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In earlier work, we provided a Hilbert manifold structure for the phase space for the Einstein-Yang-Mills
equations, and used this to prove a condition for initial data to be stationary [S. McCormick, Adv. Theor.
Math. Phys. 18, 799 (2014)]. Here we use the same phase space to consider the evolution of initial data
exterior to some closed 2-surface boundary, and establish a condition for stationarity in this case. It is
shown that the differential relationship given in the first law of black hole mechanics is exactly the
condition required for the initial data to be stationary; this was first argued nonrigorously by Sudarsky and
Wald [Phys. Rev. D 46, 1453 (1992)]. Furthermore, we give evidence to suggest that if this differential
relationship holds then the boundary surface is the bifurcation surface of a bifurcate Killing horizon.
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I. INTRODUCTION

In 1992, Sudarsky and Wald SW1 discussed the first law
of black hole mechanics in the context of Einstein-Yang-
Mills theory. Among other things, they noted that certain
surface integrals, associated with the Hamiltonian, were
closely related to the first law. From this, it was argued that
the differential relationship given by the first law provides a
condition for stationarity of the Einstein-Yang-Mills equa-
tions. This argument was based on earlier work by Brill,
Deser and Fadeev [1], who proposed in the pure Einstein
case, that stationary solutions were exactly those solutions
that extremize the Arnowitt-Deser-Misner (ADM) mass
over the space of solutions. Both arguments were based on
Lagrange multipliers; however, neither provided the math-
ematical machinery required to make such an argument
rigorous. The essential missing ingredient, to develop this
argument into a mathematical proof, is a manifold structure
for the space of solutions.
In 2005, Bartnik [2] provided such a Hilbert manifold

structure for the Einstein case, and from this a complete
proof of the Brill, Deser and Fadeev argument was given.
At first, this may appear to contradict the argument of
Sudarsky and Wald, since we have that a solution is
stationary if and only if it is a critical point of the mass.
However, the case considered by Bartnik has no Maxwell
or Yang-Mills fields, and the initial data manifold has a
single asymptotic end with no interior boundary; in this
case, the first law simply reduces to dm ¼ 0. Recently,
using similar ideas, the Einstein-Yang-Mills case has been
considered by the author [3]; we will refer to this
throughout as Paper I, as we make use of several ideas
and results from this paper. In Paper I, a suitable phase
space for the Einstein-Yang-Mills equations was outlined,
and the condition for stationarity in this case becomes

dmþ V∞ · dQ∞ ¼ 0; ð1Þ
where V∞ is the electric potential at infinity and Q∞ is the
total electric charge. Again, Eq. (1) is the appropriate first
law in this case.
In this article, we consider evolution exterior to some

closed 2-surface boundary, and conclude that the condition
for stationarity is again the appropriate version of the first
law:

dm ¼ κ

8π
dAþΩdJ þ V · dQ − V∞ · dQ∞; ð2Þ

where A is the area, Ω is the angular velocity, J is the
angular momentum, V is the electric potential and Q is the
electric charge of the boundary surface, respectively. Note
that the inclusion of the term V∞ · dQ∞, which is not
generally included in the first law, permits a nonzero
electric potential at infinity. In the Maxwell electrovacuum
case, Q ¼ Q∞, so the expression ðV · dQ − V∞ · dQ∞Þ is
equivalent to ~VdQ, where ~V ¼ V − V∞ is the potential
difference between the boundary surface and infinity. This
is then exactly the standard expression for the first law.
An initial data set for the Einstein-Yang-Mills equations

is a tuple ðg; A; π; εÞ: a Riemannian metric, a Lie algebra-
valued one-form, a symmetric covariant 2-tensor density
and a Lie coalgebra-valued vector density on a 3-manifold,
M. Here π is the usual momentum conjugate to g, A is the
gauge field projected onto M and ε is its associated
momentum, equal to −4 times the Yang-Mills electric field
density, E. Throughout we will use both ϵ and E and we
also make use of the quantity

Bi
a ≔

1

2
ϵijkð∇jAak −∇kAaj þ CabcAb

jA
c
kÞ; ð3Þ

the Yang-Mills magnetic field density, where ϵijk is the
usual antisymmetric tensor density and Cabc are the*stephen.mccormick@une.edu.au
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structure constants of the Lie algebra, where the indices
a; b; c… are Lie algebra indices. Note that the connection
in Eq. (3) can be replaced by any torsion-free connection,
due to the antisymmetry in ∇A. Throughout, we consider
the electric and magnetic fields as viewed by a Gaussian
normal set of observers; that is, observers whose worldlines
are orthonormal to the Cauchy surface.
The Hilbert manifold structure from Paper I, considered

here, consists of initial data sets ðg; A; π; εÞ with local
regularity H2 ×H2 ×H1 ×H1 and an appropriate decay
for asymptotic flatness. It is interesting to note that this
is exactly the regularity required by the recent work of
Klainerman, Rodnianski and Szeftel [4] to ensure that the
Cauchy problem for the Einstein equations is well-posed.
Furthermore, the regularity assumptions on the Yang-Mills
initial data are exactly that required to ensure that the
Cauchy for the Yang-Mills equations on a curved back-
ground is well-posed, which was recently demonstrated by
Ghanem [5]. To the best of the author’s knowledge the
Cauchy problem for the coupled system has not been
considered at this regularity; however, given that each
system is well-posed independently, one expects the
coupled system to also be well-posed.
The outline of this article is as follows. In Sec. II, we

recall the phase space and constraint submanifold from
Paper I. Section III introduces the mass, charge and angular
momentum definitions, and establishes some properties of
these quantities as functions on the phase space. Finally, in
Sec. IV, we discuss Hamiltonians and use a Lagrange
multiplier argument to establish the condition for
stationarity.

