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Whenever the condition of anomaly freedom is imposed within the framework of effective approaches to
loop quantum cosmology, one seems to conclude that a deformation of general covariance is required.
Here, starting from a general deformation we regain an effective gravitational Lagrangian including terms
up to fourth order in extrinsic curvature. We subsequently constrain the form of the corrections for the
homogeneous case, and then investigate the conditions for the occurrence of a big bounce and the
realization of an inflationary era, in the presence of a perfect fluid or scalar field.
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I. INTRODUCTION

There are many equivalent ways of formulating classical
general relativity. Although covariant methods are arguably
the most pure, since they explicitly retain the general space-
time covariance (coordinate invariance), difficulties can
arise when trying to apply them to certain physical systems.
For example, trying to combine covariant general relativity
with quantum mechanics is problematic, since the nature of
time is very different for both theories.
To bring general relativity more in line with the way

quantum mechanics is usually formulated, one can use
canonical methods which split the space-time structure to a
spatial hypersurface that evolves over time [1]. Canonical
general relativity can be formulated equivalently using
different variables. There is geometrodynamics, which uses
the spatial metric and extrinsic curvature ðqab; KabÞ; con-
nection dynamics, which uses the Ashtekar connection and
densitized triads ðAi

a; Ea
i Þ; and loop dynamics, which uses

holonomies of the connection and gravitational flux
ðhγ½A�; Fi

γ½E�Þ. Classically, hγ½A� is given by the path-
ordered exponential of the connection integrated along a
curve γ and Fi

γ½E� is the flux of the densitized triad through
a surface that the curve γ intersects. If we take γ to be
infinitesimal we can easily relate loop dynamics and
connection dynamics because then hγ ¼ 1þ Að_γÞ þ
Oðjγj2Þ [2].
However, loop quantum gravity pictures space-time as

not being a continuous manifold, but being composed of a
network of nodes connected by ordered links with quantum
numbers for geometrical quantities such as volume. Such a
network is not embedded in space but is space itself. As
such, one cannot shrink the length of a link between nodes
to being infinitesimal as in the classical case, and so the
relationship between loop dynamics and connection
dynamics is broken due to the quantization of geometry.

If general relativity is truly the classical limit of loop
quantum gravity, then there should be a semiclassical limit
where the dynamics are well approximated by general
relativity with small effective quantum corrections. At
small scales and high curvature, these corrections should
become important.
When general relativity is formulated using canonical

methods, how is the space-time general covariance retained
when there is an explicit splitting of space and time? The
spatial general covariance of the hypersurface coordinates
and the invariance under different embeddings of the
hypersurface in space-time are given by different constraint
equations. The former is given by the diffeomorphism
constraint Da, and the latter by the Hamiltonian constraint
H, and both must weakly vanish for physical solutions.
Depending on the choice of canonical variables, there may
also be a Gauss constraint Gi, though it is not related to the
space-time structure. The choice of coordinates should be
equivalent to a gauge choice as long as the constraints
vanish, but satisfying the constraint equations is not quite
enough. The constraints also need to satisfy certain
interrelations.
The classical constraints form a closed Poisson bracket

algebra [1]. The constraints are the generators of deforma-
tions of the hypersurface (equivalent to coordinate trans-
formations or evolution through time) and therefore if the
algebra were not closed due to anomalies AIJ, namely,

fCI; CJg ¼ fKIJCK þ AIJ; CI ∈ fH;Da;Gig;
AIJ ∉ fH;Da;Gig; ð1:1Þ

one could show that a spatial hypersurface which satisfies
the constraints at one time will not satisfy the constraints at
all times. Therefore the anomalies AIJ must strongly vanish
because the algebra is required to be closed for the theory to
be consistent.
The interpretation of general relativity as a geometric

theory of space-time and whether our spatial hypersurface
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can be embedded in space-time is intimately related to the
specific form of this algebra, as shown in Ref. [3]. This
form, written for the smeared versions of the constraints, is

fD½Na
1�; D½Nb

2�g ¼ D½LN2
Na

1�; ð1:2aÞ

fH½N1�; D½Na
2�g ¼ H½LN2

N1�; ð1:2bÞ

fH½N1�; H½N2�g ¼ D½qabðN1∂bN2 − N2∂bN1Þ�; ð1:2cÞ

where N and Na are the lapse and shift functions,
respectively, which are gauge quantities that specify the
embedding of the spatial hypersurface in space-time [1].
The qab denotes the spatial metric, while H½N� is the
smearing of H with N over the hypersurface, and LXY is
the Lie derivative of Y with respect to the vector Xa.
When quantizing general relativity, these constraints are

promoted to operators, and they satisfy a commutator
algebra corresponding to Eq. (1.2). Classical constraints
satisfy CI ≈ 0 and their quantum versions satisfy
ĈIjΨi ¼ 0. Note that the form of the algebra must not
contain anomalies when the constraints are not satisfied
(i.e. when “off shell”), since off-shell states can become
important in quantum mechanics (e.g., virtual intermediate
states may influence particle scattering).
Loop quantum cosmology attempts to be a symmetry-

reduced form of loop quantum gravity [4–6]. The derivation
of it from the full theory has not yet been done, so it
proceeds by quantizing minisuperspace models using meth-
ods gained from developments in the full theory. Effective
approaches to loop quantum cosmology work in a semi-
classical scheme, and try to include quantum corrections to
the classical theory which model two main features [7]. One
comes from the underlying primary nature of holonomies
that cannot be made infinitesimal and so must be approxi-
mated through higher-order curvature terms and nonlocal-
ities. The other is due to the inverse-volume operator, which
is present in the Hamiltonian constraint and will produce
corrections at small scales. This is because the volume
operator includes zero in its spectrum and the inverse-
volume operator cannot have eigenvalues which are infinite,
so the effective approach applies a cutoff function to
regularize the zero-volume limit.
Investigations into the consistency of these effective

models of loop quantum cosmology have shown that
imposing the algebra to be nonanomalous produces a
modification to the algebraic structure functions. In par-
ticular, Eq. (1.2c) must be modified by a phase space
functional β½qab; Kab�, determined by quantum corrections,
(see Refs. [8,9] and references in Ref. [10]), leading to

fH½N1�; H½N2�g ¼ D½βqabðN1∂bN2 − N2∂bN1Þ�: ð1:3Þ

Hence, in such case the effective Hamiltonian constraint H
is modified, but the diffeomorphism constraint Da is not.

