m�½j�mþ 1�

p
tjm�1: ð23Þ

This equivariance property has a very important conse-
quence regarding the matrix elements of tjm.
Theorem III.2. Wigner-Eckart theorem [40]:
The matrix elements hj1; m1jtjmjj2; m2i are proportional

to the CG coefficients. The constant of proportionalityNj
j1j2

is a function of j1; j2, and j only,

hj1; m1jtjmjj2; m2i ¼ Nj
j1j2q

Cj j2 j1
mm2m1

: ð24Þ

The proof of the theorem follows from the constraints (23)
written for the matrix elements of the tensor operator. These
constraints essentially implement the recurrence relations
which define the CG coefficients, as given in Eq. (13).
In order to have at least a nonzero matrix element, the j’s

in the CG coefficients must satisfy the triangular condition.
This means in particular that the tensor operator does not
have to be realized as a square matrix. Let us consider the
cases j ¼ 0; 1

2
, and 1.

(i) The scalar operator t0 has matrix elements given in
terms of qC

0 j2 j1
0m2m1

. As a consequence, we must have
j1 ¼ j2 and the scalar operator must be encoded in a
square matrix ð2j1 þ 1Þ × ð2j1 þ 1Þ.

(ii) The spinor operator t
1
2 matrix elements are given in

terms of qC
1
2
j2 j1

mm2m1
. We must have j2 þ 1

2
¼ j1 or

j2 − 1
2
¼ j1. The spinor operator cannot be realized

by a square matrix. It has to be represented in terms
of a rectangular matrix as either ð2j2 þ 2Þ × ð2j2 þ
1Þ or ð2j2Þ × ð2j2 þ 1Þ, or a direct sum of the two.

(iii) In a similar way, the vector operator t1 has matrix
elements given by qC1 j2 j1

mm2m1
. Hence it must be realized

as a matrix as ð2j2 − 1Þ × ð2j2 þ 1Þ, ð2j2 þ 1Þ×
ð2j2 þ 1Þ, or ð2j2 þ 3Þ × ð2j2 þ 1Þ, or a direct sum
of some/all of them.

B. Product of tensor operators: scalar product,
vector product, and triple product

We now would like to consider the analogue of Eqs. (11)
and (12) in terms of tensor operators.
Lemma III.3. Product of tensor operators [40].
Let t∶ V → LðWÞ and ~t∶ V 0 → LðWÞ be two tensor

operators; then,

t~t∶ V ⊗ V 0 → LðWÞ; ðx; yÞ → tðxÞ~tðyÞ ð25Þ

is still a tensor operator.
For example, we can decompose a given tensor operator

in terms of two other tensor operators, using the CG
coefficients,

tjm ¼
X
m1;m2

qCj1 j2 j
m1m2m

tj1m1
tj2m2

: ð26Þ

Two specific combinations will be especially relevant for
us: the “scalar product” and the “vector product.”

1. Scalar product

We define the “scalar product” of two tensor operators as
the projection of these operators on the trivial representa-
tion. Indeed, considering two tensor operators tj1 and ~tj2 ,
we can combine them using the CG coefficients to build a
tensor operator of rank 0, i.e., a scalar operator,

tj1 · ~tj2 ≡ ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
½2j1 þ 1�

p X
m1þm2¼0

qC
j1 j2 0
m1m20

tj1m1
~tj2m2

¼ δj1;j2
X
m

ð−1Þj1−mqm
2tj1m ~t

j1
−m; ð27Þ

In this sense, we can interpret these quantum Clebsch-
Gordan coefficients as encoding a (nondegenerate) bilinear
form BðjÞ defining a scalar product,

BðjÞðv; wÞ ¼ gðjÞmnvmwn ¼ v · w;

gðjÞmn ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
½2j1 þ 1�

p
qC

j j 0
mn0

¼ δm;−nð−1Þj−mqm
2 ≠ gðjÞnm: ð28Þ

To construct a scalar product from the bilinear form B,
we usually demand that B is symmetric, Bðv; wÞ ¼
Bðψðv; wÞÞ, where ψ is the permutation. However due
to the noncocommutativity of the coproduct, we have a
nontrivial tensor-product structure. Thus we have to discuss
the symmetry with respect to the deformed permutation
ψR ¼ ψ∘R. We then have

v · w ¼ Bðv; wÞ ¼ ð−1Þ2jq−jðjþ1ÞBðψRðv; wÞÞ
¼ ð−1Þ2jq−jðjþ1Þw · v: ð29Þ

4As always we can perform the limit q → 1 to recover the
tensor operators for suð2Þ. In this case we have

½Jz; tjm� ¼ mtjm; ½J�; tjm� ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðj ∓ mÞðj�mþ 1Þ

p
tjm�1:

This transformation is the infinitesimal version of gtjmg−1 ¼P
m0 ρjmm0 ðgÞtjm0 ; g ∈ SUð2Þ, where ρ is a representation of

SU(2).
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We notice therefore that—modulo the factor q−jðjþ1Þ—if j
is an integer we have a (deformed) symmetric bilinear form,
whereas in the half-integer case it is (deformed) antisym-
metric. This is consistent with the construction when
q → 1. Unlike in the classical case, there is an extra factor
q−jðjþ1Þ that comes into play. Since we have defined a
bilinear form, we can introduce the contravariant and
covariant notions. If jui ¼ P

mumjjmi is a vector (covar-
iant object), then huj≡P

mu−mð−1Þj−mqm
2 hjmj will be the

covector (contravariant object). This notion can be naturally
extended to tensor operators. We have already defined the
covariant tensor operators since they transform as vectors.
We can introduce the contravariant tensor operators as

tmj ≡ ð−1Þj−mqm
2 ðtj−mÞ†; ð30Þ

where here † is the standard combination of transpose and
complex conjugation. This contravariant notion of tensor
operators was actually proposed by Quesne [42].
Finally, given a bilinear form, we can construct the

associated notion of an adjoint †B of an operator A, from
BðA†Bv; wÞÞ ¼ Bðv; AwÞ. We recall that5 gmn ¼
δm;−nð−1Þj−mqm

2 is antidiagonal and not symmetric, so
we need to be careful. We note that gmn ¼
ð−1Þ−j−mqm

2δ−m;n is its inverse. Following the adjoint
definition, given a bilinear form gmn, we have, for a given
operator A,

ðA†BÞmn ¼ gmaAd
agdn ¼ ðð−1Þm−nq−

m−n
2 ÞA−n

−m: ð31Þ

2. Vector product

The notion of a “vector product” is defined by associat-
ing a vector operator t̂1 to two vector operators t1; ~t1 using
the CG coefficients,

t̂1m ¼ ðt1∧~t1Þm ≡ X
m1;m2

qC1 1 1
m1m2m

t1m1
~t1m2

: ð32Þ

Using their value (recalled in Appendix B), we obtain
explicitly

t̂1 ¼
ffiffiffiffiffiffi
½2�
½4�

s
ðq1=2t11~t10 − q−1=2t10~t

1
1Þ;

t̂−1 ¼
ffiffiffiffiffiffi
½2�
½4�

s
ðq1=2t10~t1−1 − q−1=2t1−1~t

1
0Þ;

t̂0 ¼
ffiffiffiffiffiffi
½2�
½4�

s
ðt11~t1−1 − t1−1~t

1
1 þ ðq1

2 − q−
1
2Þt10~t10Þ:

As we shall see when giving a realization of the vector
operators, this vector product is related to the commutation

relations of the suð2Þ algebra (when q ¼ 1) and to Witten’s
proposal describing the q-deformation of the suð2Þ algebra
[48]. Combining the scalar product with the wedge product,
we obtain the generalization of the triple product,

ðt1∧t1Þ · t1 ≡X
mi

ð−1Þ1−m3q
m3
2 qC1 1 1

m1m2m3
t1m1

t1m2
t1−m3

: ð33Þ

This is simply the image of the trivalent intertwiner (15)
when restricted to j1 ¼ j2 ¼ j3 ¼ 1. The generalization to
any ji is then

ðtj1∧tj2Þ ·tj3 ≡X
mi

ð−1Þj3−m3q
m3
2 qCj1 j2 j3

m1m2m3
tj1m1

tj2m2
tj3−m3

: ð34Þ

In general, given a set of tensor operators, we can use
the relevant intertwiner coefficients to construct a scalar
operator out of them. Observables for an intertwiner will be
the generalization of this construction.

C. Tensor products of tensor operators

The tensor product of tensor operators requires more
attention. Indeed, if t ∈ LðWÞ and ~t ∈ LðW0Þ are tensor
operators for Uqðsuð2ÞÞ, then in general t ⊗ ~t will not be a
tensor operator for Uqðsuð2ÞÞ. To see this, first we recall
that we need the coproduct to define the action of the
generators Jα on jj1m1; j2m2i. For example,

ΔJþjj1m1; j2m2i ¼ ðJþ ⊗ K þ K−1 ⊗ JþÞjj1m1; j2m2i;
K ≡ q

Jz
2 : ð35Þ

If t ⊗ ~t is a (linear) module homomorphism, we then have

ðt ⊗ ~tÞðΔJþjj1m1; j2m2iÞ
¼ ðt ⊗ ~tÞðJþ ⊗ K þ K−1 ⊗ Jþjj1m1; j2m2iÞ
¼ ðJþ⊳tj1m1

Þ ⊗ ðK⊳~tj2m2
Þ þ ðK−1⊳tj1m1

Þ ⊗ ðJþ⊳~tj2m2
Þ:

ð36Þ

On the other hand, this must be equal to the action of Jþ on
t ⊗ ~t (which can be seen as a linear map V ⊗ V 0 →
W ⊗ W0), so that

Jþ⊳ðt ⊗ ~tÞ ¼ ðJþÞV⊗V 0 ðt ⊗ ~tÞðK−1ÞW⊗W0

− q
1
2ðK−1ÞV⊗V 0 ðt ⊗ ~tÞðJþÞW⊗W0 : ð37Þ

We recall that by definition we have

ðK�1ÞW⊗W0 ¼ ΔK�1 ¼ ðK�1ÞW ⊗ ðK�1ÞW0 ; ð38Þ

ðJþÞW⊗W0 ¼ ΔJþ ¼ ðJþÞW ⊗ ðKÞW0 þ ðK−1ÞW ⊗ ðJþÞW0 :

ð39Þ5We omit the j upper index for simplicity.
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If t ⊗ ~t is a tensor operator, Eq. (36) must be equal to
Eq. (37), which gives (we omit the indices for simplicity)

