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Aspects of the zero A limit in the AdS/CFT correspondence
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We examine the correspondence between QFT observables and bulk solutions in the context of AdS/CFT
in the limit as the cosmological constant A — 0. We focus specifically on the spacetime metric and a
nonbackreacting scalar in the bulk, compute the one-point functions of the dual operators, and determine
the necessary conditions for the correspondence to admit a well-behaved zero-A limit. We discuss
holographic renormalization in this limit and find that it requires schemes that partially break diffeo-
morphism invariance of the bulk theory. In the specific case of three bulk dimensions, we compute the
zero-A limit of the holographic Weyl anomaly and reproduce the central charge that arises in the central
extension of bmsg;. We compute holographically the energy and momentum of those QFT states dual to flat
cosmological solutions and to the Kerr solution and find an agreement with the bulk theory. We also
compute holographically the renormalized two-point function of a scalar operator in the zero-A limit and
find it to be consistent with that of a conformal operator in two dimensions fewer. Finally, our results can be
used in a new definition of asymptotic Ricci flatness at null infinity based on the zero-A limit of

asymptotically Einstein manifolds.
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I. INTRODUCTION

String theory in asymptotically AdS spaces admits a dual
nonperturbative formulation provided by the AdS/CFT
correspondence [1-3], and several proposals have been
constructed by analogy with AdS/CFT that relate string
theory on spacetimes with other asymptotics to field
theories formulated at the boundary. For the case of de
Sitter gravity, and motivated by studies of the asymptotic
symmetry group of de Sitter in a fashion similar to that of
AdS [4], it has been conjectured that the bulk theory can
be described by a Euclidean field theory defined at the
spacelike conformal boundary [5—11]. A further motivation
lies in the fact that every solution of AdS gravity is mapped
to a solution of de Sitter’s by an analytic continuation,
leading to a possible dS/CFT correspondence. In the
context of AdS/CFT, string theory correlation functions
are determined by computing QFT correlators and vice
versa, and the bulk/boundary dictionary is well established.
Statements in dS/CFT can then be worked out from the
AdS counterpart by analytically continuing the solutions
with AdS boundary conditions to de Sitter signature.1
In particular, the near-boundary asymptotics of AdS spaces
admits an analytic continuation to dS asymptotics (see e.g.
Ref. [13]), leading to a well-defined mapping between
asymptotic data in the bulk and boundary data in the case of
a positive cosmological constant A.
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Note, however, that to compute correlation functions in this
way, one has to take into account the global properties of
asymptotically de Sitter spaces [9,12].
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Despite many interesting results, a holographic descrip-
tion of de Sitter space remains unclear, mainly because
string theory in dS is not well understood. Even though de
Sitter vacua exist in string theory [14], unlike the case
of flat or AdS vacua, they are unstable and decay to vacua
of different A signatures. Another problem in a dS/CFT
formulation is the fact that the conformal weights of the
QFT operators are imaginary, and the boundary theory is
nonunitary. Nevertheless, one can still work out the details
of such a correspondence and point to those ingredients that
do not work.

The case of Ricci flat gravity is substantially different.
At the classical level, setting A to zero is just a fine-tuning
problem, and asymptotically flat spacetimes are the best
controlled backgrounds in string theory to compute corre-
lation functions. However, the mechanism in string theory
by which the cosmological constant vanishes is not clear
(see e.g. the discussion in Ref. [15]). More particularly, in
the context of AdS/CFT, the zero-A limit of the correspon-
dence in general is not well understood. The limit taken
on boundary correlators and vacuum expectation values
(VEVs) generically does not lead to sensible results. The
conformal weights of QFT operators dual to massive bulk
fields diverge in this limit, a problem associated with the
fact that the conformal boundary is null in the zero-A limit.
The limit taken on the near-boundary asymptotics of AdS
spaces in general does not result in Ricci-flat asymptotics,
unless specific constraints are imposed, and a bulk/boun-
dary dictionary has not been established. Furthermore, and
unlike the case of de Sitter gravity, holographic renorm-
alization does not extend in a straightforward manner to flat
gravity, essentially because the asymptotics of bulk fields in
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this case are nonlocal with respect to the sources [13,16—18].
Nevertheless, quantum gravity in asymptotically flat space-
times can be characterized by a unitary and analytic S matrix,
and it is believed that a holographic description of the flat-
space S matrix can be derived from the zero-A limit of AdS/
CFT. Indeed, explicit constructions for extracting S-matrix
elements from boundary correlators have been proposed in
Refs. [19-27] (see also the discussions in Refs. [7,28]).

A different approach to flat-space holography formulated
as a limit of AdS/CFT is based on studies of the asymptotic
symmetry group of asymptotically Minkowski spacetimes
at null infinity, the BMS group. In four dimensions, the
symmetry algebra was originally derived in Refs. [29-31]
and more recently investigated in Ref. [32] in general
dimensions (see also Refs. [33,34]). In the three-dimensional
case, the bmg3; algebra consists of diffeomorphisms on
the circle and supertranslations and is isomorphic to the
two-dimensional Galilean conformal algebra (GCA) con-
sisting of a contraction of two copies of the Virasoro algebra.
The Poisson algebra of the surface charges was found to
admit a central extension with central charge ¢ = 3 [32,35],2
representing a generalization to the flat-space case of those
results originally obtained by Brown and Henneaux [4] for
AdS; and which predated the AdS/CFT correspondence.
In the four-dimensional case, the bmsg, algebra is also
isomorphic to a class of GCAs [36]. Based on these results, a
possible connection between string theory on asymptotically
flat spacetimes and nonrelativistic conformal field theories
defined at null infinity was proposed in Refs. [35-39].
In the same spirit, the authors in Refs. [35,39] were able
to reproduce the Bekenstein-Hawking entropy of three-
dimensional flat cosmological horizons by counting states
in a two-dimensional Galilean conformal field theory
defined at null infinity. However, these studies leave open
the question of how to compute field theory correlation
functions with the right properties from the bulk theory and
do not establish a precise bulk/boundary dictionary.

Similar earlier studies of flat-space holography via the
BMS group focused on constructing BMS-invariant field
theories, see Refs. [40—43]. Other different approaches
have investigated instead a possible dual description of flat
space at spatial infinity [44—49] by analyzing the variational
principle for asymptotically flat spaces and determining the
appropriate counterterms in a fashion similar to AdS
holographic renormalization, and by studying the putative
boundary stress-energy tensor and correlators constructed
at spatial infinity.

Returning to the context of AdS/CFT, let us quickly
review the flat-space limit in the duality [1] between string
theory in AdSs x S and A/ = 4 super Yang-Mills. In the
supergravity approximation, the dynamics of the massless

The central charge cpy; in Ref. [35] is related to ours as
cm = ¢/ 12, since we follow the convention of formula (1) in
that reference.
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closed string states is governed by the IIB supergravity
action:

1
S —
1677.'G10

/d‘%/@(R[G] —%|gsF5|2 + - ) (1.1)

where F'5 = dA, is the self-dual R-R five-form and we are
omitting the remaining supergravity fields. The ten-dimen-
sional Newton constant is given in terms of the string
coupling ¢, and the string length scale 7, by G, =
87°g2¢8. The metric solution corresponding to a stack of
N D3-branes that source the A, potential is given by

ds?y, = H(r)™V2(=df* + dx%) + H(r)V2(dr* + r?dQ2):

¢!
H(r):1+/1r—2, (1.2)
where 4 = 4zg,N. The horizon of this black brane geom-
etry is located at r = 0. We then introduce a new radial
coordinate z such that r = #2/z and work in the near-
horizon or decoupling limit Z; — 0 (such that 1/£%¥ — co).
In this limit, the four-dimensional world-volume theory on
the D3-branes decouples from the closed string modes and
becomes N = 4 super-Yang-Mills at leading order. The
parameter A becomes the 't Hooft coupling of the gauge
theory with N the rank of the gauge group. In the bulk,
the resulting near-horizon geometry is AdSs x S° para-
metrized as

I —di? + d2
dsy = £2 (—7j i
NG z

When considering perturbations or supergravity solutions
around this background, the compactification on the §°
results in an effective cosmological constant A =
—6/(A¢*)'/2. The flat-space limit of the noncompact
AdSs background can then be obtained by defining

d 2
+ \/EZiZJr \/stz§>. (1.3)

X =4y,

t=u—iz

(1.4)

(1.5)

such that

1 du?’ 2dudz dy?

and taking the limit 4 — oo under which the near-horizon
metric becomes flat.* On the gauge theory side, observables
typically diverge in this limit. A simple example is the
central charge ¢ of the theory. For a CFT, with an AdSs

One can also keep the full ten-dimensional near-horizon
metric and define & = p/A1/*, where dQ2 = d0” + sin> 0dQ3.
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dual, this is given at strong coupling and large N by [50]
c~ (A3/*/Gs, where the effective five-dimensional
Newton constant Gs = G;,/Vol(S°). In our case, we
obtain ¢ ~ N2, Since 4 — oo requires N — oo in string
perturbation theory, we have that ¢ diverges in the flat-
space limit.

In the case of AdS;/CFT, [1], the near-horizon geom-
etry of the D1-D5 system is given in a similar fashion by

1 —di? + dx* dz’

Vi = ge\/N\Ns.

where gg < 1 is the effective six-dimensional string coupling
(recall that in this case we first compactify the theory on a
four-manifold such as a 7#) and N, s is the number of D1,5
branes. After compactifying on the S3, the flat-space limit of
the AdS; geometry can be taken by introducing coordinates
asin (1.4) and (1.5), and taking the limit A — oo under which
the geometry becomes three-dimensional flat space. In the
dual CFT,, the central charge at strong coupling and large
charges N, 5 is given by ¢ = 6/N| N5, which diverges in the
limit 1 — oo.

This type of divergence associated with the flat-space
limit arises in the correlation functions of the dual field
theory when computed holographically, and it is the main
purpose of this work to study the zero-A limit of these
observables in AdS/CFT. Since we will not be particular-
izing the correspondence to specific theories, in order to
take the limit of a dimensionless quantity, we introduce a
characteristic length scale 7, and rewrite the AdS radius as
a multiple of Z, with proportionality constant a:

(1.7)

£ =af,. (1.8)
In the specific examples given above, 7, is the string length
scale, and a plays the role of the effective gauge coupling
constant. The zero-A limit in AdS/CFT then corresponds to
taking a@ — oo with 7, fixed.* We will make use of the
relation (1.8) throughout this work to study the limit of
vacuum expectation values and specific correlators in AdS/
CFT. This will be done formally and in a fashion somewhat
similar to the way VEVs and boundary correlators in dS/
CFT are derived from corresponding AdS results. The main
difference, however, is that not every bulk solution of
Einstein gravity with AdS boundary conditions is mapped
to an asymptotically flat solution in the zero-A limit.
We will discuss this aspect in the following sections.

“Note that the same limit has been discussed in Refs. [19,28].
In the above examples, @ — oo corresponds to the limit of large
charges N, N; with the string coupling (and length scale) fixed.
Also, and as emphasized in these references, this limit involves
the physics of bulk and gauge theory states with large (dimen-
sionless) energies.
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This implies that we need to restrict the space of solutions
of AdS gravity to the subspace of those that admit the limit,
in the sense that they result in solutions of the bulk
equations of motion with A =0 once the limit @ - oo
is taken. Since gravity solutions are dual to QFT states, this
corresponds to restricting the Hilbert space of the field
theory to some subspace, say H. Furthermore, since the
limit @ — oo is taken over solutions, on the QFT side this
should correspond to some limit taken over H. The objective
is then to derive the correspondence between the resulting
states in H and those bulk solutions of asymptotically flat
gravity that result from the limit @ — oo. This will be done
mainly by working out the mapping between QFT observ-
ables and the asymptotics of such solutions. We will find that
well-definedness of this limit seems to be a statement about
states and sources on the field theory side.

If the bulk field is in particular the spacetime metric, the
choice of possible coordinate systems is constrained by the
requirement that the solution be smooth in the zero-A limit.
Taking this limit on the metric must correspond to switch-
ing off the boundary lapse function so that the timelike
conformal boundary of the asymptotically AdS solution
becomes null as @ — co. To some extent, the requirement
that the solution be mapped to an asymptotically flat one in
this limit is a gauge-dependent condition, and this fact will
have an interesting implication for the holographic renorm-
alization of the bulk theory as discussed below. This restric-
tion to the subspace of solutions with a well-defined limit
implies in particular that the standard Fefferman-Graham
coordinate system used in the near-boundary analysis of
asymptotically AdS and dS spaces cannot be extended to
derive the asymptotics of those solutions that are smooth in a.