The interpretation of this is that the structure within the
spatial hypersurface is the same as in general relativity, but
the structure involving the timelike direction (i.e. the
embedding of the hypersurface) is not.
Since the algebra is modified but without anomalies, the

symmetry underlying our models must not be space-time
general covariance but deformed to a related and more
broad kind of symmetry. There are relations between this
“deformed general relativity” and the so-called deformed
special relativity [11,12], a phenomenological model seek-
ing quantum gravitational deformations to the Poincaré
symmetry group such that the Planck scale becomes
observer independent. In some versions of the deformed
special relativity, the dispersion relation for particles is
deformed, and a particle’s speed becomes dependent on
its energy (i.e. an energy-dependent speed of light). In
effective loop quantum cosmology, the quantum correc-
tions can alter the speed of propagation of electromagnetic
and gravitational waves [13], but a dispersion relation for
individual particles, similar to the one obtained within
deformed special relativity, has not been found so far.
Note that there are very strong observational constraints

on a variable speed of light and there exist theoretical
problems with its implications of locality becoming a
relative concept [14]. It has been argued that only a variable
speed of light dependent on local energy density or
curvature would be consistent with observer independence,
but this means that for individual particles a difference in
time of flight would be unobservable [15].
However, even if these corrections do not produce

observable effects for individual particles, they may have
important implications for cosmology. A prediction of loop
quantum cosmology is that the big bang singularity,
unavoidable in classical gravity, is resolved being replaced
by a big bounce [4,5]. In Ref. [8] the form of the correction
function β is obtained for scalar perturbations around an
isotropic and homogeneous background, while including
holonomy corrections β ¼ cos 2K (modulo a few con-
stants), where K is the extrinsic curvature. This implies
that for situations of high curvature such as during the very
early Universe, the sign of β can change. The algebra of
constraints in Eq. (1.2) is only true for Lorentzian mani-
folds, and the sign of Eq. (1.2c) is reversed for Euclidean
manifolds. While space-time in this regime could certainly
not be interpreted in terms of a classical Euclidean
manifold, this “signature change” implies that propagation
of information ceases since the timelike direction becomes
spacelike. Note that this has also been called “asymptotic
silence” and seems to occur also in other approaches to
quantum gravity [16,17]. To some extent, this might be a
concrete mechanism of realizing something like the Hartle-
Hawking no-boundary proposal [18].
One may regain a constraint algebra that has its general

relativistic form (and therefore be coordinate invariant) by
making a canonical change of variables. In Ref. [19], a
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specific case was considered and it was shown that the
variables that satisfied this had absorbed the quantum
corrections into their definition. However, this may not
be possible to do for a system which is not already
symmetry reduced.
In Sec. II, we find an effective gravitational Lagrangian

for loop quantum cosmology by starting from the modified
constraint algebra. We then see how our results relate to
previous investigations in loop quantum cosmology in
Sec. III and calculate the conditions for either a bounce
or inflation to occur. We summarize our results in Sec. IV,
while some technical parts are presented in the appendixes.

II. REGAINING AN EFFECTIVE LAGRANGIAN

As Hojman, Kuchař and Teitelboim showed in Ref. [20],
for general relativity just as it is possible to derive the form
of the constraint algebra (1.2) by specifying the
Hamiltonian and diffeomorphism constraints, it is possible
to derive the form of the Hamiltonian constraint by
specifying the form of the constraint algebra and the
diffeomorphism constraint. Kuchař also showed in
Ref. [21] how to derive the form of the gravitational
Lagrangian from the same starting point. This was
extended by Bojowald and Paily in Ref. [10], where they
started from the deformed algebra (1.3) and derived the
most general effective Lagrangian that satisfies it up to
second order in extrinsic curvature. In this section, we
extend this further to include up to fourth order terms in
extrinsic curvature. In Appendix A we perform the first
derivation of an effective Lagrangian when including a
specific version of corrections (spatial holonomies) which
would imply nonlocal effects if no expansion were per-
formed. In a derivative expansion, these corrections
(while becoming local) modify the classical expression.
Performing a truncated local expansion up to second order
in derivatives we find that no nonlocal effects appear. In
Sec. III, we show that including up to fourth order terms in
extrinsic curvature leads to the appearance of a big bounce,
as often found in loop quantum cosmology.
Let us emphasize that in the present study we only

consider spatial derivatives appearing up to linear order in
the spatial Ricci curvature R ¼ð3ÞR, and we leave for a
future investigation the case where higher-order spatial
derivatives, higher-order time derivatives, and nonlinear-
ities in spatial derivatives are included [22,23]. Let us also
emphasize that after regaining an effective Lagrangian, we
will only analyze the background equations.

A. Second order

Instead of the extrinsic curvature, the independent
variable we will use as the “velocity” is vab ≔
N−1fqab; H½N�g, which is the flow of the metric normal
to the spatial foliation. Classically, this is equal to twice the
extrinsic curvature,

vab ¼ 2Kab ¼
1

N
ð _qab − 2NðajbÞÞ; ð2:1Þ

and since it depends on our choice of coordinates through
N and Na, it is fairly arbitrary (we can choose Na so
that vab ¼ 0, i.e. a static coordinate system). If there are
deformations of space-time structure (i.e. β ≠ 1), the
quantity 1

2
vab may no longer be able to be interpreted as

geometrical extrinsic curvature [10].
Let us begin by outlining the way to get a second order

effective Lagrangian. We can use Eq. (1.3) to find

δLðxÞ
δqabðyÞ

vabðyÞ þ βðxÞDaðxÞδjaðx; yÞ − ðx ↔ yÞ ¼ 0;

ð2:2Þ

where Xja denotes the covariant derivative of X which is
compatible with the spatial metric, qabjc ¼ 0. The spatial
structure should not be modified, and therefore neither
should the diffeomorphism constraint (since it generates
spatial transformations), so we substitute the usual formula
Da ¼ −2pab

jb into the second term of Eq. (2.2) (where pab is
the canonical momentum of the metric). After multiplying
by test functions, integrating by parts, discarding total
derivatives, and substituting pab ≔ ∂L=∂vab, we find the
useful distribution equation,

δLðxÞ
δqabðyÞ

vabðyÞ þ 2βjbðxÞ
∂LðxÞ
∂vabðxÞ δjaðx; yÞ

þ 2βðxÞ ∂LðxÞ
∂vabðxÞ δjabðx; yÞ − ðx ↔ yÞ ¼ 0: ð2:3Þ

We can regain an effective Lagrangian by expanding the
Lagrangian and the correction function in powers of vab,
namely

LðxÞ ¼
X∞
n¼0

Li1j1…injn ½qab�vi1j1ðxÞ…vinjnðxÞ; ð2:4aÞ

βðxÞ ¼
X∞
n¼0

βi1j1…injn ½qab�vi1j1ðxÞ…vinjnðxÞ: ð2:4bÞ

This expansion is valid for local corrections such as those
from inverse-triad quantization and from local effects of
holonomy quantization [10]. Holonomy corrections arise
from the fact that the holonomy phase-space variables in
loop quantum gravity result from integrating connections
along a path, and are therefore in general nonlocal in
character. To properly include nonlocal effects in our
expansion, we need to expand in terms of spatial derivatives
of vab, which is what we do in Appendix A below. In
general, we should also take into account nonlocalities in
time, which would involve higher time derivatives being
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taken into account (such as the metric acceleration), but we
consider that this is beyond the scope of this paper.
Equation (2.3) was used by Bojowald and Paily in

Ref. [10] to derive the effective Lagrangian to second order,

L ¼
ffiffiffiffiffiffiffiffiffiffi
det q

p
2κ

�
sgnðβ∅Þffiffiffiffiffiffiffiffi

jβ∅j
p vabvab − ðvaaÞ2

4
þ

ffiffiffiffiffiffiffiffi
jβ∅j

q
R − 2Λ

�
;

ð2:5Þ
which, in the classical limit β∅ ¼ 1, becomes the
standard Arnowitt-Deser-Misner Lagrangian. Only the
v-independent part of the correction function β, denoted
by β∅, appears at second order of the effective action. Note
that R is the spatial Ricci scalar, Λ is the cosmological
constant and κ ¼ 8πG.
In deriving the above effective Lagrangian to second

order, we obtain the following relations, which we will use
later:

Lab
jb ¼ 0; ð2:6aÞ

2Labcd
jb β∅ þ Labcdβ∅jb ¼ 0: ð2:6bÞ

The former is obtained from the fact that generically
β∅ ≠ 0 and the latter is deduced from the fact that
L∅ðxÞ ¼ L∅ðqijðxÞ;ð3ÞRijðxÞÞ, as a spatial scalar density, is
to second order in spatial derivatives.