ðJþtK−1 − q
1
2K−1tJþÞ ⊗ ðK~tK−1Þ

þ ðK−1tKÞ ⊗ ðJþ~tK−1 − q
1
2K−1~tJþÞ

¼ JþtK−1 ⊗ K~tK−1 þ K−1tK−1 ⊗ Jþ~tK−1

− q
1
2ðK−1tJþ ⊗ K−1~tK þ K−1tK−1 ⊗ K−1~tJþÞ: ð40Þ

If ~t ¼ 1, then Eq. (40) is satisfied for any t, but when t ¼ 1
and ~t ≠ 1, the constraint (40) is not satisfied in general.6

The problem can be identified with the noncommutativity
of the coproduct [40]. Indeed, the operator 1 ⊗ t can be
seen as being obtained from the permutation of t ⊗ 1, but
since we are now dealing with a noncommutative tensor
product, we need to consider the deformed permutation ψR
instead of ψ .
Lemma III.4. If t is a tensor operator of rank j, then

ð1Þt ¼ t ⊗ 1 and ð2Þt ¼ ψRðt ⊗ 1Þψ−1
R ¼ R21ð1 ⊗ tÞR−1

21

are tensor operators of rank j.
We extend the construction to an arbitrary number of

tensor products,7

ðiÞt ¼ Rii−1Rii−2…Ri1ð1 ⊗ 1 ⊗ … ⊗ 1 ⊗ tÞ
×R−1

i1 …R−1
ii−2R

−1
ii−1 ⊗ 1 ⊗ … ⊗ 1: ð41Þ

By abuse of notation, we say that ðiÞt acts on the ith Hilbert
space, even though it is not really the case when q ≠ 1.
Note also that if q ¼ 1, tensor operators that act on different
Hilbert spaces will commute, but when q ≠ 1, this will not
be the case in general due to the presence of theR-matrices.
When we consider the scalar product of tensor operators

living on the same Hilbert space, theR-matrices disappear,
which simplifies the calculations.
Lemma III.5. The scalar product of the tensor operators

ðiÞtj1 and ðiÞ~tj2 can be reduced to

ðiÞtj1 · ðiÞ~tj2 ¼ 1 ⊗ …1 ⊗ tj1 · ~tj2 ⊗ 1 ⊗ … ⊗ 1: ð42Þ

This lemma follows simply from Eq. (41).

IV. REALIZATION OF TENSOR OPERATORS
OF RANK 1=2 AND 1 FOR Uqðsuð2ÞÞ

The abstract theory of tensor operators has been sum-
marized above. We want to illustrate the construction by
giving some realization of these tensor operators. We know
that any representation Vj of Uqðsuð2ÞÞ can be recovered
from the fundamental spinor representation 1

2
and the CG

coefficients. In the same way, the most important operators

to identify are the spinor operators. If we know them, we
can concatenate them using the CG coefficients to obtain
any other tensor operators. We first present the realization
of the spinor operators using q-harmonic oscillators,
followed by the vector operators realized in terms of either
the q-harmonic oscillators or the Uqðsuð2ÞÞ generators.

A. Rank-1=2 tensor operators

Rank-1
2
tensor operators (i.e., spinor operators) t

1
2
m should

be a solution of the following constraints:

J�⊳t
1
2∓ ¼ t

1
2

�; J�⊳t
1
2

� ¼ 0; Jz⊳t
1
2

� ¼ � 1

2
t
1
2

�:

ð43Þ

Using the Schwinger-Jordan realization of Uqðsuð2ÞÞ
generators given in Eq. (19), we can solve these equations
and get two solutions T

1
2 and ~T

1
2 satisfying Eq. (43),

T
1
2 ¼

�
A†

B†

�
¼

�
a†qNa=4

b†qð2NaþNbÞ=4

�
;

~T
1
2 ¼

�
~B
~A

�
¼

�
qð2NaþNbþ1Þ=4b

−qðNa−1Þ=4a

�
: ð44Þ

We recall that a and b are q-harmonic oscillators which
satisfy the modified commutation relations (16). We can
check that T

1
2 and ~T

1
2 are Hermitian conjugate to each other,

according to the modified bilinear form we have defined in
Sec. III B 1 [see Eq. (30)]. When looking at the limit q → 1,
we have

T
1
2 → τ

1
2 ¼

�
a†

b†

�
; ~T

1
2 → ~τ

1
2 ¼

�
b
−a

�
: ð45Þ

This explicit realization of the tensor operators allows us
to explicitly check the Wigner-Eckart theorem, and to
identify the normalization of the operators through this
realization. In particular, for the q-deformed spinor oper-
ator matrix elements, we have

hj1; m1jT
1
2
mjj2; m2i ¼ δj1;j2þ1=2N

1
2

j2q
C1=2j2j1
mm2m1

; with

N
1
2

j2
¼ ðð½dj2 �Þ1=2q

j2
2 Þ;

hj1; m1j ~T
1
2
mjj2; m2i ¼ δj1;j2−1=2

~N
1
2

j2q
C1=2j2j1
mm2m1

; with

~N
1
2

j2
¼ ðð½dj2 �Þ1=2q

1
4
ð2j2−1ÞÞ; ð46Þ

where m ¼ �1=2 and dj ¼ 2jþ 1. We therefore have two
possible realizations of spinor operators in terms of
rectangular matrices. Note that the above choice of

normalization, N
1
2

j2
and ~N

1
2

j2
, can be modified because the

spinor operators T
1
2 and ~T

1
2 are defined up to a multiplicative

6Note that in the limit q → 1, this would be satisfied.
Hence 1 ⊗ ~t is a tensor operator for suð2Þ.

7Rms ¼ 1s−1 ⊗ R2 ⊗ 1m−s−1 ⊗ R1, using the notations of
Eq. (6).
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function of Na þ Nb. Therefore, N
1
2

j2
and ~N

1
2

j2
can be any

function of j2.
To form observables for a N-valent intertwiner, we need

to define spinor operators built from the tensor product ofN
spinor operators. The explicit realization of the tensor
product of spinor operators was discussed in detail by
Quesne [42]. The calculation amounts to calculating
Eq. (41) for an arbitrary number N of tensor products,
in the case of the spinor operators t

1
2.

Now we outline the outcome of this calculation and
give the expression of these spinor operators in terms of

the q-deformed harmonic oscillators a†i ; ai; Nai ; b
†
i ; bi;

Nbi ∈ Fi ∼ Fai ⊗ Fbi , where the Fiði ¼ 1;…; NÞ are N
independent q-Fock spaces. Let us define the tensor

operators ðiÞT1
2 and ðiÞ ~T

1
2 living in F ≡ ð⊗N

i¼1 FaiÞð⊗N
i¼1

FbiÞ which “act” on the ith Hilbert space,

ðiÞT1
2 ¼

�
A†

i

B†
i

�
; ðiÞ ~T

1
2 ¼

� ~Bi

~Ai

�
; for i ∈ f1;…; Ng;

ð47Þ

where

ðiÞ
T

1
2þ ≔ A†

i ¼ ð⊗i−1
k¼1 q

Nak−Nbk
4 Þa†i q

Nai
4 ;

ðiÞ
T

1
2− ≔ B†

i ¼ ð⊗i−1
k¼1 q

−NakþNbk
4 Þb†i q

2NaiþNbi
4 þ ðq1

4 − q−
3
4Þ
�Xi−1
l¼1

ð⊗l−1
k¼1 q

−NakþNbk
4 Þalb†l ð⊗i−1

k¼lþ1 q
Nak−Nbk

4 Þ
�
a†i q

Nai
4 ;

ðiÞ
~T
1
2þ ≔ ~Bi ¼ ð⊗i−1

k¼1 q
Nak−Nbk

4 Þq
2NaiþNbi

þ1

4 bi;

ðiÞ ~T
1
2− ≔ ~Ai ¼ ð⊗i−1

k¼1 q
−NakþNbk

4 Þð−qNai−1
4 aiÞ þ ðq1

4 − q−
3
4Þ
�Xi−1
l¼1

ð⊗l−1
k¼1 q

−NakþNbk
4 Þalb†l ð⊗i−1

k¼lþ1 q
Nak−Nbk

4 Þ
�
q

2NaiþNbi
þ1

4 bi:

These operators will be the building blocks of our con-
struction of Uqðsuð2ÞÞ observables presented in the follow-
ing section. It will be necessary to have their explicit form
in terms of the harmonic oscillators in order to recover the
UqðuðNÞÞ structure in Sec. V B.

Note that if i ≠ 1, the two spinor operators ðiÞT1
2 and ðiÞ ~T

1
2

are no longer Hermitian conjugate to each other. Indeed,
ðA†

i Þ†≠−q1=4 ~Ai;ðB†
i Þ†≠q−1=4 ~Bi;i∈f2;…;Ng. To empha-

size this lack of Hermiticity, we introduce the notation

Ci ≡ −q1=4 ~Ai; Di ≡ q−1=4 ~Bi; ∀ i ∈ f1;…; Ng: ð48Þ

That is, we can rewrite the spinor operators ðiÞ ~T
1
2 as

ðiÞ ~T
1
2 ¼

�
q

1
4Di−q−1

4Ci

�
:

Quesne has calculated all possible commutation relations

between the components of
ðiÞ
T

1
2

�,
ðjÞ ~T

1
2

� for any i; j ∈
f1;…; Ng [42]. First, let us give the commutation relations
when 1 ≤ i ¼ j ≤ N:

B†
iA

†
i ¼ q1=2A†

iB
†
i ; CiDi ¼ q1=2DiCi;

DiA
†
i ¼ q1=2A†

iDi; CiB
†
i ¼ q1=2B†

i Ci;

CiA
†
i ¼ qA†

i Ci þ 1;

DiB
†
i ¼ qB†

iDi þ ðq − 1ÞA†
i Ci þ 1: ð49Þ

When 1 ≤ i < j ≤ N, we have

A†
iA

†
j ¼ q−1=4A†

jA
†
i ; A†

iB
†
j ¼ q1=4B†

jA
†
i − ðq3=4 − q−1=4ÞA†

jB
†
i ; B†

iA
†
j ¼ q1=4A†

jB
†
i ; B†

iB
†
j ¼ q−1=4B†

jB
†
i ;

DiDj ¼ q−1=4DjDi; DiCj ¼ q1=4CjDi − ðq3=4 − q−1=4ÞDjCi; CiDj ¼ q1=4DjCi; CiCj ¼ q−1=4CjCi;