II. THE PHASE SPACE

Let M be a complete, paracompact, connected, oriented
3-manifold that is asymptotically flat in the following
sense: there exists a compact set, K ⊂ M, such that
MnK ¼ ∪N

i¼1Mi, with eachMi diffeomorphic to R3 minus
the closed unit ball; explicitly, there is a collection of
diffeomorphisms ϕi∶ Mi → R3nB1ð0Þ. On M, we fix a

smooth background metric g
∘
such that g

∘ ¼ ϕi�ðgR3Þ on
each Mi, the pullback of the Euclidean metric. Further, we
define a smooth function rðxÞ ≥ 1

2
on M, such that rðxÞ ¼

jϕiðxÞj on each Mi and rðxÞ < 2 on MnK.
Next, we recall the weighted Lebesgue and Sobolev

spaces, which describe the phase space. The spaces Lp
δ ðMÞ

and Wk;p
δ ðMÞ are defined as the completion of C∞

c ðMÞ
with respect to the norms

‖u‖p;δ ≔
�Z

M
jujpr−δp−ndμ

∘ �1=p
and

‖u‖k;p;δ ≔
Xk
j¼0

‖∇∘ j
u‖p;δ−j; ð4Þ

respectively. We use ∘ to denote quantities determined by g
∘
,

such as the background Levi-Civita connection, ∇∘ , and the

measure, dμ
∘
¼

ffiffiffi
g
∘q
dx3. Weighted Lebesgue and Sobolev

spaces of sections of bundles are defined in the usual way.
These weighted spaces have the same local regularity as the
usual Lebesgue and Sobolev spaces and behave as oðrδÞ
near infinity on each of the ends, with each successive
derivative decaying one power of r faster. We refer to
Refs. [6–8] for details on the weighted spaces.
The Yang-Mills gauge group is taken to be a compact Lie

group, G, with Lie algebra, g. We identify g with its Lie
coalgebra, g�, via a positive-definite inner product, γ, which
may be taken to be the negative of the Killing form on the
semisimple factor and the usual Euclidean inner product on
the Abelian factor. The usual decay conditions for asymp-
totic flatness and the regularity assumptions mentioned

above suggest that we impose ðg − g
∘Þ ∈ W2;2

−1=2 and

π ∈ W1;2
−3=2, noting that π behaves like a derivative of the

metric. Imposing ε ∈ W1;2
−3=2 enforces the usual

1
r2 fall off of

the electric field in electromagnetism; however, the appro-
priate domain for A is less obvious. The Lie algebra, g, is
split into its center, z, and a γ-orthogonal subspace, k. Then
A is decomposed into A ¼ Az þ Ak, with Az valued in z and
Ak valued in k. The domain for A is taken to be such that
Az ∈ W2;2

−1=2 and Ak ∈ W2;2
−3=2.

The decay conditions on A are chosen such that the
gauge-covariant derivative, D̂ ≔ ∂ þ ½A; ·� ∼ ∂ þ Ak,
behaves analogously to the usual covariant derivative at
infinity; that is, D̂θ ¼ ∂θ þ oðr−3=2Þθ. Although it may
appear somewhat unnatural to require this condition for the
analysis, such a condition is in fact required to ensure that
the total charge is well-defined [9]. It should be noted that
this condition also puts the electric and magnetic fields on
equal footing. In the language of physics, this condition is
that the Yang-Mills fields are asymptotic to photon fields
before vanishing.
Formally, the phase space from Paper I is given by

F ≔ Gþ ×K ×A × E;

where

Gþ ≔ fgjðg − g
∘Þ ∈ W2;2

−1=2ðS2Þ; g > 0g; K ≔ W1;2
−3=2ðS2 ⊗ Λ3Þ;

A ≔ W2;2
−1=2ðT�M ⊗ zÞ ⊕ W2;2

−3=2ðT�M ⊗ kÞ; E ≔ W1;2
−3=2ðTM ⊗ g� ⊗ Λ3Þ:
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In the above, S2 and S2 are the spaces of symmetric
covariant and contravariant tensors onM, respectively, and
we denote by Λk, the bundle of k-forms on M.
We also define the spaces

N ≔ L2
−1=2ðΛ0 × TM × g ⊗ Λ0Þ;

N � ≔ L2
−5=2ðΛ3 × T�M ⊗ Λ3 × g� ⊗ Λ3Þ:

Throughout this article, we use the following conventions
for indices on different spaces:

M;R3 Latin lower case;mid-alphabet i; j;…
4M;R3;1 Greek lower case;mid-alphabet μ;ν…

g Latin lower case; early alphabet a;b…
4P; ðR3;1 ⊕ gÞ Greek lower case; early alphabet α;β…

;

where 4M is the spacetime in which M sits, and 4P is a
G-bundle over 4M, which is associated with the Yang-
Mills fields. By a slight abuse of notation, we will write
ξα¼ðξ0;ξi;ξaÞ¼ðξμ;ξaÞ to indicate a ð4þ nÞ-dimensional
object, and identify the components with appropriate
projections. For example, if ξα is a section of T4P, we
consider ξ0 to be a scalar function, ξi to be a vector field
over M, and ξa ∈ g.
Recall the constraint map, Φ∶ F → N �, given by

Φ0ðg; A; π; εÞ ¼
�1
2
ðπkkÞ2 − πijπij

−
�1
8
εkaε

a
k þ 2Bk

aBa
k

��
g−1=2 þ R

ffiffiffi
g

p
; ð5Þ

Φiðg; A; π; εÞ ¼ 2∇jπij − εjað∇
∘
iAa

j −∇∘ jAa
i Þ þ∇∘ jðεjaÞAa

i ;

ð6Þ

Φaðg; A; π; εÞ ¼ −∇∘ jε
j
a − Cc

abA
b
j ε

j
c: ð7Þ

The momentum constraint (6) differs from that considered
in Paper I by the term ΦaAa

i . This difference amounts to a
difference in interpretation of the nondynamical degree of
freedom associated with Φa. As this is simply the addition
of another constraint, the results of Paper I clearly remain
valid. Also note that in Paper I, M was considered to have
only a single asymptotic end; however, this was for
simplicity of presentation rather than technical reasons.
It is clear that the entire phase space analysis is valid for
multiple asymptotic ends; the full analysis may be found in
Chaper 4 of the author’s doctoral thesis [10]. In particular,
for a given source, s ∈ N �, the level set

CðsÞ ≔ fðg; A; π; εÞ ∈ F jΦðg; A; π; εÞ ¼ sg;

has a Hilbert manifold structure; we call this the constraint
submanifold. We demonstrate that the energy-momentum
and other quantities are not defined on all of F . We
therefore consider the energy, momentum, angular momen-
tum and charge as functions on constraint submanifolds
with s ∈ L1.

