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In this paper we report the results of a thorough numerical study of the motion of spinning particles in
Kerr spacetime with different prescriptions. We first evaluate the Mathisson-Papapetrou equations with two
different spin supplementary conditions, namely, the Tulczyjew and the Newton-Wigner, and make a
comparison of these two cases. We then use the Hamiltonian formalism given by Barausse, Racine, and
Buonanno [Phys. Rev. D 80, 104025 (2009)] to evolve the orbits and compare them with the corresponding
orbits provided by the Mathisson-Papapetrou equations. We include a full description of how to treat the
issues arising in the numerical implementation.
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I. INTRODUCTION

Since we expect that the centers of galaxies are occupied
by supermassive black holes, relativistic binary systems
with extreme mass ratios are of great interest. A first
approximation to an extreme mass ratio inspiral (EMRI) is
the geodesic motion where the spin of the smaller particle is
ignored. More relevant models have to incorporate the spin.
This, however, appears not to be so simple.
The equations of motion of a spinning particle were

given by Mathisson [1] and Papapetrou [2] several decades
ago. The Mathisson-Papapetrou (MP) equations are not a
closed set of first order ordinary differential equations, i.e.,
there are less equations than necessary in order to evolve
the system. To close the set, an extra spin supplementary
condition (SSC) is required. Over the years, various such
SSCs have been proposed (see, e.g., [3,4] for a review).
As a SSC fixes a center of reference, e.g., the center of

the mass, and different SSCs define different centers, for
each SSC we have a different worldline (see, e.g., [4]), and,
hence, each SSC prescribes a different evolution of the MP
equations. But, although this ambiguity appears to be a
major issue in the modeling of an EMRI binary system, the
difference in the evolution caused by different SSCs has
not received the adequate attention. Our work aims at
quantifying those evolution differences in a Kerr spacetime
background.
The first part of the study addresses the above issue by

examining how “similar” initial conditions diverge when
they are evolved by using different SSCs. We focus on two
SSCs, namely the Tulczyjew (T) SSC [5] and the Newton-
Wigner (NW) SSC [6], as introduced by Barausse et al. in

[7]. T SSC is a standard SSC that has been used in several
works concerned with different topics; see, e.g., [3,4,8–14].
On the other hand, NW SSC has been successfully
implemented in the framework of the post-Newtonian
approximation [15,16], and it is the only SSC allowing
for a canonical Hamiltonian formalism, albeit only up to
linear order in the spin of the particle in curved spacetimes.
This Hamiltonian formalism has been derived in [7]. As it
has many practical advantages to have a Hamiltonian
formulation of a given problem at hand, for example,
because it is part of the effective one body formulation
[7,17], it would be nice to see if orbits obtained via the
Hamiltonian formalism of [7] stay close to those obtained
with the help of the full MP equations in the case of NW
SSC (a discussion on the topic can be found in Sec. IV
of [18]). Therefore, in the second part of our work, we
compare both approaches numerically.
A numerical investigation of the equations considered in

this work entails a bunch of interesting numerical chal-
lenges. To start with, a useful study of the divergence of
different orbits should straddle a reasonably long time
interval. The efficient integration of equations of motion
over a long time interval requires structure preserving
algorithms (see, e.g., [19] for an elaborate overview) such
as symplectic schemes, which have been successfully
applied for simulations in various fields of general rela-
tivity, e.g., [20–23]. Moreover, the MP equations have no
Hamiltonian structure, wherefore one would expect usual
symplectic integration schemes to lose their theoretical
advantage over ordinary, not so efficient ones. What is
more, in the NW SSC case part of the equations of motion
will turn out to be known only implicitly. In this work we
will explain how, notwithstanding the just mentioned
obstacles, the MP equations can be evolved accurately in
an efficient way for both SSCs. When comparing orbits
calculated via the MP equations with those obtained by the
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Hamiltonian equations of [7], one is faced with the problem
of different evolution parameters. We thus come up with a
comfortable way of guaranteeing output at consistent times.
The paper is organized as follows. In Sec. II we introduce

the MP equations and give a brief discussion on the SSCs.
Then we turn to the Hamiltonian formalism in Sec. III,
where the basic elements concerning the Hamiltonian
function, which describes the motion of a spinning particle
in curved spacetime, are summarized. In Sec. IV we explain
how the simulations with the MP equations are done, and a
comparison between the T and the NW SSC is provided,
while Sec. V quantifies the difference in the evolution of
orbits between the MP equations and their Hamiltonian
approximation. Finally, we discuss our main results in
Sec. VI. A detailed discussion of the numerical imple-
mentation is provided in the appendix (A and B).
The units we use are geometric ðG ¼ c ¼ 1Þ, and the

signature of the metric is ð−;þ;þ;þÞ. Greek letters
denote the indices corresponding to spacetime (running
from 0 to 3), while latin ones denote indices correspond-
ing only to space (running from 1 to 3). We use capital
letters for the indices when referring to a flat spacetime. In
general, we try to follow the notation in [7] whenever this
is possible.

II. MATHISSON-PAPAPETROU EQUATIONS

The Mathisson-Papapetrou equations describe the
motion of a particle with mass μ and spin Sμν (pole-dipole
approximation) in a given background gμν. Their formu-
lation in [8] reads

Dpμ

dτ
¼ −

1

2
Rμ

νκλvνSκλ; ð1Þ

DSμν

dτ
¼ pμvν − vμpν; ð2Þ

where pμ is the four-momentum, vμ ¼ dxμ=dτ is the
tangent vector to the worldline along which the particle
moves, τ is the proper time along this worldline, and Rμ

νκλ

is the Riemann tensor. In the case of a stationary and
axisymmetric spacetime, the energy

E ¼ −pt þ
1

2
gtμ;νSμν ð3Þ

and the z angular momentum

Jz ¼ pϕ −
1

2
gϕμ;νSμν ð4Þ

are preserved along the solutions of the MP equations.
Since we selected τ to be the proper time, it holds that

vνvν ¼ −1. By multiplying Eq. (2) with vν we get

pμ ¼ mvμ − vν
DSμν

dτ
; ð5Þ

where m ¼ −pνvν is the rest mass of the particle with
respect to vν, while the measure of the four-momentum
pνpν ¼ −μ2 provides the rest mass μ with respect to pμ.
m ¼ μ holds only if the tangent vector vν coincides with the
four-velocity uν ¼ pν=μ.
It is useful to stress that neither of the masses have to be a

constant of motion. Namely, for m we get

dm
dτ

¼ Dm
dτ

¼ −
Dvν
dτ

pν;

since from Eq. (1) we see that Dpν

dτ vν ¼ 0, and by using
Eq. (5) for replacing pν, we arrive at

dm
dτ

¼ Dvν
dτ

vμ
DSνμ

dτ
: ð6Þ

For μ we have

dμ
dτ

¼ Dμ

dτ
¼ −

pν

μ

Dpν

dτ
;

and again by using Eq. (5) for replacing pν, we get

dμ
dτ

¼ Dpν

dτ

pμ

μm
DSνμ

dτ
: ð7Þ

The same holds for the spin measure

S2 ¼ 1

2
SμνSμν: ð8Þ

Here, we have

dS2

dτ
¼ DS2

dτ
¼ Sμν

DSμν

dτ
; ð9Þ

and by Eq. (2) we get

dS2

dτ
¼ Sμνðpμvν − vμpνÞ
¼ 2Sμνpμvν; ð10Þ

which becomes zero if

Sμνpμ ¼ 0; ð11Þ

or
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Sμνvμ ¼ 0: ð12Þ

Equation (11) is the Tulczyjew SSC, while Eq. (11) is the
Pirani SSC [24]. From Eq. (7) we see that dμ=dτ ¼ 0 for T
SSC, while for Pirani SSC dm=dτ ¼ 0. The MP equations
with Pirani SSC exhibit a “strange” helical motion (see,
e.g., [4]), which has been considered as unphysical.
However, recently, in [25] the authors argued that the
helical motion can be interpreted by the concept of a hidden
electromagneticlike momentum. We will not discuss Pirani
SSC further. Instead, we are going to focus on the Newton-
Wigner SSC, which reads

Sμνωμ ¼ 0; ð13Þ

where ωμ is a timelike vector, or a sum of timelike vectors,
e.g., of pμ and φμ, i.e.,

ωμ ¼ pμ þ μφμ: ð14Þ

In general, for NW SSC, neither the masses,
Eqs. (6)–(7), nor the spin, Eq. (2), are preserved. Thus,
from this point of view it is a strange selection of a SSC.
However, we should keep in mind that our framework is a
pole-dipole approximation. Therefore, it is somehow
adequate for the just mentioned quantities to be conserved
only up to linear order in the spin. For the spin, this can be
seen from Eq. (9), but for the mass μ the proof is quite more
complicated and was provided in [7].