A†
iDj ¼ q−1=4DjA

†
j ; DiA

†
j ¼ q−1=4A†

jDi; B†
i Cj ¼ q−1=4CjB

†
i ; CiB

†
j ¼ q−1=4B†

jCi; B†
iDj ¼ q1=4DjB

†
i ;

DiB
†
j ¼ q1=4ðB†

jDi þ ð1 − q−1ÞA†
jCiÞ; A†

i Cj ¼ q1=4ðCjA†
i þ ðq − 1ÞDjB

†
i Þ; CiA

†
j ¼ q1=4A†

jCi: ð50Þ

These commutation relations are quite cumbersome and they illustrate that the components of operators acting on different
Hilbert spaces do not commute when q ≠ 1. Obviously, when q ¼ 1 they simplify a lot.
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B. Rank-1 tensor operators

Rank-1 tensor operators (i.e., vector operators) for
Uqðsuð2ÞÞ have been identified [40]. These operators are
important because in the context of LQG they will encode
the notion of a flux operator. We explicitly construct them
and provide their commutation relations when they act (or
do not act) on different legs.
We can construct them using the spinor operators T

1
2, ~T

1
2

and the CG coefficients,

t1m ¼
X
m1;m2

qC
1
2
1
2
1

m1m2mT
1
2
m1

~T
1
2
m2
: ð51Þ

Using the explicit nonzero CG coefficients given in
Appendix B, we have that

t1�1 ¼ T
1
2

� ~T
1
2

�; t10 ¼
1ffiffiffiffiffiffi½2�p ðq−1

4T
1
2þ ~T

1
2− þ q

1
4T

1
2− ~T

1
2þÞ: ð52Þ

Explicitly, we obtain that

t11 ¼ q−
1
2q

ð3NaþNbÞ
4 a†b ¼ q−1=2q

1
2
ðNaþNbÞq

Jz
2 Jþ; ð53Þ

t10 ¼ −
1

½2�12 ðq
−1qNa=2½Na� − qNaþNb=2½Nb�Þ

¼ −
q−1=2

½2�12 q
1
2
ðNaþNbÞðq−1=2JþJ− − q1=2J−JþÞ; ð54Þ

t1−1 ¼ −q−1
2qð3NaþNbÞ=4b†a ¼ −q−1

2q
1
2
ðNaþNbÞq

Jz
2 J−: ð55Þ

Once again, we can check that the Wigner-Eckart is
satisfied,

hj1; m1jt1l jj2; m2i ¼ δj1;j2N
1
j2q

C1 j2 j1
lm2m1

; with

N1
j2
¼ −qj2−1

2

�ð½2j2�½2j2 þ 2�Þ
½2�

�1
2

; ð56Þ

and l ∈ f−1; 0; 1g. In this realization, the vector operator
is realized as a square matrix. Note that the normalization
N1

j2
comes from the chosen spinor normalization (46). For a

given vector operator, we can always consider an arbitrary
normalization N1

j2
.

An important remark is that in the limit q → 1, the
components of the vector operator become proportional to
the components of the suð2Þ generators,

t1 → τ1 ¼

0
B@

Jþ
−

ffiffiffi
2

p
Jz

−J−

1
CA: ð57Þ

That is, the suð2Þ generators are very simply related to
vector operators. Let us now go back to our definition of
the generalized scalar product (27) and generalized vector

product (32). In the q ¼ 1 case, the q-deformed CG
coefficients of Eqs. (27) and (32) are simply replaced by
the standard suð2Þ CG coefficients. In particular, the scalar
product is still the projection on the trivial rank and we
can define the “norm” of the vector operator τ1, given by
τ1 · τ1 ≡P

m1þm2¼0C
1 1 0
m1 m2 0

τ1m1
τ1m2

. This simplifies to

τ1 · τ1 ¼ −2~J · ~J; ð58Þ

where the suð2Þ set of generators ~J is seen as a 3-vector
with components Jx ¼ 1

2
ðJþ þ J−Þ; Jy ¼ 1

2i ðJþ − J−Þ, and
Jz ¼ Jz, and the “·” on the left-hand side of Eq. (58)
denotes the standard scalar product of 3-vectors. That is, in
the nondeformed case, the norm of the vector operator is
proportional to the quadratic Casimir of suð2Þ, C ¼ ~J · ~J.
The norm of the Uqðsuð2ÞÞ vector operator is by definition
a Uqðsuð2ÞÞ invariant, but it is no longer proportional to

j~Jj2. Indeed,

t1 · t1 ∝ ðq1
2 − q−

1
2Þ2J2−J2þ þ ð½2Jz þ 4� − ½2Jz�ÞJ−Jþ

þ ½2Jz þ 2�½2Jz�; ð59Þ

where the proportionality coefficient is a function of q
NaþNb

2 .
The “vector product” operation in the case q ¼ 1 can be

understood as the commutator of the suð2Þ generators,
which is also the natural way to encode the notion of a
vector product in LQG. Indeed,

ðτ1∧τ1Þ1 ¼ 1ffiffiffi
2

p ðτ11τ10 − τ10τ
1
1Þ ¼ ½Jz; Jþ� ¼ Jþ ¼ τ11;

ðτ1∧τ1Þ−1 ¼ 1ffiffiffi
2

p ðτ10τ1−1 − τ1−1τ
1
0Þ ¼ ½Jz; J−� ¼ −J− ¼ τ1−1;

ðτ1∧τ1Þ0 ¼ 1ffiffiffi
2

p ðτ11τ1−1 − τ1−1τ
1
1Þ ¼

1ffiffiffi
2

p ½J−; Jþ�

¼ −
ffiffiffi
2

p
Jz ¼ τ10: ð60Þ

Therefore, we see that this vector product can be under-
stood as the commutator of the suð2Þ generators, which is
also the natural way to encode the notion of a vector
product in LQG.
Using the above realization of the vector operators when

q ≠ 1, one can explicitly check that

ðt1∧t1Þ1 ¼
ffiffiffiffiffiffi
½2�
½4�

s
ðq1=2t11t10 − q−1=2t10t

1
1Þ;

ðt1∧t1Þ−1 ¼
ffiffiffiffiffiffi
½2�
½4�

s
ðq1=2t10t1−1 − q−1=2t1−1t

1
0Þ;

ðt1∧t1Þ0 ¼
ffiffiffiffiffiffi
½2�
½4�

s
ðt11t1−1 − t1−1t

1
1 þ ðq1

2 − q−
1
2Þt10t10Þ: ð61Þ
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Thus, in the quantum group case, the vector product of vector operators is different than the commutation relations defining
Uqðsuð2ÞÞ. The matrix elements of this new vector operator can be expressed in terms of the matrix elements of t1,

hj; m1jðt1∧t1Þαjj;m2i ¼
½2j − 1� − ½2jþ 3�

½2�ð½4�Þ12 qj−
1
2hj; m1jt1αjj; m2i: ð62Þ

We see therefore that in the classical case when q ¼ 1, the generators are related to vector operators, and different
structures—such as the adjoint action, the commutator, and the vector product—are encoded in the same way. When q ≠ 1,
all these different degeneracies are actually lifted. We summarize in Table III all the possible relations in the cases of suð2Þ
and Uqðsuð2ÞÞ.
The extension of t1 to ðiÞt1, for i ∈ f1; � � � ; Ng, can be done either through Eq. (41) or by using the spinor operators ðiÞ

T
1
2
m1

and
ðiÞ
~T
1
2
m2

given in Eq. (47),

ðiÞt1m ¼
X
m1;m2

qC
1
2
1
2
1

m1m2m
ðiÞ
T

1
2
m1

ðiÞ
~T
1
2
m2

→

8>>><
>>>:

ðiÞt11 ¼ q
1
4A†

iDi ¼ A†
i
~Bi;

ðiÞt10 ¼ 1ffiffiffiffi
½2�

p ðq1
2B†

iDi − q−
1
2A†

iDiÞ ¼ 1ffiffiffiffi
½2�

p ðq1
4B†

i
~Bi þ q−

1
4A†

i
~AiÞ;

ðiÞt1−1 ¼ −q−1
4B†

i Ci ¼ B†
i
~Ai:

ð63Þ

Explicitly, in terms of the Uqðsuð2ÞÞ generators we have

ðiÞt11¼ q
P

i−1
k¼1

ðkÞJz ðiÞJþq
ðiÞJz
2 q

NaiþNbi
2 ;

ðiÞt10¼
1ffiffiffiffiffiffi½2�p �

−q−1
2ðq−1

2
ðiÞJþðiÞJ− −q

1
2
ðiÞJ−ðiÞJþÞq

NaiþNbi
2 þðq1

2−q−
1
2Þð1þq−

1
2Þ
Xi−1
l¼1

h
qð

ðlÞJz
2
þ
P

i−1
k¼lþ1

ðkÞJzÞðlÞJ−
i
ðiÞJþq

ðiÞJz
2 q

NaiþNbi
2

�
;

ðiÞt1−1¼−q−1q−
P

i−1
k¼1

ððkÞJzÞðiÞJ−q
ðiÞJz
2 q

NaiþNbi
2 −q−1ðq1

2−q−
1
2Þ
Xi−1
l¼1

�
q−

P
l−1
k¼1

ððkÞJzþ
ðlÞJz
2
ÞðlÞJ−

�
ðq−1

2
ðiÞJþðiÞJ− −q

1
2
ðiÞJ−ðiÞJþÞq

NaiþNbi
2

þq−1ðq1
2−q−

1
2Þ2

�Xi−1
l¼1

q−
P

l−1
k¼1

ðkÞJz
2 ðlÞJ−q

P
i−1
k¼lþ1

ðkÞJz
2

�2

ðiÞJþq
ðiÞJz
2 q

NaiþNbi
2 :

With this choice of normalization inherited from Eq. (56), the commutation relations between the ðiÞt1m are quite
complicated. For 1 ≤ i < j ≤ N,

TABLE III. Relations between vector operators and generators.

suð2Þ Uqðsuð2ÞÞ
Generators Jσ , σ ¼ �; z Jσ , σ ¼ �; z

with commutation relations with commutation relations

½Jþ; J−� ¼ 2Jz ½Jþ; J−� ¼ qJz−q−Jz

q
1
2−q−

1
2

½J�; Jz� ¼∓ J� ½J�; Jz� ¼∓ J�

Vector operators τ1 ¼
� Jþ
−

ffiffiffi
2

p
Jz

−J−

�
t1 ∝

� q
Jz
2 Jþ

− 1ffiffiffiffi
½2�

p ðq−1=2JþJ− − q1=2J−JþÞ
−qJz

2 J−

�

Adjoint action Jσ⊳O ¼ ½Jσ ;O� for σ ¼ �; z J�⊳O ¼ J�Oq−
Jz
2 − q�1

2q−
Jz
2 OJ�; Jz⊳O ¼ ½Jz;O�

“Scalar product”
(· defined by Eq. (27)

τ1 · τ1 ¼ −2C ¼ −2j~Jj2 where C is the
quadratic Casimir of suð2Þ.

t1 · t1 ¼ I where I is a Uqðsuð2ÞÞ invariant; j~Jj2
is not a Casimir for Uqðsuð2ÞÞ.