III. MASS, CHARGEANDANGULARMOMENTUM

In this section, we discuss the quantities relevant to the
first law. Some of these quantities are defined at a particular
end while others are defined on some surface correspond-
ing to a horizon. In order to do this, an artificial boundary to
one of the ends is introduced as follows. Let Σ be a closed
2-surface such that MnΣ consists of two connected
components, one of which contains only a single end,
M0. We denote by M0, the connected component of MnΣ
containing M0.
The ADM energy-momentum covector, Pμðg; πÞ ¼

ðP0;PiÞ ¼ ðm0; piÞ, is given by

16πm0 ≔
I
S∞

g
∘jkð∇∘ kgij −∇∘ igjkÞdSi; ð8Þ

16πpi ≔ 2

I
S∞

πijdSj; ð9Þ

where S∞ is understood as the limit of increasingly large
spheres. Throughout, the unit normal vector associated
with the surface element dS is to be understood as pointing
in the direction of infinity in M0. The g-valued total
Yang-Mills electric charge is given by

16πQ∞a ≔ 4

I
S∞

Ei
adSi ¼ −

I
S∞

εiadSi; ð10Þ

and we write Pa ¼ Q∞a, so that the tuple Pα ≔
ðP0;Pi;PaÞ ∈ R3;1 ⊕ g� can be identified with the asymp-
totic value of a section of 4P. The charge QΣ associated
with Σ is defined analogously:

16πQΣa ≔ 4

I
Σ
Ei
adSi ¼ −

I
Σ
εiadSi: ð11Þ

Let ξμ∞ ∈ R3þ1 be identified with some timelike vector,
corresponding to the tangent to the worldline of an observer
at spatial infinity. We also let ξa∞ ∈ g correspond to the
asymptotic value of the electric potential, which we will
assume to be constant. A total measure of the energy,
viewed by this observer at spatial infinity, is then given by
ξ∞ · ðE; pi; QaÞ, which will be more convenient to work
with than the tuple ðE; pi; QaÞ itself. In order to write this
as the integral of a divergence, we need to extend ξ∞ to a
section of T4P ≅ Λ0ðMÞ × TM × g ⊗ Λ0ðMÞ.
Near infinity, ξ∞ ∈ R3;1 ⊕ g may be identified with

some smooth section,
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~ξ∞ ∈ C∞ðΛ0ðMÞ × TM × g ⊗ Λ0ðMÞÞ;

such that ∇∘ ~ξ∞ ¼ 0. We then say a smooth section,
ξ̂∞ ∈ C∞ðΛ0ðMÞ × TM × g ⊗ Λ0ðMÞÞ, is a constant
translation near infinity representing ξ∞, if ξ̂∞ ¼ ~ξ∞ on
E2R̂ and vanishes on BR̂, for some R̂ > 2, where BR ≔
fx ∈ MjrðxÞ < Rg and ER ≔ M0nBR. While a represen-
tation of ξ∞ is not unique, the difference between two
distinct representations is smooth and compactly sup-
ported. This lets us prescribe asymptotics for ξ, but we
would also like to prescribe some boundary values on Σ; for
this, we fix a smooth section, ξ̂Σ, with support near Σ. We
then define ξref ≔ ξ̂∞ þ ξ̂Σ to encapsulate both boundary
conditions.
We define the spaces

W2;2
ξref

≔ fξjðξ − ξrefÞ ∈ W2;2
−1=2cðΛ0ðM0Þ

× TM0 × g ⊗ Λ0ðM0ÞÞg; ð12Þ

L2
ξ∞

≔ fξjðξ − ξ̂∞Þ ∈ L2
−1=2ðΛ0ðM0Þ

× TM0 × g ⊗ Λ0ðM0ÞÞg; ð13Þ

where W2;2
−1=2c is the completion of C∞

c with respect to the

W2;2
−1=2 norm. Elements of these spaces may be interpreted

as sections of 4P, restricted to M0, with prescribed
asymptotics and boundary values on Σ.
Throughout, we will chose ξ̂0Σ ≡ 0, and we may then

define the energy-momentum covector by its pairing with
with a vector at infinity, as follows:

16πξ0∞P0ðgÞ ¼
Z
M0

ðξ̂0∞g∘ ikg∘jlð∇
∘
k∇
∘
lgij −∇∘ i∇

∘
kgjlÞ ð14Þ

þ g
∘ ikg∘jl∇∘ kξ̂

0
∞ð∇

∘
lgij −∇∘ igjlÞÞ

ffiffiffi
g
∘

q
; ð15Þ

16πξi∞PiðπÞ ¼
Z
M0

ð2ξiref∇
∘
jπ

j
i þ 2πij∇∘ iξrefj

þ∇∘ iðεiaAa
j Þξjref þ εiaAa

j∇
∘
iξ

j
refÞ

þ
I
Σ
ð2ξiΣπji − εjaAa

i ξ
i
ΣÞdSj: ð16Þ

Note that while Eq. (16) contains the terms ðg; A; εÞ, the
quantity Pi only depends on π; the boundary terms on Σ
combine with the bulk integral to give a boundary integral
at infinity, which removes the dependence on g as
g ¼ g

∘ þ oðr−1=2Þ, and the Yang-Mills terms at infinity
vanish [see Eq. (34)], leaving only a π dependence.
When ξ̂iΣ agrees with a rotational Killing field, the integral

over Σ in Eq. (16) is proportional to the angular momen-
tum. This leads us to define a generalized notion of angular
momentum,

16π ~Jξref ðg; A; π; εÞ ≔ −
I
Σ
ð2ξ̂iΣπji − εjaAa

i ξ̂
i
ΣÞdSj: ð17Þ

Note that we follow the sign convention of Wald [11].
The second term in Eq. (17), corresponding to the angular
momentum of the Yang-Mills fields, is nonstandard and
appears to have been first considered by Sudarsky andWald
[12]; however, they considered the integration to be
performed at infinity. It will be important for us to use a
quasilocal definition of angular momentum instead. While
this is useful for our purposes, we do not argue here that this
gives a suitable quasilocal definition of angular momentum
in general. There is a great deal of literature on the problem
of quasilocal mass and angular momentum (see Ref. [13]
and references therein).
To write the electric charge as a bulk integral, we will fix

a choice of the Lagrange multiplier, ξaref , with ξ̂Σ ¼ ξΣ ∈ g,
constant. Similar to the above, we have

