
Kerr-Newman scalar clouds

Carolina L. Benone* and Luís C. B. Crispino†

Faculdade de Física, Universidade Federal do Pará, 66075-110 Belém, Pará, Brazil

Carlos Herdeiro‡ and Eugen Radu§

Departamento de Física da Universidade de Aveiro and I3N Campus de Santiago,
3810-183 Aveiro, Portugal

(Received 18 September 2014; published 19 November 2014)

Massive complex scalar fields can form bound states around Kerr black holes. These bound states—
dubbed scalar clouds—are generically nonzero and finite on and outside the horizon; they decay
exponentially at spatial infinity, have a real frequency and are specified by a set of integer “quantum”
numbers ðn; l; mÞ. For a specific set of these numbers, the clouds are only possible along a one-dimensional
subset of the two-dimensional parameter space of Kerr black holes, called an existence line. In this paper
we make a thorough investigation of the scalar clouds due to neutral (charged) scalar fields around
Kerr(-Newman) black holes. We present the location of the existence lines for a variety of quantum
numbers, their spatial representation and compare analytic approximation formulas in the literature with
our exact numerical results, exhibiting a sometimes remarkable agreement.
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I. INTRODUCTION

The Schrödinger equation admits bound state solutions
in a Coulomb potential. These are the atomic orbitals,
familiar from elementary quantum mechanics. The corre-
sponding scalar functions are finite everywhere and decay
exponentially asymptotically. In the absence of spin, the
orbitals can be labeled by three quantum numbers ðn;l; mÞ,
where n counts the number of nodes of the radial function
and l; m are the standard spherical harmonic indices. The
commonly used principal quantum number, which defines
the orbital’s energy, is nþ lþ 1.
Changing this electromagnetic background to a black hole

(BH) spacetime and the Schrödinger by the Klein-Gordon
equation, one expects, at first sight, that no analogous scalar
bound states should exist. Indeed, the causal structure of BH
spacetimes demands that any classical field in the vicinity of
the BH must be subjected to a purely ingoing boundary
condition at the horizon. This seems to exclude equilibrium
(i.e. stationary) configurations, and hence to rule out bound
states around BHs. This expectation is actually confirmed for
Schwarzschild BHs. Considering the massive Klein-Gordon
equation □Ψ ¼ μ2Ψ in this background, in standard
Schwarzschild coordinates, decomposing the solution into
Fourier and harmonic modes, Ψ ∼ e−iωtFðrÞYlmðθ;ϕÞ, and
requiring these modes to have a radial exponential decay as

to describe bound states, limr→∞FðrÞ ∼ e−
ffiffiffiffiffiffiffiffiffiffi
μ2−ω2

p
r=r, one

finds that the frequency ωmust necessarily be complex. One

finds, furthermore, that the imaginary part of the frequency,
IðωÞ, is always negative [1–3]; thus modes are decaying in
time, and τ ¼ 1=jIðωÞj measures the lifetime of the
decaying scalar configuration. The fact that IðωÞ ≠ 0
demonstrates the impossibility of an equilibrium between
the scalar field and the BH, even if extremely long-lived
configurations may exist [4]. This impossibility remains
even if the backreaction of the minimally coupled scalar field
is considered, i.e. at nonlinear level within the Einstein-
Klein-Gordon theory; this fact is confirmed by a number
of no-(scalar)hair theorems for spherically symmetric
BHs [5,6].
A remarkable change of affairs occurs when one con-

siders Kerr BHs, for which the horizon is rotating with an
angular velocity ΩH. Three qualitatively distinct types of
massive scalar field modes which are asymptotically
exponentially decaying can be found. For a mode with
frequency ω and spheroidal harmonic indices l; m the
imaginary part of the frequency is

(i) IðωÞ < 0, for RðωÞ > mΩH;
(ii) IðωÞ > 0, for RðωÞ < mΩH;
(iii) IðωÞ ¼ 0, for ω ¼ mΩH.
Regime (i) is the only one present for Schwarzschild

BHs, as discussed above. Regime (ii) is called the super-
radiant regime [1–3,7–9]; the corresponding scalar
modes can extract energy and angular momentum from
the BH. It is made possible by the existence of an
ergoregion. Regime (iii), i.e. when the scalar field fre-
quency equals the critical frequency ωc ≡mΩH, corre-
sponds to bound states, analogous—in terms of the scalar
field distribution and labeling, but not in its probabilistic
interpretation—to the atomic orbitals. These are dubbed
scalar clouds [10–13].
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Although scalar clouds have a phaselike time depend-
ence, their energy-momentum tensor is time independent.
As such, their spacetime backreaction is compatible with a
stationary metric. Recently, the corresponding fully non-
linear solutions of the coupled Einstein-Klein-Gordon
system were found [12,14,15], corresponding to Kerr
BHs with scalar hair. These BHs can have quite distinct
physical properties when compared to the canonical Kerr
BHs and can lead to a different phenomenology, testable
with future observations, such as gravitational wave obser-
vations [16–18] and the Event Horizon Telescope [19]. As
such understanding their properties is timely.
The goal of this paper is to perform a detailed study of

neutral scalar clouds around Kerr BHs and charged scalar
clouds around Kerr-Newman BHs, using a numerical
approach, and comparing the results with some analytic
formulas available in the literature. This study of scalar
clouds is not only interesting from the viewpoint of BH
theory, but it can also be seen as a step to understand the
new type of hairy BHs we have mentioned.
This paper is organized as follows. In Sec. II we review

the separation of variables procedure for solving the scalar
wave equation in the Kerr-Newman background and the
boundary conditions to be imposed in order to obtain bound
state solutions. In Sec. III we will make a scan in the
parameter space of Kerr and Kerr-Newman BHs to find the
location of the existence lines of clouds for nodeless and
nodeful clouds with different ðl; mÞ quantum numbers. Our
results are obtained numerically, but we shall compare with
some analytic formulas existent in the literature obtained
within some approximations. Then in Sec. IV we perform
an analysis of the spatial distribution, both radial and
angular, of a sample of clouds. We close with some
final remarks in Sec. V. We assume throughout the paper
ℏ ¼ c ¼ G ¼ 1.