The choice of coordinates we will then make near the
asymptotic boundary are the well-known Gaussian null
coordinates. This gauge is closely related to Bondi coor-
dinates and was initially introduced by Isenberg and
Moncrief [51] in order to prove the existence of a
Killing vector field in any spacetime that contains a
compact null surface with closed generators. It was further
elaborated in Ref. [52] in order to generalize Isenberg and
Moncrief’s results, as well as Hawking’s rigidity theorems,
to nonanalytic spacetimes (see also Ref. [53]), and it has
been extensively used in the literature in order to study the
near-horizon geometry of black holes (see Refs. [54,55]
and references therein). This gauge choice is also motivated
by those investigations of the asymptotic symmetries of
asymptotically flat gravity discussed above.” In this coor-
dinate system, the Einstein field equations decompose into
a set of dynamical and constraint equations that are very
tedious to solve asymptotically and increase in complexity
with the spacetime dimension. For this reason we will focus
specifically on the case of three and four bulk dimensions,
but it is straightforward to extend the procedure to any

3See also Ref. [56] for a brief overview in three dimensions.
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dimension. From this analysis we will obtain in particular
the unique asymptotics at null infinity of all those Ricci-flat
metrics that result from the zero-A limit of Einstein metrics.

As a final remark, it should be emphasized that, unlike
the case of dS/CFT, holographic renormalization does
not admit a straighforward extension to the asymptotically
flat case. In general, the holographic counterterms intro-
duce divergences in « that spoil the zero-A limit of the
renormalized on-shell gravity action. If one insists that
the action be finite in this limit, further counterterms
are needed to restore the well-definedness of the limit.
The latter are finite in the holographic regulator and
therefore are associated with a choice of renormalization
scheme on the field theory side. These finite counterterms
are covariant with respect to diffeomorphisms that preserve
the spacelike foliation induced at the boundary by the bulk
theory, but break invariance of the renormalized action with
respect to diffeomorphisms that are not foliation preserv-
ing. This reflects the fact that the well-definedness of the
limit is a gauge-dependent requirement. We will analyze
the effect of these anomalous counterterms on the holo-
graphic Ward identities of the field theory in the case of
four bulk dimensions. A pathological aspect of these
counterterms is that they introduce divergent contact terms
in the two-point correlators of scalar operators. We will
derive this result in Sec. IV C.

In the next section, we introduce our coordinate system
and determine the unique asymptotics of the bulk spacetime
metric by solving the vacuum FEinstein equations with a
negative cosmological constant in a neighborhood of the
asymptotic boundary. We will then discuss the zero-A
limit of the solution and briefly compare the spacetime
asymptotics in this limit with the standard definitions of
asymptotic flatness at null infinity.

Section III contains the main results of this work. We will
holographically renormalize the bulk gravity action in three
and four dimensions and use the AdS/CFT prescription to
compute the vacuum expectation value of the QFT energy
tensor. The objective will be to analyze the correspondence
between the metric asymptotics and the boundary data in
the zero-A limit and to address the issues associated with
this limit. The three-dimensional case is the best controlled
setting, and no major problems arise. The holographic Weyl
anomaly in the zero-A limit will be of particular interest in
this case. The integrated anomaly is still a topological
invariant, and we will be able to obtain in this limit the
Virasoro central charge that arises in the central extension
of bmg; as the proportionality constant between the
anomaly and a geometric invariant. We will then apply
our results to the zero-A limit of the BTZ solution, which
represents a three-dimensional flat cosmological solution,
and find a matching between the energy and momentum of
the QFT and those of the bulk theory.

In the case of four bulk dimensions, we will find that the
holographic renormalization spoils the zero-A limit of the
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gravity action, as described above, by terms that are finite in
the regulator and which can only be subtracted by a finite
counterterm that partially breaks diffeomorphism invari-
ance of the action. We will then compute the holographic
energy tensor and address the issues associated with its
zero-A limit. Of particular interest will be the holographic
Ward identities and the way they are affected by the
anomalous counterterm. In the absence of the latter, the
trace of the QFT energy tensor vanishes, but it is modified
by a total derivative in the presence of the anomalous
counterterm. As an application of our results, we will derive
specifically the asymptotics of the Kerr solution and find
a matching between the energy and momentum of this
solution and those of the dual state of the field theory. At the
end of the section, we will address and solve the issues
associated with the presence of null boundaries in the
spacetime in addition to the asymptotic conformal boundary.

Finally, in Sec. IV, we analyze the case of a non-
backreacting massive bulk field propagating in AdS in a
coordinate system appropriate to the zero-A limit. We
renormalize holographically the bulk action for the field,
address its zero-A limit, and compute the vacuum expect-
ation value and the renormalized two-point correlator of the
dual scalar operator. As in the case of the spacetime metric,
the objective will be to analyze the zero-A limit taken on the
VEV and correlator. For “large” values of the conformal
weights, contact terms associated with the anomalous
counterterms arise in the two-point function, but they
vanish away from coincident points in time. In general,
the two-point functions will be consistent with that of a
conformal operator in two dimensions fewer in this limit.

II. SPACETIME ASYMPTOTICS

A. Choice of coordinates

We start with the action for the spacetime metric in d + 2
dimensions written in the form

167G,S = /M d2x\/G (d(d +1 + R[G]>

a’t?

+2/ d™x,/q0, (2.1)
oM

where the cosmological constant 2A = —d(d + 1)/(at,)?
and where ¢, and Q,,, are the induced metric and extrinsic
curvature of the boundary. As discussed in the previous
section, we have rewritten the AdS radius Z as in (1.8) so
that A is switched off by taking the limit @ — oo of the
dimensionless parameter .

In order to solve asymptotically the Einstein field
equations, we introduce Gaussian null coordinates x* =
(r,x%) = (r,u,x") near the boundary r = co of the mani-
fold. In such gauge, the spacetime metric has the form
[51,52]
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ds?,, = G,,dx"dx"
= —pdu* + 2dudr + y;;(dx" + o'du)(dx’ + o/du),
(2.2)

where the metric components depend on all the coordi-
nates, the spatial metric y;; is positive definite, and the
function ¢ is positive by definition. The vector ¢~/?(9, —
6'0;) is future-directed timelike with unit norm. The
manifold is defined to be foliated by a family of timelike
hypersurfaces labeled by the coordinate r and by a family
of null surfaces of constant u. Each submanifold {r =
constant} is foliated by spacelike surfaces of constant time
coordinate u. All the above statements hold asymptotically.
In Appendix B, we briefly deduce this coordinate system
via an ADM analysis of the metric, but it all comes down to
using diffeomorphisms in order to bring the metric to the
desired form. In the case of asymptotically flat metrics in
Gaussian null coordinates, the metric components behave
asymptotically as [34,57-60]

7ij(rou, x) = r2(y(0)i; (. x) + O(r=?)), (2.3)
P(rou,x) = o) (u.x) + O(r=0), (2.4)
o'(r,u,x) = O(r<0), (25)

with null infinity given by r = +o0, so we will be interested
in solving the field equations around 1/r =0 with A
switched on, and in the end we analyze the limit a — oo.

Before doing so, we introduce a new coordinate z :=
5/r and also define g,; := (2/¢,)*y;; and @ = (z/¢,)*¢
such that

% i ]
dsg., = Z—S (—pdu? = 2dudz + g;;(dx' + o'du)

X (dx/ + o/du)). (2.6)
The decomposition of the Ricci tensor R, [G] in terms of
the metric components ¢, g;; and o' is given in Appendix C.
If we solve the field equations R, = —(d + 1)/(aZ,)*G,,
around z = 0 at leading and first subleading order, we find

1
¢(z.u.%) = =+ 200) + O(2), (2.7)
9ij(z, u, X) = goyij + 2901y + O(2%), (2.8)
o'(z,u,x) = 620) + O(z%), (2.9)

where the coefficients ¢y (1, x), g0);;(u. x), and GEO)(u, X)
are completely arbitrary (i.e. integration constants), and
where g(1);;(u, x) obeys the equation
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1
—S90)ij = (0u — £a(0))g(0)ij + @1)90)ij (2.10)

a
with £ being the Lie derivative. The asymptotic behavior of
the metric components therefore implies that the metric
(2.6) is (at least C?) conformally compact,6 with defining
function z/#, and conformal boundary z = 0. For a™> > 0
the boundary is timelike, and it becomes null in the zero-A
limit. We also find from (2.10) that the leading-order term
9(0)ij becomes constrained in the case al=0.

We will now use our freedom in the choice of defining-
function and introduce a more judicious one. We define a
new coordinate Z := zN (g, With N g (u, x) an arbitrary but
positive smooth function of # and x*. Under this change of
coordinates, the spacetime metric becomes

. .
dsﬁJrZ = ? (—(pN(O)dMZ — 2N(O)dudz

+ 3ij(dx" + &' du)(dx’ + &/ du)), (2.11)
where
PN(0) = ¢N7y) = 22(0, = £,)N (o) + 22|V, log N(g) .
(2.12)
&' =o' +INGg"9;N o). (2.13)
3ij = N3 G- (2.14)

The metric component ¢ therefore has the asymptotics

@ = ) +200) + OF*): (2.15)
_ 1
P20 = _2Nw): (2.16)
@) =) =20y — £5,) logN).  (2.17)
We then choose our function N ) (u, x) such that’
(O — £5<0)) log N%()) = @0 (2.18)

which results in the asymptotics ¢ = @) + O(z?). Recall
that the coefficient ¢(;) was an integration constant, and
therefore N (o), or @(q), remains arbitrary, i.e. undetermined
by the field equations.

From this choice of defining function z/#, and the
requirement that the metric components be well defined in
the limit @ — o0, it follows from equation (2.10) that

5See Appendix A.
'Note that if we write N © =N N2 such that
(04 — £4,,) log N(g)» = 0, we still have the freedom of choosing

9(0)

N g)2(u, x) in the space orthogonal to the vector 9, — JEO)Bi.
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(Ou = £5)90)ij = 0 (a = o), (2.19)
and therefore the timelike vector 9, — '9; is an asymptotic
Killing vector of the spatial metric g;; in this limit.
Furthermore, with such a defining function, the normal
to the boundary m* = G0,z in the conformal embedding
G,, = (2/£,)*G,, is shear, expansion, and vorticity free in
the zero-A limit, and therefore totally geodesic:

lim V,m* = O(z).

a—0o

(2.20)

This is the standard gauge used in the study of asymptoti-
cally flat spacetimes (see e.g. Ref. [61]). More importantly,
with our choice of coordinates, the boundary metric (with
components N ), §o);; and 5i0 ) is completely uncon-
strained for finite a. In the following sections, this feature
will allow us to take the variations of the on-shell action
with respect to all components of the boundary metric in
order to derive the holographic energy tensor. The metric in
the original Gaussian null coordinates (2.6) therefore
corresponds to the metric (2.11) with the lapse function
iN (o) of the boundary fixed by diffeomorphisms to a
constant.

We will drop the bar notation from now on and work
with the spacetime metric in the final form:

2
-0

4
ds’,, = G, dx'dx* = 2 (=N (oydu* — 2N () dudz

+ gi;(dx' + o'du)(dx! + o/du)), (2.21)
where
1
¢=5No+ 0(2%), (2.22)
9i; = 9oyij + O(2), (2.23)
o = 620) + O(2). (2.24)

The induced metric ¢, of the surfaces of constant z near
the boundary z = 0 is given by

dsﬁ_H = qabdxadxb
z,”g 1 2 2 i i
=2~ 2N + goy(dx' + o1 du)
x (dx/ + Jfo)d”) + O<Z))

&
= Z—2 (q(O)ab + O(z))dx“dxb, (225)

where g (), represents the metric tensor of the conformal
boundary and is the source for the energy tensor of
the dual quantum field theory. From the determinant
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Va©) = éN 0)\/9(0)» we see clearly that the timelike
boundary becomes null in the zero-A limit.

B. Asymptotic solution

The decomposition of the Ricci tensor R,,[G] in our
coordinate system (2.21) is given in Appendix C. If we
solve the Einstein field equations around z = 0 with the
cosmological constant switched on, we find that the
asymptotics of the metric is uniquely determined:

9ij = 90)ij + 29007 + 9@+ + 2 g

+ Zd+l 10g Zg(d+1)ij + - N (226)
¢ =00 + 290 + Zoa + o+ 2 e
+ 2" log 2 giny + -+ (2.27)
(0) (n ) (d+1)
+ 2 logz6{,, )+ (2.28)

Note that the expansions in z are not predetermined but
uniquely fixed by the equations.8 The coefficients g(g);;,
®(0)> and JEO), which we will denote collectively by Gg),.,
are integration constants and therefore completely arbitrary
functions of u and x'. These are the standard non-
normalizable modes, or sources, of asymptotically AdS

metrics.” The coefficients 9(a+1)ijs Pa+1)» and ode),

denoted collectively by G(44.1),,, are arbitrary up to specific
constraints and are the standard normalizable modes. These
will be associated with the different components of the
holographic energy tensor and the constraints to its Ward
identities. The coefficients of the logarithms, which we will
denote by G(H 1)uw» are only nonvanishing for odd values of
d > 1, and in such cases are local functionals of the sources
G ()~ The remaining coefficients Gj,),,, as well as the
constraints on the G4 1), are all local functionals of the
sources.