16πðξa∞Pa − ξaΣQΣaÞ ¼ 4

Z
M0

ðξaref∇
∘
iEi

a þ Ei
a∇
∘
iξ

a
refÞ:

ð18Þ

Lemma III.1. Let χ be a vector field on M with
‖χ‖L∞ðΣÞ < ∞. The maps QΣ∶ F → g� and ~Jχ∶ F → R
are smooth.
Proof.—By considering any function φ ∈ C∞

c ðMÞ with
φ≡ 1 on Σ, the Sobolev trace theorem gives

jQΣj ≤ c‖E‖L1ðΣÞ ¼ ‖φE‖L1ðΣÞ ≤ c‖φE‖L2ðΣÞ

≤ c‖E‖1;2;−3=2: ð19Þ

We estimate ~Jχ similarly:

~Jχ ≤ cð‖χ‖L2ðΣÞ‖π‖1;2;−3=2 þ ‖χ‖L∞ðΣÞ‖φA‖L2ðΣÞ‖φε‖L2ðΣÞÞ
≤ c‖χ‖L∞ðΣÞð‖π‖1;2;−3=2 þ ‖A‖1;2;−1=2‖ε‖1;2;−3=2Þ:

Since QΣ and ~Jχ are bounded and linear, smoothness
follows. □

Theorem III.2. For an integrable source, s ∈ L1, the
map P∶ CðsÞ → R3.1 ⊕ g� is smooth.
Proof.—P0 is exactly of the form considered by Bartnik

[2], except that the integrals are over a manifold with
boundary in our case. However, this difference does not
affect Bartnik’s proof that P0 is smooth so the result
applies here also. As Pi differs from Bartnik’s definition
by Yang-Mills terms and 16π ~Jξref , we cannot directly apply
his results; we instead show smoothness as follows.
Lemma III.1 shows that ~Jξref is smooth, so we must only
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consider the bulk (volume) integral in Eq. (16). Note that
the second and fourth terms in the bulk integral defining Pi
[Eq. (16)] are clearly bounded, as ∇∘ ξ has bounded support.
We also have

Z
M0

2ξiref∇
∘
jπ

j
i ≤ c‖ξiref‖∞;0‖∇

∘
· π‖1;−3;

which is then controlled, as follows, by the fact that we
have an integrable source. Recalling the difference of

connections tensor,

~Γi
jk ≔ Γi

jk − Γ
∘ i
jk ¼

1

2
gilð∇∘ jglk þ∇∘ kgjl −∇∘ lgjkÞ;

and making use of the momentum constraint (6),
we have

‖∇∘ · π‖1;−3 ≤ cð‖∇ · π‖1;−3 þ ‖ ~Γπ‖1;−3Þ
≤ cð‖s‖1;−3 þ ‖ε∇∘ A‖1;−3 þ ‖A∇∘ ε‖1;−3 þ ‖ ~Γ‖2;−3=2‖π‖2;−3=2Þ
≤ cð‖s‖1;−3 þ ‖ε‖2;−3=2‖∇

∘
A‖2;−3=2

þ ‖A‖2;−1=2‖∇
∘
ε‖2;−5=2 þ ‖∇∘ g‖2;−3=2‖π‖2;−3=2Þ

≤ cð‖s‖1;−3 þ ‖ε‖1;2;−3=2‖A‖1;2;−1=2 þ ‖∇∘ g‖2;−3=2‖π‖2;−3=2Þ:
Similarly, we have

Z
M0

ξjref∇
∘
iðεiaAa

j Þ ≤ c‖ξref‖∞;0ð‖A∇
∘
ε‖1;−3 þ ‖ε∇∘ A‖1;−3Þ

≤ c‖ξref‖∞;0ð‖A‖2;−1=2‖∇
∘
ε‖2;−5=2 þ ‖ε‖2;−3=2‖∇

∘
A‖2;−3=2Þ: ð20Þ

Since the bulk integral is linear in each of the variables and
bounded, smoothness follows; that is, Pi is smooth. □

The remaining component, ξa∞Pa, consists of a bulk
integral plus the term ξaΣQΣa [Eq. (18)]; the latter is again
smooth by Lemma III.1 and the bulk integral is estimated
similarly to the above. The second term in the bulk integral

is clearly bound again as ∇∘ ξref has bounded support, while
the first term makes use of the Gauss constraint (7) and the
fact that the source is integrable:

Z
M0

ξaref∇
∘
iEi

a ≤ cð‖ξref‖∞;0‖∇
∘
· E‖1;−3Þ

≤ c‖ξref‖∞;0ð‖s‖1;−3 þ ‖Akε‖1;−3Þ
≤ c‖ξref‖∞;0ð‖s‖1;−3 þ ‖Ak‖2;−3=2‖ε‖2;−3=2Þ:

It follows that P is smooth.

IV. HAMILTONIANS AND THE FIRST LAW

It is well known that the source-free evolution equations
can be succinctly written as

d
dt

2
6664
g

A

π

ε

3
7775 ¼ −

2
6664

0 0 1 0

0 0 0 1

−1 0 0 0

0 −1 0 0

3
7775∘DΦ�

ðg;A;π;εÞðξÞ; ð21Þ

whereDΦ�
ðg;A;π;εÞ is the formal adjoint of the linearization of

Φ, and t is interpreted as the flow parameter of a vector field
on 4P, identified with ξ (see, for example, Refs. [14,15]).
The flow of ξ is interpreted as a simultaneous time evolution
and continuous change of gauge. Equation (21) motivates
Moncrief’s result, equating stationary solutions with initial
data satisfying DΦ�

ðg;A;π;εÞðξÞ ¼ 0, where ξμ corresponds to

a time translation at infinity [16,17] (see also the subsequent
work by Arms, Marsden and Moncrief in the Einstein-
Yang-Mills case [15]). We call such an initial data set a
generalized stationary initial data set.
If the formal adjoint agrees with the true adjoint, then

these evolution equations correspond exactly to Hamilton’s
equations for the usual ADM Hamiltonian,
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HADMðξÞðg; A; π; εÞ ≔ −
Z
M

ξ · Φðg; A; π; εÞ: ð22Þ

Unfortunately, this is not the case when M is an asymp-
totically flat manifold as the formal adjoint differs from the
true adjoint by a collection of boundary terms unless ξ
vanishes sufficiently fast at infinity. In order to generate the
correct equations of motion, the first variation of the
Hamiltonian density must be of the form

DHðg;A;π;εÞðh; b; p; fÞ ¼ Ξ · ðh; b; p; fÞ; ð23Þ

for some Ξ ∈ T�
ðg;A;π;εÞF .