II. SEPARATION OF VARIABLES: RADIAL
AND ANGULAR EQUATIONS

We shall be considering a massive, charged scalar field
minimally coupled to the geometry and to the electromag-
netic potential of a rotating charged BH. The background
spacetime is described by the Kerr-Newman line element in
Boyer-Lindquist coordinates:

ds2 ¼ −
Δ
ρ2

ðdt − asin2θdϕÞ2 þ ρ2

Δ
dr2

þ ρ2dθ2 þ sin2θ
ρ2

½ðr2 þ a2Þdϕ − adt�2; ð1Þ

with

ρ2 ≡ r2 þ a2cos2θ; Δ≡ r2 − 2Mrþ a2 þQ2; ð2Þ

where M and Q are the Arnowitt-Deser-Misner
(ADM) mass and charge of the BH, respectively,
and the ADM angular momentum is given by J ¼ aM.
The background electromagnetic 4-potential is Aα ¼
ð−rQ=ρ2; 0; 0; aQrsin2θ=ρ2Þ.
The Klein-Gordon equation for a massive charged

particle is given by

ð∇α − iqAαÞð∇α − iqAαÞΨ − μ2Ψ ¼ 0; ð3Þ

where μ is the mass of the scalar field and q is its charge.
In order to solve this equation we decompose the scalar
field as Ψ ¼ P

l;mΨlm and separate variables as Ψlm ¼
RlmðrÞSlmðθÞeimϕe−iωt [20], where SlmðθÞ are the spheroi-
dal harmonics which obey

1

sin θ
d
dθ

�
sin θ

dSlm
dθ

�
þ
�
Klm þ a2ðμ2 − ω2Þ

− a2ðμ2 − ω2Þcos2θ − m2

sin2θ

�
Slm ¼ 0: ð4Þ

Klm are separation constants. The radial functions RlmðrÞ
then obey the radial equation

Δ
d
dr

�
Δ
dRlm

dr

�

þ ½H2 þ ð2maω − Klm − μ2ðr2 þ a2ÞÞΔ�Rlm ¼ 0; ð5Þ

where H ≡ ðr2 þ a2Þω − am − qQr. We can rewrite
Eq. (5) using the tortoise coordinates, defined by

dr�
dr

≡ r2 þ a2

Δ
; ð6Þ

and obtain a new radial equation without the first deriva-
tive term,

d2Ulm

dr2�
þ
�½H2 þ ð2maω − μ2ðr2 þ a2Þ − KlmÞΔ�

ðr2 þ a2Þ2 −
ΔðΔþ 2rðr −MÞÞ

ðr2 þ a2Þ3 þ 3r2Δ2

ðr2 þ a2Þ4
�
Ulm ¼ 0; ð7Þ
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in terms of the new dependent functions Ulm defined as

Ulm ≡ Rlm

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
r2 þ a2

p
: ð8Þ

Next, we must impose boundary conditions. Any state in a
BH background should have a purely ingoing boundary
condition at the horizon; moreover the bound states we are
looking for should have an asymptotically exponentially
decaying behavior. Analyzing the radial equation (5) we find
asymptotic solutions compatible with these requirements:

RlmðrÞ ≈
�
e−iðω−ωcÞr� ; for r → rþ;
e−

ffiffiffiffiffiffiffiffi
μ2−ω2

p
r

r ; for r → ∞;
ð9Þ

where we defined the critical frequency ωc, given by

ωc ≡mΩH þ qΦH ¼ ma
r2þ þ a2

þ qQrþ
r2þ þ a2

: ð10Þ

Here, rþ is the radial coordinate of the outer (event) horizon,
ΩH is the horizon angular velocity, as mentioned in the
Introduction, and ΦH is the horizon electric potential. Later
we shall also use r−, the radial coordinate of the inner
(Cauchy) horizon. Observe that in the presence of both
background and scalar field electric charge, the critical
frequency gets a new contribution, as compared to that
discussed in the Introduction. Indeed there is a purely
charged superradiance that, under appropriate boundary
conditions, can also lead to instabilities [21–23].

III. SCANNING THE BH PARAMETER SPACE
FOR CLOUDS

In order to study bound states, in the following, we shall
focus on the case for which the field’s frequency equals the
critical one:

ω ¼ ωc: ð11Þ
This choice allows the existence of stationary scalar con-
figurations around Kerr-Newman BHs, but only for specific
values of the background parameters; mathematically, one
may regard (7) as a nonstandard eigenvalue problem. In our
approach, these specific values will be found numerically.
Our strategy can be summarized as follows. The radial
equation (5) is solved for given cloud quantum numbers
ðn; l; mÞ and charge q. The field mass μ is taken as a
normalization scale and all quantities will be referred with
respect to it. Moreover, we fix the BH background param-
eters rþ and Q. In this procedure, we consider the following
expansion for the coupling constant Klm:

Klm þ a2ðμ2 − ω2Þ ¼ lðlþ 1Þ þ
X∞
k¼1

cka2kðμ2 − ω2Þk;

ð12Þ
where the coefficients ck may be found in Ref. [24].