The expressions for the coefficients at the first and
second subleading orders are given by

Hv>

(2.29)

$An arbitrary term zg(;) in the expansion of ¢ can always be
canceled by a choice of N (0) s described above. See, however,
the discussion in Sec. III C 1. There is also the possibility of
including terms proportional to &, that vanish for all finite
values of a, but we discard such terms since we are only
interested in solutions for which the limit @ — oo exists.

°See Refs. [13,62] for a review of the asymptotics of such
metrics in Fefferman-Graham coordinates.
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d—1 1 )
9y = (d=2) (k(w —39<0>z’ij[9(o'>"<1>]>

1
- <R<o>ij —39<o>uR<0>>

L (N L o T
+5 | —90)i f[9(0)9(1>]+d9(0)u [g0)901)]

(04

4a
-3
+2(9(1)‘9(1))ij+79(0)ijTr[9(1)‘9(1)} ,
(2.30)
1
P0) = ?N(O)’ (2.31)
d(d—1)
— ppn = -2(d- 1)Tr[g k
No P2) ( ) r[g(o) (1)]
1 21 1
+Rg) + ) (Tr gy 901
+(2d = 3)Trlgq) - 9))) (2.32)
o-(l)i - 8iN(0), (233)
2(d-1) B , B
(N(O)U(Z)i = —(O)Vj(g(ol)gm))f + 3in[9(01)9(1)]
= (d=1)g1y;; YV 1og N, (2.34)

where R g);j = R;;[g(0)] and <0)V,-g(0)jk := 0, and where the
indices are raised and lowered with g();; and the inner
product taken with respect to the latter. It is also useful to
emphasize that in three and four bulk dimensions the
coefficient g,);; simplifies as'

(9(1) ‘9(1))ij (d =1, 2)- (2-35)

B

92)ij

In Appendix C, where the decomposition of the Ricci
tensor is given, we introduce the tensor k;; defined as

(au - £a)gij- (2-36)

1N

This tensor is proportional to the extrinsic curvature of
the surfaces of constant time on each submanifold
{z = constant}. From the metric asymptotics, k;; admits
the expansion

"For d = 1, the coefficient 9g(2)ij 18 totally determined by the
trace constraint Tr[g(‘(}) 9ol =1 Tr[g&)l)g(l)g(‘()l)gm] that follows
from equations (C8) and (C11). For d =2, we use the matrix
identity (D3) to simplify equation (2.30).
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kij = ko) + 2k + -+ 2 kg

+ Zd+1 10g Z]NC(d_H),'/’ —+ - (237)

Each coefficient k(,.41);; can be written in terms of
quantities defined at the boundary. For the first and second
subleading orders, we find"!

1 1
k(O)ij = W(o) (514 - £6(0>>g(0)ij = &K(o)i]v (2-38)
1
(Vij = 2N(0) [(8u £O'<0))g(l)l] £ﬂ(])g(0)ij}

= £, K0)ij = OViag); — ayia);

= Rijlq(0)] = Rijlgi0)) + 2(K0) - K(0));; = K(0)K(0)ij»

(2.39)
where K g);; is the extrinsic curvature of the surfaces of
constant time at the boundary, nf, 9, = aN (‘0') (0, — GEO)Gi)

is the unit normal to these surfaces, and a(g); = 9;log N g
is the acceleration. Also, R;; [q(oﬂ are the spatial compo-
nents of the Ricci tensor R,,[q(g)] of the boundary metric,
and we will see in Sec. III B that its trace will represent the
holographic Weyl anomaly in three bulk dimensions in the
zero-A limit.

Let us start by discussing the solutions for the coef-
ficients G,),,. If the cosmological constant is nonvanish-
ing, from the expressions (2.29)—(2.34) it follows that these
coefficients are indeed local functionals of the sources
G )y~ On the other hand, in the case &' = 0, we find that
the algebraic equation for a given coefficient g,);; becomes
a differential equation for the coefficient g,_1);, and
therefore the coefficients G,),, become nonlocal func-
tionals of the sources. This feature is responsible for the fact
that holographic renormalization cannot be extended in a
straightforward way to Ricci-flat spacetimes (see e.g.
Refs. [13,17]), and we will discuss this aspect in the
following sections. The asymptotic expansions (2.26)—
(2.28) together with the equations for the coefficients with
a~! = 0 represent the unique asymptotics at null infinity of
all Ricci-flat metrics that result from Einstein metrics in the
zero-A limit.

In the case of a finite, the sources Gg),, are arbitrary
functions, so we may have solutions of the equations of
motion with A switched on that diverge as @ — oo. The
same applies to the normalizable modes G4, ,,. We are
interested in those Ricci-flat metrics that result from the
zero-A limit, so we need to restrict our space of solutions of
Einstein metrics to the subspace of those that admit the

11 .

In the final expression for k(;), we made use of equa-
tions (2.29) and (2.33) and of the standard Gauss-Codazzi
identities.
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limit. For this purpose, we require that the coefficients in
the expansions (2.26)—(2.28) be nondivergent as a — oo.
For the normalizable modes, it is sufficient to restrict to
those configurations that satisfy G(.),, = O(a). On the
other hand, since the coefficients G ), and Ggs1)u are all
functionals of the sources up to order z**!, this requirement
imposes specific behaviors in a of the time derivatives of
9(0)ij- From equations (2.29) and (2.30), for example, it
follows that

(0u — £5(0>)g(0)ij =O(a™?), (2.40)
(d-2) <k( ) ——9<o>iij[g(ol>k(1)]>
1
- <R(0)u dQ(o)inm)) =0(a?), (241)

with k(;;; expressed in terms of (0, £G(O))zg<0)i ; by using
equations (2.29), (2.33), and the first identity in equa-
tion (2.39). From a holographic perspective, well-
definedness of the gravity solutions in the zero-A limit
then translates into a statement about the sources and states
on the QFT side. We will find another example of such a
correspondence between the existence of the zero-A limit
of bulk solutions and the time behavior of the sources when
we discuss nonbackreacting matter in AdS in Sec. [IVA.

It is worth comparing the asymptotic behavior
(2.26)—(2.28) of the spacetime metric in the limit @ — oo
with the standard definitions of asymptotic flatness at null
infinity. For vacuum spacetimes in odd bulk dimensions
higher than four, half-integer powers in the asymptotics of
the metric (starting at order z%? in the conformal embed-
ding G,,) are postulated in the definitions of asymptotic
flatness so that linearized perturbations of the metric
preserve the definition when the spacetime contains gravi-
tational radiation [57,58,63] (see also Refs. [59,60,64]).
The absence of half-integer powers in the asymptotics
(2.26)—(2.28) seems to indicate that vacuum, radiating
spacetimes cannot be obtained from the zero-A limit of
Einstein metrics in five or higher odd dimensions. It is also
worth emphasizing the presence of the inhomogeneous
logarithmic terms in the asymptotics of the metric,'? as
well as the fact that the first subleading terms in the
asymptotic expansions start at order z. The logarithmic
terms are usually absent in the definitions of asymptotic
flatness (see, however, the discussion in Ref. [65]), and
the first subleading terms are usually postulated to start at
order z%/? in both even and odd bulk dimensions.

The above results suggest that vacuum spacetimes
containing gravitational radiation in the sense of

"’The fact that the logarithmic terms are nonvanishing in five
or higher odd bulk dimensions is associated with the fact that the
conformal anomaly of the dual field theory is nonvanishing in
even (d + 1) boundary dimensions.
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Refs. [57,58,63] cannot be obtained from the zero-A limit
of FEinstein metrics in five or higher odd dimensions.
This subject will be analyzed in more detail elsewhere,
but we can already remark that this result is interesting in
the context of AdS/CFT. One possible way to study
holographically Hawking radiation from a black hole in
AdS is by coupling the dual CFT to another system such as
a heat bath that draws energy away from the original field
theory and which is used to measure the outgoing Hawking
radiation. In the bulk, this construction corresponds to
letting the radiation cross the boundary and then measuring
it. This type of setup can in principle be used to understand
more clearly the information loss problem in AdS. One
could then hope to draw lessons for the corresponding
problem in flat space by scaling the coupling constant in
the coupled system in a specific way and taking the zero-A
limit. One would then naively expect to obtain a radiating
solution in the bulk after this limit is taken, but the above
results suggest that this will not be the case."

As discussed above, the integration constants of the
dynamical equations of motion for the metric are the modes
G0y and G441y, for nonvanishing A. On the other hand,
we have also seen that the algebraic equation for a given
9nyij 1s of the form

d+1—-n

T — (D
2 Y = @0,

- ‘£o’<0))g(n—l)ij +eeey (242)

where the ellipsis denotes lower-order terms and @ is some
proportionality factor. In the limit @ — oo, the algebraic
equation for g, therefore results in the differential equa-
tion that defines the coefficient g(,_;). However, from the
dynamical equations (C7) and (C11) for the metric com-
ponent g;;, we find that @ is always proportional to
2(n—1)—d."* This implies that the coefficient 9(d)2)ij»
or more precisely k(y/2);;, becomes the integration constant
in the limit & — oo instead of g(,1);;. For odd values of d,
d/?2 is half-integer, so there is no coefficient g(4/5);; in the
expansion (2.26). This would be the leading mode that
spoils smoothness of the metric in the definitions of
asymptotic flatness at null infinity in odd dimensions as
discussed above. On the other hand, the coefficient g(45);
is nonvanishing for even bulk dimensions. Just as the
integration constants G(41),, are associated with the
different components of the holographic energy tensor
for the case of nonvanishing A, the coefficient g(4/2);;, ©

k(a/2)ij» will be related to the spatial components of the
QFT energy tensor in even dimensions in the limit @ — .
We will derive this result for the case d = 2 in Sec. III C 2.

I would like to thank the referee for raising this point and
Marlka Taylor for pointing out to me this setup.

"This fact follows from the two terms 4k/
last line of (C7).

2d/2k” in the
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As a final remark, we will not discuss here the asymp-
totic symmetry group BMS,,, of the metric (2.21) in the
limit @ — oo and the associated asymptotic charges, but we
would still like to point out that our gauge-fixed metric is
not invariant under boundary diffeomorphisms [i.e. trans-
formations of the form u — it(u, x), x' — X'(u, x)] that do
not preserve the foliation in surfaces of constant u. In fact,
there is no gauge one can choose—where the gauge
freedom has been completely fixed—that simultaneously
admits a well-behaved zero-A limit and is invariant under
general boundary diffeomorphisms. This is so because the
asymptotic boundary should approach a null manifold in
the limit @ — oo, and therefore any gauge admitting a well-
behaved zero-A limit necessarily singles out the timelike
direction as a preferred direction over the remaining
boundary coordinates.

This observation implies in particular that the subgroup of
the asymptotic symmetry group of the metric consisting of
boundary diffeomorphisms must be foliation preserving'’:

u— u(u),

{ S (2.43)
xt = x'(u, x).

Furthermore, since full covariance, or gauge invariance, is
weakened by the requirement that the limit @ — oo be well-
defined, the spectrum of possible holographic counterterms
that we can have in the counterterm action is widened.
We will see in the following sections that the canonical, fully
covariant counterterms [62] are sufficient to render the
on-shell gravity action finite once the regulator is removed,
but if we also require that the action be finite in the limit
a — oo, further counterterms are needed. The latter preserve
invariance of the action under all but those diffeomorphisms
that are not foliation preserving.