In the pure gravity case with no interior boundary,
Regge and Teitelboim [18] demonstrated that the ADM
mass must be added to the ADM Hamiltonian in order to
obtain a Hamiltonian density satisfying (23). In Paper I,
where we considered the Einstein-Yang-Mills case with
no interior boundary, we also added a charge term,
corresponding to the additional Yang-Mills energy.
However, problems arise when one looks at the evolution
exterior to some boundary and the addition of these extra
terms does not suffice.
Computing the variation of the ADM Hamiltonian

density (22) yields

DHADMðξÞ
ðg;A;π;εÞðh; b; p; fÞ ¼ −DΦ�

ðg;A;π;εÞðξÞ · ðh; b; p; fÞ þ∇iððξ0ð∇∘ itrgh −∇jhijÞ

þ∇∘ jðξ0Þhij − trgh∇
∘
iðξ0ÞÞ

ffiffiffi
g

p
− 2ξjpij þ ξafai − 2πki hjkξ

j

þ πjkhjkξi − ϵijkbakB
j
aξ0

ffiffiffi
g

p
− εiabaj ξ

j þ ξiε
j
abaj − fiaAa

j ξ
jÞ: ð24Þ

The first term is exactly of the form we require [Eq. (23)];
however, the cumbersome divergence term does not
vanish in general and therefore the evolution is not
Hamiltonian. Fortunately, it does have the following
geometric interpretation to be exploited. Assume Σ is
the bifurcation surface of a bifurcate Killing horizon, ξμ is
the stationary Killing field and ϕμ is the rotational
Killing field tangent to M with 2π-periodic orbits; we

then have ξμ þ Ωϕμ ≡ 0 on Σ for some constant Ω, which
is to be interpreted as the angular velocity of the horizon.
The zeroth law of black hole mechanics states that the
surface gravity κ ¼ 1

2
ni∇iξ

0 is constant on Σ, where ni is
the unit normal to Σ pointing towards infinity in M0. We
also ask that the electric potential, Va ¼ ξa be constant at
infinity and on Σ. In this case, the expression (24)
becomes

Z
M0

DHADMðξÞ
ðg;A;π;εÞðh; b; p; fÞ ¼ −

Z
M0

DΦ�
ðg;A;π;εÞðξÞ · ðh; b; p; fÞ − 16πDmðg;πÞðh; pÞ

þ 2κDArΣgðhÞ þ 16πΩDJΣðg;A;π;εÞðh; b; p; fÞ þ 16πðVΣ ·DQΣðεÞðfÞ − V∞ ·DQ∞ðεÞðfÞÞ;
ð25Þ

where ArΣðgÞ is the surface area Σ and mðg; πÞ ¼ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
−PμPμ

p
is the total mass. Note that the fact that Pμ is

timelike follows from the positive mass theorem, assum-
ing the dominant energy condition (see Theorem 11.2 of
Ref. [19]). Compare this to the first law of black
hole mechanics, which states that for perturbations to a
stationary solution the following variational formula
holds:

δm ¼ κ

8π
δArΣ þ ΩδJ þ V · δQ: ð26Þ

This motivates an interesting result of Ashtekar, Fairhurst
and Krishnan [20] in the framework of isolated horizons.
They considered the ADM Hamiltonian on a manifold with
an interior boundary representing an isolated horizon, and

demonstrated that the validity of the first law is a necessary
and sufficient condition for the evolution to be Hamiltonian.
However, we take a different approach regarding these
additional terms corresponding to the first law. A new
Hamiltonian is introduced, à la Regge and Teitelboim, that
gives the correct equations of motion somewhat more
generally, and the first law plays quite a different role.
We define the modified Hamiltonian,

HRTðξÞðg;A;π;εÞ≔16πðξ∞ ·Pþ ~Jξ−ξaΣQΣaÞ−
Z
M0

ξ ·Φ;

ð27Þ

for some ξ ∈ W2;2
ξref
. As before, we fix ξref on Σ such that

ξ0ref ¼ 0, ξaref is constant and ξiref is tangent to Σ. Note that
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ðξ∞ · Pþ ~Jξ − ξaΣQΣaÞ only depends on the boundary and
asymptotic values of ξ, so the Hamiltonian essentially acts as
a Lagrange function; extremizing the Hamiltonian is equiv-
alent to extremizing ðξ∞ · Pþ ~Jξ − ξaΣQΣaÞ subject to the
constraints being satisfied, where ξ with the prescribed
boundary and asymptotic conditions acts as the Lagrange

multiplier. This is the fundamental idea behind Theorem
IV.8, below.
Note that the first and last terms in Eq. (27) are divergent in

general; however, following Bartnik [2] (see also, Paper I),
we combine the integrals and the dominant terms of each
cancel out. This leads us to the regularized Hamiltonian,

Hξðg; A; π; εÞ ≔
Z
M0

ðξαref − ξαÞΦα þ
Z
M0

ξ0refðg
∘kig∘ lj∇∘ k∇

∘
lgij − Δ

∘ ðtrg∘gÞ
ffiffiffi
g
∘

q
− Φ0Þ

þ
Z
M0

g
∘ ikg∘ lj∇∘ kðξ0refÞð∇

∘
jgij −∇∘ itrg∘gÞ

ffiffiffi
g
∘

q

þ
Z
M0

ξirefð∇
∘
jð2πji þ εjaAa

i Þ − ΦiÞ þ
Z
M0

ð2πij þ εiaAa
j Þ∇

∘
iξ

j
ref

−
Z
M0

ξarefð∇
∘
iε

i
a − ΦaÞ −

Z
M0

εia∇
∘
iξ

a
ref ; ð28Þ

which is defined on all of F .