B. Third order

To better facilitate calculations involving tensors with
many indices, we are going to adopt a convention where we
can write a pair of symmetric indices a1a2 as A, so that
LA ≔ Lða1a2Þ ¼ La1a2 . For example, Eq. (26.b) can be
rewritten as 2LAB

ja2β
∅ þ LABβ∅ja2=0. We do this because

the coefficients in the expansion (2.4) are symmetric only
under permutation of pairs of their indices (also, each pair
of indices is itself symmetric).
We substitute the local expansion (2.4) into Eq. (2.3) and

collect terms which are quadratic in vab and its spatial
derivatives,

0 ¼ δLAðxÞ
δqBðyÞ

vAðxÞvBðyÞ þ 2½LAðβBCvBvCÞja1 þ 2LABvBðβCvCÞja1 þ 3LABCvBvCβ∅ja1 �ðxÞδja2ðx; yÞ

þ 2½LAβBC þ 2LABβC þ 3LABCβ∅�ðxÞvBðxÞvCðxÞδjAðx; yÞ − ðx ↔ yÞ; ð2:7Þ

where the superscript ðxÞ means that all terms within the brackets are functions of x only.

1. Test functions

Following the method used in Refs. [10,21], we multiply (2.7) by test functions aðxÞ and bðyÞ, then integrate by parts
over x and y, note which terms disappear due to symmetry of indices, discard total derivatives, and use (2.6a) to get

0 ¼
Z

d3xd3y

�
δLAðxÞ
δqBðyÞ

−
δLBðyÞ
δqAðxÞ

�
aðxÞbðyÞvAðxÞvBðyÞ

− 2

Z
d3xðabja1 − aja1bÞðxÞ½2ðLABvBÞja2βCvC þ 3ðLABCvBvCÞja2β∅�ðxÞ: ð2:8Þ

Setting a ¼ b ¼ 1 (therefore aja ¼ bja ¼ 0), we obtain

Z
d3xd3y

�
δLAðxÞ
δqBðyÞ

−
δLBðyÞ
δqAðxÞ

�
vAðxÞvBðyÞ ¼ 0: ð2:9Þ

Since the integral above should vanish for all vA; vB we
deduce that

δLAðxÞ
δqBðyÞ

−
δLBðyÞ
δqAðxÞ

¼ 0; ð2:10Þ

meaning that the “functional curl” of LAðxÞ vanishes. This
condition, combined with (2.6a), leads to

Lab ¼
ffiffiffiffiffiffiffiffiffiffi
det q

p �
θqqab þ θR

�
Rab −

1

2
qabR

��
; ð2:11Þ

where θq and θR are constants.
Using Eq. (2.8) and setting vabjc ¼ 0, we obtain that

2LAB
ja2β

C þ 3LABC
ja2 β∅ must vanish independently:

2LAB
ja2β

C þ 3LABC
ja2 β∅ ¼ 0: ð2:12aÞ

The remaining part which needs to vanish is

LABβC þ 3LABCβ∅ ¼ 0: ð2:12bÞ

Combining Eqs. (2.12a), (2.12b) and using (2.6b) leads to
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ðLABCβ∅Þja2 ¼ 0; ð2:12cÞ

which, from (2.12b), implies

ðLABβCÞja2 ¼ 0: ð2:12dÞ

2. Consistency check

We will show that the terms in the correction function
and Lagrangian expansions which do not satisfy time-
reversal invariance (i.e. are proportional to an odd power of
extrinsic curvature) are all required to disappear for con-
sistency requirements.
Consider the symmetries of Eq. (2.12b):

LðABÞβC þ 3LðABCÞβ∅ ¼ 0; ð2:13Þ
and then symmetrize Eq. (2.13) by adding all permutations
of the indices,

1

3
ðLðABÞβC þ LðBCÞβA þ LðCAÞβBÞ þ 3LðABCÞβ∅ ¼ 0;

ð2:14Þ
which is, equivalently written,

LðABβCÞ þ 3LðABCÞβ∅ ¼ 0: ð2:15Þ
Then, by substituting Eq. (2.13), one finds

LðABÞβC ¼ LðABβCÞ: ð2:16Þ
Let us write this out explicitly,

3LðABÞβC ¼ LðABÞβC þ LðBCÞβA þ LðCAÞβB; ð2:17Þ

cancel the first term on the right-hand side, and then
contract this with qa1b1qa2b2 , to obtain

2Lab
abβ

cd ¼ 2Lcd
abβ

ab: ð2:18Þ

Equation (2.5) then implies Labcd ∝ qaðcqdÞb − qabqcd,
which combining with Eq. (2.18) leads to

2βab ¼ −qabβcc: ð2:19Þ

Contracting Eq. (2.19) with qab, one finds that
2βaa ¼ −3βaa, which clearly means that βaa ¼ 0. Hence

βab ¼ 0: ð2:20Þ

This means that no deformation of the constraint algebra
which violates time reversibility at the linear level can be
consistent. If we compare this to Eq. (2.12b), we see
that LABC ¼ 0 since β∅ is generically nonzero; and if we
compare it to the result calculated in one of the appendixes,
(B11), we see that

LAβBC ¼ 0; ð2:21Þ

and so either the first order Lagrangian term or the second
order correction term must vanish. Since we set out to look
for higher-order terms and would prefer for time-reversal
symmetry to be respected, we take this to imply that
LA ¼ 0. From Eq. (2.11), this means that θq ¼ θR ¼ 0.

C. Fourth order

Let us return to Eq. (2.3) and collect terms cubic in vab
and its spatial derivatives. We thus get

0 ¼ δLABðxÞ
δqCðyÞ

vAðxÞvBðxÞvCðyÞ þ 2δja1ðx; yÞ½LAðβBCDvBvCvDÞja2 þ 2LABvBðβCDvCvDÞja2
þ 3LABCvBvCðβDvDÞja2 þ 4LABCDvBvCvDβ∅ja2 �ðxÞ

þ 2δjAðx; yÞ½LAβBCD þ 2LABβCD þ 3LABCβD þ 4LABCDβ∅�ðxÞvBðxÞvCðxÞvDðxÞ − ðx ↔ yÞ: ð2:22Þ

Let us first multiply by test functions aðxÞ and bðyÞ and then integrate by parts over x and y, note which terms disappear due
to symmetry of indices, discard total derivatives, and use Eq. (2.6a) to finally get

0 ¼
Z

d3xd3yaðxÞbðyÞ
�
δLABðxÞ
δqCðyÞ

vAðxÞvBðxÞvCðyÞ −
δLABðyÞ
δqCðxÞ

vAðyÞvBðyÞvCðxÞ
�

− 2

Z
d3xðabja1 − aja1bÞðxÞ½2ðLABvBÞja2βCDvCvD þ 3ðLABCvBvCÞja2βDvD þ 4ðLABCDvBvCvDÞja2β∅�ðxÞ; ð2:23Þ

and for the same reasons as for Eq. (2.8), the first and second integrals must vanish independently. Focusing on the second
integral and setting vabjc ¼ 0 we are left with

2LAB
ja2β

CD þ 3LABC
ja2 βD þ 4LABCD

ja2 β∅ ¼ 0; ð2:24aÞ
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and the other part which must also vanish is