As r → rþ, the radial function [with the critical fre-
quency (11)] admits a power series expansion,

Rlm ¼ R0

�
1þ

X
k≥1

Rkðr − rþÞk
�
; ð13Þ

with R0 an arbitrary nonzero constant (since we consider
only the linear Klein-Gordon equation). The coefficients Rk
are found by replacing Eq. (13) into Eq. (5), and solving it
order by order in terms of ðr − rþÞ. In our numerics, we
have considered only the k ¼ 1; 2 terms in (13) and took,
without loss of generality, R0 ¼ 1. The Rk exhibit a
nonelucidating dependence on the background parameters
ðrþ; a; QÞ, on q and on the quantum numbers ðl; mÞ; thus
we shall not exhibit them here.
Then, starting with the near horizon expansion (13), we

search for values of a for which the radial function Rlm goes
to zero (exponentially) at infinity, as given by the second
relation in Eq. (9). The numerical integration of Eq. (5)
results in a one-parameter shooting problem, which was
solved using both a standard FORTRAN solver, as well as a
MATHEMATICA routine, with agreement to high accuracy.
We have found that, for given input parameters
ðrþ; Q; q; l; mÞ, solutions with the right asymptotics exist
for a discrete set of a, which can be labeled by the number n
of nodes of the radial function Rlm. In this way we
determine the existence lines of the clouds with a given
set of quantum numbers, in the parameter space of Kerr-
Newman BHs.
We shall now present the results obtained numerically

for the clouds. First, we consider the case of a massive
scalar field in the Kerr spacetime (Q ¼ 0 and q ¼ 0); then
we discuss the case of a massive charged scalar field in the
Kerr-Newman spacetime. We always assume the cosmic
censorship hypothesis, so that the singularities are hidden
by event horizons; in other words, we never consider
over-extreme backgrounds.

A. Kerr

For Kerr BHs, the scalar field critical frequency (ωc) and
the background horizon angular velocity are related by
ΩH ¼ ωc=m. The existence lines for nodeless clouds and
l ¼ m ¼ 1; 2; 3; 4; 10 were first exhibited in Ref. [12],
using a BH mass M vs horizon angular velocity ΩH
diagram. This particular type of diagram parametrizes
the two-dimensional parameter space of Kerr BHs in a
way appropriate for this problem, due to the relation
between the scalar field frequency and the horizon angular
velocity. As such, we shall herein represent existence lines
using the same type of diagram.
In Fig. 1 we plot the existence lines for the clouds with

different node numbers, n ¼ 0; 1; 2, and angular momen-
tum harmonic indices, l ¼ m ¼ 1; 2. As mentioned before,
the lines with n ¼ 0 and l ¼ m ¼ 1; 2 have already been
presented in Ref. [12]. The main trend concerning these
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lines is that as l ¼ m is increased the lines move towards
smallerΩH. The main new feature presented here is that the
solutions with nodes move towards larger values of ΩH as
compared to nodeless solutions with the same l; m, con-
verging to the latter when M → 0. In Sec. V we shall
provide an intuitive interpretation for the behavior of these
and the following existence lines.
It was briefly mentioned in Ref. [12] that the existence

lines for nodeless clouds with a given value ofm and l > m
always move towards larger ΩH values than the corre-
sponding ones with m ¼ l. This is illustrated in Fig. 2. The
trend we have seen in Fig. 1 for the existence lines with
nodes establishes a similar pattern when l; m are fixed and

we increase n. As such, fixing m, the existence line for any
n; l that stands on lowest values of ΩH is the n ¼ 0, l ¼ m
line. We recall that the region to the right of a given
existence line—in this type of diagram—consists of back-
ground spacetimes that are superradiantly unstable against
that particular mode. Consequently, the m ¼ l, n ¼ 0
existence line defines the boundary of the region between
stable and unstable Kerr solutions for a given m mode.
Although there is no general analytic formula for the

clouds’ existence lines, some limiting cases have been
considered in the literature which led to analytic formulas
valid within some approximation. Here we shall discuss
two such limits, one that applies to fast rotating BHs and
another that applies to slowly rotating BHs.
In Ref. [10] Hod first discussed the clouds for the

extremal Kerr BH and in Ref. [11] extended his results
for near-extremal BHs, obtaining an analytic approxima-
tion given by [cf. Eq. (32) in Ref. [11]]

μ ¼ mΩH½1þ 2ϵ̄2�; ð14Þ

where

ϵ̄ ¼ m
2ðdþ 1þ 2nÞ −

m3

4dðdþ 1þ 2nÞ2
�
rþ − r−

rþ

�
ð15Þ

and d ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ð2lþ 1Þ2 − 4m2

p
. From these equations we can

obtain the existence line for a given cloud with quantum
numbers ðn; l; mÞ and for rapidly rotating BHs, i.e. near
extremality. In Fig. 3, however, we plot such a line for
n ¼ 0, l ¼ m ¼ 1 in an M vs a=M diagram for Kerr, but
extrapolating the formula for all values of a=M.
Another analytic formula can be obtained from the

classic work of Detweiler [3], who studied superradiance

FIG. 2 (color online). Analogous plot to Fig. 1, but now the
insets compare the solutions for m ¼ l with the solutions with
m < l, all with n ¼ 0.