“Vector product”
(∧ defined by Eq. (32)

ðτ1∧τ1Þ�1 ¼ ½Jz; J��,
ðτ1∧τ1Þz ¼ 1ffiffi

2
p ½J−; Jþ�.

ðt1∧t1Þα ¼ t̂1α ¼ vector operator; not simply related
to the commutators between generators of Uqðsuð2ÞÞ.
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ðiÞt11
ðjÞt11 ¼ q−1ðjÞt11

ðiÞt11;
ðiÞt11

ðjÞt10 ¼ ðjÞt10
ðiÞt11 þ ðq−1 − qÞðjÞt11ðiÞt10;

ðiÞt11
ðjÞt1−1 ¼ qðjÞt1−1

ðiÞt11 − ðq − 1Þ½2�ðjÞt10ðiÞt10 þ ðq2 − 1Þð1 − q−1ÞðjÞt11ðiÞt1−1;
ðiÞt10

ðjÞt11 ¼ ðjÞt11
ðiÞt10;

ðiÞt10
ðjÞt10 ¼ ðjÞt10

ðiÞt10 − ðq1
2 − q−

1
2Þðqþ 1Þð1þ q−1ÞðjÞt11ðiÞt1−1;

ðiÞt10
ðjÞt1−1 ¼ ðjÞt1−1

ðiÞt10 þ ðq−1 − qÞðjÞt10ðiÞt1−1;
ðiÞt1−1

ðjÞt11 ¼ qðjÞt11
ðiÞt1−1;

ðiÞt1−1
ðjÞt10 ¼ ðjÞt10

ðiÞt1−1;
ðiÞt1−1

ðjÞt1−1 ¼ q−1ðjÞt1−1
ðiÞt1−1: ð64Þ

For i ¼ j ∈ f1;…; Ng,

ðiÞt11
ðiÞt10 ¼ q−1ðiÞt10

ðiÞt11 þ
q

1
2 − q−

1
2ffiffiffiffiffiffi½2�p Eii

ðiÞt11 þ q−1
ffiffiffiffiffiffi
½2�

p ðiÞt11;

ðiÞt11
ðiÞt1−1 ¼ q−1ðiÞt1−1

ðiÞt11 þ
ðq−1 − 1Þ

½2� ððiÞt10Þ2 þ
2ðq1

2 − q−
1
2Þ

½2�32
ðiÞt10Eii þ

2q−1ffiffiffiffiffiffi½2�p ðiÞt10 −
q−1ðq1

2 − q−
1
2Þ

½2� Eii; ð65Þ

ðiÞt10
ðiÞt1−1 ¼ q−1ðiÞt1−1

ðiÞt10 þ
q

1
2 − q−

1
2

½2� Eii þ q−1
ffiffiffiffiffiffi
½2�

p ðiÞt1−1;

ð66Þ

where Eii ≔ −q1
4A†

i
~Ai þ q−

1
4B†

i
~Bi is a Uqðsuð2ÞÞ invariant

(see Sec. V B) and it commutes with any ðiÞt1α; ðα ¼ �; zÞ.

V. OBSERVABLES FOR THE
INTERTWINER SPACE

As emphasized in the Introduction, we are focusing on
the quantum group Uqðsuð2ÞÞwith q real, which is relevant
for both 3D Euclidian gravity with Λ < 0 and the physical
case, i.e., 4D Lorentzian gravity with Λ > 0.

A. General construction and properties
of intertwiner observables

From now on, we consider the space of N-valent
intertwiners with N legs ordered from 1 to N. Let us
consider n tensor operators ðαÞtJα of respective rank Jα,
associated with the αth leg of the vertex, built from
Eq. (41). To construct an observable, i.e., a scalar operator,
we can use the same combination that would appear in
the definition of an intertwiner built out from the vectors
jJα; mαi. Indeed, if jιJ1…Jni¼

P
mc

J1…Jn
m1…mn jJ1m1;…Jnmni,

then

IJ1…Jn ¼
X
mi

cJ1…Jn
m1…mn

ð1ÞtJ1m1
…ðnÞtJnmn ð67Þ

will be a scalar operator. Similarly as for intertwiners, the
bivalent and trivalent ones are the simplest and we can write
them explicitly,

IJαJβ ≡ ðαÞtJα · ðβÞtJβ ¼ δJα;Jβ
X
m

ð−1ÞJα−mqm
2
ðαÞtJαm

ðβÞtJβ−m

≡ IJααβ; ð68Þ

IJαJβJγ ≡ ððαÞtJα∧ðβÞtJβÞ · ðγÞtJγ
¼

X
mi

ð−1ÞJγ−m3q
m3
2 qC

Jα Jβ Jγ
m1m2m3

ðαÞtJαm1

ðβÞtJβm2

ðγÞtJγ−m3
:

ð69Þ
We recognize the generalized notions of the scalar product
and the triple product, respectively.
This construction works well for operators acting on an

intertwiner; however, in the general LQG context, we need
to deal with spin networks, so we need to consider the
tensor product of such intertwiners jιj1…jN i ⊗ jι0j10…jN0 i ⊗
…. Although the tensor product is not commutative, we do
not need to use the deformed permutation to define an
operator acting on any intertwiner of the tensor product.
Indeed, since an intertwiner is a Uqðsuð2ÞÞ-invariant
vector, the tensor product involving such invariant vectors
is commutative.
More explicitly, we have seen earlier that if t is a tensor

operator, then 1 ⊗ twill not in general be a tensor operator.
However, if 1 ⊗ t is restricted to act on some invariant
vectors jιi ⊗ jι0i, then 1 ⊗ t will still be a tensor operator.
To see this, let us consider the invariant vectors jιi ⊗

jι0i ∈ W ⊗ W0. We recall that an invariant vector means
that

J�jιi ¼ 0; K�1jιi ¼ jιi: ð70Þ
Let us first determine the transformation of 1 ⊗ t as a
representation of Uqðsuð2ÞÞ [that is, Eq. (36)] when acting
on the vectors jιi ⊗ jι0i,

ððJþK−1 − q
1
2K−1JþÞ ⊗ K~tK−1

þ 1 ⊗ ðJþ~tK−1 − q
1
2K−1~tJþÞÞjιi ⊗ jι0i

¼ 1 ⊗ ðJþ⊳~tÞjιi ⊗ jι0i: ð71Þ
If 1 ⊗ t transforms well when restricted to the invariant
vectors jιi ⊗ jι0i, we must recover the same outcome as
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Eq. (71) when considering 1 ⊗ t transforming as an
operator [that is, Eq. (37)],

ðJþK−1 ⊗ K~tK−1 þ 1 ⊗ Jþ~tK−1

− q
1
2ðK−1Jþ ⊗ K−1~tK þ K−2 ⊗ K−1~tJþÞÞjιi ⊗ jι0i

¼ 1 ⊗ ðJþ⊳~tÞjιi ⊗ jι0i: ð72Þ
On the right-hand side of the two above equations, we have
used Eq. (70) to recover 1 ⊗ ðJþ⊳~tÞjιi ⊗ jι0i. A similar
calculation can be made for the action of J− and K. Hence,
the operator 1 ⊗ ~t transforms as a tensor operator of
the same rank as ~t when restricted to act on an invariant
state jιi ⊗ jι0i. This means that we can just focus on the
observables associated to one intertwiner, and if we look at
another intertwiner a priori we do not need to order the
vertices, unless we look at observables that live on both
intertwiners at the same time.
If we have many legs in our intertwiner, it might be

cumbersome to calculate the terms ðiÞtJ and ðjÞtJ and
then calculate the observable IJij, since we have to make
extensive use of the deformed permutations, and a lot of
CG coefficients (or R-matrices) appear. If we know the
matrix elements of IJ12 and IJ21, we can construct all the
other terms by induction. We know that by definition

IJ12 ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
½2J þ 1�

p X
mi

q
CJ J 0

m1m20
ðtJm1

⊗ 1ÞR21ð1 ⊗ tJm2
ÞR−1

21 ;

ð73Þ

IJ13 ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
½2J þ 1�

p X
mi

q
CJ J 0

m1m20
ðtJm1

⊗ 1 ⊗ 1Þ

×R32R31ð1 ⊗ 1 ⊗ tJm2
ÞR−1

31R
−1
32 ; ð74Þ

IJ23 ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
½2J þ 1�

p X
mi

q
CJ J 0

m1m20
R21ð1 ⊗ tJm1

⊗ 1Þ

×R−1
21R32R31ð1 ⊗ tJm2

ÞR−1
31R

−1
32 : ð75Þ

We can construct the observable IJ13 from IJ12 by permuting
2 with 3, using the braided permutation ψ23 defined in
Eq. (7). Upon this permutation, we have in particular that
R21 becomes R31,

ψ23IJ12ψ
−1
23 ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
½2J þ 1�

p X
mi

R32q
CJ J 0

m1m20
ðtJm1

⊗ 1 ⊗ 1Þ

×R31ð1 ⊗ 1 ⊗ tJm2
ÞR−1

31R
−1
32

¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
½2J þ 1�

p X
mi

q
CJ J 0

m1m20
ðtJm1

⊗ 1 ⊗ 1Þ

×R32R31ð1 ⊗ 1 ⊗ tJm2
ÞR−1

31R
−1
32

¼ IJ13: ð76Þ
We have used the fact thatR23 and tJm1

⊗ 1 ⊗ 1 commute.
This can be extended to arbitrary IJ1j. Now we would like to

consider the construction of IJ23 from IJ12. As a matter of
fact, we can start from IJ13 and permute 1 and 2 using the
deformed permutation ψ12,