A. Spin four-vector

Instead of the spin tensor Sμν, a spin four-vector Sμ is used
sometimes, since Sμ is often considered more physically
intuitive and more convenient than Sμν (see, e.g., [26]).
For the T SSC the four-vector is defined by

Sμ ¼ −
1

2
ημνρσuνSρσ; ð15Þ

where ημνρσ is the Levi-Civita density tensor

ημνρσ ¼
ffiffiffiffiffiffi
−g

p
ϵμνρσ; ð16Þ

and ϵμνρσ is the Levi-Civita symbol with ϵ0123 ¼ −1. The
inverse relation of Eq. (15) between the two spin forms is

Sρσ ¼ −ηρσγδSγuδ: ð17Þ

By replacing the last equation in Eq. (8), we get

S2 ¼ SμSμ: ð18Þ

From Eq. (15) we see that

Sμpμ ¼ 0; ð19Þ

so the spin four-vector is perpendicular to the momentum.
For the NW SSC we define the four-vector as

Sμ ¼ −
1

2μ
ημνρσω

νSρσ: ð20Þ

By this definition we fix that

Sμωμ ¼ 0: ð21Þ

Thus, the spin four-vector is perpendicular to the timelike
vector ωμ. In the NW case the inverse relation of Eq. (20)
between the two spin forms is

Sρσ ¼ ηρσγδSγ
μωδ

ωνω
ν : ð22Þ

Now the spin measure (8) reads

S2 ¼ −
μ2

ωνω
ν SσS

σ: ð23Þ

The measure of the spin divided by the rest mass, i.e.,
S=μ defines the minimal radius of a volume that a spinning
body has to have in order not to rotate with superluminal
speed. The same radius defines the upper bound of the
separation between worldlines defined by various SSCs,
i.e., a disc of centers of mass inside of which the worldlines
have to lie. This radius was introduced by Möller in [27]
and, therefore, is often referred to as the Möller radius.
In the next step, we explain how to calculate the tangent

vector vμ.

B. Calculating the tangent vector

The MP equations do not explicitly state how we can
evaluate the tangent vector vμ throughout the evolution. To
find vμ we use the SSCs.
In the case of T SSC, vμ is found via the relation

vμ ¼ Nðuμ þ wμÞ; ð24Þ

where

wμ ¼ 2SμνuλRνλρσSρσ

4μ2 þ RαβγδSαβSγδ
; ð25Þ

and, because vμvμ ¼ −1, we get

N ¼ 1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 − wμwμ

p : ð26Þ
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For more details on how to derive the above expression see,
e.g., [3].
In the case of NW SSC, according to our knowledge,

there is no explicit expression that gives vμ as a function of
pμ and Sμν. However, by taking the covariant derivative of
Eq. (13), we obtain

vμ ¼ 1

ωνpν

�
ðωνvνÞpμ þ Sμν

Dων

dτ

�
: ð27Þ

A detailed discussion on how we solve the initial value
problem numerically is provided in Appendix A.

III. THE HAMILTONIAN FORMALISM
FOR THE SPINNING PARTICLE

The MP equations (1)–(2) can be derived by means of
Lagrangian mechanics; see, e.g., [28–30]. If we want to
apply a Legendre transformation in order to get a
Hamiltonian canonical formulation [31] for a spinning
particle moving in a curved spacetime, then the canonical
structure holds only at linear order of the particle’s spin [7].
The spin in the Hamiltonian formalism proposed by [7]

comes from the projection of the spin tensor Sμν onto the
spacelike part of a tetrad field ~eμΔ. This tetrad consists of a
timelike future oriented vector ~eμT (throughout the article we
shall use T instead of 0) and three spacelike vectors ~eμI . For
the tetrad it holds that

~eμΓ ~e
ν
Δgμν ¼ ηΓΔ; ð28Þ

where ηΓΔ is the metric of the flat spacetime, and

~eμΔ ~e
Δ
ν ¼ δμν ; ð29Þ

where δμν is the Kronecker delta. The capital indices are
raised or lowered by the flat metric. When a tensor is
denoted with capital indices, then the tensor has been
projected onto this tetrad ~eμΔ. In the case of the spin tensor
Sμν, the projection reads

SIJ ¼ Sμν ~eIμ ~eJν : ð30Þ

The remaining components of this projection come from
splitting the NW SSC (13) appropriately, and projecting the
split on the tetrad, i.e.,

STI ¼ SIJ
ωJ

ωT
; ð31Þ

where ωΔ ¼ ~eνΔων is the projection of the timelike vector
(14) of the NW SSC (13) as chosen in [7]

ων ¼ pν − μ~eνT ð32Þ

on the tetrad field, i.e.,

ωT ¼ pν ~eνT − μ;

ωJ ¼ pν ~eνJ: ð33Þ

However, the Hamiltonian function of the spinning
particle given in [7] does not use exactly the above
described spin projection, instead the spin three-vector is
employed, i.e.,

SI ¼
1

2
ϵIJLSJL ð34Þ

[the inversion of Eq. (34) gives SJL ¼ −ϵJLISI].
The Hamiltonian function H itself,

H ¼ HNS þHCSC; ð35Þ

splits in two parts. The first

HNS ¼ βiPi þ α
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
μ2 þ γijPiPj

q
ð36Þ

is the Hamiltonian for a nonspinning particle, and the
second HCSC

HC ¼ −

0
B@βiFC

i þ FC
0 þ αγijPiFC

jffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
μ2 þ γijPiPj

q
1
CA ð37Þ

includes the elements describing the spin, where

α ¼ 1ffiffiffiffiffiffiffiffiffiffi
−g00

p ; ð38Þ

βi ¼ g0i

g00
; ð39Þ

γij ¼ gij −
g0ig0j

g00
: ð40Þ

The canonical momenta Pi conjugate to xi of the
Hamiltonian (35) can be calculated from the momenta
pi of the MP formulation by using the relation

Pi ¼ pi þ EiΓΔSΓΔ;

¼ pi þ
�
2EiTJ

ωC

ωT
þ EiJC

�
ϵJCLSL; ð41Þ

where
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EνΓΔ ¼ −
1

2

�
gκλ ~eκΓ

∂ ~eλΔ
∂xν þ ~eκΓΓκνλ ~eλΔ

�
ð42Þ

is a tensor that is antisymmetric in the last two indices, i.e.,
EνΓΔ ¼ −EνΔΓ. Γκνλ, in turn, are the Christoffel symbols.
This choice of momenta leads to a set of phase space
variables that are canonical at linear order in the par-
ticle’s spin.
Finally, the FC

μ tensor in Eq. (35) reads

FC
μ ¼

�
2EμTI

ω̄J

ω̄T
þ EμIJ

�
ϵIJC; ð43Þ

where

ω̄Δ ¼ ω̄ν ~eνΔ;

ω̄ν ¼ P̄ν − μ~eνT;

P̄i ¼ Pi;

P̄0 ¼ −βiPi − α
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
μ2 þ γijPiPj

q
;

ω̄T ¼ P̄ν ~eνT − μ;

ω̄J ¼ P̄ν ~eνJ: ð44Þ

The equations of motion for the canonical variables as a
function of coordinate time t, as derived in [7], read

dxi

dt
¼ ∂H

∂Pi
; ð45Þ

dPi

dt
¼ −

∂H
∂xi ; ð46Þ

dSI
dt

¼ ϵIJC
∂H
∂SJ S

C: ð47Þ

The formulation provided up to this point is general,
namely, it does not depend on the coordinate or on the
tetrad field choice. In the next section we specify the setup
we use in the numerical sections of our work.