Proposition IV.1. The regularized Hamiltonian,
Hξ∶ F → R, is well-defined and smooth.
Proof.—This Hamiltonian is exactly of the form con-

sidered in Paper I, except that the integrals are performed
over a manifold with boundary here, and we have the

additional momentum terms,
R
M0

ξiref∇
∘
jðεjaAa

i Þ andR
M0

εiaAa
j∇
∘
iξ

j
ref . As above, the fact that the manifold has

a boundary does not affect the proof at all. Up to the
addition of some additional Yang-Mills momentum terms,
we conclude Hξ is smooth from Theorem 4.4 of Paper I.
The additional momentum terms,

Z
M0

ξirefε
j
aAa

i þ εiaAa
j∇
∘
iξ

j
ref ;

are linear in their arguments so they simply must be shown
to be bounded to demonstrate that they too are smooth.

The latter momentum term is clearly bound since ∇∘ ξref
has bounded support and the former is estimated
by Eq. (20). □

An immediate corollary of Theorem 4.2 from Paper I is
the following.
Proposition IV.2. For ξ ∈ W2;2

−1=2c, we have

Z
M0

ξ ·DΦðg;A;π;εÞðh; b; p; fÞ

¼
Z
M0

ðh; b; p; fÞ ·DΦ�
ðg;A;π;εÞðξÞ; ð29Þ

for all ðh; b; p; fÞ ∈ Tðg;A;π;εÞF .

Proof.—The difference, ðh; b; p; fÞ ·DΦ�
ðg;A;π;εÞðξÞ − ξ ·DΦðg;A;π;εÞðh; b; p; fÞ, is easily computed to give

∇iððξ0ð∇∘ itrgh −∇jhijÞ þ∇∘ jðξ0Þhij − trgh∇
∘
iðξ0ÞÞ

ffiffiffi
g

p
− 2ξjpij þ ξafaiÞ

−∇ið2πki hjkξj − πjkhjkξi þ ϵijkbakB
j
aξ0

ffiffiffi
g

p þ εiabaj ξ
j − ξiε

j
abaj þ faiξjAa

j Þ:

The integral of this divergence is then expressed as surface integrals at infinity and on Σ. The terms at infinity vanish by
Theorem 4.2 of Paper I and the terms on Σ vanish by the hypothesis ξ ∈ W2;2

−1=2c. We do have the extra term, faiξjAa
j , not

considered in Paper I; however, this clearly vanishes by the same argument. □

Proposition IV.3. For ξ ∈ W2;2
ξref
, the variation of the regularized Hamiltonian is given by

DĤξ½h; b; p; f� ¼ −
I
Σ
ð∇∘ jðξ0Þhij − trgh∇

∘
iðξ0ÞÞ

ffiffiffi
g

p
dSi −

Z
M0

DΦ�ðξÞ · ðh; b; p; fÞ: ð30Þ
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Proof.—We consider the terms in Eq. (28) separately. By Proposition IV.2, the variation of the first integral in Eq. (28)
becomes

Z
M0

ðh; b; p; fÞ ·DΦ�ðξref − ξÞ:

The variation of the second and third terms combine to give

Z
M0

fg∘ ik∇∘ kðξ0refg
∘jlð∇∘ lhij −∇∘ ihjlÞÞ

ffiffiffi
g
∘

q
−∇iðξ0refð∇jhij −∇itrghÞÞ

ffiffiffi
g

p

þ∇iðhij∇jξ0ref − trgh∇iξ
0
refÞ

ffiffiffi
g

p
− ðh; b; p; fÞ ·DΦ�

0ðξ0refÞg: ð31Þ

Then the first two terms in the above combine to give a total divergence,

−
I
M0

∇∘ kðgikξ0refgjlð∇lhij −∇ihjlÞ
� ffiffiffi

g
p

−
ffiffiffi
g
∘

q �
þ ðgik − g

∘ ikÞξ0refgjlð∇lhij −∇ihjlÞ
ffiffiffi
g
∘

q

þ g
∘ ikg∘jlξ0refðð∇l −∇∘ lÞhij − ð∇i −∇∘ iÞhjlÞ

ffiffiffi
g
∘

q
Þ; ð32Þ

which is rewritten as surface integrals, both at infinity and on Σ. The integral at infinity is identical to that considered by
Bartnik [2] and therefore vanishes by the same argument, while the surface integral on Σ vanishes since ξ0Σ ¼ 0. The third

term in Eq. (31) is again a divergence, but only gives a boundary term on Σ since∇∘ ξref has bounded support. This boundary
term on Σ is then exactly the surface integral in Eq. (30).
The variation of the fourth and fifth terms in Eq. (28) gives

Z
M0

f2∇∘ iðξjrefpi
jÞ þ 2∇∘ jðξirefπjkhkiÞ þ∇iðεiabajξjrefÞ þ∇iðfiaξjrefAa

j Þ − 2∇iðξjrefpi
jÞ − 2∇iðπkihjkξjrefÞ −∇iðεiabaj ξjrefÞ

−∇iðfiaξjrefAa
j Þ þ∇iðξirefεjabaj Þ − ðh; b; p; fÞ ·DΦ�

i ðξirefÞg: ð33Þ

Since p, π, f and ε are densities, the divergences above do
not depend on the connection used and thus the first two
lines in Eq. (33) cancel exactly. The surface integral on Σ
arising from the remaining divergence in Eq. (33) vanishes,
since ξiref is tangent to Σ and the surface integral at infinity
is shown to vanish as follows. Let SR ¼fx∈M0jrðxÞ¼Rg
and–noting that b and ξref are continuous by the Sobolev-
Morrey embedding—we have
����
I
SR