% ‘ , : .
Gapdxdxt = Z—; (=N (oydu* + g;;(dx' + ¢'du)(dx’) 4 6/du)),

1
Ouw = oY (5z - £/m)f1ab

s

1 )
=Ny 5 |=¢ +-¢

2pe 27 N 2

1

N (0) Z

| 2 2 . ) )
— 1 Op) X' —— |:6/- ——06;—N0;loggp - ;N<0)Ufkij] + 0,x'0px/
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Finally, it should be emphasized that the asymptotic
symmetry group of the metric contains a subgroup that
generates conformal transformations at the boundary.
This consists of the transformation z — Z = zQ(u, x')
together with x* — ¥ = X(u,x) + zY*(u, x') + O(z%),
where the functions X¢ are defined to satisfy
q4(0)apdX“dX" = Q*q(g),pdx*dx", and where the functions
Y%(u,x') can be chosen so that the transformation is
asymptotically a symmetry.16

III. HOLOGRAPHIC ENERGY TENSOR

A. Preliminaries

In order to compute the vacuum expectation value of
the dual QFT energy tensor via the AdS/CFT prescription,
we need to evaluate the gravitational action (2.1) on shell
and subtract the divergences via holographic renormaliza-
tion [13,62]. In the previous section, we found that the
coefficients in the asymptotic solution for the metric
become nonlocal functionals of the sources in the limit
a — oo and emphasized that this feature prevents the
holographic renormalization of the action in the case of
a vanishing cosmological constant. Indeed, if we attempt to
renormalize the gravity action (2.1) with a~! = 0, we find
that the divergent terms are functionals of the coefficients
G () - In this way, the divergences are not local functionals
of the sources and therefore cannot be subtracted by local,
covariant counterterms. On the other hand, it is possible to
renormalize the action with the cosmological constant
switched on and in the end analyze the limit @ — o0, so
this is the procedure we will follow.

The induced metric and extrinsic curvature ¢, and Q
of the surfaces of constant z are given by

(3.1)

1 : 2 . 2 ..
+o— ((O-ial)/ - _6i61> + (au - £o‘) 10g N(O) - (au + £0’) 10g @ — ;Ulajkij]

P [, 2 2 }
=gy = =Nk |,
2N, 9ij Zg] p (0)Kij

(3.2)

where f:= (£,/2)4 /N)/@ is the lapse function of the surfaces of constant z, o; := g,-jaf, and the prime denotes

differentiation with respect to z. Also, n, = —@pd,u, nd, = ¢~'f~1(d, — 6'0;) represents the future-directed unit normal
to the surfaces of constant time on each hypersurface of constant z. The on-shell action is then given by

5See Ref. [66] and references therein for a review of foliation-preserving diffeomorphisms.
1°See also Ref. [67] about the relation between bulk diffeomorphisms and conformal transformations at the boundary in the context of

AdS/CFT.
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2o d+1
/ddxdu/ dz d+2 g( -2 2f2)
—|—/ ddxdu—\/_( 2(d+ el
=€

+ 0.9 + ¢Tr[g' ¢
+ (814 - £0) IOg ((p/N(O))

16 ”GO Son—shell

— 2N (g)k),
(3.3)

where k = ¢"k;;. In the above, we have replaced the
asymptotic boundary {z =0} with a regulating surface
{z = €}, and once the VEVs are computed, we will remove
the regulator by taking the limit ¢ — 0. Note also that the
last term in (3.3) is a total derivative and therefore can be
removed from the on-shell action'’:

44 44
—2€—Z/Z€ddxdu\/§N<o)k =— 2€—2/zeddxdu(8u— £5)/9.
(3.4)

The next step in determining the divergences of the action
is to use our asymptotic solutions (2.26)—(2.28) for the
fields ¢, ¢/, and g; ; and replace the expressions in (3.3). We
then look for all the terms that are proportional to negative
powers of ¢, as well as to factors of log e, and rewrite the
respective coefficients in terms of the sources G g),, using
(2.29)—(2.34). These terms are those that diverge if the limit
€ — 0 is taken. Then, we invert the asymptotic expansions
(2.26)—~(2.28) in order to express the sources G g),,, order by
order in ¢ in terms of the fields ¢, ¢, and g; j» and then
replace the inverted expansions G ), = G o)u[@. 6", g;;] in
the coefficients of the €< divergent terms (as well as the
log e terms) in the on-shell action. This process results in
the set of terms that contribute to the divergences of the on-
shell action if the regulator e is sent to zero. The divergent
terms obtained in this way are written in a covariant form
(except for possible anomalous terms depending explicitly
on the regulator via a factor of loge) and can then be
subtracted from the action by a counterterm action S
consisting of minus such terms. The renormalized gravity
action Sy, will then consist of the original action (2.1) plus
the counterterm action S, derived in this way.

As the spacetime dimension increases, the number of
covariant boundary counterterms increases, so we will
focus separately on the cases of three and four bulk
dimensions. For each case, these counterterms must never-
theless coincide with the canonical counterterms originally

"If we also consider null boundaries {u = u,} in the
spacetime, such a term results in a corner integral —2 [ ddx\/;7
at {z=e€,u=u,}, with y;; the induced metric on these
codimension-two surfaces. Corner terms will be analyzed in
Sec. 11 D.
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obtained in Refs. [62,68-71]. Although the latter were
derived in a different coordinate gauge near the asymptotic
boundary, these counterterms are covariant and therefore
independent of the coordinate system we use. The possible
exception are the anomalous counterterms in Ref. [62] that
are not invariant under the full diffeomorphism group
because of their explicit dependence on the regulator.

Apart from the canonical counterterm action, we are
always free to add finite boundary terms to the renormal-
ized gravity action S, that do not contribute with diver-
gences in the limit € — 0, and that provide a nonvanishing
contribution to the finite piece once the regulator is
removed. These terms are dual to a choice of renormaliza-
tion scheme in the quantum field theory. In our case, once
Sen has been determined by the above procedure, we will
have to take care of the zero-A limit @ — oo. This is done
by evaluating S, on shell, taking the limit ¢ — 0,
and looking for all those terms that diverge if the limit
a — oo is taken. Such terms will always be proportional to
positive powers of ae’, and the respective coefficients will
always be local functionals of the sources Gq),,. These
a-divergent terms can then be subtracted by adding a finite
boundary action Sg,ie t0 Sp, (finite in €) consisting of
minus such terms. The subtraction of divergences associ-
ated with the zero-A limit is therefore related in this way to
a choice of scheme in the dual QFT. As emphasized at the
end of Sec. II, however, these finite boundary terms will be
invariant under spacetime diffeomorphisms that preserve
our foliation, but will break invariance of the gravity action
Sren + Stinite under those diffeomorphisms that are not
foliation preserving. This fact implies that the renormali-
zation of quantum field theories with gravity duals that
admit a well-defined zero-A limit must involve renormal-
ization schemes that break invariance of the QFT under
transformations that do not preserve the spacelike foliation
at the boundary.

B. Three bulk dimensions

1. Renormalization

If we follow the procedure described above for the case
d+2 =3, we find that the counterterm action is the
canonical one in standard AdS; holographic renormalization:

+1
167GyS,en = /d3x\/ < (d+ s )+R[G]>
2d
2 2 ’x\/q. (3.
4 /Zzed g afo/zzedx\/ﬁ (3.5)

Note, however, the absence of the anomalous topological
invariant,

at’, / d*x\/qR|q] loge, (3.6)
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that arises in the canonical holographic counterterm
action. Although such a term does not contribute to the
variations of the action, it plays an important role in the
holographic correspondence: it represents the fact that we
cannot renormalize the generating functional Z of the dual
QFT and preserve all its symmetries. Such a term breaks
the invariance of the gravity action under bulk diffeo-
morphisms that result in a conformal transformation at the
boundary, and it is dual to those counterterms in the
renormalization of Z that do not preserve the conformal
symmetry.

This term is absent in the present case because we have
been careless about possible corner terms in the renormal-
ized gravity action, i.e. about integrals on the codimension-
two surfaces {z = €, u = +o0}. Note that in the case of a
two-dimensional manifold, the Ricci scalar R[g| can always
be written as a total derivative (though not necessarily as an
exact form). This is so because we can always imagine
some hypersurface, say spacelike, in the two-dimensional
manifold and use the Gauss-Codazzi identities to express
Rlq] as

Rlq) =Rly] - K*+K-K+2D,(n°K —a®), (3.7)

where y;; is the metric on the hypersurface, K;; its extrinsic
curvature, and n¢ and a“ the unit normal and acceleration of
the surface. Also, D.q,, == 0. Since the hypersurface is
one-dimensional we have that R[y] vanishes and the terms
K? and K - K cancel one another, leaving us with a total
derivative. In our case, if we choose such a hypersurface to
be a surface of constant time u, we find

afo/ dxdu+/qR|[q]loge
=€

u=-+0o0

= =2at, </ dx./yK log e) ,
=€ u=—00

which is a corner term. Such terms do not contribute to the
computations of the VEV of the QFT energy tensor, and we
will defer a detailed analysis of the possible corner terms
until Sec. III D. There we will find that the holographic
renormalization of the gravity action indeed requires the
term (3.8) as a counterterm.

Given the renormalized action (3.5), we now proceed as
discussed at the end of Sec. III A and analyze whether the
zero-A limit of the on-shell action was spoiled by the
counterterm. We evaluate (3.5) on shell, take the limit as
the regulator ¢ — 0 and, within the set of terms that survive
the limit, we look for those that are proportional to positive
powers of a. In three dimensions, no such terms exist,
which means that the canonical counterterm simultane-
ously renormalizes the gravity action and preserves the
well-definedness of the zero-A limit.

(3.8)
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2. Vacuum expectation values

Now that we have guaranteed that the on-shell gravity
action is free of divergences, we are in position to compute
the holographic energy tensor. The variations of the
renormalized on-shell action are given by

167G 5Son-shell — / dx\/q(Qup — 94,0)5™
=€
d
- d*x\/qqap59". (3.9)
aty )=

The renormalized Brown-York tensor [72] is then given by

2 S Sgsnr;shell

Ty =———"—
P aq (2 =¢)

1 1
= %G Go (Qab ‘IahQ_a—fOQab>’

Using the expression (3.1) for the induced metric g,
we now decompose the variations 5¢“* in terms of the
variations of the lapse, shift, and spatial metric:

(3.10)

5q® = (2n*n®/N)SN + (2n'%y ) /N)66' + y¢ )/]5}/’1
(3.11)

where N = (£,/2)\/#N).7ij = (£o/2)°gij» and y*
q® + n“n. Following Ref. [72], we then define the spatlal
stress tensor density s;;, the momentum and energy
densities j;, and & as

ij>

2 65 S;);lr;shell

— b —
Sij = Y?VjTab = Nﬁ 5}’ij (312)
1 5S(m shell
ii= —niybT s 3.13
Ji nyilap = \/— 56 ( )
1 5S()n—shell

€:=n"nbT,, = “ (3.14)

\/7 ON

We also define the trace density 7 as
T:= qabTab = (yab - nanb)Tah = yijsij — & (315)

Using the AdS/CFT prescription and recalling the leading-
order behavior (2.25), the expectation value of the dual field
theory energy tensor is given by

2 65 Son—shell fd— 1
(Twp) = (;e[;b = hn(} 2_1 Tup-

In terms of the above decomposition of 7', the spatial and
time components of the holographic energy tensor are then
given by

(3.16)
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2 S S;)cnr;shell
i —
«N©0)VI0) 89,

(1)) = 90090y {Ta) =

£t
_ 15%(@1—1 sl]>, (3.17)
1 5son—shell fd
(i = =ty T = == = (%),
(0)7(0) 9(0) 50'(0) e—0 €d
(3.18)

1 S S;)glr;shell

fd+l
= 1) =~ I (87,
J(0 e—=0 €+
v ”5<LN<0>>

(3.19)

where the induced metric gz’é’) = qi’é’) + ”(ao)”éjo)' The VEV
of the trace of the QFT energy tensor is also given by

b i ] l/ﬂg+1
(1) = . =l () = o) = tim (7).
(3.20)

Now, by construction, the above vacuum expectation values
cannot admit a well-behaved zero-A limit, because the
lapse LN (0) vanishes in this limit. For the VEV of the stress
tensor, we have

2 S S?gr;shell

<Sij> = a( ij
NoyvTo) 89,

>4m (@ = o). (3.21)

Similarly, for the VEV of the energy density,

S S;)él[;shell

1
<@=a(
V90 N

> o (a— ). (322

What we need to do is to work with the quantities that are
well defined in both cases, A # 0 and A = 0, and these are
represented by the tensor densities:

S Son»shell

ren
- (3.23)
59(0)

q(0)(sij) =2

S Son—shell
ON (0) ’

4(0)(&) = N(o) (3.24)
where Vi) = éN (0)4/9(0)- A straightforward computation

using (3.10) and (3.2) then leads to the following one-point
functions:

o
87TGO

?)
q(0)(8ij) = N0)\/900) <— W) 9(0)1-]), (3.25)
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2
q(0)(€) = 872G, N0)\/900)

(3.26)

. £ . | ;
(i) = —F&)N(oﬂ <6(2)i +3 (g(ol)gu))'fajN(O))- (3.27)

We therefore find as usual that the normalizable modes
G441y are directly associated with the vacuum expect-

ation values [62]. Note that these expressions admit a
well-behaved limit @ — .