A. The Hamiltonian for the Kerr spacetime

The line element of the Kerr spacetime in Boyer-
Lindquist coordinates is

ds2 ¼ gttdt2 þ 2gtϕdtdϕþ gϕϕdϕ2

þ grrdr2 þ gθθdθ2; ð48Þ

where

gtt ¼ −1þ 2Mr
Σ

;

gtϕ ¼ −
2aMrsin2θ

Σ
;

gϕϕ ¼ Λsin2θ
Σ

; grr ¼
Σ
Δ
;

gθθ ¼ Σ; ð49Þ

and

Σ ¼ r2 þ a2cos2θ;

Δ ¼ ϖ2 − 2Mr;

ϖ2 ¼ r2 þ a2;

Λ ¼ ϖ4 − a2Δsin2θ: ð50Þ

In this section we reproduce the quantities already pre-
sented in [7]. In the case of the small indices, we replace the
numbers with the coordinates, i.e., t; r; θ;ϕ stand for
0,1,2,3, respectively. The capital indices, meanwhile, are
left unaltered.M denotes the mass and a the spin parameter
of the central Kerr black hole.
The tetrad we use has been provided in [7] and reads

~eTμ ¼ δtμ

ffiffiffiffiffiffiffi
ΔΣ
Λ

r
;

~e1μ ¼ δrμ

ffiffiffiffi
Σ
Δ

r
;

~e2μ ¼ δθμ
ffiffiffi
Σ

p
;

~e3μ ¼ −δtμ
2aMr sin θffiffiffiffiffiffiffi

ΛΣ
p þ δϕμ sin θ

ffiffiffiffi
Λ
Σ

r
; ð51Þ

while the inverse one reads

~eμT ¼ δμt

ffiffiffiffiffiffiffi
Λ
ΔΣ

r
þ δμϕ

2aMrffiffiffiffiffiffiffiffiffiffi
ΔΛΣ

p ;

~eμ1 ¼ δμr

ffiffiffiffi
Δ
Σ

r
;

~eμ2 ¼ δμθ
1ffiffiffi
Σ

p ;

~eμ3 ¼ δμϕ
1

sin θ

ffiffiffiffi
Σ
Λ

r
: ð52Þ

By calculating all the quantities mentioned in Sec. III, we
finally obtain the coefficients HC [Eq. (37)] as
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H1 ¼ −
ffiffiffiffi
Δ

p
cos θffiffiffiffi

Q
p ð1þ ffiffiffiffi

Q
p ÞΛ2

ffiffiffi
Σ

p
sin2θ

½ð1þ
ffiffiffiffi
Q

p
ÞðΔΣ2 þ 2Mrϖ4Þ þ

ffiffiffiffi
Q

p
2a2Mrϖ2sin2θ�Pϕ

μ

þ aMð2r2Σþϖ2ρ2Þ sin θΔffiffiffiffi
Q

p ð1þ ffiffiffiffi
Q

p ÞΛ3=2Σ2

PrPθ

μ2
þ 2a3Mr cos θsin2θΔffiffiffiffi

Q
p ð1þ ffiffiffiffi

Q
p ÞΛ3=2Σ

�
1þ

ffiffiffiffi
Q

p
þ 2Σ
Λsin2θ

P2
ϕ

μ2
þ Δ

Σ
P2
r

μ2

�
;

H2 ¼ Δð1þ ffiffiffiffi
Q

p ÞðrΣ2 − a2Mρ2sin2θÞ −M
ffiffiffiffi
Q

p ðρ2ϖ4 − 4a2Mr3sin2θÞffiffiffiffi
Q

p ð1þ ffiffiffiffi
Q

p ÞΛ2
ffiffiffi
Σ

p
sin θ

Pϕ

μ
þ 2a3Mr cos θsin2θΔ3=2ffiffiffiffi

Q
p ð1þ ffiffiffiffi

Q
p ÞΛ3=2Σ2

PrPθ

μ2

þ aMð2r2Σþϖ2ρ2Þ sin θ ffiffiffiffi
Δ

p
ffiffiffiffi
Q

p ð1þ ffiffiffiffi
Q

p ÞΛ3=2Σ

�
1þ

ffiffiffiffi
Q

p
þ 2Σ
Λsin2θ

P2
ϕ

μ2
þ 1

Σ
P2
θ

μ2

�
;

H3 ¼ −
a2Δ cos θ sin θffiffiffiffi

Q
p ð1þ ffiffiffiffi

Q
p ÞðΛΣÞ3=2 ðΛþ

ffiffiffiffi
Q

p
ΔΣÞPr

μ
−
rΛΔþϖ2Σ

ffiffiffiffi
Q

p ðrΔ −Mðr2 − a2ÞÞffiffiffiffi
Q

p ð1þ ffiffiffiffi
Q

p ÞðΛΣÞ3=2
Pθ

μ

−
aM

ffiffiffiffi
Δ

p

μ2
ffiffiffiffi
Q

p ð1þ ffiffiffiffi
Q

p ÞΛ2Σ
½2a2rΔ sin θ cos θPr þ ð2r2Σþϖ2ρ2ÞPθ�Pϕ; ð53Þ

where

Q ¼ 1þ γij

μ2
PiPj

¼ 1þ μ−2
�
Δ
Σ
P2
r þ

1

Σ
P2
θ þ

Σ
Λsin2θ

P2
ϕ

�
; ð54Þ

and

ρ2 ¼ r2 − a2cos2θ: ð55Þ

For a full and detailed presentation of the derivation of HC,
we refer the reader to [7].
It is worth mentioning here that, contrary to the T SSC,

the NW SSC [Eq. (32)] does not uniquely define the
reference worldline. As already noted in the introduction
the choice of the center of mass, i.e., the reference world-
line, is observer dependent. When T SSC is applied the zero
three-momentum observer is chosen. However, when the
NW SSC is used there is no unique choice because the
observer and therefore the reference worldline depends on
the tetrad. We have fixed our tetrad in Eqs. (51)–(52). In the
following we only consider the evolution of the orbit
corresponding to this observer so that we do not have to
worry about transforming the dynamical properties of the
system to another reference frame.