LABβCD þ 3LABCβD þ 6LABCDβ∅ ¼ 0: ð2:24bÞ
Combining the last two equations and using Eq. (2.6b), we
get

2LABCD
ja2 β∅ þ 3LABCDβ∅ja2 ¼ 0: ð2:24cÞ

Equation (2.20) implies that βD vanishes, hence Eq. (2.24b)
reads

LABβCD þ 6LABCDβ∅ ¼ 0; ð2:24dÞ
and since we know the form of the second order term, we
can just rearrange this equation to write down the fourth
order term:

LABCD ¼ −1
6β∅

LABβCD: ð2:25Þ

Hence, to fourth order, our effective Lagrangian is

L¼
ffiffiffiffiffiffiffiffiffiffi
detq

p
2κ

�
sgnðβ∅Þffiffiffiffiffiffiffiffi

jβ∅j
p vabvab − ðvaaÞ2

4

�
1−

1

6β∅
βcdefvcdvef

�

þ
ffiffiffiffiffiffiffiffi
jβ∅j

q
R− 2Λ

�
: ð2:26Þ

Notice that it appears that, at the level of the action, we
cannot absorb the correction through a simple redefinition
of the form v0ab ¼ fðβÞvab.

1. Consistency check

To take this even further, and constrain the form that
βabcd can take, let us go back to (2.24), and look at the
symmetries like we did previously in Sec. II B 2. By
symmetrizing the whole equation, we have

LðABÞβðCDÞ ¼ LðABβCDÞ: ð2:27Þ
If we then expand this, and do some simple algebraic
manipulations, we get

5LðABÞβðCDÞ − LðACÞβðBDÞ − LðADÞβðBCÞ − LðBCÞβðADÞ

− LðBDÞβðACÞ − LðCDÞβðABÞ ¼ 0; ð2:28Þ

which once we contract with qa1b1qa2b2qc1d1qc2d2 , and
ignore an overall multiplication factor, leads to

Lab
abβ

cd
cd − Labcdβabcd ¼ 0: ð2:29Þ

Then since Labcd ∝ qaðcqdÞb − qabqcd, the above equation
implies

2βabab þ βaa
b
b ¼ 0: ð2:30Þ

Equation (2.24a), keeping in mind that the first order
correction term vanishes, implies

LAB
ja2β

CD þ 2LABCD
ja2 β∅ ¼ 0; ð2:31Þ

which combined with Eq. (2.24d) leads to

−6ðLABCDβ∅Þja2 − LABβCDja2 þ 2LABCD
ja2 β∅ ¼ 0: ð2:32Þ

If we now expand the first term, and then use the identity
(2.24c), we find

LABβCDja2 ¼ 0; ð2:33Þ

which, since LAB ≠ 0, leads us to the conclusion that

βabcdje ¼ 0: ð2:34Þ

Each of the correction expansion coefficients in (2.4b) is
a function of the metric only. Out of all forms we can find
the metric in ðdet q; qab; qabjc;…Þ, the only ones which can
be included in a tensor which has a vanishing uncontracted
covariant derivative is the metric itself and its determinant.
If we combine this information with (2.30), we find that

βabcd½qij� ¼ βð2Þ½det q�ðqaðcqdÞb − qabqcdÞ: ð2:35Þ

The metric determinant is a scalar density with a nonzero
weight, but βð2Þ must simply be a scalar. Classically this
would mean that βð2Þ would have to be a constant, but since
we are dealing with a semiclassical effective theory we
expect that there will be quantum degrees of freedom in
the full theory which may be able to balance the weight.
Note that the same argument holds for β∅ [10].
Hence, the effective Lagrangian to fourth order reads

L ¼
ffiffiffiffiffiffiffiffiffiffi
det q

p
2κ

�
sgnðβ∅Þffiffiffiffiffiffiffiffi

jβ∅j
p vabvab − ðvaaÞ2

4
−

βð2Þ

jβ∅j3=2
ðvabvab − ðvaaÞ2Þ2

24
þ

ffiffiffiffiffiffiffiffi
jβ∅j

q
R − 2Λ

�
: ð2:36Þ

From this, we can find an equation for the metric mo-
mentum through the canonical formula pab ¼ δL

δvab
. This

however gives a relation which is cubic in vab, and so it

may be possible to invert it only locally to get an equation
for the Hamiltonian, H ¼ vabpab − L, which only depends
on qab and pab, for certain ranges of vab (or equivalently for
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certain ranges of extrinsic curvature). However, the ob-
tained relationship may be complicated to apply usual
canonical methods to our results, and one must use
variational methods.
Since general covariance is not explicit because of

separating space and time derivatives, this makes calcu-
lations very complicated for systems which we have not
already symmetry reduced. However, it may be possible to
perform a similar calculation to find an effective form forH
that is fourth order in pab by following the procedure in
Ref. [20], which would then allow canonical methods to
be used.

D. Discussion

We have constructed an effective Lagrangian which
includes the first correction terms of higher extrinsic
curvature from a generally deformed constraint algebra,
which may stem from holonomy effects of loop dynamics.
The only term in the modified algebra of constraints which
was deformed is the fH;Hg term which, since the
Hamiltonian constraint generates timelike translations,
modifies the time structure of space-time. Teitelboim in
Ref. [3] showed how the algebra of constraints in general
relativity is related to the ability to embed a spacelike
hypersurface into a space-time with geometric interpreta-
tion. This algebra is deformed, hence the interpretation of
space-time in terms of classical geometry breaks down.
Since we are only using an effective geometrodynamic
approximation to the underlying quantum geometry, break-
down of the classical geometry should be expected.
One issue with higher-order theories of classical gravity,

such as certain Fðð4ÞRÞ theories, is that they can often suffer
from ghosts and are thus unstable. In our case, since (2.36)
contains nonlinearities in the time derivatives of the
form _q4, one may fear that this may also be the case here.
However, since we are only dealing with an effective
model, such a situation is likely to simply be a relic of
our truncation of the curvature expansion.

III. COSMOLOGY

Our investigation is primarily directed towards finding
possible phenomenological effects of loop dynamics. We
expect observable corrections to physical dynamics to only
be present in extreme systems, such as during the era of
high energy density in the early Universe. Thus, in this
section we investigate the cosmological implications of our
effective scheme. This has of course been studied for loop
quantum cosmology in the past, but our effective scheme
may allow for greater flexibility when studying the
phenomenology.