ψ12IJ13ψ
−1
12 ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
½2J þ 1�

p X
mi

q
CJ J 0

m1m20
R21ð1 ⊗ tJm1

⊗ 1Þ

×R31R32ð1 ⊗ 1 ⊗ tJm2
ÞR−1

32R
−1
31R

−1
21 : ð77Þ

To simplify this expression, we use the Yang-Baxter
equation,

RdcRdbRcb ¼ RcbRdbRdc; ð78Þ

with c ¼ 2; b ¼ 1; d ¼ 3. We then have

ψ12IJ13ψ
−1
12 ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
½2J þ 1�

p X
mi

q
CJ J 0

m1m20
R21ð1 ⊗ tJm1

⊗ 1Þ

×R31R32ð1 ⊗ 1 ⊗ tJm2
ÞR−1

21R
−1
31R

−1
32

¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
½2J þ 1�

p X
mi

q
CJ J 0

m1m20
R21ð1 ⊗ tJm1

⊗ 1Þ

×R31R32R−1
21 ð1 ⊗ 1 ⊗ tJm2

ÞR−1
31R

−1
32 ; ð79Þ

where we used the fact that R−1
21 commutes with

1 ⊗ 1 ⊗ tJm2
. We use again the Yang-Baxter equation (80)

for the product of R-matrices in the middle of the above
expression,

R−1
21R32R31R21 ¼ R31R32; ð80Þ

ψ12IJ13ψ
−1
12 ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
½2J þ 1�

p X
mi

q
CJ J 0

m1m20
R21ð1 ⊗ tJm1

⊗ 1Þ

×R−1
21R32R31R21v−121 ð1 ⊗ 1 ⊗ tJm2

ÞR−1
31R

−1
32

¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
½2J þ 1�

p X
mi

q
CJ J 0

m1m20
R21ð1 ⊗ tJm1

⊗ 1Þ

×R−1
21R32R31ð1 ⊗ 1 ⊗ tJm2

ÞR−1
31R

−1
32

¼ IJ23: ð81Þ

This is the relevant expression for IJ23. Hence, we can obtain
any IJij with i < j using the braided permutation, starting
from IJ12. A similar argument applies to constructing the
terms IJji with i < j. We can obtain them by induction using
the braided permutation, starting from the first term IJ21.
Now that we have provided a general rule and some

tricks to construct observables, it is natural to answer the
following questions:

(i) Can we generate any observables from a fundamen-
tal algebra of observables?

(ii) What is the physical meaning and the implications
of some of the key observables defined in the
Uqðsuð2ÞÞ context?

We explore these questions now.
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B. UqðuðNÞÞ formalism for LQG defined
over Uqðsuð2ÞÞ

We want to construct the “smallest” observables. It is
therefore natural to consider the observables built from
the scalar product of spinor operators (47). Since we have
two types of spinor operators, we have different possible
combinations,

Eαβ ≡ −ðαÞT1
2 · ðβÞ ~T

1
2; G†

αβ ≡ −ðαÞT1
2 · ðβÞT1

2

F αβ ≡ −ðαÞ ~T
1
2 · ðβÞ ~T

1
2: ð82Þ

Note that since the operators on different legs do not
commute, we could a priori choose a different order of T
and ~T in the definition of Eαβ. However, one can show that
choosing the order leads to the same operator modulo a
constant factor. This factor comes from the (deformed)
symmetry of the scalar product as well as the commutation
relations between the spinor operators acting on differ-
ent legs.
Let us focus on the operators Eαβ. Consider first the

spinor operators that act on the same leg α ¼ β ¼ i,

Eii ≔ −ðiÞT1
2 · ðiÞ ~T

1
2 ¼ −q1

4A†
i
~Ai þ q−

1
4B†

i
~Bi: ð83Þ

Having in mind Lemma III.5, we can forget about the
tensor product, and the only relevant action is on the leg i;
therefore,

Eiijιj1…jN i ¼ ½2ji�jιj1…jN i: ð84Þ

Consider now the spinor operators that act on different legs
i and j,

Eij ¼ A†
i Cj þ B†

iDj: ð85Þ

The action of E12 ¼ A†
1C2 þ B†

1D2 on a trivalent inter-
twiner is given by

E12jιj1j2j3i ¼ − ~N
1
2

j2
N

1
2

j1
ð−1Þj1þj2þj3−1q−

3
4
j1

×
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
½2j1 þ 2�½2j2�

p 	
j2 − 1

2
1
2

j2

j1 j3 j1 þ 1
2




× jij1þ1
2
j2−1

2
j3i; ð86Þ

with the normalization choice

N
1
2

j ¼ ½dj�12q
j
2; ~N

1
2

j ¼ ½dj�12q
j
2
−1
4:

The other operators Eij ði; j ∈ f1; 2; 3gÞ can be constructed
using the tricks described in the previous section. In a
similar way, we get

q
3
4F 12jij1j2j3i¼− ~N

1
2

j2
~N

1
2

j1
ð−1Þj1þj2þj3q

1
2
ðj2þ1Þ

×
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
½2j1�½2j2�

p 	
j2− 1

2
1
2

j2

j1 j3 j1− 1
2




× jij1−1
2
j2−1

2
j3i;

q
1
4G†

12jij1j2j3i¼−N
1
2

j2
N

1
2

j1
ð−1Þj1þj2þj3q−

1
2
ðj1þ3

4
Þ

×
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
½2j1þ2�½2j2þ2�

p
×

	
j2þ 1

2
1
2

j2

j1 j3 j1þ 1
2



jij1þ1

2
j2þ1

2
j3i: ð87Þ

When we perform the limit q → 1, the operators A†
i , B

†
i ,

Ci, and Di become, respectively, a†i , b
†
i , ai, and bi, that is,

the standard harmonic oscillators’ operators. Hence in this
limit, the operators Eij become a†i aj þ b†i bj, which are
the generators Eij of a uðnÞ Lie algebra, written using the
Schwinger-Jordan representation. In a similar way, the
operators F ij;Gij become, respectively, Fij and F†

ij,
defined as follows:

G†
ij →
q→1

a†i b
†
j −b†i a

†
j ¼F†

ij; F ij →
q→1

aibj−biaj ¼Fij: ð88Þ
We recognize the operators E; F, and F†, which are the
basis of the UðNÞ formalism [30–32]. They appear very
naturally in our framework.
It is then natural to demand if the operators Eij are the

generators UqðuðNÞÞ. First, let us recall the definition of
UqðuðNÞÞ Cartan-Weyl generators [45]. We have, respec-
tively, the raising, diagonal, and lowering operators Eiiþ1,
Ei, and Ei−1i, with the following commutation relations:

½Eii;Ejj� ¼ 0;

½Eii;Ejjþ1� ¼ ðδij − δijþ1ÞEjjþ1;

½Eii;Ej−1j� ¼ ðδijþ1 − δijÞEj−1j;

½Eiiþ1;Ej−1j� ¼ δijðEi − Eiþ1Þ:
The other generators are constructed by induction,

Eij ¼ q
1
2
Ej−1ðEij−1Ej−1j − q

1
2Ej−1;jEij−1Þ; j > iþ 1;

ð89Þ

Eji ¼ q−
1
2
Ej−1ðEjj−1Ej−1i − q−

1
2Ej−1;iEjj−1Þ; j > iþ 1:

ð90Þ
Note that Eij is not necessarily the adjoint of Eji due to the
presence of q. The coproduct is defined as follows:

ΔEi ¼ Ei ⊗ 1þ 1 ⊗ Ei;

ΔEiiþ1 ¼ Eiiþ1 ⊗ qEiþEiþ1 þ qEiþEiþ1 ⊗ Eiiþ1: ð91Þ
The coproduct for the other generators is obtained by
induction.
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The Schwinger-Jordan map allows us to express these
generators in terms of N q-harmonic oscillators ai,

Eij ¼ aia
†
j ; Ei ¼

1

2
ðNi − Niþ1Þ: ð92Þ

To have the representation of these generators in terms of N
pairs of q-harmonic oscillators ðai; biÞ, we use the coproduct:

Eii ≔ Nai þ Nbi; ð93Þ

Ei;iþp ≔ a†i aiþpq
Nbi

þ2

�P
p−1
l¼1

Nbiþl

�
−Nbiþp

4

þ q
−Naiþ2

�P
p−1
l¼1

Naiþl

�
þNaiþp

4 b†i biþp

þ ðq−1
4 − q

3
4Þ
Xp−1
k¼1

�
q

Naiþkþ2

�P
p−1
l¼kþ1

Naiþl

�
þNaiþp

4

× a†i aiþkq
Nbi

þ2

�P
k−1
l¼1

Nbiþl

�
þNbiþk

4 b†iþkbiþp

�
; ð94Þ

Eiþp;i ≔ aia
†
iþpq

Nbi
−2

�P
p−1
l¼1

Nbiþl

�
−Nbiþp

4

þ q
−Nai−2

�P
p−1
l¼1

Naiþl

�
þNaiþp

4 bib
†
iþp þ ðq1

4 − q−
3
4Þ

×
Xp−1
k¼1

�
q

−Nai−2

�P
k−1
l¼1

Naiþl

�
−Naiþk

4

× a†iþpaiþkq
−Nbiþk

−2

�P
p−1
l¼kþ1

Nbiþl

�
−Nbiþp

4 b†iþkbi

�
:

ð95Þ
Using the definition of the Eij in terms of the q-harmonic
oscillators ðai; biÞ deduced from the expression of the spinor
operators, we can identify a nonlinear relationship between
these Eij and the Eij,

Eii ¼ q−
1
2q

Eii
2 ½Eii�;

Ei;iþ1 ¼ q
Eiþ1;iþ1

4 Ei;iþ1;

Eiþ1;i ¼ q
Eii
2 Eiþ1;iq

Eiþ1;iþ1
4 ;

Ei;iþp ¼ q
−
P

p−1
l¼1

Eiþl;iþlþEiþp;iþp
4 Ei;iþp;