3. Weyl anomaly
For the VEV of the trace, we find

%o
= 812G, N OV/90)

1
X (—; Tr[g(‘ol)g(z)] + Tr[g(‘ol)k(l)}) (3.28)

q00)(T)

Notice now that if we perform a decomposition of the Ricci
scalar of the QFT metric as in (3.7), we obtain

Rlg(0)] = Rlgw0)] = KTo) + K(0) - K(o)

+ 20D, (n¢

(0)K(0) - a‘(l())), (329)

where (O)ch(o)ab := (0. A quick computation using (2.38),
(2.29), and (2.35) then reveals that

1
Rigo] =2( 5 Tiagon] + ool ). 630

Replacing this in (3.28) results in the standard holographic
Weyl anomaly:

o
q0)(T) = 167Gy No)/90)R[90)]
af

16”2;0 VaoRlgo)]
C
Y™ Va0 Rlq0)),

where ¢ = 3aZ,/(2G,) is the standard central charge in
the AdS;/CFT, correspondence. Note that the anomaly
admits a well-behaved zero-A limit. Using equation (3.28),
we find

(3.31)

) 4
i 1) =g Nk

(3.32)
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where k(;);; is given in equation (2.39) and therefore is
nondivergent as @ — oo [it is totally written in terms of the
coefficients (2.26)—(2.28) without positive powers of «a].
Since the anomaly admits a well-defined zero-A limit, a
central charge can be introduced in this limit. This can be
done by rewriting the right-hand side of equation (3.32) as
a geometric invariant of quantities that are well-defined at
the null boundary:

£,
SﬂGO

N(0)+/90) " Da(ny K o) = afy)-

lim | /¢
(3.33)
In order to compare this result with that of Refs. [32,35], we

introduce the same limit discussed in these references to
obtain

) Gy
1
aggo (af o

1
4(0)<T>> =3
(3.34)

The proportionality constant between the trace and the total
derivative is then

1 c
— = 3.35
8t 24x ( )

where ¢ = 3 is the Virasoro central charge in the central
extension of the asymptotic symmetrg group bmsg; of
three-dimensional flat gravity [32,35].

4. Improved energy tensor

If we return to the full Weyl anomaly (3.28) or (3.31) for
generic A and use equations (2.35), (2.39), and (2.33), we
can rewrite it in terms of the coefficient g(,);; as

‘, 1 1
q0)(T) = $2Gq N0)+/9(0) —W(Qu) “g9)) + N
. 1
X 910y (O = £5,)9(1)ij — —O0ON

(3.36)

Notice now from equation (2.29) that a nonvanishing
coefficient g(;);; represents the fact that the QFT metric
is time dependent. The boundary shift Géo) can always be
fixed to any configuration by boundary diffeomorphisms;

in particular, we can fix O'éo) to zero by the transformation

xisxi— [ duaéo). In such coordinates, equation (2.29)

"®The central charge ¢y in Ref. [35] is related to ours as
cm = ¢/ 12, since we follow the convention of formula (1) in this
reference, as can be seen by comparing the central charge in this
formula with that in the AdS case (3.31).
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becomes N g /azg(lw = 0,9(0)ij- Therefore, if the QFT
metric (2.25) is static, the Weyl anomaly becomes

%o

_ 0)
s2G, V90 ENw

al

_ %o —)py b
- 87Gy 10 Dba(())’

where the acceleration a?o) =

qo)(T) =

(3.37)

g%’)ab log Ny as before.

Using the definition of g?ob), this can be rewritten as

at’,

87IGO
(0) a

+ 9D, (”(o)

q0)(T) = - 40D, 9D log Ny

né’o)ab log N(g))). (3.38)

Since the boundary metn'c is static, the second total
derivative vanishes: n 00 l0g N (o) = a/N(q ) (0 — 8,)
log N = 0. The f1rst total denvatlve that remalns is
unphysical in the sense that it can be absorbed in an
improved energy tensor ®“* defined in terms of the QFT
energy tensor 7%’ and covariant derivatives of the accel-
eration a<0) or of the lapse log N(g) (see e.g. Ref. [73]).

The conformal Ward identity then becomes

\/6?0—)<®aa> =0

for a static metric g (o), In Sec. III C 2, we will find another
example where an improved energy tensor can be defined
such that staticity of the boundary metric restores con-
formal invariance of the field theory.

(3.39)

5. Diffeomorphism Ward identity

In order to verify that the holographic energy tensor is
conserved, we need to solve the constraint equations (C9)—
(C10) using (C11) for the normalizable modes. At first
subleading order with d = 1, these two equations result in

the following constraints:
o (1>)/31N<o>)>

1 _
~£ >)<\/9(0)N(01) <0< it

9(0)
1 1 _ P(2) _
=—5900) +<y Trlio 90 =3~ Tr[g(oﬂkm])aif\’ )
(3.40)
1 5 1 1
70 (O = £5)) [ V/900) o [90)902)]
?2) _
Tavg T [g<°1>k“”) )
1 1
=—@ —_
27ek0 =N
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These constraints result in the conservation equations for
the QFT energy tensor:

V4 (‘31 log N (3.42)
1
0= ut, 0D, (g
= _(a” - £0(0))(N(_01) q(0)<8>)
~ N OVil(Ngy /@) /90 (i)

6. BTZ and three-dimensional cosmology

In this section, we would like to make a brief application
of the results obtained so far to a particular bulk metric, and
the spacetime we are interested in is the BTZ black hole and
its zero-A limit, which represents a cosmological solution
[74]. In Eddington-Finkelstein coordinates, the BTZ metric
is given by

2 4aG 2
ds? = —(—8MG0+r—+ ( a ") )du2+2dudr
r

LﬂZ
4aG,
+ 2 (da— 0a > : (3.44)
I
where the cosmological constant A = —£72, M is the mass

of the spacetime, and « is the angular momentum. Also, the
angular coordinate @ € [0, 2z[. In order to bring the metric
to the form (2.21), we introduce a coordinate z := 2/ r:

2 1 8MG 4aGy)\ 2
ds? :z_; <—<¥— 2 022 + <%) z4>du2

4aG 2
—2dudz + 2 <d9 - %szbﬂ) ) :

o

(3.45)

Note that the metric is well defined in the limit @ — oo.
For this solution the holographic energy tensor reads

M
4q(0) <Sij> = /Y00 (Zmﬂog(o)ij) (3.46)
M
40)(€) = \/9(0) <2mf0>’ (3.47)
a
i) = , 3.48
Ui = 5 (3.48)

where the spatial metric gq);;dx'dx/ = £3d6”. In this case,
the characteristic length #, represents the radius of the
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boundary cylinder. If we then introduce the average energy
(E) over a time interval 27, we obtain

1 [T ”
= ﬁ/—T du/d X\ /q0)(€) = (3.49)
Also, for the angular momentum we find
)= [ e /it = (3.50)

Note that these results can be extended to the zero-A limit
of the solution and coincide with those obtained in
Refs. [35,39] via a thermodynamics analysis of the respec-
tive three-dimensional cosmological solution.

C. Four bulk dimensions

1. Renormalization

In the case of d + 2 = 4 dimensions, the renormalized
action is given by

167G Spen = /d4xx/_< ( zﬂl) +R[G]>

+2/ d*x\/q0

2d aft,
& —
at, /e Wat d-—1

x / & /aRlg),

+

(3.51)

where the counterterms again coincide with the canonical
ones in four bulk dimensions. The next step is to determine
whether the renormalization spoils the zero-A limit of the
action. In the present case, if we evaluate S,., on shell and
take the limit ¢ — 0 as described in Sec. IIT A, we find
again that no terms proportional to positive powers of «
survive, and therefore that the limit o — oo is still well
defined in the presence of the counterterm action. However,
this feature is peculiar to our particular choice of boundary
lapse function N ). In Secs. Il A and II B, we found that, in
general, the metric component ¢ admits an arbitrary term
Z(1) in the asymptotic expansion. We then argued that it is
always possible to redefine the coordinate z and choose
some new function N ) as in (2.18) such that the term ¢ ;)
is removed from the asymptotics. On the other hand, if we
choose to decouple N from ¢y by requiring that
equation (2.18) for N not hold, then the asymptotic
solution (2.27) for ¢ will admit a term zgy), with ¢ ;) (u, x)
an arbitrary function. In such case, the solution (2.29) is
modified to

LU 4 ()

3.52
2N(0> 9(0)ij ( )
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Although the renormalization in the three-dimensional case
analyzed in the previous section remains unaffected, if we
switch on the coefficient ¢ ;) by allowing the lapse N ) to
be independent, the canomcal counterterm action in the
four-dimensional case will spoil the zero-A limit via the
term

242
lim 167G Sz = “— / NS

+ (’)(aSO), (3.53)
where O(a=?) denotes terms proportional to nonpositive
powers of a. From equation (3.52), it follows that the
(finite) counterterm that restores the well-definedness of
the limit is given by

1
162GyS,ey = / d*xVG (‘l(dz—;) + R[G})
a (8]

+2/ d*x\/q0

2d afl,
& o
afo/zze Wit

« / xRl

a’t?

5 /Z B d*x\/qKR]y],

+

+

(3.54)

with y;; and K;; the induced metric and extrinsic curvature
of the surfaces of constant time at the boundary as defined
in Sec. Il B 1. This last counterterm is covariant with
respect to diffeomorphisms that preserve our foliation of
the spacetime, but it breaks invariance of the action under
those transformations that are not foliation preserving, as
discussed in Sec. III A. The latter include those bulk
diffeomorphisms that result in a conformal transformation
at the boundary, and therefore the trace Ward identity will
be affected by such terms, as discussed in the next section.
This counterterm is also finite in the regulator ¢ and
therefore must be related to a choice of renormalization
scheme in the dual field theory. In particular, it signals the
fact that the scheme cannot preserve the invariance of the
QFT under those transformations that are not foliation
preserving at the boundary if the gravity dual has a well-
defined zero-A limit. We will find more examples of
counterterms of this type in Sec. IV. With our choice of

‘2 3 P@3)
Q(0)<Si/’> = mN(O)\/g(O) ﬁg@)u - 2N(o)

+0;10g N(0)0)) Trlgig g1)] = @ Vilgigg

1
1) :0)) log Ng) + X;; — Eg(o)ijTr[g(_ol)X]:| ,
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N (o) however, the canonical action (3.51) is well defined,
so we will ignore for now this extra counterterm and discuss
its necessity and implications in the next section.

2. Vacuum expectation values and the Ward identities

The variations of the renormalized on-shell action (3.51)
are given by

167G y5Senshell — / &Ex\/q(Qup — 94,0)5™

=€

ab

d 1

]
" W( )
(3.5

The spatial and time components of the Brown-York tensor
as defined in Sec. III B 2 are then given by

2 5son—shell
ren
s =1\ s b=
Va0q*(z=¢)

1 d
8ﬂG Qi —7ij0Q— m

+at, <Rw’[‘1] - %”J'R[q]))’

1 b( 2 éson -shell )
Vasq® (z =€)

(_anai

(3.56)

Ji=~—

—alonRylgl),  (3.57)

~ 817G,

on-shell
N ( 2 asge )
V464" (z =€)
1 d azf
ij o
~ 872G, ( Qi+ f 2

< (nn*Ruplq] + PR, [qn) .

(3.58)

A lengthy computation using the prescriptions (3.23)—(3.24)
and (3.18) for the vacuum expectation values of the
components of the dual QFT energy tensor in d +2 =4
dimensions results in the following one-point functions:

1
9(0)ij + o <(8u - £0<0))k(l)ij - Eg(o)ijTr[g(_ol) (au - £a(0))k(1)]>

(3.59)
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5
q(0)(€) =8”G0N<o> 9(0)
x | -6 1 g, log N(g) O ViTr
[ N(0> [ ) ()]
_ (OJVz’gmU(O)vJ log N(o)} , (3.60)
& 3 2009
i - . q20)yi
(Ji) SHGO[ N " T

1
(3.61)

From the trace constraint equation (C8) using (CI1), it
follows that the normalizable mode g3); is traceless:
Tr[g(‘ol) 9(3)] = 0. The trace (3.20) of the holographic energy

tensor is then given by
(T) = 92{)) (sij) —

This is the expected result for a conformal field theory in
three dimensions. From the above one-point functions for
finite a, we find that the normalizable modes G4 1),
are again mapped to the vacuum expectation values. The
expressions for the terms X;; and X; are given in Appendix D
and consist of a set of terms in g();; proportional to
nonpositive powers of a. These terms are scheme dependent
in the sense that they can be subtracted by a choice of finite
counterterms of the form

() = 0. (3.62)

azfg/ dx\/q(a; K> + a,K(K - K)
z=€

+a3(K-K-K) + asKR[y] + as00, K +---).  (3.63)

As discussed in Sec. I1I B 4, a nonvanishing coefficient g 1),
represents the fact that the QFT metric is time dependent.
It follows that the terms X;; and X; are possibly non-
vanishing only if the boundary metric is not static.