A. Background equations

We restrict to a flat Friedmann-Lemaître-Robertson-
Walker (FLRW) space with Λ ¼ 0,

L̄ ¼ 3a3

κN̄2
ffiffiffiffiffi
β̄∅

p H2

�
1þ 4β̄ð2Þ

N̄2β̄∅
H2

�
; ð3:1Þ

wherea is the scale factor,H ¼ _a=a is theHubble parameter,
and an overbarred function means just the background
component of that function (i.e. only dependent on a).
We couple this to matter with energy density ρ and

pressure density P ¼ wρ. We Legendre transform the
effective Lagrangian to find the Hamiltonian. Imposing
the Hamiltonian constraint H ≈ 0 gives us

H2

�
1þ 12β̄ð2Þ

N̄2β̄∅
H2

�
¼ κN̄2

ffiffiffiffiffi
β̄∅

p
3

ρ; ð3:2Þ

which can be solved to find the modified Friedmann
equation,

H2 ¼ 2κN̄2
ffiffiffiffiffi
β̄∅

p
3ðxþ 1Þ ρ; ð3:3Þ

where the correction factor is

x ≔

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ 16κβ̄ð2Þffiffiffiffiffi

β̄∅
p ρ

s
: ð3:4Þ

Going back to the effective Lagrangian, and varying it with
respect to the scale factor, we find the Euler-Lagrange
equation of motion. When we substitute in Eq. (3.3), we get
the acceleration equation

ä
a
¼−κN̄2

ffiffiffiffiffi
β̄∅

p
6x

ρ

�
1þ 3w− 2

∂ ln N̄
∂ lna −

1

2

∂ ln β̄∅
∂ lna

− 2

�
x− 1

xþ 1

��
1þ ∂ ln N̄

∂ lna −
1

2

∂
∂ lna ln

�
β̄ð2Þ

β̄∅

���
: ð3:5Þ

If we take the time derivative of Eq. (3.3), then substitute in
Eq. (3.5), we get the usual continuity equation

_ρþ 3Hρð1þ wÞ ¼ 0: ð3:6Þ
Note that there may be corrections to the matter sector due
to the modified constraint algebra [24,25], but we have not
included these here.
Since βð2Þ vanishes in the classical limit, we can treat it as

a small parameter to expand Eq. (3.3) to first order,

H2 ¼ κN̄2
ffiffiffiffiffi
β̄∅

p
3

ρ

�
1 −

ρ

ρc

�
þO

�
ρ2

ρ2c

�
; ð3:7Þ

where

ρc ≔
ffiffiffiffiffi
β̄∅

p
4κβ̄ð2Þ

; ð3:8Þ
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and expanding the bracket in Eq. (3.5) to first order, we find
that ä=a > 0 when w < wa, where

wa ¼
−1
3

�
1 −

1

2

∂ ln β̄∅
∂ ln a − 2

ρ

ρc

�
1 −

1

2

∂
∂ ln a ln

�
β̄ð2Þ

β̄∅

���
:

ð3:9Þ
We have set N̄ ¼ 1, so this is applicable for cosmic time.
The modified Friedmann equation (3.7) predicts a big

bounce rather than a big bang, provided either ρc is a
constant, or it diverges at a slower rate than ρ as a → 0, so
that one may conclude that _a → 0 as ρ → ρc.
Let us emphasize that the bounce (under the conditions

mentioned above) is found considering only holonomy
corrections manifesting as higher-order powers of curvature
and ignoring higher-order terms in the derivative expan-
sion. The equations (3.7) and (3.9) have been expanded to
leading order in β̄ð2Þ, so we should be cautious about the
regime of their validity. Noting that the Lagrangian is also
an expansion; β̄ð2Þ is a coefficient to the fourth order term
and appears only linearly, we conclude that there is no good
reason why we should have more trust in equations such as
(3.3) or (3.5) simply because they contain higher orders. In
Ref. [5], Ashtekar, Pawlowski, and Singh write their
effective Friedmann equation with leading order correc-
tions [which is the same as (3.7)] and say that it holds
surprisingly well even for ρ ≈ ρc, the regime when the
expansion should break down (we should note that their
work refers only to the case where w ¼ 1).

B. β̄ functions

We need to know β̄∅ðaÞ and β̄ð2ÞðaÞ in order to make
progress beyond this point, so we compare our results to
those found in previous investigations. In Ref. [9],
Cailleteau, Linsefors, and Barrau have found information
about the correction function for when inverse-volume and
holonomy effects are both included in a perturbed FLRW
system. Their equation [Eq. (5.18) in Ref. [9]] gives
(rewritten slightly)

β̄ða; _aÞ ¼ fðaÞΣða; _aÞ ∂2

∂ _a2
�
γ∅ða; _aÞ

�
sin½γμðaÞ _a�

γμðaÞ
�

2
�
;

ð3:10Þ

where γ ≈ 0.12 is the Barbero-Immirzi parameter, γ∅ is the
function which contains information about inverse-volume

corrections, Σða; _aÞ depends on the form of γ∅, and fðaÞ
is left unspecified. We just consider the case where
γ∅¼γ∅ðaÞ, in which case Σ¼1=ð2

ffiffiffiffiffi
γ∅

p
Þ and μ¼

a2ω
ffiffiffiffiffiffiffiffi
γ∅Δ

p
with ω ¼ −1=2. The constant Δ is usually

interpreted as being the “area gap” derived in loop quantum
gravity. We leave ω unspecified for now, because different
quantizations of loop quantum cosmology give it equal to
different values in the range ½−1=2; 0�. Equation (3.10) now
becomes

β̄ ¼ f
ffiffiffiffiffi
γ∅

q
cos ð2γ

ffiffiffiffiffiffiffiffi
γ∅Δ

q
aδHÞ; ð3:11Þ

where δ ¼ 1þ 2ω. The “old dynamics” or “μ0 scheme”
corresponds to ω ¼ 0 and δ ¼ 1, and the favored
“improved dynamics” or “μ̄ scheme” corresponds to ω ¼
−1=2 and δ ¼ 0 [6,26]. In the semiclassical regime,ffiffiffiffi
Δ

p
H ≪ 1, so we can Taylor expand this equation for

the correction function to get

β̄ ≈ f
ffiffiffiffiffi
γ∅

q
− 2γ2Δa2δfðγ∅Þ3=2H2: ð3:12Þ

The way that γ∅ is defined is that it multiplies the back-
ground gravitational term in the Hamiltonian constraint
relative to the classical form. Since we are assuming
γ∅ ¼ γ∅ðaÞ, we can isolate it by taking our Lagrangian
(3.1) and setting β̄ð2Þ ¼ 0. If we then Legendre transform to
find a Hamiltonian expressed in terms of the momentum of
the scale factor, we find that it is proportional to

ffiffiffiffiffi
β̄∅

p
.

Thus, we conclude that β̄∅ ¼ ðγ∅Þ2 when γ∅ is just a
function of the scale factor. Using this to compare (3.12)
with what we have already found for our correction
function,

β̄ ≈ β̄∅ þ β̄ð2Þ½v̄abv̄ab − ðv̄aaÞ2� ¼ β̄∅ − 24β̄ð2ÞH2; ð3:13Þ

we find that f ¼ ðβ̄∅Þ3=4, and therefore f ¼ ðγ∅Þ3=2. From
this, we can now deduce the form of the coefficient for the
higher-order corrections,

β̄ð2Þ ¼ γ2Δ
12

a2δðγ∅Þ3: ð3:14Þ

The exact form of γ∅ðaÞ is uncertain, and the possible forms
that have been found also contain quantization ambiguities.
The form given by Bojowald in Ref. [4] is

γ∅ ¼ 3r1−l

2l

�ðrþ 1Þlþ2 − jr − 1jlþ2

lþ 2
− r

ðrþ 1Þlþ1 − sgnðr − 1Þjr − 1jlþ1

lþ 1

�
; ð3:15Þ

where l ∈ ð0; 1Þ, r ¼ a2=a2⋆, and a⋆ is the characteristic scale of the inverse-volume corrections, related to the discreteness
scale. We will only use the asymptotic expansions of this function, namely
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γ∅ ≈
�
1þ ð2−lÞð1−lÞ

10
ð aa⋆Þ−4; if a ≫ a⋆

3
1þl ð aa⋆Þ2ð2−lÞ; if a ≪ a⋆

ð3:16Þ

and even then we will only take γ∅ ≈ 1 for a ≫ a⋆, since
the correction is vanishingly small.
In Planck units, ℏ ¼ c ¼ 1 and l2Pl ¼ m−2

Pl ¼ G. We
replace the area gap with a dimensionless parameter ~Δ ¼
Δl−2Pl which is of order unity. Our modified Friedmann
equation is now given by

H2 ¼ 8πγ∅
3m2

Pl

ρ

�
1 −

8πγ2 ~Δ
3

a2δðγ∅Þ2 ρ

ρPl

�
: ð3:17Þ

Wewill apply this to different types of matter. First of all we
will consider a perfect fluid, and then we will consider a
scalar field with a power-law potential.