IV. COMPARISON OF TULCZYJEW AND
NEWTON-WIGNER SSC

A. Preliminaries

When simulating the MP equations we in fact have to
solve the initial value problem

8>>>>>>>>>>><
>>>>>>>>>>>:

dxμ
dτ ¼ vμ;
dpμ

dτ ¼ − 1
2
Rμ

νκλvνSκλ − Γμ
νκvνpκ;

dSμν
dτ ¼ pμvν − vμpν þ Γμ

κλS
νκvλ − Γν

κλS
μκvλ;

xμðτ ¼ 0Þ ¼ xμ0;

pμðτ ¼ 0Þ ¼ pμ
0;

Sμνðτ ¼ 0Þ ¼ Sμν0 :

ð56Þ

As a first step, we have to provide initial conditions that
comply with the constraints mentioned earlier (Sec. II).
In order to find these appropriate initial conditions, we

follow the approach given in [11], which implies that
instead of the spin tensor Sμν we use the vector Sμ for the
initial setup. Without loss of generality, we set t ¼ ϕ ¼ 0
and provide initial values for r; θ; pr as well as for the two
spin components Sr and Sθ. The other initial conditions,
namely, pt, pθ, pϕ, St, and Sϕ, are then fixed by the
constraints. In the case of the T SSC, those constraints are

E ¼ −pt −
1

2μ
gtμ;νημνγδSγpδ; ð57Þ

Jz ¼ pϕ þ
1

2μ
gϕμ;νημνγδSγpδ; ð58Þ

μ2 ¼ −gμνpμpν; ð59Þ

S2 ¼ gμνSμSν; ð60Þ

0 ¼ gμνSμpν; ð61Þ

where we have substituted Eq. (17) into the constants of
motion (3)–(4), and lowered the indices wherever needed.
Thus, we specify an orbit by providing values for E, Jz, S2,
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and μ2. We then solve the system (57)–(61) for pt, pθ, pϕ,
St, and Sϕ with the help of the Newton-Raphson method.
For comparing the effect of different SSCs in the

evolution of MP, we need to find initial conditions for
the NW SSC that are similar to the T SSC case. Hence, we
parametrize the orbits by providing the same initial set of
values for r, θ, pr, Sr, Sθ, E, Jz, S2, and μ2. The set of
constraints for the NW SSC is similar to the one for the T
SSC [Eqs. (57)–(61)]. The constraints (57)–(58) remain
unaltered. We use Eq. (59), and Eq. (23), instead of Eq. (60)
for the initial setup, even though, in the case of the NW
SCC, neither the spin S2 nor the rest mass μ is preserved
anymore. Finally, we replace constraint (61) by

gμνSμων ¼ 0:

When solving the resulting system for pt, pθ, pϕ, St, and Sϕ
for the same provided r, θ, pr, Sr, Sθ, E, Jz, S2, and μ2 as in
the T case, we get what we referred to as similar initial
conditions above. At last, by raising indices of the momenta
and going from spin vectors to tensors with the help of the
transformations (17) and (22), respectively, we get suitable
data to start the computation with. The orbits are evolved
through Eqs. (1)–(2). A more detailed discussion about the
techniques we have applied to evolve the MP equations is
provided in Appendix A.
The timelike vector ων in the NW SSC (13) is given by

Eq. (32), where the ~eTν is the top equation from the set (51).
By adapting the convention that times and lengths are
measured in terms of M, we set M ¼ 1 throughout
the paper.
Before we proceed with the numerical results, we want to

discuss the initial setup for our evaluations in this section.
We have chosen the orbits to start from the same point in
the configuration space, i.e., both worldlines at τ ¼ 0 lie at

the same spacetime point. This means that both of the
different corresponding observers see the center of the mass
lying at the same place, even if the SSCs are different. This
is not the usual way this subject is treated. In [4], for
example, the discussion about the transition between two
different SSCs is based on the center of the mass worldline
displacement. The latter approach would not be appropriate
for our treatment, because apart from the shift in the value
of the spin tensor, the initial point in the configuration space
should be shifted as well [4]. In our treatment we want to
change the order of magnitude of the spin while keeping the
initial conditions as similar as possible during the scaling,
in order to observe how the two different SSCs converge as
the geodesic limit is approached. In other words we do not
attempt to have initial conditions that would obey the
transition between different SSCs for one particle, but
rather conditions that represent similar orbits for two
different SSCs.

B. Comparison for large spin

In our first example, the parameters read a ¼ 0.5,
r ¼ 11.7, θ ¼ π=2, pr ¼ 0.1, S ¼ 1, Sr ¼ 0.1S,
Sθ ¼ 0.01S, E ¼ 0.97, Jz ¼ 3, and μ ¼ 1. The left panel
of Fig. 1 shows how the two MP orbits with T SSC (black)
and NW SSC (gray) evolve in the configuration space
where the Cartesian coordinates

x ¼ r cosϕ sin θ;

y ¼ r sinϕ sin θ;

z ¼ r cos θ ð62Þ

are employed.
The divergence between the two orbits is barely visible

in the left panel, but if we take the Euclidean norm
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FIG. 1. The left panel shows a MP orbit with T SSC (black dots) and a MP orbit with NW SSC (gray dots) in the configuration space
x; y; z (Cartesian coordinates). The common parameters for these orbits are a ¼ 0.5, r ¼ 11.7, θ ¼ π=2, pr ¼ 0.1, S ¼ 1, Sr ¼ 0.1S,
Sθ ¼ 0.01S, E ¼ 0.97, Jz ¼ 3, and μ ¼ 1. The central panel shows the logarithm of the Euclidean distance in the configuration space
between these two orbits as a function of the proper time. The right panel shows the logarithm of the difference ΔS4x4 between the spin
tensors of these two orbits as a function of the proper time.
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Δxyz ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðxT − xNWÞ2 þ ðyT − yNWÞ2 þ ðzT − zNWÞ2

q
;

ð63Þ

we see that at the end of our run, the separation between the
two orbits is of the order one (central panel of Fig. 1), while
the radial distance from the central black hole is of the order
ten (left panel of Fig. 1). Even if the Möller radius is not an
appropriate tool for our setup (see the discussion at the last
paragraph of Sec. IVA), it is worthy to note that the two
orbits lie inside a Möller radius (S=μ ¼ 1) for τ ¼ 103, even
if their distance will grow out of this radius later on. This
divergence in the orbit evolution follows the discrepancy in
the spin space. To illustrate this, the norm of the difference
between the spin tensor SμνT of the T SSC and the spin
tensor SμνT of the NW SSC,

ΔS4x4 ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
jgμνgκλðSνκT − SνκNWÞðSμλT − SμλNWÞj

q
; ð64Þ

is displayed in the right panel of Fig. 1. ΔS4x4 is one tenth
of the spin measure right from the beginning, and stays at
this level during the evolution. Thus, from an orbital
dynamic point of view when the spin of the test particle
is of order S ¼ 1, the choice of different SSCs leads to
orbital evolutions that diverge significantly with time.
One thing that has to be discussed before we proceed is

the meaning of a common proper time, when two orbits
with different SSCs are compared. Each SSC defines its
own center of reference, which implies that with each SSC
the proper time that is measured along the above orbits is
different, even if the orbits start with similar initial con-
ditions. Another issue that arises here is how we can
measure the distance between two nearby orbits in a curved
spacetime. Above, we use the Euclidean norm; however,
the spacetime is not Euclidean. The same issues arise when
geodesic chaos is studied in curved spacetimes (see, e.g.,
[32]). One of the suggestions in the aforementioned field is
to use the two nearby orbits technique, i.e., to evolve two
orbits with similar initial conditions and measure their
distance when they reach the same proper time. This is in
few words the approach we adapt in our study for the time
issue. For the issue of the distance in the configuration
space between the two orbits, we have chosen to employ
the Euclidean metric. We could employ the local gμν metric
as well, even if the orbits depart from each other signifi-
cantly (middle panel of Fig. 5). However, for the evolution
times τ ¼ 103 the results coming from both approaches are
almost identical, and therefore we went for the simplest
metric, which is the Euclidean.

C. Comparison for very small spin

Since we mentioned the geodesic orbits, we approach
this limit by setting the measure of the spin in our initial
conditions to S ¼ 10−8. All the other parameters are the

same as in Fig. 1. For this geodesiclike setup the orbits in
the configuration space resemble the orbits shown in the
left panel of Fig. 1. However, the left panel of Fig. 2 shows
that the distance between the two orbits has dropped
significantly, about eight orders of magnitude. This drop
is anticipated since we tend to the geodesic limit and the
spin contribution is expected to be smaller. However, the
level of the divergence in the configuration space (left panel
of Fig. 2) is again defined by the magnitude of the spin
difference ΔS4x4 (right panel of Fig. 2). Namely, even
though the initial conditions in the configuration space are
identical, i.e., Δxyz ¼ 0, those of the spin components are
not, i.e., ΔS4x4 ≈ 10−9, and this initial divergence in the
spin space is passed on to the configuration space.