Let us then discuss the terms in the second line of (3.59)
and (3.61) that depend on o?. The last of these,
(a?/4)0;R[g )], diverges in the limit & — co. Note, how-
ever, that if we preserve the counterterm introduced in (3.54),
it will contribute to the variations of the on-shell action as

2f2
5<a2°/ d3x\/§KR[7])
=€
a2

TO/FG d*x\/g0;R|g)60
a’t?

2 J=
~VY,(N,

d3x\/§(giijV1(N<o) ki)

0k))6g", (3.64)
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where Vg := 0. This result implies that the one-point
functions will be modified to'’

U = Udeew = G =22 (Z0Rlg0] ). (369
Ji Ji)new Ji 871'G0 4 gyl |» .
90)(&) = \/40)(Enew = \/q(0) (), (3.66)
61(0><Sij> - 51(0)<Sij>new
f2
= Va0l + 327zG0
X /90 (90)i " VFOVI (N 6901 )11)
~ OV, OV;(N ) Trlgig,901)]))- (3.67)

The anomalous counterterm therefore provides a contribu-
tion to (j;) that cancels the o divergence proportional to
the gradient of the Ricci scalar without introducing further
divergences. This is done, however, at the expense of
modifying the conformal Ward identity (3.62) by a total
derivative:

40)(T) = \/20){T) new

2
%o I OViOvi
167[G0
1
X {Nm) <g(l)ij - EQ(O)iij[g@l)g(l)])]

f2

- 87:2?0 V90" VIOV [aN (0) <K ©)ij ~ 790K (0)>:| .

(3.68)

=0+

which is finite in the limit @ — oo. Note that if we define
1
vij = aN) | Koy =5 905K | (3.69)

a ai bj
v = g(o)g(é)vij (3.70)

and use the standard identities from the theory of embedded
hypersurfaces, we obtain that

vaab) = . /g(())(O)V’ VJUU,

1
— (0) b _ ij
DyL =~ nfy (LyLY).

ay /20 "D, (N ©)

(3.71)

"As a technical point, if the coefficient ) ;é 0, then the last
integral in (3.64) will contribute with terms a*g(j) 10 (s;;) pey-
However, the previous spatial stress (s;;) will contain the
symmetric of such terms if ¢}y # 0 such that they cancel overall.
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with V'V, the covariant derivative induced on the surfaces
of constant time at the boundary manifold, associated
with the induced metric gg)ur = q(0)ap + M(0)a”(0)p» and
where

1

ab ._ -1 ,,ab __ ai bj
L = Nigyv* = ag(g ) <K<0)ij -59<o>in(o>)' (3.72)

The modified trace Ward identity can then be rewritten as

&
VGO \/ 4(0) [G(O)Da(O)DbLab

— OD, (nty (L - L))

Q(0)<T>ncw =
(3.73)

The first total derivative is unphysical, because it can be
absorbed in an improved energy tensor @” defined in terms
of the QFT energy tensor T, and covariant derivatives of
L, [73], but the second term remains. The Ward identity in
such case becomes

&
~ 872G,

9(0)(©%) 90D (3.74)

(3.75)

which is finite in the limit @ — oo. This result is expected
because the anomalous counterterm in (3.54) breaks, in
particular, the invariance of the renormalized gravity
action under bulk diffeomorphisms that result in a
conformal transformation at the boundary. The generating
functional of the dual QFT therefore will not be con-
formally invariant unless the QFT metric is static (which
requires g(j);; = 0). As in Sec. IlIB4, we find here
another relation between metric staticity and conformal
invariance. Scale invariance of the dual field theory is,
however, preserved because the anomaly is a total deriva-
tive. Recall that the breaking of conformal symmetry
follows from the requirement that the renormalized
gravity action be finite in the zero-A limit. Below, we
will still discuss the implications of the anomalous
counterterm to the diffeomorphism Ward identity.

With the divergent term (a®/4)9,R[g(] subtracted
in this way, the terms proportional to @’ that remain in
the expressions for the vacuum expectation values
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represent derivatives of the traceless part of the coefficient
Ky 20

ij -

{ a*(9, — £6(0))(k(1)ij - %Q(O)ijTr[g@l)k(l)D’

| 3.76
OV (k) e

—%g(o)ijTr[g@l)ku)])-

These terms cannot be subtracted by covariant counter-
terms, nor by counterterms of the form (3.63). This fact
implies that the traceless part of k(;);; needs to admit an
expansion in a of the form

1 1

kyij — Eg(())ijTr[g(_ol)k(l)] = (ki + O(@™?)),  (3.77)
with k[g;; independent of a. In other words, in three
boundary dimensions, only field theory states dual to bulk
solutions that admit the behavior (3.77) in a result in finite
vacuum expectation values in the limit a — oo. The
expression for kp;; is given by the VEV of the QFT
stress tensor in the zero-A limit. As discussed at the end
of Sec. II B, in this limit the coefficient k(;);; replaces the
normalizable mode g3);; as the integration constant of the
equations of motion for the case d = 2. Notice then that
the coefficient g(3);; drops out of equation (3.59) for the
expectation value of the spatial stress s;; in the limit
a — o0, and the latter is mapped to the Lie derivative of
Ko)ij along ”?0) in this limit. In this way, kg;; is part of the
asymptotic bulk data that is mapped to boundary data in
the zero-A limit.

Finally, we will not compute here the diffeomorphism
Ward identity for the general case in d + 2 = 4 dimensions,
because the constraint equations for the metric are very
tedious to solve at second subleading order, but we will
verify it explicitly for the Kerr solution discussed below.
However, we would still like to emphasize that the terms in
the holographic energy tensor that arise from the anoma-
lous counterterm should not contribute to the spatial
component of the Ward identity. Indeed, if we use the
second identity in equation (3.42) and the expressions for the
components of (T,;)..,, given in equations (3.65)—(3.67),
we find

(O)Da( c1(0)<Tai>new) = (O)Da( q(0)<Tai>>‘ (378)
This is the statement that the anomalous counterterm does
not break invariance under boundary diffeomorphisms (2.43)
that are foliation preserving.21 On the other hand, if we
compute the time component of the divergence of (T ) pew
using the second identity in (3.43), we find in general that it

*Note that  a?g(o), Trlgi) (9 = £5, k)] = @*(9, = £4,,)
(g(o)ijTr[g(_ol)k(ljD + O0(a").

*IThese are essentially spatial diffeomorphisms plus a possible
redefinition of the time coordinate.
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is not equal to that of (7',;,). This must necessarily be the
case, because the anomalous counterterm is not invariant
under those boundary diffeomorphisms in which the time
coordinate transforms as u — it(u, x'), and therefore breaks
the spatial foliation of the boundary.

3. Kerr solution

As an application of the results of the previous section,
we would like to compute the expectation value of the QFT
energy tensor evaluated on those states dual to the asymp-
totically flat Schwarzschild and Kerr spacetimes. For the
case of Schwarzschild-AdS,, the metric in the coordinate
system (2.21) reads

% 1 2 2MG,
d2:_0 Y s~ 3 d2
=3 ((era-TEe)m

—2dudz + fgdm) ,

(3.79)

with dQ? = d6? + sin® 0d¢?* the metric on the S, and
where the cosmological constant A = —3/(a?¢3). In the
limit a — oo the metric tends to four-dimensional
Schwarzschild. The expectation values of the components
of the holographic energy tensor in this case become

M
4q(0) <Sij> = /90 (Wg(o)ij>7 (3-80)
o
M
q00)(e) = \/90) 1l (3.81)
(Ji) =0, (3.82)
where the spatial metric g();;dx'dx/ = £3dQ?. These

expressions still hold in the zero-A limit. The average
energy (E) as defined in (3.49) is then equal to M.

In the case of Kerr spacetime, the metric in Gaussian null
coordinates is very complicated,” but we can deduce its
asymptotics up to the desired order from the following
considerations. The Kerr metric follows from the zero-A
limit of Kerr-AdS,, and the latter is asymptotically exactly
AdS,—with the cross section of the asymptotic boundary
with a spacelike hypersurface, topologically an S2. In our
coordinate system, Kerr-AdS, must therefore be of the
form

2See Refs. [75,76] for specific examples. Note that Bondi-
Sachs coordinates are related to the Gaussian null gauge by a
simple redefinition of the radial coordinate.
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2 1
ds? — = <_ <¥ + (’)(zz)) du* — 2dudz + (go);; + O(2))

x (dx' + O(z)du)(dx’ + O(z)du)), (3.83)
where g();jdx'dx) = £3dQ?. Since the lapse N = 1,
(2.33) we have that 6‘('1) =0.
Furthermore, since UEO) =0=109,90

from equation

)ij» WE find from equa-

tion (2.29) that g(;);; = 0. From equations (2.35) and
(2.34), we then find that g(5);; = 0 = 0'2'2). Also, the spatial
)| =2/¢3,

Ricci scalar R[ so from (2.32) we have

Pp) = ¢5%. In thls way, Kerr-AdS, must be asymptotically
of the form
2 _ % 1 >3 2
ds :Z2 -I-fz—i—go( 122 4+ O0(z7?) ) du? - 2dudz
+ (g ()ij+Z 9y +O0(z >3)
x (dx' + (2oly) + O(z7%))du)

x (dx/ + (Z30‘£3) + 0(z>3))du)]. (3.84)

The coefficients ¢(3), 913)ij»
modes G(g41),,» and from the constraint equations (C8)—

(C10), supplemented by (C11), it follows that they satisfy

and a’@ are the normalizable

Tr(g,0)9(3)] = 0. (3.85)
1 1
—2 vV, (9 )i = 0,003 +§ai€0(3) (3.86)
3 i
ﬁ(())vid(w = —6u§0(3). (387)

The holographic energy tensor so far reads

1
q(0) Sz/ 877.'G 9 <20!29 247() (O)ij)a (388)
&
90/€) = g6 V90 (-0m): (3.89)
2 3
(i) = 87G, (—5 (3)1> (3.90)

By using the second identity in equations (3.42) and (3.43),
it then follows from the above constraints that the energy
tensor is covariantly conserved:

OD,(\/a0)(T*1) = 0 = nfy) Do /q0)(T))- (3.91)
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Note that, apart from the constraints, the normalizable
modes are so far arbitrary. We then require that the solution
be stationary and axisymmetric, which results in the
constraints

LoV, (g g, =20 3.93
2 j(9<0)9(3))z 3 i?(3)s (3.93)
Love —o 3.94
) i0(3) g (3.94)

where the modes now depend only on the boundary
coordinate 6. These are the necessary conditions for
Kerr-AdS,. In the zero-A limit, however, there will be a
further constraint. Recall that the equation for a given
coefficient g,);; is of the form (2.42) and, therefore, that it
becomes a differential equation for g(,_;); in the limit
a — oo. For the particular case of n =4 in d + 2 = 4 bulk
dimensions, the equation for g();; turns into a differential
equation for the normalizable mode g(3);; in the zero-A
limit. Therefore, if we solve the dynamical equation (2.26),
together with (C11), at order z> we find in the limit @ — oo

i 6 _
4k = 90 Trlgp k)] + @@ gy + 3OV ey =0,
(3.95)

where we have used the fact that g);; = g(2);j = o1 =
6(2); = 0 in our case. The equation for the coefficient ¢ 4)
follows from the dynamical equation (C6) and (C11) for ¢:

3 .
Py = 2Tr[g k] - 5<0>v,.a' =0.  (3.96)

(0) R
Replacing this in (3.95), we find
Ak 3)ij + g(())ijTr[g(_()l)k(3)]
+3 <(0>v(,.aj.§) + % 90)i j<0>viag3)> —0. (3.97)

Now, in our case we have

1

k(3)ij = 2N(0> ((3u - £5(0>>9(3)ij - £a(1)g(2)ij
3
= -0V (3.98)

Replacing this in equation (3.97) results in the following
constraint for o3);:
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1
(O)V(io(.3) - —g(O)i,i(O)vk“@) =0

5~ 3 (3.99)

Now, the constraint (3.94) for ¢, holds for all values of

(3)
a € R, so we extend this to the limit @« — oo so that the

metric is continuous in «. If this were not the case, then 023)

would contain terms proportional to o, , and therefore
Kerr would not follow from the zero-A limit of Kerr-AdS,.
The same argument applies to the ¢ component of the
constraint (3.93). The constraint equations for the normal-
izable modes in the limit &« — oo therefore become

Trlgig)93)] = 0= OV, (g75,96)) i=g- (3.100)
i) = 0. (3.101)
OVio);+ OV 00 =0, (3.102)

where the modes depend only on 6. The coefficient 0’('3) is
therefore a Killing vector of the spatial metric g(g);; on the
$?, and hence we choose 0'23)8,- = a/30,, with a some
dimensionless constant. Furthermore, ?3) 1S constant, so
we define 3, == —2MG/¢5. Note also that in the limit
a — 0 we must recover the Schwarzschild metric, so g3);;

must be proportional to the parameter a. The average
energy and angular momentum of those states dual to
asymptotically flat Kerr are then given by

(E) :%/_;du/dzx\/%(@ M, (3.103)

| ) 3
(J')0; = /a’zx\/g(o)(J )0; = —Eaazp-

More generally, for an asymptotically Minkowski space-
time we have that g(;);; = 0, so the energy density will be of
the form (3.89). The average energy will then be given by

(3.104)

1 T
Ey=—-——-"2 d’x./ d
(E) 2T87rG0/ X4/ 9(0) /_T U@ 3)
1 [T
= ﬁ , duM(u), (3105)

where M(u) is the Bondi mass (see e.g. Ref. [60]).