C. Perfect fluid

We consider the simple case of a perfect fluid, where the
equation of state is w ¼ P=ρ, with w a constant. Solving the
continuity equation (3.6) gives us the energy density as a
function of the scale factor:

ρðaÞ ¼ ρ0a−3ð1þwÞ; ð3:18Þ
where ρða0Þ ¼ ρ0, and a0 ¼ 1 as usual.
To investigate whether there is a big bounce, we insert

this into Eq. (3.17), which becomes of the form

H2 ∝ a−3ð1þwÞ
�
1 −

8πγ2 ~Δ
3

ρ0
ρPl

aΘ
�
; ð3:19Þ

where Θ depends on which regime of (3.16) we are in,
namely

Θ ¼
�
2δ − 3ð1þ wÞ; if a ≫ a⋆
2δþ 4ð2 − lÞ − 3ð1þ wÞ; if a ≪ a⋆

ð3:20Þ

and we simply ignored the constant coefficients for a ≪ a⋆.
Whether a bounce happens depends on whether H → 0
when a ≠ 0, which would happen if the higher-order
correction in the modified Friedmann equation became
dominant for small values of a, i.e. if Θ < 0. The reason
this is required is because ρ needs to diverge faster than ρc
as a → 0 in order for there to be a bounce. This will happen
when w > wb, where

wb ¼
�
−1þ 2

3
δ; if a ≫ a⋆

−1þ 2
3
δþ 4

3
ð2 − lÞ; if a ≪ a⋆

ð3:21Þ

which means that, if the bounce does not happen in the
a ≫ a⋆ regime, the inverse-volume corrections make the
bounce less likely to happen. If we use the favored value of
δ ¼ 0, and assume l ¼ 1, then wb ¼ 1=3 and so w still
needs to be greater than that found for radiation in order

for there to be a bounce. A possible candidate for this
would be a massless (or kinetic-dominated) scalar field,
where w ¼ 1.
Another aspect to investigate is whether the conditions

for inflation are modified. Taking (3.9), we see that
acceleration happens when w < wa, where

wa ¼
(
− 1

3
þ 16πγ2 ~Δ

9
ð1 − δÞ ρ0

ρPl
aΘ; if a ≫ a⋆

1 − 2l
3
− 16πγ2 ~Δ

a4ð2−lÞ⋆
q 1þδ−l

ð1þlÞ2
ρ0
ρPl
aΘ; if a ≪ a⋆

ð3:22Þ

so the range of values of w which can cause accelerated
expansion is indeed modified. Holonomy-type corrections
increase the range since we expect Θ < 0, and so may
inverse-volume corrections. However, the latter also seems
to include a cutoff when the last term of Eq. (3.22) in the
a ≪ a⋆ regime dominates. Since a bounce requires _a ¼ 0
and ä > 0, the condition wb < w < wa must be satisfied
and so it must happen before the cutoff dominates, if it is to
happen at all.

D. Scalar field

We now investigate the effects that the inverse-volume
and holonomy corrections can have when we have a scalar
field. In this case, the energy and pressure densities are
given by

ρ ¼ 1

2
_φ2 þ VðφÞ; P ¼ 1

2
_φ2 − VðφÞ; ð3:23Þ

and the continuity equation gives us the equation of motion
for the scalar field,

φ̈þ 3H _φþ V 0 ¼ 0; ð3:24Þ

where V 0 ≔ ∂V
∂φ.

Let us investigate the era of slow-roll inflation. Using
the assumptions jφ̈=V 0j ≪ 1 and 1

2
_φ2 ≪ V, we have the

slow-roll equations,

_φ ¼ −V 0

3H
; ð3:25aÞ

H2 ¼ 8πγ∅
3m2

Pl

V

�
1 −

8πγ2 ~Δ
3m4

Pl

a2δðγ∅Þ2V
�
: ð3:25bÞ

If we substitute (3.25b) into (3.25a), take the derivative
with respect to time and substitute in (3.25b) and (3.25a)
again, we find

φ̈

V 0 ¼
1

3
η;

_φ2

2V
¼ 1

3
ϵ; ð3:26Þ

where the slow-roll parameters are
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η ≔
1

1 − σ

�
m2

Pl

8πγ∅
V 00

V
− ð1 − 2σÞϵþ χ − δσ

�
; ð3:27aÞ

ϵ ≔
1

1 − σ

m2
Pl

16πγ∅

�
V 0

V

�
2

; ð3:27bÞ

χ ≔
1 − 3σ

2

∂ ln γ∅
∂ ln a ; ð3:27cÞ

σ ≔
8πγ2 ~Δ
3m4

Pl

a2δðγ∅Þ2V; ð3:27dÞ

and the conditions for slow-roll inflation are

jηj ≪ 1; ϵ ≪ 1; jχj ≪ 1; jσj ≪ 1: ð3:28Þ
We would like to investigate how these semiclassical
effects affect the number of e-folds of the scale factor
during inflation. The number of e-folds before the end of
inflation N ðφÞ is defined by aðφÞ ¼ aende−N ðφÞ, where

N ðφÞ ¼ −
Z

φ

φend

dφ
H
_φ
;

¼ 8π

m2
Pl

Z
φ

φend

dφ
γ∅V
V 0

�
1 −

8πγ2 ~Δ
3m4

Pl

a2δðγ∅Þ2V
�
: ð3:29Þ

If we remove the explicit dependence on a from the integral
by setting δ ¼ 0 and γ∅ ¼ 1 (i.e. taking only a certain form
of holonomy corrections and ignoring inverse-volume
corrections), and choose a power-law potential

VðφÞ ¼ λ

n
φn ¼

~λ

n
m4−n

Pl φn; ð3:30Þ

where ~λ > 0 and n=2 ∈ N, then the number of e-folds
before the end of inflation is

N ðφÞ ¼ 4π

nm2
Pl

ðφ2 − φ2
endÞ

−
64π2γ2 ~Δ ~λ

3n2ðnþ 2Þmnþ2
Pl

ðφnþ2 − φnþ2
end Þ: ð3:31Þ

If we take the approximation that slow-roll inflation is valid
beyond the regime specified by (3.28), then we can
calculate a value for the maximum amount of e-folds by
starting inflation at the big bounce,

N max ¼
4π

n

��
3n

8πγ2 ~Δ ~λ

�
2=n

−
�
φend

mPl

�
2
�

−
64π2γ2 ~Δ ~λ

3n2ðnþ 2Þ
��

3n

8πγ2 ~Δ ~λ

�
1þ2=n

−
�
φend

mPl

�
nþ2

�
;