ξirefε
j
abaj dSi

����≲ ‖b‖∞ðSRÞ‖ξref‖∞ðSRÞ

I
SR

jεjdS

≲ oðr−1=2ÞOð1ÞR1=2‖ε‖1;2;−3=2
¼ oð1Þ; ð34Þ

where we have made use of the estimate,
I
SR

jujdS ≤ cR1=2‖u‖1;2;−3=2;

from Ref. [2] (Theorem 4.4). It follows thatH
∞ ξirefε

j
abaj dSi ¼ 0 and therefore the variation of the fourth

and fifth terms in Eq. (28) reduces to

−
Z
M0

ðh; b; p; fÞ ·DΦ�
i ðξirefÞ: ð35Þ

Finally, the variation of the sixth and seventh terms in
Eq. (28) is given by

Z
M0

−∇∘ iðξ̂a∞fiaÞ þ∇iðξ̂a∞fiaÞ − ðh; b; p; fÞ ·DΦ�
aðξ̂a∞Þ:

ð36Þ

Since f is a density, the divergences again do not depend on
the connection and therefore the first two terms in Eq. (36)
cancel exactly, leaving

−
Z
M
ðh; b; p; fÞ ·DΦ�

aðξ̂a∞Þ: ð37Þ

Assembling all of the pieces completes the proof. □

If Σ is indeed the bifurcation surface of a bifurcate
Killing horizon, corresponding to the Killing vector
ξþ ξref , then ξ0 ¼ 0 on Σ and the surface gravity,

κ ¼ 1
2
ni∇∘ iðξ0Þ, is constant; it follows that ∇

∘
ðξ0Þ is normal
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to Σ. Making use of coordinates adapted to Σ, the surface
integral in Eq. (30) becomes

−
I
Σ
ð∇∘ jðξ0Þhij − trgh∇

∘
iðξ0ÞÞ

ffiffiffi
g

p
dSi

¼ −
I
Σ
ðgj3∇∘ 3ðξ0Þhijni − hkk∇

∘
3ðξ0ÞÞ

ffiffiffi
g

p
dS

¼
I
Σ
∇∘ 3ðξ0ÞhAA

ffiffiffi
g

p
dS

¼ 2κdArΣ; ð38Þ

where the index “3” refers to the direction normal to Σ,
while A ¼ 1; 2 are tangential.
It can be seen from Proposition IV.3 that this new

Hamiltonian gives the correct equations of motion when

∇∘ ξ0 ≡ 0 on Σ, or when Σ is the bifurcation surface of a
bifurcate Killing Horizon and g is a critical point of the area
functional of Σ. There does not appear to be an obvious way
to further modify the Hamiltonian such that the correct
equations of motion are generated in general.
To prove the main theorem, we will need to make use of

the following generalization of the method of Lagrange
multipliers to Banach manifolds (see Theorem 6.3
of Ref. [2]).
Theorem IV.4. Suppose K∶ B1 → B2 is a C1 map

between Banach manifolds, such that DKu∶ TuB1 →
TKðuÞB2 is surjective, with closed kernel and closed
complementary subspace for all u ∈ K−1ð0Þ. Let f ∈
C1ðB1Þ and fix u ∈ K−1ð0Þ; then, the following statements
are equivalent:

(i) For all v ∈ kerDKu, we have

DfuðvÞ ¼ 0: ð39Þ
(ii) There is λ ∈ B�

2 such that for all v ∈ B1,

DfuðvÞ ¼ hλ; DKuðvÞi; ð40Þ
where h; i refers to the natural dual pairing.

We also will need to make use of the following theorem
from Paper I, regarding weak solutions. Aweak solution of
DΦ�ðξÞ ¼ f is an element ξ ∈ N such that

Z
M

ξ ·DΦðh; b; p; fÞ ¼
Z
M

f · ðh; b; p; fÞ; ð41Þ

for all ðh; b; p; fÞ ∈ G ×A ×K × E ¼ Tðg;A;π;εÞF .
Theorem IV.5. If ξ ∈ N is a weak solution of

DΦ�
ðg;A;π;εÞðξÞ ¼ ðf1; f2; f3; f4Þ, with ðf1; f3; f4Þ ∈

L2
−5=2 ×W1;2

−3=2 ×W1;2
−3=2 and ðg; A; π; εÞ ∈ F , then ξ ∈

W2;2
−1=2 and is indeed a strong solution.
The following theorem from Ref. [2] is stated in

reference to a particular operator; however, it is clear from
the proof that the theorem applies to a general class of
operators. In particular, the theorem could more generally
be stated as follows:
Theorem IV.6 [Theorem 3.6 of Ref. [2]]. Let Ω ⊂ M

be a connected domain with E0
R ⊂ Ω for some R, where E0

R

is a connected component of ER. If ξ ∈ W2;2
−1=2 satisfies

∇∘ 2

ξ ¼ b1∇ξþ b0ξ;

with b0 ∈ L2
−5=2 and b1 ∈ W1;2

−3=2, then ξ≡ 0 in Ω.
From this and Theorem IV.5, we have the following

immediate corollary:
Corollary IV.7. Let ðg; A; π; εÞ ∈ F . If ξ ∈ N � satis-

fies DΦ�
ðg;A;π;εÞðξÞ ¼ 0 on a connected Ω ⊂ M containing

some E0
R, then ξ≡ 0 on Ω.

Now we are in a position to prove the main theorem.
Below, we use the notation DΦ�

ðg;A;π;εÞðξÞ ¼ ðDΦ�
gðξÞ;

DΦ�
AðξÞ; DΦ�

πðξÞ; DΦ�
εðξÞÞ to identify the components

of DΦ�.
Theorem IV.8. Let ðg; A; π; εÞ ∈ CðsÞ, where s ∈ L1,

and suppose there exists a vector field, ϕ ∈ W2;2
loc , tangent to

Σ with DΦ�
πðϕÞ; DΦ�

εðϕÞ ∈ W1;2
−1=2cðM0Þ. Further suppose

that for all ðh; b; p; fÞ ∈ Tðg;A;π;εÞCðsÞ,

Dmðg;A;π;εÞðh; b; p; fÞ ¼ αDArΣðg;A;π;εÞðh; b; p; fÞ þ βDJϕðg;A;π;εÞðh; b; p; fÞ
þ γΣ ·DQΣðg;A;π;εÞðh; b; p; fÞ − γ∞ ·DQ∞ðg;A;π;εÞðh; b; p; fÞ; ð42Þ

where α; β ∈ R and γΣ; γ∞ ∈ g are constants. Then
ðg; A; π; εÞ is a generalized stationary initial data set.
Furthermore, γ is the electric potential, and if Σ is the
bifurcation surface of a bifurcate Killing horizon,
then 8πα is the surface gravity and β is the angular
velocity.
Proof.—We assume that Eq. (42) holds at some fixed

point ~G ¼ ð~g; ~A; ~π; ~εÞ ∈ F . Then we fix ξref such that it

satisfies the following boundary and asymptotic

conditions:
(i) ξμ∞ corresponds to a future-pointing unit vector at

spatial infinity in the spacetime that is proportional
to Pμ;

(ii) ξaref is constant at infinity and on Σ, with values ξa∞ ¼
γa∞ and ξaΣ ¼ γa∞;

(iii) ξ0ref vanishes on Σ;
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(iv) ξiref ¼ −βϕi on Σ; and
(v) ∂iðξ0refÞ ~ni ¼ 16πα on Σ.