FIG. 1 (color online). Existence lines for scalar clouds with
various quantum numbers in the mass vs horizon angular velocity
parameter space of Kerr BHs. The black solid curve represents
the extreme case, a ¼ M and Kerr solutions exist below this line.
The blue dashed and red dotted lines represent the nodeless
solution for m ¼ l ¼ 1 and m ¼ l ¼ 2, respectively. The insets
compare the nodeless solutions (n ¼ 0) with the solutions with
n ¼ 1; 2.

FIG. 3 (color online). Comparison between our numerical
solution for the clouds with n ¼ 0, m; l ¼ 1 and the analytical
results by Hod [11], cf. Eq. (14), and Detweiler [3], cf. Eq. (16),
in a mass vs angular momentum parameter for Kerr BHs.
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for small values of the mass coupling,Mμ ≪ 1. His results
can be specialized to the critical frequency ωc ¼ mΩH.
Since ω < μ for bound states, we obtain that Detweiler’s
results apply to slowly rotating BHs, i.e. ΩHM ≪ 1; then,
an analytical formula can be obtained [solving Eq. (26) of
Ref. [3] for μ], namely,

μ ¼ 1ffiffiffi
2

p
�
p2

M2
−

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
p2ðp2 − 4M2m2Ω2

HÞ
p

M2

�1=2
; ð16Þ

where p ¼ lþ nþ 1. In Fig. 3 we plot the corresponding
existence line for l ¼ m ¼ 1 and n ¼ 0, extrapolating to all
values of a. In this figure, besides the approximations
derived from Eqs. (14) and (16) we plot our numerical
results, which are valid (and accurate) for all values of
a=M. Somewhat unexpectedly, the analytic approximations
are still accurate, well outside their regime of validity. Thus,
even though the solution of Detweiler is supposed to be
valid only in the slowly rotating case, we see that the
numerical and the Detweiler curves overlap in almost all
the range for a=M. In the inset it is possible to see that the
numerical result tends to the Hod curve close to extrem-
ality, as expected. In Fig. 4 a similar comparison is made for
n ¼ 0 and m ¼ l ¼ 3; 4.

B. Kerr-Newman

In the Kerr-Newman case both the background and the
test field have one more parameter. So to exhibit the
existence lines in a useful way, one must fix some
quantities. In Fig. 5 we fix the background charge
μQ ¼ 0.1 and draw the existence lines for the cloud with
l ¼ m ¼ 1 and n ¼ 0 for various values of the field charge
q. The overall trend is that clouds with the same (opposite)

charge as the background occur for smaller (larger) angular
velocities. This is an intuitive behavior. For instance, same
charge implies Coulomb repulsion and hence require a
smaller angular velocity from the background to maintain
the equilibrium.
Another distinct feature of the charged existence lines,

already seen in Fig. 5 but more clearly exhibited in Figs. 6
and 7, is that the existence lines do not reach M ¼ 0, since
the inclusion of background charge implies a minimum
value for the background mass, i.e. jQj < M. Moreover,
Fig. 6 confirms the trend that increasing the Coulomb
repulsion between the field and the background implies that
for the same background mass the clouds exist for lower
background angular velocity.
Finally, fixing both the background and field charge, the

variation of the existence lines when the field’s angular

FIG. 4 (color online). Analogous comparison to that in Fig. 3
but now for the clouds with n ¼ 0, m ¼ l ¼ 3; 4. The agreement
between the analytic and numerical approximations seems to
become slightly worse, outside their regime of validity, when the
quantum numbers m ¼ l increase.

FIG. 5 (color online). Existence lines for charged scalar bound
states in the Kerr-Newman background, for n ¼ 0 and
l ¼ m ¼ 1, for different values of the field charge and fixed
background charge μQ ¼ 0.1.

FIG. 6 (color online). Existence lines for charged scalar bound
states in the Kerr-Newman background, for n ¼ 0 and
l ¼ m ¼ 1, for different values of the background charge and
fixed field charge q=μ ¼ 1.
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momentum quantum numbers are increased is qualitatively
similar to that seen in the Kerr case, namely the lines move
towards lower angular velocities, as it can be seen in Fig. 7.
This may be interpreted as a trade off between the angular
momentum of the background and that of the cloud, as to
maintain equilibrium. Another interesting feature in Fig. 7
is that, as the minimum background mass is approached,
the angular velocity of the background tends to zero.
Observe that the minimum background mass is precisely
equal to the charge μQ ¼ μM ¼ 0.1 and that the field mass
and charge are also the same q=μ ¼ 1. Thus, the limiting
equilibrium configuration is a marginal (charged) cloud of
the type discussed in Refs. [25,26].
As for the Kerr case, we can compare our numerical

results for the Kerr-Newman case with an analytic formula.
The latter was obtained from the results of Furuhashi and
Nambu [27]. First we note that these authors have shown
that in order to have bound states we must have

Mμ ≳Qq: ð17Þ
Then they obtained an expression for the real part of
the frequency for Mμ ≪ 1 and Qq ≪ 1 [cf. Eq. (26) of
Ref. [27]]. From that expression, we find the analytic
formula

μ¼R
�
2qQ
3M

þð1− i
ffiffiffi
3

p Þð6p2þq2Q2ÞM2

22=33M2A
þð1þ i

ffiffiffi
3

p ÞA
21=36M2

�
;

ð18Þ

where

A ¼ f−36p2M3qQþ 2M3q3Q3 þ 54p2M4ωc

þ ½4ð−6p2M2 −M2q2Q2Þ3
þ 4M6ð−18p2qQþ q3Q3 þ 27p2MωcÞ2�1=2g1=3:

ð19Þ

In Fig. 8 we compare this analytic formula with our
numerical results and, again, conclude that the analytic
formula works remarkably well. Observe that in the Kerr-
Newman case the existence lines cannot extend in the
whole range of a, since they are constrained by the
conditions (17) and a2 þQ2 < M2.