Eiþp;i ¼ q
2Eiiþ

P
p−1
l¼1

Eiþl;iþl
4 Eiþp;iq

Eiþp;iþp
4 : ð96Þ

To have a nonlinear redefinition of the generators is
something common when dealing with quantum groups.
For example, there exist different realizations of
Uqðsuð2ÞÞ, all related by a nonlinear redefinition of
the generators [49]. Biedenharn also recalled different
definitions of the generators of UqðuðNÞÞ related by

nonlinear transformations in Ref. [45]. For some choice
of generators, the commutation relation might take a simpler
shape but the coproduct would be more complicated, and
vice versa. The key point here is that we have found that the
intertwiner carries a representation of UqðuðNÞÞ, and this
generalizes the results of Refs. [30,32].
In the classical case, when q ¼ 1, it was shown that the

intertwiner carries an irreducible uðnÞ representation [31].
A similar result also holds here. A cumbersome proof
can probably be obtained by looking at the Casimirs of
UqðuðNÞÞ. We do not want to follow this route. Instead, we
would like to recall the seminal results by Jimbo, Rosso,
and Lustzig [50–52] which essentially stated that all
the finite-dimensional representations of the deformation
UqðgÞ of the enveloping algebra UðgÞ (where g is any
complex simple Lie algebra) are completely reducible.
The irreducible representations can be classified in terms of
highest weights, and in particular they are deformations of
the irreducible representations of UðgÞ when q is not a root
of unity. We can extend this result to the semi-simple case
and to UqðuðNÞÞ in particular (see Sec. 2.5 of Ref. [45],
for example). Now we know that when q ¼ 1 the inter-
twiner is an irreducible representation of uðnÞ; hence,
by deforming the enveloping algebra, the representation of
UqðuðNÞÞ carried by the Uqðsuð2ÞÞ intertwiner must
remain an irreducible representation. As a consequence,
the Uqðsuð2ÞÞ intertwiner must carry an irreducible rep-
resentation of UqðuðNÞÞ, just as in the classical case.
Finally, we can discuss the Hermiticity property of the

scalar operators we have constructed. Indeed, we expect
an observable to be self-adjoint. The operators Eij are not
self-adjoint, but this should not come as a surprise. Indeed,
the classical operators Eij are not Hermitian either. However,
the adjoint ðEijÞ† ¼ Eji is still a generator. This means that
we can do a linear change of basis Eij → Eij þ ðEijÞ† in the
uðnÞ basis to construct self-adjoint generators. This is
actually how the formalism was initially introduced in
Ref. [30]. The Cartan-Weyl generators Eij, when expressed
in terms of the harmonic oscillators, satisfy a similar property,
namelyE†

ij ¼ Eji [45].Asaconsequence, fromtheEij,wecan
do a (nonlinear) change of basis and construct the relevant
Hermitian UqðuðNÞÞ generators [which will be Uqðsuð2ÞÞ
invariant] using the maps (96).

VI. GEOMETRIC INTERPRETATION OF SOME
OBSERVABLES IN THE LQG CONTEXT

In LQG with Λ ¼ 0, the intertwiner is understood as
the fundamental chunk of quantum space. For a two-
dimensional (2D) space, it is dual to a face, whereas in
three dimensions it is dual to a polyhedron. The intertwiner is
invariant under the action of suð2Þ, and hence the observ-
ables should be invariant under the adjoint action of suð2Þ.
We see that the use of tensor operators allows us to construct
such observables in a direct manner: we need to construct
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operators that transform as a scalar under the adjoint action
of suð2Þ. We have seen in the previous section how this
formalism can be extended to the quantum group case
Uqðsuð2ÞÞ in a direct manner. When Λ ¼ 0, some observ-
ables have a clear geometrical meaning.We have for example
the quantum version of the angle, the length, etc. We now
explore the generalization of these geometric operators in
three dimensions, namely, in the Euclidian case8 with Λ < 0.
For simplicity we are going to focus on the three-leg

intertwiner. When Λ ¼ 0, we know that it encodes the
quantum state of a triangle. Let us quickly recall the main
geometric features of a triangle, either flat or hyperbolic.
Classically, a flat triangle can be described by the

normals ~ni, i ¼ a; b; c to its edges, such that j~nij ¼ li is
the edge length. To have a triangle the normals need to sum
up to zero; this is the closure constraint. All the geometric
information of the triangle can then be expressed in terms
of these normals, as recalled in Table IV.
Now, let us consider a hyperbolic triangle Fig. 1. Its

edges are geodesics in the 2D hyperboloid of radius R.
Unlike the flat triangle, a hyperbolic triangle can be
characterized by its three angles θi or the three lengths
li of its edges. The hyperbolic cosine laws relate the edge
lengths and the angles (see Table IV). The area A of the
triangle is given in terms of the angles,

A ¼ ðπ − ðθa þ θb þ θcÞÞR2: ð97Þ
In order to make the limit to the flat case easier, we can
encode all this information in terms of the normals. Note
however that due to the curvature, we have a different
tangent space at each point of the edge. The tangent vectors
and their normal are therefore not living in the same vector
space for different points. In the curved case, we shall
consider the normals ~ni at each vertex of the triangle. As a
direct consequence, the closure constraint in the curved
case is subtler than in the flat case. We postpone the study
of this constraint to a detailed analysis of the relevant phase
space in Ref. [38]. We recall in Table IV the main geometric
features of the flat and hyperbolic triangles, in terms of the
normals. We use the notation s ¼ 1

2
ðla þ lb þ lcÞ.

The quantization of the flat triangle can be done very
naturally. The quantum state is given by the three-leg SU(2)
intertwiner. We associate the normalized normals ~ni to the
flux operators ðiÞ~J, which we now know are related to the
SU(2) vector operators ðiÞτ1 (cf. Sec. IV B). This provides a
direct quantization of all the geometric data: the closure
constraint, length, angles, and area (see Ref. [54] for a
recent review of these results).
We now consider a Uqðsuð2ÞÞ three-leg intertwiner

jιjbjcjai. The ordering we choose for the legs is fixed, as
we have already emphasized. We would like to check
whether it encodes the quantum state of a hyperbolic
triangle. We use the Uqðsuð2ÞÞ tensor operators to probe
the geometry of this state of geometry. Since we are in the
3D framework with a negative cosmological constant, we
take q ¼ eλ, with λ ¼ lp

R , and Λ−1 ¼ −R2.

A. Angle operator

Since we know that the angles completely specify the
hyperbolic triangle, we can focus first on operators charac-
terizing angles. In analogy with the nondeformed case, we
define the scalar product of the vector operators ðiÞt̂1 and
ðjÞt̂1, with the chosen normalization N̂1

ji ¼ 1 and i ≠ j. We
look at the action of this operator on the three-leg intertwiner
jιjbjcjai. For simplicity we focus on ðbÞt̂1 · ðcÞt̂1, since we
know how to recover the other types of operators from this
one using tricks developed in Sec. VA:

TABLE IV. Geometry of the flat and hyperbolic triangles.

Flat case, Λ ¼ 0 Hyperbolic case, Λ < 0, R ¼ jΛj−1
2

Closure constraint
P

i ~ni ¼ 0 To be determined [38]

Edge length j~nij ¼ li j~nij ¼ sinh li
R

Cosine law cos θa ¼ −n̂b · n̂c ¼ − l2a−l2b−l
2
c

2lblc
cos θa ¼ −n̂b · n̂c ¼ − coshlaRþcosh

lb
R coshlcR

sinh
lb
R sinhlcR

Area A2 ¼ 1
4
ðsðs − laÞðs − lbÞðs − lcÞÞ sin2 A

2R2 ¼ sinhð s
2RÞ sinhðs−la2R Þ sinhðs−lb

2R Þ sinhðs−lc
2R Þ

cosh2la
2Rcosh

2lb
2Rcosh

2lc
2R

FIG. 1 (color online). The hyperbolic triangle is represented in
the Poincaré disc. The (outgoing) normals n̂i are defined in the
tangent plane at the vertex of the triangle as the orthogonal
vectors to the tangent vectors ûi.

8Note that Barrett also explored some aspects of quantum
curved geometries in the Euclidian case with Λ > 0 using a
different approach [53].
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ðbÞt̂1 · ðcÞt̂1jιjbjcjai ¼ −q
cosh λ

2
coshððja þ 1

2
ÞλÞ − coshððjb þ 1

2
ÞλÞ coshððjc þ 1

2
ÞλÞÞffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiðsinhðjbλÞÞðsinhððjb þ 1ÞλÞÞðsinhðjcλÞÞðsinhððjc þ 1ÞλÞÞp jιjbjcjai

¼ −q
cosh λ

2
coshððja þ 1

2
ÞλÞ − coshððjb þ 1

2
ÞλÞ coshððjc þ 1

2
ÞλÞÞffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

ðsinh2ððjb þ 1
2
ÞλÞ − sinh2 λ

2
Þðsinh2ððjc þ 1

2
ÞλÞ − sinh2 λ

2
Þ

q jιjbjcjai; ð98Þ

where we have used q ¼ eλ and sinhðjλÞÞðsinhððjþ
1ÞλÞÞ¼ sinh2ððjþ 1

2
ÞλÞ− sinh2 λ

2
. We recognize in Eq. (98)

a quantization of the hyperbolic cosine law, provided we
consider the quantization of the length edge given by
l → ðjþ 1

2
Þlp. Note that the factors sinh2 λ

2
in the denom-

inator and cosh λ
2
in the numerator can be interpreted as

ordering ambiguity factors, arising from the respective
quantization of sinh li

R and cosh li
R .

In the limit q → 1, we recover the quantized cosine law
for a flat triangle [55] expressed in terms of the quantized
normals, modulo an overall sign and a factor of 1

2
,

ðbÞτ̂1 · ðcÞτ̂1jιjajbjci

¼−
�
jaðjaþ1Þ−jbðjbþ1Þ−jcðjcþ1Þffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

jbðjbþ1Þjcðjcþ1Þp þOðλ2Þ
�
jιjbjcjai:

ð99Þ

From the construction of the vector operators in Sec. IV B,
we know that

ðbÞτ̂1 · ðcÞτ̂1jιjajbjci

¼ −
2ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

jbðjb þ 1Þjcðjc þ 1Þp ðbÞ~J · ðcÞ~Jjιjajbjci:

This allows us to identify the source of the discrepancy for
the factor of 1

2
and the overall sign. In particular, the global

minus sign in Eqs. (98) and (99) with respect to the flat/
hyperbolic cosine law simply comes from the definition of
the scalar product we have used.