D. Constants of motion

We now turn our attention to the conservation of the
four-momentum (rest mass μ) and of the spin S. In order to
check whether these quantities are preserved, we use the
relative error of the four-momentum

Δμ2 ¼
����1 − μ2ðτÞ

μ2ð0Þ
����; ð65Þ

and the relative error of the spin S2,

ΔS2 ¼
����1 − S2ðτÞ

S2ð0Þ
����; ð66Þ

where μ2ðτÞ and S2ðτÞ are calculated at time τ.
We see from Fig. 3 that both the rest mass μ2 and the spin

are conserved for the T SSC (black lines) as was expected
(see Sec. II). On the other hand, in the case of the NW SSC
(gray lines) the four-momentum scales with the magnitude
of the spin S, while the square of the spin itself stays at the
same level indifferently from the spin’s magnitude. This
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FIG. 2. The left panel shows the logarithm of the Euclidean
distance in the configuration space between a MP orbit with T
SSC and a MP orbit with NW SSC as a function of the proper
time. The common parameters for these orbits read a ¼ 0.5,
r ¼ 11.7, θ ¼ π=2, pr ¼ 0.1, S ¼ 10−8, Sr ¼ 0.1S, Sθ ¼ 0.01S,
E ¼ 0.97, Jz ¼ 3, and μ ¼ 1. The right panel shows the loga-
rithm of the difference ΔS4x4 between the spin tensors of these
two orbits as a function of the proper time.
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scaling in the conservation of the mass is anticipated
because, as S → 0, the evolution of the MP equations
approaches that of the geodesic motion.
In order to better illustrate the above-mentioned scaling,

we run several simulations with initial setups similar to the
one of Fig. 1 where we only change the measure of the spin,
S. For every simulation, we plot the maximum value ofΔμ2
along the trajectory against the initial spin measure (Fig. 4).

The resulting plot shows that, as we decrease S, the four-
momentum for the NW SSC tends to be conserved up to the
computational accuracy. There are two effects that shape
this figure. One is the theoretical scaling of Δμ2 as a
function of S and the other is the finite computational
accuracy. From a linear fit of our data we get for S > 10−6

(dashed line in Fig. 4) Δμ2 ∝ S2. For smaller spins a
plateau appears because we reach the computational
accuracy (in our runs we use double precision).
Since for T SSC the four-momentum is conserved and

for the NW SSC the
ffiffiffiffiffiffiffiffi
Δμ2

p
scales linearly with the spin,

this scaling can be interpreted as the rate by which the two
different SSCs converge to each other. Changing the value
of the spin a of the central black hole does not alter
qualitatively the results of our numerical comparison.

V. NUMERICAL COMPARISON OF THE MP
EQUATIONS WITH THE CORRESPONDING

HAMILTONIAN EQUATIONS

A. Preliminaries

Since the MP equations are a pole-dipole approximation,
multipoles of higher order than the spin dipole are already
neglected. However, we can simplify the problem further
by assuming that the physically relevant values for the
particle spin are small and the terms quadratic in the spin
correspond to the quadrupole contribution. Thus, a
Hamiltonian that is accurate up to linear order of the spin
should yield satisfactory results. This is the main idea on
which the construction of such a Hamiltonian formalism for
NW SSC in [7] was based.
According to this formalism (see the brief description in

Sec. III), the evolution parameter is not the proper time like
in the case of Sec. IV, but the coordinate time. In order to
perform a comparison between the MP equations and
the corresponding Hamiltonian (Sec. III A) equations, we
could rewrite our MP code with respect to the coordinate
time. However, the coordinate times, at which our quan-
tities were calculated in the MP simulations, were given as
output anyway. With them at hand, there is an easier way
out. One can evolve the Hamiltonian equations of motion
using constant steps in the coordinate time, and interpolate
the solution around the required times of output. A more
detailed discussion on this topic and the numerical methods
we have used is given in Appendix B.
Moreover, in order to make the two formalisms com-

parable, we used the equations given in Sec. III to go from
the set of variables fxμ; pμ; Sμνg of the MP equations to the
set of variables fxi; Pi; SIg in the Hamiltonian formalism.
Note that this holds also for the initial conditions; thus, both
the MP equations and the corresponding Hamiltonian
equations start with exactly the same initial setup.
Before showing the results of comparisons between the

two approaches, we want to point out that all simulations
using the Hamiltonian equations were much faster than
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their equivalents based on the MP equations with NW SSC.
More detailed information on this can be found in the
appendix sections.

B. Comparison for large spin

Using the initial conditions for the NW SSC given in
Fig. 1, we have evolved the orbit by using Hamilton’s
equations. The motion of the corresponding orbit in the
configuration space is shown in the left panel of Fig. 5
(black dots) together with the orbit evolved through the MP
equations (gray dots). Even if the two orbits start with the
same initial conditions they depart from each other quite
quickly. This is seen more clearly in the central panel of
Fig. 5, where the Euclidean distance between the two
orbits,

Δxyz ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðxH − xMPÞ2 þ ðyH − yMPÞ2 þ ðzH − zMPÞ2

q
;

ð67Þ

is displayed as a function of the coordinate time. Near the
end of the calculation, the distanceΔxyz is almost as large as
the radial distance of the particle from the central black
hole. From the appearance of the left panel of Fig. 5 one
might wonder whether the divergence between the orbits is
a “synchronization” issue. However, since both schemes
use the same SSC, i.e., the NW SSC, and since the initial
conditions for both schemes are exactly the same, i.e., the
orbits correspond to the same particle, the proper time for
both orbits has to tick at the same rate. Thus, it is reasonable
to claim that this divergence results from the fact that the
Hamiltonian is valid up to the linear order in the particle
spin, and since the spin here is large, i.e., S ¼ 1, such
divergence should be expected. Nevertheless, it is impres-
sive that orbits corresponding to the same particle evaluated

with different schemes, i.e., the MP equations and the
corresponding Hamiltonian, give a divergence that is of one
order of magnitude larger than the divergence of the MP
equations with different SSCs (left panel of Fig. 1). If we
took the Möller radius as a criterion, for example, then,
since the distance between the two orbits exceeds the
diameter of the disc of centers of mass, according to this
criterion, the orbits could not correspond to the same
particle. Therefore, we can say that the Hamiltonian
formalism is not valid for large spin values—just as
expected.
The spin in the Hamiltonian formalism is given by the

projection vector [Eq. (34)]. The Euclidean norm of the
difference between the spin vector SIH calculated by
Hamilton’s equations and the SIMP calculated by the MP
equations,

ΔSv ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiX3
I¼1

ðSIH − SIMPÞ2
vuut ; ð68Þ

is plotted as a function of the coordinate time in the right
panel of Fig. 5. This plot shows that the difference is quite
high, even if the spin values are identical at first.