IV. CLOUD TOMOGRAPHY

We will now consider the spatial distribution of clouds.
All considerations in the following will be made using the
standard Boyer-Lindquist coordinates for the Kerr-
Newman spacetime. Since the angular and radial depend-
ence separate for each cloud with fixed ðn; l; mÞ it suffices
to consider these dependences separately to obtain the full
spatial picture.

A. Angular functions

The angular dependence is given by spheroidal harmon-
ics. These harmonics depend on the background angular
momentum parameter a; Slmeimϕ reduce to the standard
spherical harmonics Ylm when a ¼ 0, up to a ðl; mÞ-
dependent normalization factor. Since one is typically less
familiar with these spheroidal harmonics (than with the
spherical harmonics) we will illustrate their angular
distribution.
In Fig. 9 we give a three-dimensional plot of some

spheroidal harmonics for μrþ ¼ 0.5. As we increase the
value of l ¼ m, Slm becomes more flattened, as for
spherical harmonics. For the cases plotted, the difference
between spherical and spheroidal is essentially only an
overall scale factor, i.e. the angular distribution is very
similar. Obviously the angular dependence is independent
of considering the Kerr or the Kerr-Newman background.

FIG. 7 (color online). Existence lines for charged scalar bound
states in the Kerr-Newman background, for μQ ¼ 0.1, q=μ ¼ 1,
n ¼ 0 and m ¼ l ¼ 1; 2 and 3.

FIG. 8 (color online). Comparison between our numerical
solutions and the analytical formula by Furuhashi and Nambu
[27], cf. Eq. (18), for clouds with n ¼ 0, m ¼ l ¼ 1 and
qrþ ¼ 0.1. The numerical and analytical formulas coincide with
very good accuracy.
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B. Radial functions

The radial dependence of the clouds is quite simple and
is illustrated in Figs. 10 (for Kerr) and 11 (for Kerr-
Newman), for some values of the rotation parameter, for
two values of l ¼ m and for three different numbers of
nodes n. The scalar field is always finite on and outside the
horizon. On the horizon it needs not to be zero. For
instance, for l ¼ m ¼ 1 clouds it is nonzero on the horizon,
cf. Figs. 10 and 11. Then, the radial function will have n
nodes and decrease exponentially asymptotically.
Given the radial profiles, one may ask how close to the

horizon the clouds are concentrated. In order to gain some
insight into this question, we have plotted in Fig. 12 the
“position” of the cloud with l ¼ m ¼ 1; 2; 3; 4; 5; 10 and
n ¼ 0. By position we mean the value or r, denoted rMAX,
for which the function 4πr2jRlmj2 attains its maximum
value, cf. Ref. [10]. We can see that as a=M decreases,
rMAX=M increases, diverging as a → 0. This behavior is
consistent with the fact that Schwarzschild BHs do not

support clouds. As extremality is approached, a → M, on

the other hand, we recover some results by Hod [e.g, for
l ¼ m ¼ 1, rMAXða=M ¼ 1Þ ¼ 9.557M ¼ 9.557rþ]. It is
curious to note that our results for small l ¼ m are in
agreement with the “no-short hair” conjecture [28], which
states that, for spherically symmetric BHs, the “hair”
should extend beyond 3rþ=2 [which coincides with the
position of the circular null geodesic (CNG) for
Schwarzschild]. But for large l ¼ m, the maximum,
rMAX, approaches the Kerr horizon, as a → M, in agree-
ment with the behavior of the corotating CNG [29],
which is also plotted in Fig. 12. The fact that for large
l ¼ m the cloud’s position can approach arbitrarily close to
the horizon was first noted by Hod1 using the eikonal
approximation. These observations support the idea that a
more universal measure of the minimal hair extension,

FIG. 9 (color online). Three-dimensional plots of the spheroidal harmonics jSlmðθÞj. All three panels were obtained for μrþ ¼ 0.5.
These correspond, from left to right to μa ¼ 0.399, μa ¼ 0.133 and μa ¼ 0.430.
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FIG. 10 (color online). Radial solutions R11 (left), R22 (right) for clouds with n ¼ 0; 1; 2 in the Kerr background with μrþ ¼ 0.5.
The corresponding values of μa are given in the figure key.

1We thank S. Hod for sharing with us this observation and his
yet unpublished work [30].
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valid beyond static BHs, is given by the size of the
CNG [31].
Finally, in order to have an overview of the full spatial

distribution of the clouds and of their energy density, we

exhibit in Fig. 13 a three-dimensional plot of both the
scalar field distribution (left panel) and the energy
density (right panel), for a cloud with n ¼ 0,
l ¼ m ¼ 1. The particular cloud plotted occurs for back-
ground values rþ=M ¼ 1.46 and a=M ¼ 0.89. For the
plot we have normalized the scalar field mode such that
jΨ11ðr ¼ rH; θ ¼ π=2Þj ¼ 1. The plot takes the Boyer-
Lindquist coordinates ðr; θÞ as standard spherical coor-
dinates and uses the “polar” coordinates z ¼ r cos θ and
ρ ¼ r sin θ. Observe that both the scalar field and the
energy density are localized in a toroidal region, well
beyond rþ. This is expected by virtue of the angular
distribution of the corresponding spheroidal harmonic,
shown in Fig. 9. Note that the scalar field vanishes on
the z axis. Also, the white space around the origin
corresponds to the event horizon (a semicircle, more
clearly seen on the left panel), where the scalar field is
nonzero. The energy density plotted is the time-
time component of Tα

β , where the scalar field energy-
momentum tensor is

Tαβ ¼ 2Ψ�
;ðαΨ;βÞ − gαβ½Ψ�

;γΨ;γ þ μ2Ψ�Ψ�: ð20Þ
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FIG. 12 (color online). Position of the clouds, rMAX=M (see
definition in the text), and of the corotating CNG, as a function of
a=M for clouds with n ¼ 0 and l ¼ m ¼ 1; 2; 3; 4; 5; 10 in the
Kerr background.