Since ðiÞ~J is interpreted in the LQG formalism as the
quantized normal to the edge of the triangle, in the
deformed case we interpret ðbÞt̂1 and ðcÞt̂1 as the quantized
normals of the edges AC and AB, respectively, at the vertex
A of the hyperbolic triangle.
We can play with the normalization of the vector

operators to have a better defined hyperbolic law.
Indeed, we notice that both Eq. (98) and Eq. (99) diverge
when j ¼ 0. Instead of taking the vector operator ðiÞt̂1 with
the normalization N1

ji
¼ 1, we can consider ðiÞ~t1 with the

normalization

~N1
j ≡

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
sinhðjλÞ sinhððjþ 1ÞλÞp

sinhððjþ 1
2
ÞλÞ

→
q→1

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
jðjþ 1Þp
jþ 1

2

: ð100Þ

In this case the cosine laws become well behaved for
small j,

ðbÞ~t1 · ðcÞ~t1jιjbjcjai ¼ −q
cosh lp

2lc
coshððja þ 1

2
ÞλÞ − coshððjb þ 1

2
ÞλÞ coshððjc þ 1

2
ÞλÞÞ

sinhððjb þ 1
2
ÞλÞ sinhððjc þ 1

2
ÞλÞ jιjbjcjai: ð101Þ

When dealing with a nonzero cosmological constant and the Planck length, one can expect (using dimensional analysis)
to have a minimum angle [56]. This can now be explicitly checked. Setting ja ¼ 0, we must have jb ¼ jc ¼ j since we are
dealing with an intertwiner, and the quantum cosine law (98) gives

θmin
a ðjÞ ¼ arccos

�
−q

cosh2 λ
2
− cosh2ððjþ 1

2
ÞλÞ

sinh2ððjþ 1
2
ÞλÞ − sinh2 λ

2

�
; ð102Þ

which means that there is a nonzero minimum angle. When lp → 0 (classical limit) or R → ∞ (flat quantum limit),
Eq. (102) tends to 0, so we recover that the triangle is degenerate.
As expected, the angle observables can be expressed in terms of the Uqðsuð2ÞÞ generators,

i > j; ðiÞt̂1 · ðjÞt̂1 ¼
�
q−

3
2ð−EijEji þ EiiÞ þ

1

½2� EiiEjj

�
;

i < j; ðiÞt̂1 · ðjÞt̂1 ¼
�
q

1
2ð−EijEji þ EiiÞ þ

q2

½2� EiiEjj

�
:
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B. Length operator

The length operator is obtained by looking at the norm of
the unnormalized vector operator ðiÞt1 with the normali-
zation Ni

j,

ðiÞt1 · ðiÞt1jιjbjcjai ¼ ðN1
ji
Þ2jιjbjcjai;

i ¼ a; b; c: ð103Þ

By inspecting the classical and quantum hyperbolic cosine
law (and keeping in mind that ðiÞt1 encodes the quantization
of the normal), it is natural to take

N1
j ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
sinh2

��
jþ 1

2

�
λ

�
− sinh2

�
λ

2

�s
or

~N1
j ¼ sinh

��
jþ 1

2

�
λ

�
: ð104Þ

The normalization ~N1
j leads to the regularized hyperbolic

cosine law (101). We note therefore that the norm of the
vector operator corresponds to a function of the length
operator. The length is quantized, with the eigenvalue
ðjþ 1

2
Þlp, as we have argued previously. The norm of

the vector operator can be expressed in terms of the E
operators,

ðiÞt1 · ðiÞt1 ¼ 1

½2� ð−qE
2
i − ð1þ q−1ÞEiÞ: ð105Þ

C. “Area” operator

In the flat case, one expresses the square of the area of
the triangle in terms of a cosine and the norm of the
normals; in this way, the operator is easy to quantize using
vector operators [57],

A2 ¼ 1

4
ðj~nbj2j~ncj2 − ð~nc · ~ncÞ2Þ: ð106Þ

We proceed in the same manner as in the hyperbolic case.
We do not consider the square of the area, but rather the
square of the sine of the area. Indeed, the area of a
hyperbolic triangle is given in terms of the triangle angles
[Eq. (97)]. There are various ways to express functions of
the area in terms of the edge lengths [58]. A convenient one
will be

sin2
A
2R2

¼ sinhð s
2RÞ sinhðs−la2R Þ sinhðs−lb

2R Þ sinhðs−lc
2R Þ

cosh2 la
2R cosh

2 lb
2R cosh

2 lc
2R

;

ð107Þ

where s ¼ 1
2
ðla þ lb þ lcÞ. Of course, in the flat limit

(R → ∞) we recover Heron’s formula (see Table IV).
Playing with the cosine laws, we can express sin2 A

2R2

only in terms of the normals,

sin2
A
2R2

¼ 1

4

sinh2 lb
R sinh2 lc

R ð1− cos2θaÞ
ðcosh2 la

2Rcosh
2 lb
2R cosh

2 lc
2RÞ

¼ 2
j~nbj2j~ncj2 − ð~nb · ~ncÞ2

ð1þ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ j~naj2

p
Þð1þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ j~nbj2

p
Þð1þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ j~ncj2

p
Þ :

ð108Þ

There is no difficulty in quantizing this expression since
it only involves scalar products and norms of normals,
which upon quantization become operators that are diago-
nal and functions of the Casimir operator. There is therefore
no ordering issue anywhere. The area also has a discrete
spectrum.

VII. OUTLOOK

A. Summary

Let us summarize the main results of our paper. We have
recalled the definition of tensor operators for Uqðsuð2ÞÞ,
with q real, which is the relevant case to study Euclidian 3D
LQG with Λ < 0 and Lorentzian 3þ 1-dimensional LQG
with Λ > 0.
We have shown how tensor operators are the natural

choice for constructing observables for a Uqðsuð2ÞÞ
intertwiner. These operators are the key to studying
LQG defined in terms of a quantum group, as they
provide sets of operators that transform well under the
quantum group. We have generalized the UðNÞ formalism
to the quantum group Uqðsuð2ÞÞ. That is, we have shown
how we can construct a closed algebra of observables [i.e.,
invariant under Uqðsuð2ÞÞ] which can be related to the
quantum group UqðuðNÞÞ. This means that the Uqðsuð2ÞÞ
intertwiner carries a UqðuðNÞÞ representation, which we
argued must be irreducible. We have constructed the
natural generalization of the LQG geometric operators
and interpreted them in the 3D Euclidian setting. We have
shown that a three-leg Uqðsuð2ÞÞ intertwiner encodes the
quantum state of a hyperbolic triangle. We have also
shown how the presence of a cosmological constant leads
to a notion of the minimum angle, as expected [56]. These
results provide new evidence for the use of the quantum
group as a tool to encode the cosmological constant in the
LQG formalism.
We note that the use of tensor operators can also be

useful for dealing with lattice Yang-Mills theories built
with Uqðsuð2ÞÞ as the gauge group. In particular, it
would be interesting to see how tensor operators can be
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useful for implementing the observables found in Ref. [59].
In fact, there are a number of interesting routes open for
exploration.

B. Hyperbolic polyhedra

We have studied the geometric operators in the context of
3D LQG. We have shown that they induce a quantum
hyperbolic geometry. These operators should also be inter-
preted in the 3þ 1-dimensional LQG case. The vector
operator acting on a leg i would be interpreted as the
quantization of the normal of the ith face of the polyhedron.
The squared norm of the vector operator acting on each leg
would now be interpreted as a function of the squared area
operator. This implies that in this case we still expect to have
a discrete spectrum for the (squared) area. The angle operator
would now encode the quantization of the dihedral angle,
i.e., the angle between normals. One could then construct the
analogue of the squared volume operator, using the triple
product between vector operators. Following the intuition
gained from looking at the area operator for the triangle, we
would then expect to get a function of the volume of the
hyperbolic polyhedron. We leave the properties of such an
operator to further investigations, as well as other interesting
geometric operators we could construct to probe the quan-
tum geometry of hyperbolic polyhedra.

C. Other signatures and other signs for Λ

When defining tensor operators, we have focused on
Uqðsuð2ÞÞ with q real. This choice provided the relevant
structure to study the physical case, 3þ 1-dimensional
LQG with Λ > 0. However, there are a number of other
cases to study. At the classical level, with q ¼ 1, we could
explore the construction of tensor operators for SLð2;RÞ,
which would be relevant for Lorentzian 2þ 1-dimensional
LQG with Λ ¼ 0. Interestingly, the Wigner-Eckart theorem
has not been defined for SLð2;RÞ; that is, there is no
general formula for tensor operators transforming as
SLð2;RÞ (nonunitary) finite-dimensional and discrete rep-
resentations.9 This work is in progress [60]. It would then
be relevant to discuss the quantum group version of this
structure, which would be relevant for 2þ 1-dimensional
Lorentzian gravity with Λ ≠ 0.
Another interesting case to explore would be Uqðsuð2ÞÞ

when q is a root of unity, which would be relevant for 3D
Euclidan LQG with Λ > 0. We have not considered this
case here, as Uqðsuð2ÞÞ when q is a root of unity is not a
quasitriangular Hopf algebra, but rather a quasi-Hopf
algebra. This means that the construction in Ref. [40] does
not apply directly. On the other hand, the representation

theory of Uqðsuð2ÞÞ when q is a root of unity can be
trimmed of the unwanted features so that its recoupling
theory can be well under control [9]. This is why the Turaev
Viro model can still be defined as it is. It is then quite likely
that we can define the tensor operators in this case, in terms
of their matrix elements, which would be proportional to
the Clebsch-Gordan coefficients. We leave this for future
investigations.

D. Phase-space structure

One of our key results is that the quantum group spin
networks can be used in the LQG context to introduce the
cosmological constant. Recent developments have shown
that spin networks can be seen as quantum states of flat
discrete geometries, when Λ ¼ 0. The classical phase-space
structure behind spin networks is nicely described by the
“twisted geometries” framework. Since we have identified
the meaning of the quantum geometric operators in the
quantum group case, we can provide some guiding lines for
identifying the relevant phase-space structure, i.e., the notion
of curved twisted geometries. In particular, one knows that
the classical analogue of a quantum group is a Poisson-Lie
group, so we can expect to use this structure to define the
curved twisted geometries. This work is in progress [38].
Understanding how curved twisted geometries appear is
interesting, but it is not enough. The important question to
solve is how one can connect the canonical Hamiltonian
analysis of general relativity and these curved twisted
geometries. Understanding this will provide an explanation
of why the cosmological constant appears already at the
kinematical level, and not only in the Hamiltonian constraint
as the canonical Hamiltonian analysis would indicate.
We leave this important question for future investigations.