We use ~n to denote the unit normal with respect to ~g,
pointing towards infinity in M0. Note that the condition
on ξμ∞ implies ξμ∞Pμ ¼ m, and the conditions on α, β
and γ ensure that they correspond to the appropriate
physical quantities in the statement of the theorem.

Now for some ξ ∈ W2;2
ξref
, we define

~fðGÞ ≔ HξðGÞ − 16παArΣðGÞ; ð43Þ

where G ¼ ðg; A; π; εÞ ∈ F . We again let KðGÞ ¼
ΦðGÞ − s, and note that for all constrained variations,
ðh; b; p; fÞ ∈ kerðDK ~GÞ ¼ T ~GCðsÞ, we have [see Eq. (27)]

1

16π
DHξ

~G
ðh; b; p; fÞ ¼ ξ∞ ·DP ~Gðh; b; p; fÞ þD ~Jξ~Gðh; b; p; fÞ − ξaΣDQΣ ~Gaðh; b; p; fÞ

¼ Dm ~Gðh; b; p; fÞ − βDJϕ ~Gðh; b; p; fÞ
− γΣ ·DQΣ ~Gðh; b; p; fÞ þ γ∞ ·DQ∞ ~Gðh; b; p; fÞ:

By hypothesis (42), we have D ~f ~Gðh; b; p; fÞ ¼ 0 for all
ðh; b; p; fÞ ∈ kerðDK ~GÞ. It follows from Theorem IV.4,
that there exists λ ∈ N such that

D ~f ~G ¼ hDΦ ~G; λi; ð44Þ

that is,

D ~f ~Gðh; b; p; fÞ ¼
Z
M

DΦ ~Gðh; b; p; fÞ · λ; ð45Þ

for all ðh;b;p;fÞ ∈ T ~GF . However, from Proposition IV.3,
we have

D ~f ~Gðh; b; p; fÞ ¼ −
I
Σ
ð∇∘ jðξ0Þhij − trgh∇

∘
iðξ0ÞÞ

ffiffiffi
g

p
dSi

−
Z
M0

DΦ�ðξÞ · ðh; b; p; fÞ

− 16παDArΣð ~GÞðh; b; p; fÞ: ð46Þ

As ∂iðξ0Þ ~ni ¼ 16πα on Σ, the first and last terms cancel
exactly [see Eq. (38)], leaving

D ~f ~Gðh; b; p; fÞ ¼ −
Z
M0

ðh; b; p; fÞ ·DΦ�
GðξÞ; ð47Þ

that is,

−
Z
M0

ðh; b; p; fÞ ·DΦ�
GðξÞ ¼

Z
M

DΦ ~Gðh; b; p; fÞ · λ;

ð48Þ
for all ðh; b; p; fÞ ∈ Tð ~GÞF .
Since the first integral in Eq. (48) is overM0, rather than

M, Theorem IV.5 does not directly apply. Insteadwe extend

DΦ�
~G
ðξÞ by zero, noting that the hypotheses on DΦ�

~G
ðϕÞ

ensure that we can do this without losing regularity.
We define the function

ψ ¼ ðψ1;ψ2;ψ3;ψ4Þ ≔
�−DΦ�

~G
ðξÞ onM0;

0 otherwise:
ð49Þ

We then have

Z
M

ψ · ðh; b; p; fÞ ¼
Z
M

DΦ ~Gðh; b; p; fÞ · λ ð50Þ

for all ðh; b; p; fÞ ∈ T ~GF . It is straightforward to check
that ψ1 ∈ L2

−5=2ðMÞ and ψ3;ψ4 ∈ W1;2
−3=2ðMÞ (see

Lemma 6.5 of Ref. [10] for details), and therefore
Theorem IV.5 gives λ ∈ W2;2

−1=2ðMÞ and DΦ�
~G
ðλÞ ¼ ψ in

the strong sense. It then follows that DΦ�
~G
ð~ξÞ ¼ 0 on M0,

where ~ξ ≔ ξþ λ is the generalized stationary Killing
vector. □

Note that we have DΦ�
~G
ðλÞ ¼ 0 on MnM0, so

Corollary IV.7 implies λ ¼ 0 on MnM0. It then follows
that ~ξ ¼ ξ ¼ −βϕ on Σ, and in particular we have that ~ξþ
βϕi vanishes on Σ. It is interesting to note that while we do
not assume that Σ is a horizon in the above theorem,
the conclusion that ~ξμ þ βϕi vanishes on Σ gives us the
following corollary.
Corollary IV.9. If the hypotheses of Theorem IV.8 hold

and ðg; A; π; εÞ is axially symmetric with axial Killing field,
ϕ, then Σ is the bifurcation surface of a bifurcate Killing
horizon, where 8πα is the surface gravity and β is the
angular velocity.
Proof.—This is an immediate consequence of the fact

that if a Killing field vanishes on a spacelike 2-surface
then that surface is the bifurcation surface of a bifurcate
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Killing horizon (see, for example, Chapter 5 of
Ref. [21]). □

Remark IV.10. By virtue of the fact that DΦ�ðξÞ ¼ 0
for a Killing vector, ξ, we do indeed have DΦ�

πðϕÞ;
DΦ�

εðϕÞ ∈ W1;2
−1=2cðM0Þ when ϕ is the axial Killing

vector.
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