FIG. 13 (color online). Three-dimensional spatial distribution of a cloud (left panel) with n ¼ 0 and m ¼ l ¼ 1 and its energy density
(right panel) in terms of polar coordinates ðρ; zÞ. Both are essentially supported along an equatorial torus, due to the angular distribution
of the corresponding spheroidal harmonic.
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FIG. 11 (color online). Radial solutions R11 (left), R22 (right) for clouds with q=μ ¼ 1 and n ¼ 0; 1; 2 in the background of Kerr-
Newman with μrþ ¼ 0.5, Qμ ¼ 0.1. The corresponding values of μa are given in the figure key.
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V. DISCUSSION AND FINAL REMARKS

In this paper we have performed a thorough analysis
of scalar clouds around Kerr and Kerr-Newman BHs.
These configurations are found by solving the massive
Klein-Gordon equation, with or without charge, for a test,
complex scalar field in the BH background. They are
analogous to atomic orbitals in the sense that there is a
scalar field bounded to a central object—i.e. which decays
exponentially asymptotically—and which is stationary—
i.e. with only a phaselike time dependence. These con-
figurations lie at the threshold of the superradiant instability
for a given mode with a set of quantum numbers ðn; l; mÞ;
fixing them yields a one-dimensional subset of the two-
dimensional Kerr parameter space or a two-dimensional
subset of the three-dimensional Kerr-Newman parameter
space. To facilitate the analysis of the latter, here we have
always examined fixed charge slices of the Kerr-Newman
parameter space. Then, for both Kerr and Kerr-Newman
cases the clouds are possible along existence lines in the
parameter space.
In the Kerr case, the dependence of the existence lines

with the quantum numbers ðn; l; mÞ can be summarized as
follows. In a BH mass (M) vs BH horizon angular velocity
(ΩH) diagram:

(i) Nodeless lines ðn ¼ 0Þ with m ¼ l are approxi-
mately vertical lines and occur for decreasing values
of ΩH as the angular quantum numbers l ¼ m
increase. Lines with different values of l ¼ m are,
generically, disconnected. This is in agreement with
the intuitive expectation that the collapse of the
cloud is prevented by (stationary) rotation effects
and that decreasing the rotation of the BH one must
increase the rotation of the cloud and vice versa.
This overall trend had already been observed in [12].

(ii) Fixing m ¼ l and increasing the number of nodes n,
i.e. moving to more excited configurations, the
existence line moves to slightly higher values of
ΩH. All these lines are connected: they converge
when the BH mass tends to zero. Again, an intuitive
interpretation is that clouds with nodes are excited
states, hence more energetic and thus require a larger
background rotation for equilibrium. Their “weight”
however, becomes irrelevant as the background mass
vanishes which agrees with the convergence of these
existence lines in the M → 0 limit.

(ii) Fixing m and n and increasing l, again the existence
line moves to slightly higher values ofΩH, and again
all these lines are connected as the BH mass tends to
zero. This overall trend was also briefly mentioned
in [12].

Adding charge to both the background and the field
introduces two qualitatively new effects in the same type of
diagram as before:

(i) When the background charge and the field charge
have the same (opposite) sign, the existence line for

a given set of quantum numbers moves to lower
(higher) values of ΩH, for fixed M. Again, this is in
agreement with the intuitive expectation that there is
now Coulomb repulsion (attraction) between the
background BH and the cloud that needs to be
balanced by smaller (higher) background rotation.

(ii) The existence lines stop being essentially vertical.
The reason is that they cannot approach the M → 0
limit, since there is a minimal BH mass for a given
BH charge Q which still allows the existence of an
event horizon. In the Qq > 0 case, fixing the field
charge equal to the field mass, one observes that as
the minimal mass is approached, then ΩH → 0 and
M → Q. The configuration approached is a marginal
charged cloud, in the nomenclature of Ref. [26].

Our numerical results for the existence lines were also
compared with some analytic approximations found in the
literature, which in principle are valid for either small rotation
or high rotation. Somewhat surprisingly, in the cases shown
here, these approximations yield a fairly accurate estimate
even far away from their a priori validity region.
We have also described the spatial distribution of the

clouds. A full picture is obtained by describing the angular
and radial dependence separately. We have given examples
of both spheroidal harmonics and of radial functions. An
interesting property of the latter is that an appropriately
defined radial position for the clouds increases as the
rotation of the background decreases. Thus the smaller
radial position is obtained for extremal BHs and it is in
agreement with a generalization of the “no-short hair”
conjecture suggested by Hod [31].
As already observed, cloud solutions can be taken as a

smoking gun for the existence of Kerr-(Newman) BHs with
scalar hair, as fully nonlinear solutions of the Einstein-
Klein-Gordon(-Maxwell) system [12]. But that does not
imply that all hairy BHs are revealed by such a test field
analysis. A remarkable example concerns Myers-Perry
BHs, which can support a scalar hair which relies on
nonlinear effects [32].
The analysis in this paper was restricted to the simple