E. Hamiltonian constraint

LQG and spin foams are supposed to be two facets of
the same theory. This can only be shown explicitly in
the Λ ¼ 0 case in three dimensions [14]. Recently, a
Hamiltonian constraint was constructed using the spinor
formalism [35]. It has been designed to encode a recursion
relation on the 6j symbol, and hence by construction it
relates the Ponzano-Regge model to the LQG approach.
Now that we have generalized the spinor approach to the
quantum group case, we can construct a q-deformed
version of this Hamiltonian constraint. It would essentially
encode the recursion relation of the q-deformed 6j symbol.
Hence this new q-deformed Hamiltonian constraint would
relate the Turaev-Viro model and LQG with a cosmological
constant. This work is in progress [37].
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9More precisely, there exists a definition of such tensor
operators acting on the unitary (infinite-dimensional) discrete
representation, provided by harmonic oscillators (the Shwinger-
Jordan trick). There is no such definition for operators acting on
unitary (infinite-dimensional) continuous representations.
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APPENDIX A: HYPERBOLIC COSINE LAW

Consider the upper 2D hyperboloid H2þ, embedded in
R3, with curvature −R−2 ¼ Λ, where R is the radius of
curvature,

H2þ ¼ f~x ∈ R3; x1 > 0; xiηijxj ¼ x21 − x22 − x23

¼ j~xj2 ¼ R2g: ðA1Þ

On H2þ, we consider three points A; B;C and the geodesics
joining them: we obtain a hyperbolic triangle. Without loss
of generality, we can always assume that A sits at the origin
of H2þ, that is, as a point of R3 it is given by the vector
~A ¼ ðR; 0; 0Þ. The points B and C are then obtained from ~A
by performing a boost Lc; Lb with rapidities c and b,
respectively. Explicitly,

~B ¼ Lc
~A; ~C ¼ Lb

~A: ðA2Þ

As a consequence, we have h~A; ~Ai ¼ j~Aj2 ¼ j~Bj2 ¼
j~Cj2 ¼ R2.
Consider the normalized space-like vectors ûAB; ûAC ∈

TAH2þ, which is the tangent plane of H2þ at the point A.
They are the tangent vectors to the geodesics joining A to B
and A to C, respectively. By construction, these vectors are

orthogonal to ~A,

ûAB ¼
~B − 1

R2 h~A; ~Bi~A
j~B − 1

R2 h~A; ~Bi~Aj
; ûAC ¼

~C − 1
R2 h~A; ~Ci~A

j~C − 1
R2 h~A; ~Ci~Aj

:

ðA3Þ

Since we are dealing with a homogeneous space, we
express the lengths li of the geodesic arcs using the
dimensionful parameter R, such that lc ¼ Rc, lb ¼ Rb,
and la ¼ Ra.
By definition, we know that the angle between two

geodesics that intersect is defined in terms of the angle
between the tangent vectors. If we focus in particular on the
angle α between the arcs AB and AC, we have

cos α ¼ hûAB; ûACi: ðA4Þ

Using the expression for the tangent vectors, we obtain the
hyperbolic cosine law,

cos α ¼ − cosh la
R þ cosh lb

R cosh lc
R

sinh lb
R sinh lc

R

: ðA5Þ

In the flat case, by performing the limit R → ∞ in Eq. (A5)
we recover the Al-Kashi rule,

cos α ¼ −l2
a þ ðl2

b þ l2
cÞ

2lblc
: ðA6Þ

APPENDIX B: USEFUL FORMULAS

These formulas are taken from Ref. [45].

1. q-Clebsch-Gordan

An explicit expression of the q-Clebsch-Gordan coefficients in the van der Waerden form is given as

qCj1 j2 j
m1m2m

≔ δm;m1þm2
q

1
4
ðj1þj2−jÞðj1þj2þjþ1Þþ1

2
ðj1m2−j2m1ÞΔðj1j2jÞ ðB1Þ

× ð½j1 þm1�!½j1 −m1�!½j2 þm2�!½j2 −m2�!½jþm�!½j −m�!½2jþ 1�Þ12 ðB2Þ

×
X
n

ð−1Þnq−n
2
ðj1þj2þjþ1Þ

½n�!½j1 þ j2 − j − n�!½j1 −m1 − n�!½j2 þm2 − n�!½j − j2 þm1 þ n�!½j − j1 −m2 þ n�! ; ðB3Þ

where the triangle function Δ is given by

ΔðabcÞ ≔
�½aþ b − c�!½a − bþ c�!½−aþ bþ c�!

½aþ bþ cþ 1�!
�1

2

: ðB4Þ

For q → 1 the q-Clebsch-Gordan coefficients reduce to the usual CG coefficients in the van der Waerden form.
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The q-Clebsch-Gordan coefficients have two orthogon-
ality relations,

X
m1;m2

qCj1 j2 j
m1m2mqC

j1 j2 j0
m1m2m0 ¼ δjj0δmm0 ; ðB5Þ

X
j;m

qCj1 j2 j
m1m2mqC

j1 j2 j
m0

1
m0

2
¼ δm1m0

1
δm2m0

2
: ðB6Þ

Note that in the first equation we have assumed that j1; j2,
and j satisfy the triangle conditions.
The q-Clebsch-Gordan coefficients have some sym-

metries; we list here those that are most relevant for the
current work:

qCj1 j2 j
m1m2m

¼ ð−1Þj1þj2−j
q−1C

j1 j2 j
−m1−m2−m; ðB7Þ

qCj1 j2 j
m1m2m

¼ ð−1Þj1þj2−j
q−1C

j2 j1 j
m2m1m

; ðB8Þ

qCj1 j2 j
m1m2m

¼ ð−1Þj−j2−m1q
m1
2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
½2jþ 1�
½2j2 þ 1�

s
qCj1j j2−m1mm2

: ðB9Þ

We list below the values of some specific CG
coefficients:

qC
j1j2 0
m1m20

¼ δj1;j2δm1;−m2

ð−1Þj1−m1q
m1
2ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi½2j1 þ 1�p ; ðB10Þ

qC111
101

¼ q1=2

ffiffiffiffiffiffi
½2�
½4�

s
; qC111

011
¼ −q−1=2

ffiffiffiffiffiffi
½2�
½4�

s
;

qC 1 1 1−10−1 ¼ −q−1=2
ffiffiffiffiffiffi
½2�
½4�

s
; qC1 1 1

0−1−1 ¼ q1=2

ffiffiffiffiffiffi
½2�
½4�

s
;

qC1 11
1−10 ¼

ffiffiffiffiffiffi
½2�
½4�

s
; qC 1 11−110 ¼ −

ffiffiffiffiffiffi
½2�
½4�

s
;

qC111
000

¼
ffiffiffiffiffiffi
½2�
½4�

s �
q

1
2 − q−

1
2

�
; ðB11Þ

qC
1
2
1
2
1

1
2
1
2
1
¼ 1 ¼ qC

1
2

1
2

1

−1
2
−1

2
−1; qC

1
2

1
2
1

1
2
−1

2
0
¼ q−

1
4ffiffiffiffiffiffi½2�p ;

qC
1
2

1
2
1

− 1
2
1
2
0
¼ q

1
4ffiffiffiffiffiffi½2�p : ðB12Þ

2. q − 6j symbol

The q − 6j symbol is invariant under the rescaling
q → q−1. It satisfies the following orthogonality relation:

X
j

	
b c j

k a n


	
a b m

c k j



¼ δmn: ðB13Þ

The contraction of two q − 6j symbols can give another
one, which is a useful property for us:

X
m

ð−1Þaþbþcþk−j−m−nq
1
2
ðaðaþ1Þþbðbþ1Þþcðcþ1Þþkðkþ1Þ−jðjþ1Þ−mðmþ1Þ−nðnþ1ÞÞ

	
a b m

c k j


	
a c n

k b m



¼

	
a c n

b k j



:

It has some symmetries when permuting some of its elements,

	
a b m

c k j



¼

	
c k m

a b j



: ðB14Þ

A specific value of the q − 6j symbol that is relevant to us is

	
j1 j1 1

j2 j2 j3



¼ ð−1Þj1þj2þj3

½j2 þ j3 − j1�½j1 þ j3 − j2� − ½j1 þ j2 − j3�½j1 þ j2 þ j3 þ 2�
ð½2j1�½2j1 þ 1�½2j1 þ 2�½2j2�½2j2 þ 1�½2j2 þ 2�Þ12 : ðB15Þ

3. R-matrix and deformed permutation

The R-matrix for Uqðsuð2ÞÞ can be expressed in terms of the q-Clebsch-Gordan coefficients,

ðRj1j2Þm1m2

m0
1
m0

2
¼

X
j;m

q−
1
2
ðj1ðj1þ1Þþj2ðj2þ1Þ−jðjþ1ÞÞ

qCj1 j2 j
m1 m2 mq−1C

j1 j2 j
m0

1
m0

2
m

ðB16Þ

¼
X
j;m

ð−1Þj1þj2−jq−
1
2
ðj1ðj1þ1Þþj2ðj2þ1Þ−jðjþ1ÞÞ

qC
j1 j2 j
m1 m2 mq

Cj2 j1 j
m0

2
m0

1
m; ðB17Þ
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with m1 þm2 ¼ m0
1 þm0

2 and m0
1 −m1 ≥ 0 (this is zero otherwise). The second equation has been obtained using the

symmetries of the q-Clebsch-Gordan coefficients.
The inverse of the R-matrix is obtained from the above formulas by setting q → q−1,

ðR−1j1j2Þm1m2

m0
1
m0

2
¼

X
j;m

ð−1Þj1þj2−jq
1
2
ðj1ðj1þ1Þþj2ðj2þ1Þ−jðjþ1ÞÞ

q−1C
j1 j2 j
m1 m2 mq−1

Cj2 j1 j
m0

2
m0

1
m ðB18Þ

¼
X
j;m

ð−1Þj1þj2−jq
1
2
ðj1ðj1þ1Þþj2ðj2þ1Þ−jðjþ1ÞÞ

qC
j2 j1 j
m2 m1 mq

Cj1 j2 j
m0

1
m0

2
m: ðB19Þ

One can check that this is true by evaluating R−1R and using the orthogonality properties of the q-Clebsch-Gordan
coefficients. Furthermore, we can check that when q → 1, we recover that theR-matrix is simply the identity map [for this
one uses the classical version of Eq. (B8) and the orthogonality relation (B6)].
We are interested in the deformed permutation ψR ¼ ψR (ψ−1

R ¼ R−1ψ), which means that instead of consideringRj1j2

(R−1j1j2), we considerRj2j1 (R−1j2j1). The relevant formula forRj2j1 is obtained from Eq. (B17) by exchanging j1 and j2.
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