ð3:32Þ

and if we can assume φend=mPl ≪ 1, then

N max ¼
4π

ðnþ 2Þ
�

3n

8πγ2 ~Δ ~λ

�
2=n

: ð3:33Þ

Let us now find the attractor solutions for slow-roll
inflation. Substituting the Hubble parameter (3.17) into the
equation of motion for the scalar field (3.24), we obtain

φ̈þ _φ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
24πγ∅
m2

Pl

�
1

2
_φ2 þ V

��
1 −

8πγ2 ~Δ
3m4

Pl

a2δðγ∅Þ2
�
1

2
_φ2 þ V

��s
þV 0 ¼ 0: ð3:34Þ

We can remove the explicit scale-factor dependence of the equation by setting δ ¼ 0 and γ∅ ¼ 1 (the same assumptions as
we used to find N ). Then substituting in the power-law potential (3.30) we get

φ̈þ _φ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
24π

m2
Pl

�
1

2
_φ2 þ λ

n
φn

��
1 −

8πγ2 ~Δ
3m4

Pl

�
1

2
_φ2 þ λ

n
φn

��s
þλφn−1 ¼ 0; ð3:35Þ

which is applicable only for the region ρ < ρc, or

1 −
8πγ2 ~Δ
3m4

Pl

�
1

2
_φ2 þ λ

n
φn

�
> 0; ð3:36Þ

otherwiseH is complex. We use this equation to plot phase-
space trajectories in Fig. 1.

We can find the slow-roll attractor solution for
jφ̈φ1−n=λj ≪ 1 and 1

2
_φ2 ≪ λ

nφ
n,

_φ ≈ −

ffiffiffiffiffiffiffiffiffiffiffiffi
nλm2

Pl

24π

r
φ

n
2
−1
�
1 −

8πγ2 ~Δλ
3nm4

Pl

φn

�−1=2
; ð3:37Þ

where the term in the brackets is the correction to the
classical solution. Looking at Figs. 1(b) and 1(d), we
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conclude that the attractor solutions diverge from a linear
relationship as they approach the boundary.
The condition for acceleration for the case we are

considering here is

w < wa ¼
−1
3

�
1 −

16πγ2 ~Δ
3m4

Pl

�
1

2
_φ2 þ λ

n
φn

��
: ð3:38Þ

We plot in Fig. 2 this region on the phase space of the scalar
field to see how accelerated expansion can happen in a

wider range than in the classical case. In order to be able to
solve the equations and make plots, we have neglected
nonzero values of δ and nonunity values of γ∅. It may be
that in these cases the big bounce and inflation are no
longer inevitable, as it was found for the perfect fluid.

E. Cosmology discussion

We found that higher curvature corrections (that are
likely to arise due to holonomy corrections) are those

FIG. 1 (color online). Line integral convolution plots showing trajectories in phase space for a scalar field with a potential λφn=n with
holonomy corrections. The hue at each point indicates the magnitude of the vector ð _φ; φ̈Þ, with blue indicating low values. The
trajectories do not extend outside of the region (3.36). The attractor solution is well approximated by (3.37), which corresponds to slow-
roll inflation. The brightness of the trajectories is only a relic of the white noise image used to seed the convolution plot. We have used
~λ ¼ 1, ~Δ ¼ 2

ffiffiffi
3

p
πγ, δ ¼ 0, γ∅ ¼ 1, and the plot is in Planck units. (a) Full phase space for VðφÞ ¼ λφ2=2. (b) Attractor solution for

VðφÞ ¼ λφ2=2. (c) Full phase space for VðφÞ ¼ λφ4=4. (d) Attractor solution for VðφÞ ¼ λφ4=4.
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responsible for the repulsive gravitational effect which may
produce the big bounce. For a perfect fluid, the effects that
the quantum corrections have depended on the equation of
state, but inflation and a big bounce are possible.
For a scalar field, we found the slow-roll conditions and

the equation for the number of e-folds of inflation.
However, to find a simple solution we restricted ourselves
to a certain form of holonomy corrections. By plotting the
region of phase space which allows acceleration, we
showed that holonomy corrections aid inflation and they
make the big bounce inevitable. How the results are
affected when inverse-volume corrections are included
has not been discussed.

IV. CONCLUSIONS

We found that we can regain an effective Lagrangian to
fourth order in extrinsic curvature from a general defor-
mation of the algebra of constraints. The flexibility gained
from having an effective theory which is not already
symmetry reduced may be valuable for corroborating
results across different types of systems. We have applied
our results to isotropic early Universe cosmology, and
looked for bounce and inflation conditions for certain
matter contents. However, it could in principle also be
used to study spherically symmetric models or anisotropic
cosmology. Let us again emphasize that in our analysis we
only keep holonomy corrections manifesting as higher-
order powers of curvature and ignore higher-order terms in
the derivative expansion.

One needs to bear in mind that the higher-order curvature
terms we have been dealing with are just of the extrinsic
type, and so general covariance is deformed. Results remain
observer independent, but one would have to correct the
classical equations for transformations between different
frames. However, as stated previously, it may be possible to
change variables to absorb quantum corrections and regain
undeformed general covariance [19]. We may not be able to
perform this transformation with our Lagrangian because
canonical transformations require a Hamiltonian defined in
terms of the momentum variable. In Ref. [20], a similar
calculation was performed to regain the gravitational
Hamiltonian rather than the Lagrangian, so an extension
of this calculation which included the deformations might
then allow us to explore this transformation of variables.
The effective Lagrangian we got from the deformed

constraint algebra does not specify where the corrections
come from. We simply worked in a canonical gravity
scheme with a deformed symmetry using geometrodynam-
ical variables. Since there are other approaches to quantum
gravity which are also rooted in canonical methods, it is
possible that our results are more general than only being
relevant to loop quantum gravity. We may look into how we
could use our results to compare different theories.
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FIG. 2 (color online). Contour plots showing the region in scalar field phase space which satisfy the condition for accelerated
expansion when holonomy corrections are included (3.38). The dashed line indicates the classical acceleration condition wa ¼ −1=3
and the dotted line indicates the boundary at which the bounce occurs. The white line indicates the slow-roll solution (3.37). The
contours indicate the value of w by their color, and the most blue contour is for w ≈ 0.2. We have used ~λ ¼ 1, ~Δ ¼ 2

ffiffiffi
3

p
πγ, δ ¼ 0,

γ∅ ¼ 1, and the plot is in Planck units. (a) Accelerating values of w for VðφÞ ¼ λφ2=2. (b) Accelerating values of w for
VðφÞ ¼ λφ4=4.
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APPENDIX A: NONLOCALITY

If the underlying quantum gravity theory is discrete, there
will necessarily be some nonlocal effects when we try to
approximate it using a classical and continuous manifold. In
loop quantum gravity, these come from the quantized
holonomies, since they are classically equivalent to path-
ordered exponentials of the connection variable integrated
along an unshrinkable path. In order to find the semiclassical
effects from this apparent nonlocality, we resum over all
derivatives of vab in the expansions (2.4), to get

LðxÞ ¼ L∅ðxÞ

þ
X∞
m¼0

��X∞
n0¼0

� � �
X∞
nm¼0

Lðn0;…;nmÞðxÞ
�
− L∅ðxÞ

�
;

ðA1aÞ

βðxÞ ¼ β∅ðxÞ þ
X∞
m¼0

��X∞
n0¼0

� � �
X∞
nm¼0

βðn0;…;nmÞðxÞ
�

− β∅ðxÞ
�
; ðA1bÞ

where each ni in Lðn0;…;nmÞ and βðn0;…;nmÞ is the number of
ith derivatives of vab which these terms contain. For
example,