case of scalar fields on Kerr(-Newman) BHs, for which the
wave equation separates. Similar results are expected to
hold as well for other rotating BH backgrounds afflicted by
superradiant instabilities, as well as other fields that may
trigger such instabilities. In all such cases scalar (or other
spin fields) clouds should occur at the threshold of the
superradiant instability. One particularly interesting case
that we expect is the existence of Proca clouds around Kerr
BHs (see [26] for the study of Proca quasibound states
around Schwarzschild BHs).
We would also like to comment on the stability of the

clouds discussed in this paper. Since they only exist along
lines in the Kerr two-dimensional parameter space, one
may expect that the clouds are unstable solutions. An
argument that they are actually dynamical attractors is the
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following. First observe that ω=m defines an angular
velocity for the cloud. The bound state condition ω ¼ ωc ¼
mΩH can then be interpreted as the angular velocity of the
cloud being synchronous with that of the BH horizon.
Now let us fix a Kerr background with a given horizon
angular velocity ΩH and consider a quasibound state with a
frequency RðωÞ slightly smaller (larger) than ωc. The
quasibound state will be in the superradiant (decaying)
regime. Thus it will be amplified (absorbed) by the BH.
Following the evolution of the background BH in a
quasistatic approximation, the BH loses (gains) mass and
angular momentum and its angular velocity decreases
(increases). The process only stops when the horizon
angular velocity of the evolving BH approaches
ΩH → RðωÞ=m, at which point the imaginary part of
the quasibound state frequency approaches zero. Thus it
seems plausible that clouds are dynamical equilibrium
configurations; in other words, that dynamics wants to
lock quasibound states in synchronous rotation with the
BH. This argument is reminiscent of the synchronization of
orbital and rotation periods of astronomical bodies (like the
Moon-Earth system) due to tidal effects and friction. This
analogy supports the idea of a connection between tidal
acceleration and superradiant scattering around spinning
BHs [33].
Finally, a more involved picture is found when turning

on a suitable self-interaction potential of the scalar field.
Then the (nonlinear) Klein-Gordon equation possesses

bound state solutions already in a flat spacetime back-
ground—the Q-balls [34,35]. Remarkably, spinning
Q-balls survive when replacing the Minkowski background
with a Kerr metric, provided the relation (11) connecting
the scalar field frequency and the BH event horizon velocity
is satisfied (note that the variables do not separate in this
case). The resulting solutions exhibit a more complicated
pattern than the clouds presented herein, covering a
compact region of the two-dimensional parameter space
of the Kerr BHs, rather than existence lines. These solutions
are reported elsewhere [36].

ACKNOWLEDGMENTS

We thank Helgi Rúnarsson and Juan Carlos Degollado
for discussions on this subject and S. Hod for the
correspondence. C. L. B. acknowledges the Universidade
de Aveiro for the hospitality during the extension of the
exchange doctorate. The authors are partially supported by
the FCT Investigator program. The work in this paper is
also supported by Grants No. PTDC/FIS/116625/2010
and No. NRHEP–295189-FP7-PEOPLE-2011-IRSES.
The authors would like also to thank Conselho Nacional
de Desenvolvimento Científico e Tecnológico (CNPq),
Coordenação de Aperfeiçoamento de Pessoal de Nível
Superior (CAPES), and Fundação Amazônia Paraense de
Amparo à Pesquisa (FAPESPA), from Brazil, for partial
financial support.

[1] T. Damour, N. Deruelle, and R. Ruffini, Lett. Nuovo
Cimento 15, 257 (1976).

[2] T. Zouros and D. Eardley, Ann. Phys. (N.Y.) 118, 139
(1979).

[3] S. L. Detweiler, Phys. Rev. D 22, 2323 (1980).
[4] J. Barranco, A. Bernal, J. C. Degollado, A. Diez-Tejedor,

M. Megevand, M. Alcubierre, D. Núñez, and O. Sarbach,
Phys. Rev. Lett. 109, 081102 (2012).

[5] J. D. Bekenstein, arXiv:gr-qc/9605059.
[6] I. Pena and D. Sudarsky, Classical Quantum Gravity 14,

3131 (1997).
[7] W. H. Press and S. A. Teukolsky, Nature (London) 238, 211

(1972).
[8] V. Cardoso, Gen. Relativ. Gravit. 45, 2079 (2013).
[9] Y. Shlapentokh-Rothman, Commun. Math. Phys. 329, 859

(2014).
[10] S. Hod, Phys. Rev. D 86, 104026 (2012).
[11] S. Hod, Eur. Phys. J. C 73, 2378 (2013).
[12] C. A. R. Herdeiro and E. Radu, Phys. Rev. Lett. 112,

221101 (2014).
[13] S. Hod, Phys. Rev. D 90, 024051 (2014).
[14] C. A. R. Herdeiro and E. Radu, Int. J. Mod. Phys. D 23,

1442014 (2014).

[15] C. Herdeiro and E. Radu, Phys. Rev. D 89, 124018
(2014).