D. Null boundaries and corner terms

So far, we have considered a single timelike boundary
{z = €} for the spacetime and neglected all possible corner
integrals evaluated on the codimension-two surfaces {z =
€,u = +oo} that may arise in the gravitational action.
If one also considers null boundaries {u = u.} in the
spacetime, where these surfaces can be at infinity, the
original bare action (2.1) is not the appropriate one in
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the sense that the variational problem is not well defined,
and a further surface term is needed. Furthermore, the
renormalized gravity action in each dimension will require
corner counterterms at {z = €, u = u. } that ensure that the
action is finite once the regulator € is removed. In order to
derive the correct bare action in general, we start by
performing an ADM decomposition of the spacetime
metric with respect to timelike hypersurfaces of constant
z as

ds?,, = G, dx"dx"

= Pdz? + qu,(dx® + pedz)(dx’ + pPdz). (3.106)

The inverse and determinant of the metric are given by

Py
Gr=| " ) (3a07)

A
VG = B/q. (3.108)
The unit normal m* to the surfaces of constant z is given by
m, = f0,z, (3.109)

1

mto, = 5 (0, = p*0,), (3.110)
m'mG,, = 1. (3.111)

The metric ¢, represents the induced metric of the
hypersurfaces of constant z, and we can extend it to a
tensor in the whole spacetime by defining
G" — mtm”. Next, we perform an ADM decomposition
of ¢q,, with respect to surfaces of constant u. In each
submanifold {z = constant}, we define these surfaces to
be spacelike:

q/w =

ds?, | = q.dx“dx?
= —N?du? + y;;(dx' + o'du)(dx’ + o/ du). (3.112)

The determinant of this metric is given by /g = N/y, so

that VG = pN,/7. In each submanifold {z = constant},
the future-directed unit normal n¢ to the surfaces of
constant u is given by

n, = —=NOo,u, (3.113)

49, = (9, - o'0;) (3.114)
no, = N uw—00;), .

nnbq., = —1. (3.115)

PHYSICAL REVIEW D 90, 104018 (2014)

We can extend this unit normal to a vector in the whole
spacetime by defining

n* = g"(—=NO,u). (3.116)

We then find n#n*G,, = -1 and m*n*G,, = 0. Finally,
with the two unit normals m* and n*, we construct two null
vectors n', defined as

n'y = nt £ mh. (3.117)

We find that n*, n*, G, = 0 and n’, m*G,,, = 1. Given this
general construction, we will now show that, if the surfaces
{u = uy } are null in the spacetime, the bare gravitational
action for which the variational problem is well-posed is
given by

162G,S = / dzdud’x\'G <d<d L R[G])

a’t?
—|—2/ dudix\/qQ
=€

) / T dzdixp Y (3.118)

=U_
with V,G,, = 0, and where Q is the extrinsic curvature of
the hypersurfaces of constant z as before, such that
Q = V,m". Also, the last integral represents the difference
Juzt o= fu:m — [u— - In order to show that the varia-
tional problem is well defined, we perform a Gauss-
Codazzi decomposition of the Ricci scalar R[G]:

RG] =R[q] + Q> - Q- Q -2V, (m"V -m—m-Vm").
(3.119)

Replacing this in (3.118) and integrating the total deriv-
atives results in the action

167G,S = / dzdud’xp/q
5 <d(d+ 1)

a’t?

+R[q]+Q2—Q'Q>

- Z/M_M+ dzdxp.\/y

=u
x (K+ (1 + Nm'0,u)V - m), (3.120)
where K = ¢“’D,n, = ¢"'V,(q,%n,) = ¢"*V,n, is the
extrinsic curvature of the surfaces of constant u in each
submanifold {z = constant}, with D,q,,. := 0. Now, from
the decomposition (3.107) we find in particular that

Duud,uG" = " + (B /) = =N + (B /B (3.121)

If the surfaces u = u are null in the spacetime, the left-
hand side vanishes at u = u,, and we find up to a sign
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= B/N at u = u,. If we choose the opposite sign, then
we should replace the null vector n, in (3.118) with its dual
n_. Replacing this condition for f* in equation (3.110)
results in

L+Nm#Ou=0 (u=uy). (3.122)

Note that this holds everywhere if the surfaces of constant u
are everywhere null, and in such case the null vector n, is
given by n,, = —NO,u. Finally, using equatlon (3.122) in
the action (3.120) ylelds our final result®

162G,S = / dz ( / dud?xp\/q < (dz;l) + R[q]

+Q2—Q-Q> —2/" +ddxﬁ\/ﬂ()
(3.123)

This is the correct action, for which the variational problem
is well posed [72]. Taking variations with respect to the
lapse, shift, and induced metric p, f“, and ¢,,, and
requiring only that the boundary configurations of the
fields be fixed results in the ADM equations of motion.

If the spacetime contains null boundaries, the holo-
graphic renormalization of the gravitational action (3.118)
will result in corner counterterms, as emphasized above.
We will exemplify this for the particular case of d +2 = 3
dimensions and derive the anomalous counterterm (3.8)
discussed in Sec. III B 1. Returning to our gauge-fixed
metric (2.21) for generic d, if we evaluate on shell the last
integral in the action (3.118), we obtain

-2 / ’ dzdxp/rV ',

U= Z\d
=-2 / dx\/g (—0)
uiﬁ_ €

=u, 1
+2f§/ dzddx\/_< (d+1) —Ez'd(‘?z 10g(p>.

(3.124)

Using our asymptotic solutions (2.26)—(2.28), we find that,
for d = 1, the divergences of this term are given by

_2/+

u=uy 4
= e v (2)

u
=€

+2a%¢, /u
7=

€

dzdxpp\/yV,n';

dx . /g0)ko) loge + O(e°).

(3.125)

“Note that the Gibbons-Hawking surface term takes a minus
sign because we have defined the unit normal n* to be future
directed.
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The counterterm that subtracts these divergences is
given by

U=
oo

Z=

" dx /7 - 2at, / T dxy K loge.  (3.126)

=€

If we also take into account the surface term (3.4) that we
discarded and use the result we found in (3.5), we find that
the renormalized gravitational action in d + 2 = 3 space-
time dimensions in the presence of null boundaries u = u.
is given by

d+1
167G S;en = /dzdudx\/_( ( 2_;2 )—i—R[G])
+ 2/ dudx\/qQ — 2/ - dzdxp\/yV n".

u=u_

+

2 u=u
/ dudx\/q +6 / “dx\fy —2at,
afo 7=¢ U=u_

=€

x / N (3.127)

u_

=€

The last corner integral is exactly the anomalous counter-
term that we found in (3.8).

IV. NONBACKREACTING MATTER

In the remainder of this work, we will be interested in
computing the zero-A limit of the vacuum expectation
value and two-point correlator of a QFT operator dual to a
nonbackreacting massive scalar field in AdS,,,. The
background metric we are interested in is pure AdS with
the cross section of the asymptotic boundary with a
spacelike hypersurface topologically R? In our coordinate
system, the metric reads

ds® = G, dx"dx”

(4.1)
Z a

2 1 -
=— (—2du2 — 2dudz + dxé).
In the limit @ — o0, the spacetime is a subset of Minkowski
space, with z = 0 representing future null infinity. The bulk
action for the scalar field ¢ in this background is given by

/ di2x\/G <G””8 $O,d + < ) ¢2> (4.2)

The mass of the field is defined to be M = m/a. For the
moment we will keep m arbitrary, but as is well known, the
conformal weight of the field theory operator dual to ¢
will be finite in the limit @ — oo only if m = O(a°).
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A. Solution and asymptotics

The equations of motion for the scalar in our background
are given by

2
(ﬁ) ¢ = Do
a

A—k+2

Z 1 k—1

_ ) |:a2 <(p//_ - (p/)_zauq)/
k-1 = AA-(d+1

(4.3)

where we defined ¢ :=z2¢ for A constant and
k:=2A—(d+1). As usual, A will be the conformal
weight of the dual field theory operator. Also, ¢’ = 0.¢
and V° = §79,0 ;. We will be interested in computing the
correlation functions of the QFT operator in Euclidean
signature, so we define the Euclidean boundary time

it := iu. The dynamical equation then becomes
1 k—1 . k=1, =
¥<(p ——q))—Ziqo’-i—l ¢+V2(p
A(A - (d+1)) - tom?
22 =0, (4.4)

where ¢ = 0. We define A as the highest root of the
equation A(A—(d+ 1)) =¢2m>. We also Fourier-
transform the dynamical equation in the coordinates i
and x' and obtain
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o(z,w,p') = /ditddxe_i“”_‘e_"i"}(p(z, a,x).  (4.6)

The solution for ¢ can be written in terms of Bessel
functions as

+ B(w, p Ik/2<za 132—1—052602)}, (4.7)

where the coefficients A(w, p) and B(w, p) are arbitrary,
and where K;/,(y) and I;/,(y) are the modified Bessel
functions of the first and second kind. These admit the
following asymptotics as y — O:

i 2
Ky (y) = 2270 (k/2)y™ <1 + %
2(k —2)4(k — 4)

+ ay*log y* + O(y>’“)>,

+ 4+t ayk

(4.8)

2—k/2
Lip(y) = )y"‘/ K+ 07, (4.9

I(k/2+1

with I'(a) the gamma function and a;, a k-dependent
constant. The coefficient @, is nonvanishing only if k/2
is an integer and in such case is given by

1/, k=1, oo
o) <€0”—€0/> +200 —0——¢-pp =0 (=1)k/22-k
i = S k/2eN.  (4.10)
(4.5) “7 T+ k/2)0(k/2)
where The solution for ¢ therefore admits the expansion
|
2032 4 202 4052 2 2\2
N PO W s o
pzo.p)=e [( -2 Tsk-pn—a° T )rol@r)
+b(w, p)Z* + (0. p)Flogz + O(Z>")]
= Py + 20() + PPy + PPy + -+ oy + ZFlog zpy + O(27F), (4.11)
where we write the function A(w, p) as
21—k/2 - > 5 k/z,\
Aw.p) = Tk/2) (a p*+ o ) P)(@. p). (4.12)

The coefficients @) (@, p) and @) (@, p) are arbitrary functions in @ and P2, and the coefficients P (n<) are given up to

n =3 by
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(1) = —d’op ). (4.13)
R 1 a2(1_'72 +a2w2) A
Pp) = (§a4a)2 — 2(](——2) (0)> (4.14)

ad*o(p? + ?o?)