C. Comparison for very small spin

By decreasing the measure of the particle’s spin to the
level of S ¼ 10−8, we get the initial setup given in Fig. 2.
The Euclidean distance between the evolutions of the MP
equations and the Hamilton equations (left panel of Fig. 6)
drops to a level that is near the precession of our
simulations. Therefore, practically, the two orbits should
not discern. This seems to be the picture we get from the
Euclidean norm of the difference between the spin vectors
as well (right panel of Fig. 6). Moreover, it is also evident
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FIG. 5. The left panel shows how the orbit evolves through the MP equations (gray dots) and through the Hamiltonian equations (black
dots) in the configuration space x; y; z, when we use the initial conditions given in Fig. 1. The central panel shows the logarithm of the
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that the distance between the two orbits does not exceed the
diameter of the disc of centers of mass defined by the
Möller radius for the coordinate time we have computed.
Therefore, it is reasonable to say that the two orbits
obtained by two different formalisms do correspond to
the same particle and thus infer that the Hamiltonian is
indeed valid for small spin values. However, this picture
might be a little bit illusive. The order of the spin is
S ¼ 10−8, and, thus, what we see in fact is that the relative
difference, i.e., ΔSv=S ≈ 10−8 is of the order of the spins’
magnitude. In other words, in the spin space the evolution
of the two orbits does not agree completely. The reason that
in the configuration space the orbits appear to be identical,
while in the spin space the agreement is not at the same
level, is that we are in the geodesic limit, and the evolution
of the orbits is almost independent from the spins.
The bottom row of Fig. 7 supports the claim that when

S ¼ 10−8, we are at the geodesic limit, and the evolution
does not depend on the spins. In the left panel of the bottom
row in Fig. 7, the relative errors of the Hamiltonian
function,

ΔH ¼
����1 − HðtÞ

Hð0Þ
����; ð69Þ

lie at the computation precession level for both the MP orbit
(gray line) and the Hamiltonian orbit (black line), while the
level of the relative error (66) in the measure of the spin
vectors,

S2 ¼ SISI; ð70Þ

is not as well preserved for the MP case (gray line) as for
the Hamiltonian case (black line in the right panel of the
bottom row in Fig. 7). Notice that, as stated above, in
the case of the MP equation, we can get the value of the

Hamiltonian function H and of the square of the spin
measure S2 by transforming the set of variables
fxμ; pμ; Sμνg into the set fxi; Pi; SIg and substituting the
transformed set into Eq. (35) and Eq. (70), respectively.

D. Behavior of the constants of motion
and scaling with the spin

When we raise the measure of the particle spin to
S ¼ 10−4, then the relative error of the MP spin
[Eq. (70)] remains practically at the same level (gray line
in the right panel of the middle row in Fig. 7) as in the
S ¼ 10−8 case. This does not hold for the relative error of
the Hamiltonian function (gray line in the left panel of the
middle row in Fig. 7) that is not at the computation
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while the bottom row of panels corresponds to the orbits of Fig. 6.
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precession level anymore. This shows that the motion is no
longer in the geodesic limit. However, both ΔS2 and ΔH
for the MP orbit lie at acceptable levels, which shows that
for this magnitude of the particle spin, the MP equations
and the Hamilton equations seem to be in agreement.
This agreement breaks when S ¼ 1. The top row of

Fig. 7 shows that when S ¼ 1, the relative errors, ΔH and
ΔS2, are at the same quite high level for the MP orbit. These
relatively large values confirm the departure between the
MP equations and the corresponding Hamiltonian that we
see in Fig. 5.
The black lines for all panels of Fig. 7 are at the highest

accuracy the computation accuracy allows, which means
that apart from round-off error, the Gauss scheme we
applied integrates accurately the system of the Hamilton
equations, but also that the interpolation scheme we applied
to match the coordinate times works quite well.
As at the end of the previous section, we can investigate

the scaling of the constants of motion with the spin in more
detail by taking the maxima of their relative errors the MP
equations, for different values of the measure of the
particle’s spin. The result is shown in Fig. 8. Again, as
in Fig. 4, the precession of our computations and the
scaling due to the spin measure shape the figure. We see a
plateau at the left panel of Fig. 8 for ΔH due to the
computational precession, while in the right panel of Fig. 8
we see that ΔS2 increases, which is due to to the smallness
of the spin components. Even if we had applied a special
integration scheme respecting these small quantities, this
scheme could not follow below a threshold either. This
threshold is in our case S ¼ 10−6. When the scaling with
the spin dominates ðS > 10−6Þ, the linear fits show that
ΔH ∝ S2, while ΔS2 ∝ S. These proportionalities are
expected as we explain next.

By construction the Hamiltonian function H of a spin-
ning particle is accurate up to linear order of the particle
spin. Hence, when compared with the value of the
Hamiltonian function yielded from the evolution of the
MP equations HMPðtÞ, the difference between the two
Hamiltonian function values should differ by terms of the
order OðS2Þ, i.e.,

HMPðtÞ ≈HðtÞ þOðS2Þ: ð71Þ

However, since we have chosen the same initial conditions
for both evolution schemes, it holds that HMPð0Þ ¼ Hð0Þ.
Thus, the relative error (69) for the MP equations reads

ΔH ¼
����HMPðtÞ −HMPð0Þ

HMPð0Þ
����

≈
����HðtÞ −Hð0Þ

Hð0Þ þOðS2Þ
Hð0Þ

����: ð72Þ

Since we do not expect the relative error HðtÞ−Hð0Þ
Hð0Þ to depend

on the value of the particle’s spin, and this expectation is
confirmed by the numerical findings (black lines in the left
column of Fig. 7), we get the scaling ΔH ∝ S2 of Fig. 8.
In order to explain the scaling of the relative error ΔS2,

we use a similar way of reasoning. The preservation of the
spin for the Hamiltonian formalism (70) is S2; thus, a
reasonable expectation is that for the MP case we should
get values S2MPðtÞ from Eq. (70) that differ from the
Hamiltonian case at order OðS3Þ, i.e.,

S2MPðtÞ ≈ S2ðtÞ þOðS3Þ: ð73Þ

Furthermore, we have S2MPð0Þ ¼ S2ð0Þ. Thus, the relative
error (66) for the MP equations reads

ΔS2 ¼
���� S

2
MPðtÞ − S2MPð0Þ

S2MPð0Þ
����

≈
���� S

2ðtÞ − S2ð0Þ
S2ð0Þ þOðS3Þ

S2ð0Þ
����; ð74Þ

which explains why we see that ΔS2 ∝ S in the right panel
of Fig. 8.
If we take as a criterion the convergence of the constants

of motion shown in Fig. 8, and consent that a relative error
of the level of 10−6 is adequate to state that the different
formalisms have converged, then from our comparison the
Hamiltonian formalism is in agreement with the MP
equations for the NW SSC when the measure of the
particle’s spin is S < 10−4. When we reach S ≈ 10−6, the
effect of the spin appears not to be important anymore, and
the orbit evolves like a geodesic, i.e., it does not depend on
the spin.
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tonian ΔH of orbits evolved through the MP equations for
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VI. CONCLUSIONS

We have compared the evolutions of a spinning test
particle in Kerr spacetime governed by different equations
of motion. We first evolved the orbits prescribed by the MP
equations, once supplemented by the Tulczyjew SSC and
once by the Newton-Wigner SSC. Our simulations indicate
a linear in the spin scaling of the difference between the
respective orbits. We also found that, in the case of the NW
SSC, the four-momentum is conserved up to linear order in
the square of the test particle’s spin, i.e., Δμ2 ∝ S2. In a
second series of experiments we compared orbits given by
theMP equations plus NW SSCwith orbits obtained via the
Hamiltonian formalism of [7]. Here, too, the difference
between the respective orbits, which is quite significant for
large spins of the order of one, decreases linearly as a
function of the square of the test particle’s spin, i.e.,
ΔH ∝ S2, which agrees with the analysis given in [7].
According to our analysis, the Hamiltonian formalism of
the spinning particle appears to be relevant in the range
10−6 < S < 10−4. For values of the spin smaller than 10−6

we can ignore the part of the Hamiltonian describing the
spin evolution and keep the nonspinning part, and, for spin
values greater than 10−4, our numerical results show that
the Hamiltonian formalism is not in good agreement with
the MP equations. Anyhow, the aforementioned range,
where the Hamiltonian formalism is relevant, is appropriate
for astrophysical binary systems of extreme mass ratio.
Moreover, as our simulations showed that the CPU effort
for the Hamilton equations of motion is far smaller than the
computational cost for the MP equations, we find appro-
priate the use of these equations for simulations of test
particles with small spins. When, in addition, favorable
numerical methods, such as the one presented in this work,
are applied, reliable results can be obtained within a short
period of time.
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APPENDIX A: NUMERICAL INTEGRATION
OF THE MP EQUATIONS