[16] S. Hild, Classical Quantum Gravity 29, 124006 (2012).
[17] H. Okawa, H. Witek, and V. Cardoso, Phys. Rev. D 89,

104032 (2014).
[18] J. C. Degollado and C. A. R. Herdeiro, Phys. Rev. D 90,

065019 (2014).
[19] A. E. Broderick, T. Johannsen, A. Loeb, and D. Psaltis,

Astrophys. J. 784, 7 (2014).
[20] D. Brill, P. Chrzanowski, C. Martin Pereira, E. Fackerell,

and J. Ipser, Phys. Rev. D 5, 1913 (1972).
[21] J. C. Degollado, C. A. R. Herdeiro, and H. F. Rúnarsson,

Phys. Rev. D 88, 063003 (2013).
[22] S. Hod, Phys. Rev. D 88, 064055 (2013).
[23] J. C. Degollado and C. A. R. Herdeiro, Phys. Rev. D 89,

063005 (2014).
[24] M. Abramowitz and I. A. Stegun, Handbook of Mathemati-

cal Functions with Formulas, Graphs, and Mathematical
Tables (Dover, New York, 1964).

[25] J. C. Degollado and C. A. Herdeiro, Gen. Relativ. Gravit.
45, 2483 (2013).

[26] M. O. P. Sampaio, C. Herdeiro, and M. Wang, Phys. Rev. D
90, 064004 (2014).

BENONE et al. PHYSICAL REVIEW D 90, 104024 (2014)

104024-10

http://dx.doi.org/10.1007/BF02725534
http://dx.doi.org/10.1007/BF02725534
http://dx.doi.org/10.1016/0003-4916(79)90237-9
http://dx.doi.org/10.1016/0003-4916(79)90237-9
http://dx.doi.org/10.1103/PhysRevD.22.2323
http://dx.doi.org/10.1103/PhysRevLett.109.081102
http://arXiv.org/abs/gr-qc/9605059
http://dx.doi.org/10.1088/0264-9381/14/11/013
http://dx.doi.org/10.1088/0264-9381/14/11/013
http://dx.doi.org/10.1038/238211a0
http://dx.doi.org/10.1038/238211a0
http://dx.doi.org/10.1007/s10714-013-1584-z
http://dx.doi.org/10.1007/s00220-014-2033-x
http://dx.doi.org/10.1007/s00220-014-2033-x
http://dx.doi.org/10.1103/PhysRevD.86.104026
http://dx.doi.org/10.1140/epjc/s10052-013-2378-x
http://dx.doi.org/10.1103/PhysRevLett.112.221101
http://dx.doi.org/10.1103/PhysRevLett.112.221101
http://dx.doi.org/10.1103/PhysRevD.90.024051
http://dx.doi.org/10.1142/S0218271814420140
http://dx.doi.org/10.1142/S0218271814420140
http://dx.doi.org/10.1103/PhysRevD.89.124018
http://dx.doi.org/10.1103/PhysRevD.89.124018
http://dx.doi.org/10.1088/0264-9381/29/12/124006
http://dx.doi.org/10.1103/PhysRevD.89.104032
http://dx.doi.org/10.1103/PhysRevD.89.104032
http://dx.doi.org/10.1103/PhysRevD.90.065019
http://dx.doi.org/10.1103/PhysRevD.90.065019
http://dx.doi.org/10.1088/0004-637X/784/1/7
http://dx.doi.org/10.1103/PhysRevD.5.1913
http://dx.doi.org/10.1103/PhysRevD.88.063003
http://dx.doi.org/10.1103/PhysRevD.88.064055
http://dx.doi.org/10.1103/PhysRevD.89.063005
http://dx.doi.org/10.1103/PhysRevD.89.063005
http://dx.doi.org/10.1007/s10714-013-1598-6
http://dx.doi.org/10.1007/s10714-013-1598-6
http://dx.doi.org/10.1103/PhysRevD.90.064004
http://dx.doi.org/10.1103/PhysRevD.90.064004


[27] H. Furuhashi and Y. Nambu, Prog. Theor. Phys. 112, 983
(2004).

[28] D. Nunez, H. Quevedo, and D. Sudarsky, Phys. Rev. Lett.
76, 571 (1996).

[29] J. M. Bardeen, W. H. Press, and S. A. Teukolsky, Astrophys.
J. 178, 347 (1972).

[30] S. Hod (private communication).
[31] S. Hod, Phys. Rev. D 84, 124030 (2011).

[32] Y. Brihaye, C. Herdeiro, and E. Radu, Phys. Lett. B 739, 1
(2014).

[33] V. Cardoso and P. Pani, Classical Quantum Gravity 30,
045011 (2013).

[34] S. R. Coleman, Nucl. Phys. B262, 263 (1985).
[35] E. Radu and M. S. Volkov, Phys. Rep. 468, 101 (2008).
[36] C. Herdeiro, E. Radu, and H. Runarsson, Phys. Lett. B 739,

302 (2014).

KERR-NEWMAN SCALAR CLOUDS PHYSICAL REVIEW D 90, 104024 (2014)

104024-11

http://dx.doi.org/10.1143/PTP.112.983
http://dx.doi.org/10.1143/PTP.112.983
http://dx.doi.org/10.1103/PhysRevLett.76.571
http://dx.doi.org/10.1103/PhysRevLett.76.571
http://dx.doi.org/10.1086/151796
http://dx.doi.org/10.1086/151796
http://dx.doi.org/10.1103/PhysRevD.84.124030
http://dx.doi.org/10.1016/j.physletb.2014.10.019
http://dx.doi.org/10.1016/j.physletb.2014.10.019
http://dx.doi.org/10.1088/0264-9381/30/4/045011
http://dx.doi.org/10.1088/0264-9381/30/4/045011
http://dx.doi.org/10.1016/0550-3213(85)90286-X
http://dx.doi.org/10.1016/j.physrep.2008.07.002
http://dx.doi.org/10.1016/j.physletb.2014.11.005
http://dx.doi.org/10.1016/j.physletb.2014.11.005