Lð1;1Þ½qij; vij� ¼ LABb3 ½qij�vAvBjb3 : ðA2Þ

We have included the extra L∅ and β∅ in (A1) in order
to not count these terms multiple times, since
L∅ ≔ Lð0Þ ¼ Lð0;0Þ ¼ …
If we find the Lagrangian expansion to second order of

derivatives (remembering that each factor of vab implicitly
contains a time derivative), we get

L ¼ L∅ þ LAvA þ LAa3vAja3 þ LABvAvB: ðA3Þ

Our distribution equation (2.3) is not adequate here, as the
partial derivatives with respect to vab must be replaced with
functional derivatives in order to include the dependence on
derivatives of vab. Our distribution equation is now

δLðxÞ
δqAðyÞ

vAðyÞδðx; zÞ þ 2βja2ðxÞ
δLðxÞ
δvAðzÞ

δja1ðx; yÞ

þ 2βðxÞ δLðxÞ
δvAðzÞ

δjAðx; yÞ − ðx ↔ yÞ ¼ 0: ðA4Þ

Substituting in the nonlocal expansion (A3) and setting
vab ¼ 0, we get

2fLAðxÞδðx; zÞ þ LAa3ðxÞδja3ðx; zÞg½β∅ðxÞδja1ðx; yÞ�ðxÞja2 − ðx ↔ yÞ ¼ 0: ðA5Þ

Integrating this equation over z, the term proportional to LAa3 becomes a total derivative and we can thus discard it. The
remaining equation simply leads us to (2.6a).
Going back to Eq. (A4), substituting in Eq. (A3), taking functional derivatives with respect to vCðwÞ and then setting

vA ¼ 0, we get

0 ¼ δL∅ðxÞ
δqCðyÞ

δðy; wÞ þ 2δja1ðx; yÞfLAðxÞ½βCðxÞδðx; wÞ þ βCc3ðxÞδjc3ðx; wÞ�ja2 þ 2β∅ja2ðxÞLACðxÞδðx; wÞg

þ 2δjAðx; yÞfLAðxÞ½βCðxÞδðx; wÞ þ βCc3ðxÞδjc3ðx; wÞ� þ 2β∅ðxÞLACðxÞδðx; wÞg − ðx ↔ yÞ: ðA6Þ

Now, we move the derivatives by using the product rule so that δðx; wÞ is not differentiated and then discard total derivative
terms. If we use (2.6a), use the product rule to distribute derivatives, and see what terms cancel, we are left with

0 ¼
�
−
δL∅ðxÞ
δqCðyÞ

þ 4β∅ja2ðxÞLACðxÞδja1ðx; yÞ þ 4β∅ðxÞLACðxÞδjAðx; yÞ
�
δðx; wÞ − ðx ↔ yÞ; ðA7Þ

which is the same as Eq. (60) in Ref. [10]. Therefore, it will lead to the same effective Lagrangian at second order as the
local case (2.5). Therefore, nonlocal effects do not appear at second order.
To third order in derivatives, the Lagrangian looks like

L ¼ L∅ þ LAvA þ LAa3vAja3 þ LAa3a4vAja3a4 þ LABvAvB þ LABb3vAvBjb3 þ LABCvAvBvC; ðA8Þ

so there are two more terms to consider compared to the second order case. The calculation of how this may affect the
effective Lagrangian is not considered here.
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APPENDIX B: EXTRA THIRD ORDER
CALCULATIONS

These calculations are not crucial to our third order
Lagrangian calculations, but they do help give justification
for why we think that the first order term LA vanishes.
Let us start from Eq. (2.7) and follow the method of

Ref. [21]. We decompose vab (which can be treated as an
arbitrary function) into scalar and tensor components
vabðxÞ ¼ v̄ðxÞνabðxÞ, which we can vary independently
(making sure that we keep det ν ¼ 1). This means that
Eq. (2.7) can be rewritten as

0 ¼ Aðx; yÞv̄2ðxÞ − Aðy; xÞv̄2ðyÞ þ Bðx; yÞv̄ðxÞv̄ðyÞ
þ Caðx; yÞv̄ðxÞv̄jaðxÞ − Caðy; xÞv̄ðyÞv̄jaðyÞ; ðB1Þ

where

Aðx; yÞ ¼ Aa1
1 ðxÞδja1ðx; yÞ þ AA

2 ðxÞδjAðx; yÞ; ðB2aÞ

Aa1
1 ¼ 2ðLAβBCja2 þ 2LABβCja2ÞνBνC

þ 2ðLAβBC þ LABβCÞðνBνCÞja2 ; ðB2bÞ

AA
2 ¼ 2ðLAβBC þ 2LABβC þ 3LABCβ∅ÞνBνC; ðB2cÞ

Bðx; yÞ ¼
�
δLAðxÞ
δqBðyÞ

−
δLBðyÞ
δqAðxÞ

�
νAðxÞνBðyÞ; ðB3Þ

Ca1ðx; yÞ ¼ CA
1 ðxÞδja2ðx; yÞ;

CA
1 ¼ 4ðLAβBC þ LABβCÞνBνC: ðB4Þ

Setting v̄ja ¼ 0 in Eq. (B1), we find

0 ¼ Aðx; yÞv̄2ðxÞ − Aðy; xÞv̄2ðyÞ þ Bðx; yÞv̄ðxÞv̄ðyÞ;
ðB5Þ

which means that

0 ¼ Caðx; yÞv̄ðxÞv̄jaðxÞ − Caðy; xÞv̄ðyÞv̄jaðyÞ ðB6Þ

must be satisfied independently.
We can easily show that (B5) is satisfied by following a

similar procedure to Ref. [21], but it does not give any
useful new conditions on the expansion coefficients of L or
β. So we turn our attention to (B6). We take functional
derivatives with respect to v̄ðzÞ and v̄ðz0Þ, multiply by test
functions aðyÞ, bðzÞ, cðz0Þ and integrate by parts over z0,

0¼ aðyÞbðzÞCab
1 ðxÞδjbðx;yÞ½δjaðx;zÞcðxÞ− δðx;zÞcjaðxÞ�

−aðyÞbðzÞCab
1 ðyÞδjbðx;yÞ½δjaðy;zÞcðyÞ− δðy;zÞcjaðyÞ�;

ðB7Þ

then integrate by parts over y and discard terms which
vanish due to symmetry of indices,

0 ¼ aðxÞbðzÞf−δðx; zÞ½Cab
1jbðxÞcjaðxÞ þ Cab

1 ðxÞcjabðxÞ�
þ δjaðx; zÞCab

1jbðxÞcðxÞ þ δjabðx; zÞCab
1 ðxÞcðxÞg; ðB8Þ

then, integrate by parts over z, set aðxÞ ¼ 1, and then
integrate by parts over x to get

0 ¼ −2
Z

d3xbjaðxÞcðxÞCab
1jbðxÞ; ðB9Þ

and since bðxÞ and cðxÞ are arbitrary test functions, we find
Cab
1jb ¼ 0, and thus

0 ¼ ðLAβBC þ LABβCÞja2νBνC
þ ðLAβBC þ LABβCÞðνBνCÞja2 ; ðB10Þ

and by remembering that νA is an arbitrary function, we see
that both terms must vanish independently, and so we find

LAβBC þ LABβC ¼ 0: ðB11Þ
This is necessary for our argument in Sec. II B 2.
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