Seen from a numerical point of view, the initial value
problem (56) reads

dy
dτ

¼ fðyÞ; ðA1Þ

yðτ ¼ 0Þ ¼ y0; ðA2Þ

with y ¼ ðt; r;…; Sθϕ; SθθÞT ∈ R24 and f∶ R24 → R24. If
this system was of Hamiltonian canonical form, symplectic
integration schemes would be the most natural choice for
their numerical solution. They almost exactly preserve a
differential equation’s constants of motion and, unless for
standard integration schemes, their overall numerical error
grows only slowly as a function of the total integration time
even for larger step sizes. Therefore, simulations over long
time spans can be carried out efficiently. Unfortunately, the
MP equations are not of Hamiltonian canonical form. But
they can be interpreted as the Euler-Lagrange equations of a
suitable Lagrangian action; see, e.g., [28–30]. What then
saves the day is that the flow of symplectic integration
schemes can be interpreted as the solution of the Euler-
Lagrange equations of a discretization of the Lagrangian
action. Schemes with this property are called variational
integrators and they only rely on the existence of a
Lagrangian structure for their favorable behavior. For
example, they are known to exactly preserve an equation
of motion’s first integrals that are quadratic in the phase
space variables. This implies that a variational integration
scheme applied to the MP equations with T SSC will
conserve the four-momentum μ2 and the spin length S2 up
to numerical round-off errors. An extensive discussion of
this topic can be found in the monograph [19], chapter
VI.6. One prominent example of variational integrators is
Gauss Runge-Kutta methods that have been shown to be
the most efficient and accurate integrators in many general
relativistic applications; see, e.g., [20,21]. Motivated by
these results, we choose this kind of variational integrator
for the solution of the MP equations. Here, we briefly
summarize some of their properties.
An s-stage Gauss Runge-Kutta scheme is a collocation

method, i.e., an implicit Runge-Kutta scheme

ynþ1 ¼ yn þ h
Xs

i¼1

bifðYiÞ; ðA3Þ

Yi ¼ yn þ h
Xs

j¼1

aijfðYjÞ; i ¼ 1;…; s; ðA4Þ

with coefficients

aij ¼
Z

ci

0

ljðtÞdt; ðA5Þ

bj ¼
Z

1

0

liðtÞdt; ðA6Þ

where the stages c1;…; cs are chosen as

ci ¼
1

2
ð1þ ~ciÞ; ðA7Þ

with ~ci being the roots of the Legendre-polynomial of
degree s. Here, h denotes the time step size, Yi, i ¼ 1;…; s,
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are the so-called inner stage values, and yn denotes the nu-
merical approximation to the solution y at time τ ¼ nh. The
functions liðtÞ are the Lagrange-polynomials of degree s,

liðtÞ ¼
Y
i≠j

t − cj
ci − cj

: ðA8Þ

Gauss Runge-Kutta methods have a convergence order
Oðh2sÞ that is the highest possible order among collocation
schemes, e.g., [33]. When integrating a time step with a
Gauss Runge-Kutta scheme, one first solves the system of
implicit equations (A4) via a fixed-point iteration

Ykþ1
i ¼ yn þ h

Xs

j¼1

aijfðYk
jÞ: ðA9Þ

This, of course, requires more calculations per time step
than an explicit scheme with the same number of stages.
But this extra effort is more than offset by the high accuracy
of Gauss collocation methods that allows us to apply them
with a much larger step size. Detailed information on their
implementation is given in [21], Sec. VII, and [19],
chapters VIII. 5 and VIII. 6.
To illustrate the favorable behavior of Gauss collocation

methods, we compare the performance of a 4-stage scheme
with step size h ¼ 1 and a standard fifth order explicit
Cash-Karp scheme as proposed in [34] with a step size
h ¼ 0.1, when applied to the MP equations with T SSC and
initial data given by E ¼ 0.95, Jz ¼ 3.0, S ¼ 1, M ¼ 1
μ ¼ 1, a ¼ 0.9, r ¼ 6.7, θ ¼ π

2
þ 0.1, pr ¼ 0.1, Sr ¼ 0.1,

Sθ ¼ 0.01. In Fig. 9, we plot for both integrators the relative
error in the energy,

ΔEðτÞ ¼ jEðτÞ − Eð0Þj
jEð0Þj ; ðA10Þ

and the corresponding relative error in the z angular
momentum as a function of integration time τ. We observe
that the Gauss Runge-Kutta method, which is also faster,
gives much more precise results.
An additional obstacle for simulations in the NW SSC

case is that the tangential velocity vμ is only given
implicitly by Eq. (27). (N.b.: Apart from the apparent vν

in the first term on the right-hand side, the covariant
derivative of ων implies a linear dependence on vν in
the second term on the rhs as well, i.e.,
Dων
dτ ¼ _ων − Γκ

νμωκvμ.) Setting ~v≔ ðvt; vr; vϕ; vθÞT ∈ R4,
the implicit equation for vμ is qualitatively given by

~v ¼ Aðxμ; pμ; SμνÞ~v ðA11Þ

for a certain matrix A ∈ R4×4. Theoretically there are two
possibilities to cope with the implicitness in the velocities
that we will describe now.

(i) Denoting the first four components of Yi and fðYiÞ
by Yx

i and fxðYiÞ, and the other components by Yp
i ,

YS
i , f

pðYiÞ, and fSðYiÞ we can augment the system
of implicit equations (A4) by adding the implicitly
given quantity ~vi that denotes the tangential velocity
vμ at the inner stage Yi. This yields the system

0
BBB@

~vi
Yx

i

Yp
i

YS
i

1
CCCA ¼

0
BBBBB@

AðYx
i ; Y

p
i ; Y

S
i Þ~vi

yxn þ h
P

s
j¼1 aij~vi

ypn þ h
P

s
j¼1 aijf

pðYx
i ; Y

p
i ; Y

S
i ; ~viÞ

ySn þ h
P

s
j¼1 aijf

SðYx
i ; Y

p
i ; Y

S
i ; ~viÞ

1
CCCCCA
;

i ¼ 1;…; s; ðA12Þ

to which, again, a fixed-point iteration can be
applied. However, for this iteration to converge, it
needs to satisfy

‖
�
~vkþ2
i

Ykþ2
i

�
−
�
~vkþ1
i

Ykþ1
i

�
‖ ≤ ‖

�
~vkþ1
i

Ykþ1
i

�
−
�
~vki
Yk
i

�
‖;

ðA13Þ

which cannot be guaranteed when AðYx
i ; Y

p
i ; Y

S
i Þ is

of large norm. Numerical tests have shown that there
are indeed problems with the convergence. Hence,
for all its conceptual beauty, the approach of an
augmented implicit system is of no practical use.

(ii) With I denoting the 4 × 4 identity matrix, we can re-
write the implicit equation for the velocities (A11) as

0 ¼ ðI − AÞ~v≕ B~v: ðA14Þ
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FIG. 9 (color online). The relative error of the z angular
momentum, ΔJz, (top panel) and the relative error of the energy,
ΔE, (bottom panel) against integration time τ for the 4-stage Gauss
scheme with step size h ¼ 1 and the fifth order Cash-Karp scheme
with step size h ¼ 0.1 applied to the initial value problem (56) with
initial data as stated in the text. CPU timewas 214.1 s for the Gauss
Runge-Kutta scheme and 422.7 s for the Cash-Karp scheme.
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Thus, from an algebraical point of view, the vector
consisting of the components of the four-velocity is
an element of the nullspace KerðBÞ of the matrix B
that here is a one-dimensional subspace. Conse-
quently, we can determine the tangential velocity at
an internal stage by the following procedure:

(1) Calculate BðYx
i ; Y

p
i ; Y

S
i Þ ¼ I − AðYx

i ; Y
p
i ; Y

S
i Þ.

(2) Calculate the singular value decomposition of B, i.e.,

B ¼ UΣVT; ðA15Þ

with Σ ¼ diagðσ1; σ2; σ3; σ4Þ and UTU ¼ VTV ¼
δij, i; j ¼ 1;…4 (for more information on the sin-
gular value decomposition, see, e.g., [34], chapter
2.6). The nullspace of B is then spanned by the
column of the orthonormal matrix V:;i that corre-
sponds to the only singular value σi that is equal to 0.

(3) The tangential velocity is now obtained by renorm-
alizing V:;i in order to have vμvμ ¼ −1.
This procedure is very robust and the computational
cost for the calculation of the matrix B and the
singular value decomposition is far less than the
computational cost for the calculation of the other
quantities that are needed anyway. This could be
confirmed experimentally when comparing CPU
times for simulations with T SSC and NW SSC
for similar initial values. For all the simulations done
in the preparation for this work, the CPU times in the
NW SSC case were only slightly higher than those for
the T SSC case where the velocities could be
determined explicitly via Eq. (24).

Last, we turn to the numerical integration of the
Hamiltonian formalism in the next section.

APPENDIX B: NUMERICAL INTEGRATION
OF THE HAMILTONIAN EQUATIONS

The Hamiltonian equations considered in this study
have a so-called Poisson structure, that is, with
y ¼ ðPr; Pθ; Pϕ; r; θ;ϕ; S1; S2; S3ÞT ∈ R9, they can be
written as

_y ¼ BðyÞ∇HðyÞ; ðB1Þ

where B∶R9 → R9×9 is a skew-symmetric matrix-
valued function. In our case, this function BðyÞ is
given by

BðyÞ ¼

0
B@

0 −I3×3 0

I3×3 0 0

0 0 B1ðyÞ

1
CA; ðB2Þ

with

I3×3 ¼

0
B@

1 0 0

0 1 0

0 0 1

1
CA; ðB3Þ

B1ðyÞ ¼

0
B@

0 −S3 S2
S3 0 −S1
−S2 S1 0

1
CA: ðB4Þ

For such BðyÞ, there exists a smooth transformation
to new coordinates z, for which the equations of
motion are of symplectic form

_z ¼ J−1∇HðzÞ; ðB5Þ

J ¼
�

0 I4×4
−I4×4 0

�
; ðB6Þ

see [21,35]. The idea of how to find this trans-
formation is based on the conservation of the spin
length S ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
S21 þ S22 þ S23

p
by Eqs. (B1). Thus, the

three-dimensional spin S ¼ ðS1; S2; S3ÞT can be
given as a function of two variables α and ξ via

S ¼ S

0
B@

ffiffiffiffiffiffiffiffiffiffiffiffi
1 − ξ2

p
cosðαÞffiffiffiffiffiffiffiffiffiffiffiffi

1 − ξ2
p

sinðαÞ
ξ

1
CA: ðB7Þ

One can then show that

_ξ ¼ −
∂H
∂α ; ðB8Þ

_α ¼ ∂H
∂ξ ðB9Þ

hold; see, e.g., [21]. Hence, for the variables
z ¼ ðPr; Pθ; Pϕ; ξ; r; θ;ϕ; αÞ, the equations of mo-
tion indeed take the form (B5). Whenever a system
can be smoothly transformed to symplectic form, it
can be evolved by symplectic integration schemes.
Therefore, for our studies of the Hamiltonian formal-
ism of [7], we follow [21] and use Gauss Runge-
Kutta schemes that have already been presented in the
last section [36]. In order to show their favorable
behavior, we evolve the Hamiltonian system for
initial data M ¼ 1, m ¼ 1, a ¼ 1

10
, r ¼ 15, θ ¼ π

2
,

ϕ ¼ 0, Pr ¼ 0, Pθ ¼ 3.69336, Pϕ ¼ Jz ¼ 3.8,
S1 ¼ 1ffiffi

2
p , S2 ¼ 1ffiffi

3
p , S3 ¼ 1ffiffi

6
p and plot, in Fig. 10,

the relative error of the Hamiltonian (69) once for
the Gauss Runge-Kutta method with s ¼ 4 inner
stages and once for the fifth order explicit Cash-Karp
scheme. For the explicit method we observe a linear
growth in the error while there is no significant error
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during the whole simulation for the Gauss scheme.
This is in spite of the latter’s much smaller CPU time.
With regard to the computational effort, we also
notice that it is much smaller than in the case of the
full MP equations, although both cases were tested on
the same machine. This gives another practical reason
to consider the Hamiltonian approximation.

In our comparison of the orbits given by the MP
equations with those of the Hamiltonian formalism, the
concerning simulations have to produce output for the same
coordinate times. To avoid having to reformulate the MP
equations for the coordinate time as evolution parameter,
we proceed as follows. In the simulation of the MP
equations, output is produced at uniform distances in the
evolution parameter proper time. The output also comprises
the corresponding coordinate times. These are then fed as

input to the Hamiltonian simulations—for example, under
the name toutput required. Now, if in the simulation with
uniform steps in the evolution parameter coordinate time
t, between times ti and tiþ1 say, one passes one of the
prescribed times for which output is required, toutput required,
one can take use of the interpolation property of the
collocation schemes to comfortably obtain output at no
computational extra cost. It is well known that the inter-
polation polynomial uðtÞ through the points ð0; ynÞ,
ðci;YiÞ, i ¼ 1;…; s stays OðhsÞ close to the exact solution
of the equation of motion, and, hence, also to the numerical
calculated trajectory; see, e.g., [33]. We thus only have to
evaluate uðtÞ at time toutput required − ti that yields an
approximation of the solution at time toutput required that is
exact up to an error ofOðhsÞ. The interpolation polynomial
itself can be calculated very quickly with the so-called
Horner scheme.

uðtÞ ¼ yi þ ðt − 0Þðδ1½0; hc1� þ ðt − hc1Þðδ2½0; hc1; hc2�þðt − hc2Þð…ðt − hcs−1Þδs½0; hc1;…; hcs�Þ…ÞÞ;

δ1½0; hc1� ¼
Y1 − yi
hc1 − 0

;

δk½0; hc1;…; hck� ¼
δk−1½hc1;…; hck� − δk−1½0; hc1;…; hck−1�

hck − 0
: ðB10Þ

The more intricate way of producing output at the
desired times would be the following:

(i) When having passed an output time toutput required
between ti and tiþ1, go back to ti.

(ii) Change h → hnew ¼ toutput required − ti.
(iii) Evolve the system until t ¼ toutput required with step

size hnew and produce output.

(iv) Go back to ti and go on integrating with step size h.
(Note that this is necessary as the scheme would lose
its symplectic structure when applied with different
step sizes; see, e.g. [19], chapter VIII.)

In order to illustrate that this cumbersome procedure is
not worth the additional effort, we again consider the data
that yielded Fig. 5 and, for every coordinate time t, for
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FIG. 11 (color online). The relative difference, Δr, between the
radial distance calculated with the interpolation method and the
radial distance calculated via the cumbersome method with extra
integration steps plotted against output time t.
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FIG. 10 (color online). The relative error of the Hamiltonian,
ΔH, against integration time t for the 4-stage Gauss scheme with
step size h ¼ 2 and the fifth order Cash-Karp scheme with step
size h ¼ 0.2 applied to the initial value problem (B1) with initial
data as stated in the text. CPU time was 7.83 s for the Gauss
Runge-Kutta scheme and 24,7 s for the Cash-Karp scheme.
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which Δxyz was plotted in the central panel of that figure, we plot the relative difference in the radial distance at those times
between the interpolation method and the cumbersome method,

ΔrðtÞ ¼ jrinterpolationðtÞ − rcumbersomeðtÞj
r

: ðB11Þ

In Fig. 11, we can observe that the difference is negligible.
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