2T >¢@. (4.15)

1
Pe) = <_g“6a’3 +

The coefficient g:o(k> of the inhomogeneous term is

given by
= ~ I
Py = 2ar(a\/ p* + @) §(o)-

The full solution ¢(z,it,x') for the scalar field is then
given by

(4.16)

bz it x) = A / dod? pe ez, . p)

= 22Xo) + 2001) + Z00) + Do)

+ -+ Koy + Flog(uz) gy + O(27F)).
(4.17)

where we have introduced a scale u of dimension L' so
that the argument of the logarithm is dimensionless.
The coefficients @) = @) (it,x) and @) = @ (i, x)
are arbitrary functions and represent the standard non-
normalizable and normalizable modes in the AdS/CFT
correspondence. The boundary configuration ¢ is the
source for the scalar operator O in the dual QFT, and ¢y,
will be mapped to the vacuum expectation value of O. The
coefficients ¢,y together with the inhomogeneous term
®(x) are local functionals of the source for the case of a
finite. Their expressions are given by

o
2P = n(k —n)

+ %2(p(n—2)>: O<n< k,

(l(k + 1- 2n)¢(n_1)

(4.18)

. . =2
L {%(l(k ~Dog-1)y =V ou-n) k/2€N,
Pk) = 0

o otherwise,

(4.19)

where ¢_;):=0. The above is exactly the asymptotic
solution one would obtain by solving the dynamical
equation (4.4) in powers of z in a neighborhood of
7=20. In the case a~' = 0, the coefficients are nonlocal
functionals of the sources in the same fashion as the
coefficients g,);; in the asymptotic expansion (2.26) of
the metric that we found in Sec. II B. For the case of a
finite, the source ¢ and the mode ¢, are arbitrary, so
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there will be solutions for the scalar field in AdS that
diverge in the limit @ — co. We are interested in those
configurations for the field that result in well-defined
solutions of the equations of motion in Minkowski space
in this limit, so we henceforth restrict our space of solutions
in AdS to the subspace of those that admit the limit. This
discussion mimics that in Sec. II B for the spacetime metric.
This is enforced by requiring that the coefficients in the
asymptotics (4.17) be nondivergent as o — co. Since the
modes @,k and ¢ are functionals of ¢ ), this require-
ment imposes constraints on the behavior in a of the
derivatives of the source. For k& nonodd, these will be
constraints on the time derivatives. As an example, from
n=1,2,3 it follows that

P10 = O(a™), (4.20)
i} 1/ 1 = »

b0 =3 mv ®) | +O(a™), (4.21)
13 e s i
G0y =g\ 7=V @oe) | +0@®).  (4.22)

On the other hand, for odd values of k there will be a further

—

. L . . k-1
constraint, this time on the spatial derivatives: V' @) =

O(a~%=1). As in Sec. II B, we find again that the well-
definedness of the bulk solutions in the zero-A limit
translates into a statement about the sources and states
on the dual QFT and, in particular, that the existence of the
limit is connected with the behavior in a of the time and
spatial derivatives of the source. The specific dependence in
powers of o found in (4.20)—(4.22) of the different time
derivatives of the source follow directly from the recursion
relations (4.18)—(4.19). For a given even value of k, for
example, there will be k constraints on the time derivatives
of ¢(g). If at least one of these constraints is not satisfied by
the source, then at least one of the coefficients ¢, in the
asymptotic expansion (4.17) will be divergent, and the
solution will not be well defined in the limit o — co.
The same statement holds for £ odd with an additional
constraint on the spatial derivatives as above. As an
exercise, from equation (4.18) for n = 1, we have that

(/)(0) = —ia_z(p(l). (423)
If the constraint (4.20) is not satisfied, it follows that ¢
necessarily diverges as a — oo. We can also differentiate
equation (4.23) with respect to time and use the recursion
relation (4.18) for n = 2 to obtain

. 1 1 =2 1 (k=2
P0) = e} <mv (P(o)> A (m(/’(z))- (4.24)

If the constraint (4.20) is satisfied but not (4.21), then it
is the coefficient ¢, that necessarily diverges as a — oo.
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The same reasoning can be repeated for the remaining
constraints.

Equation (4.20) is particularly relevant, and it implies
that the source is time independent in the zero-A limit. This
is not an issue for the variational problem that we discuss in
the following sections, because the zero-A limit is taken
after varying the gravitational action with respect to the
source, so the latter remains arbitrary until the vacuum
expectation values and correlators are computed. In Sec. II
B, we have also discussed the behavior in « of the time
derivatives of the source gg); for the boundary stress
tensor, and we have found in particular from equation (2.40)
that one can choose a time coordinate u such that g g);; is
time independent in the limit @ — oo in the same fashion as
the source ¢ ) (recall that the boundary shift a’@ can be

fixed to zero by the boundary diffeomorphism x! —
xi—f duaéo)). Furthermore, we will find in Sec. IV C that

the two-point correlators of scalar operators are also
independent of the time coordinate in the limit & — 0.
These results are compatible with those discussed in
Refs. [35,38] and suggest that the zero-A limit induces
an ultrarelativistic contraction (u,x) — (@ 'u,X) on the
boundary field theory.

B. Renormalization and vacuum expectation values

In this section, we will renormalize holographically the
bulk action for the scalar field in the AdS background (4.1),
analyze the limit @ — oo, and compute the VEV of the
dual operator. Under this limit, the spacetime becomes
Minkowski space and the solution in AdS is mapped to a
solution of the scalar field equations in Minkowski. As in
Sec. IIT A, we proceed by replacing the asymptotic boun-
dary of the spacetime with a regulating surface z = € and
evaluate (4.2) on shell:

fd
jSon-shell — —5 / ditd‘xe ™ (A — k)p? + epq')
27 J,—
s —d k19 2
vy diud®xe "1 0y (4.25)
=€

The integrand in the last integral is a total derivative
and therefore can be removed from the on-shell action
in the absence of null boundaries {# = constant} for the
spacetime. We then use the asymptotic solution (4.17) to
replace for ¢ and find those terms that diverge if we take the
limit ¢ — 0. For finite «, these will be local functionals of
the source ¢ and therefore, up to anomalies, can be
rewritten covariantly as described in Sec. III A. The
resulting divergent terms can then be subtracted by a
covariant counterterm action S, consisting of minus such
terms. The renormalized action S, will then be given
by Sien = S + S The number of counterterms increases
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with k, so we will focus separately on the cases k = 2
and k = 4.

1. k=2

In this case, the procedure described above results in the
following renormalized action:

i8S, = % / di2x\/G (Gﬂ”aﬂ(/;ay(/) + (%) 2¢2)

1 A—k
= dd“x\/c_](— - ¢2+<afo)¢mq¢loge),
r—e at,

(4.26)

where ¢,, is the induced metric on the regulating
surface,

dx‘d b_l’ﬂg ld—2 d—‘2
qapdx )c—e—2 ?u—l—xd

2

= €—§Q(0)abdxadxb, (427)

and where [, is the Laplacian with respect to g, and
d0)ap 1s the QFT metric. The resulting couterterms are
precisely the canonical ones from standard holographic
renormalization in the AdS/CFT correspondence (see e.g.
Ref. [13]). This is expected because the canonical counter-
term action is covariant up to the anomaly in loge. The
latter breaks invariance of the action under specific bulk
diffeomorphisms involving the radial coordinate z, but our
background (4.1) is mapped to the Poincaré patch of AdS
by the boundary diffeomorphism u — o*(u — z), x' — ax'.
The surfaces of constant z are therefore preserved by the
diffeomorphism, and hence the canonical counterterm
action is not affected by the transformation.

The next step is to determine whether the counterterms
spoil the zero-A limit of the renormalized on-shell action.
For that purpose, we evaluate S,., on shell, take the limit
€ = 0, and look for those terms proportional to positive
powers of a as described in Sec. III A. In the simple case of
k = 2, no such terms survive once the regulator is removed,
and therefore the couterterm action does not spoil the zero-
A limit. As we increase the value of k, we will see that
further counterterms are needed apart from the canonical
ones in order to restore the well-behavedness of the action
in the limit @ — oo.

Vacuum expectation value.—The variation of the renor-
malized on-shell action is given by

iés?enn—she]l _ / dd“xﬂ (L (d)/ _ iazéﬁ)
z=¢ at,

A—
at’,

k(,b + (at,)0,¢ log e) S5p.  (4.28)
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Using the AdS/CFT prescription, the one-point function of
the dual operator O is then given by24

i5S?gl{She“ ) < Ak iasgg;shell)
q0(0) = ——— =lim| e* *—————
0(0) 500 lim 56

2

a2

(o) = @) — fgvzw(O)- (4.29)
We therefore find that the VEV is mapped to the normal-
izable mode @) for finite a as expected. The term
proportional to @) is unphysical in the sense that it can
be subtracted from the expectation value by adding to the
renormalized action the finite covariant counterterm (finite
in both € and a):

_afo

= /Z - A x\/qp0 . (4.30)

The variation of this term is then proportional to ¢ ):

10 4
1 (_(140 /zederlx\/aqung)

09 0)
. af, . _, i6
= llfa(-ﬁ 56 ) d"“xﬁ“’ﬂq‘b)
£d

The term proportional to the spatial Laplacian of the source
cannot be subtracted without partially breaking diffeo-
morphism invariance of the bulk action. The finite counter-
term that subtracts this term is given by

at,

- /Z - A x\ gV}, (4.32)

where Vi is the Laplacian with respect to the spatial metric
yijdx'dx! = ¢3/e*dx} and therefore breaks invariance
under diffeomorphisms that are not foliation preserving.
This is the same type of anomalous counterterm that we
found in Sec. III C. However, there is no need for a
counterterm of this type in the present case. It may seem
that the spatial Laplacian of the source in the VEV (4.29)
will give rise to contact terms proportional to the spatial
Laplacian of delta functions, and that therefore partially
break diffeomorphism invariance of the two-point corre-
lator computed by taking the variation of the VEV.
However, this will not be the case, because the variation

*Recall from Sec. 111 B 2 that the well-defined observables are
always the tensor densities, in this case , /7 (O). By construc-
tion, the n-point functions themselves are divergent in the zero-A
limit because the boundary lapse vanishes in this limit.
In particular, for the one-point function, (1/,/q))i6Sgm ™!
50y = a(1/(N(0)\/90)) i5SQn-shell / 5¢)), which diverges as

a — oo, where in this case N =1 and g(g);j = J;;-
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of the normalizable mode ¢,y will provide a contribution
that precisely cancels these so that the two-point function is
completely covariant for finite a. We will see that this is
indeed the case in Sec. IV C.

Finally, note that the VEV admits a well-behaved zero-A
limit. If we switch off the source and take the limit &« — oo,
the expectation value of the operator vanishes identically. In
other words, any scalar operator of conformal dimension
A =1+ (d+ 1)/2 evaluated on QFT states dual to gravity
solutions with A = 0 necessarily has a vanishing expect-
ation value in the absence of the source.

2.k=4

In this case, the renormalized action is given by

iSen = % / di2x\/G <G"”8M¢5‘y¢ + <m> 2¢2>

a

1 A—k N
eyl
3
x ¢pO ¢ + @d)(ﬂtl)%plog e) , (4.33)

where the counterterm action again coincides with the
canonical one. Let us now verify whether the counterterms
spoil the zero-A limit of the action. If we evaluate S,., on
shell, take the limit as the regulator ¢ — 0, and look for
those terms proportional to positive powers of a, we find

I/ﬂd
limisy el = -0 / did*x(cp o))
€ z=0
+ )iy + APy + O°). (4.34)

The second and third terms are of order O(a”). This is so
because from equation (4.18) for n = 1,2 we have

P) = O(a™?) = @) = O(a™?), (4.35)
=2
Py = —l(zfﬂ(z) -V (P(0)> = d)
4 I 22
= ﬂ(;f/’@) taV ¢<1>>
= @) = O(a™?) (4.36)

On the other hand, the first term is of order a2. If we use
again equation (4.18) but for n = 3, we find

(4.37)
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In this way we find that the zero-A limit of the action is
spoiled by the counterterm action:

. 4 =
lgmoszgShell = —azzo/ . dind?xe ) (Vz)z(p(o) +0(a%).
o
(4.38)

This divergence in « is subtracted by the finite counterterm
(finite in €)

(ato)®

= /Z ~ did?x\/qp(V, )2, (4.39)

where V” is the Laplacian with respect to the spatial metric
yijdx'dx! = ¢3/e*dx? as before. Unlike the case of k = 2,
this new counterterm is needed in order to restore the well-
behavedness of the action in the zero-A limit. This is done,
however, at the expense of breaking invariance of the
renormalized action under diffeomorphisms that are not
foliation preserving. Since this counterterm is finite with
respect to the regulator, it is associated with a choice of
scheme on the QFT side. This means that a renormalization
scheme that breaks invariance of the QFT under trans-
formations that do not preserve the spacelike foliation of
the boundary is a necessary requirement, so that the QFT
states result in finite expectation values and correlators once
the QFT limit associated with the zero-A limit is taken. The
final renormalized action is then given by

iSeen = % / d*2x/G <Gﬂvaﬂ¢ay¢ + (%)2452)

1 Ak ., af

- dd+1 _ 2 _ o 0
+2/” WZ’( wt, VTP

(at,)’

+ 1 ¢(0,)*¢plog e)

+;/H dd+1x\/c—1<w;)3¢(§i)2¢)‘ (4.40)

Vacuum expectation value.—The variation of the on-shell
action is given by

- ¢ con-shell __ d+1 € ey _A—k
108 = /d xﬂ(afo (¢ ~ia’d) == =0
at’ (aty)’ 22,
)}
+ 4) (Dq)2¢log€> 5. (4.41)

The vacuum expectation value of the dual QFT operator is
then given by
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10y = S (o 895

6p) 0 o¢
¢ 7. 204 =5
=2 <4§0(4) - 54’(4)) + 3 Vigp. (442)

For finite a, the VEV is again mapped to the normalizable
mode ¢ 4). The term proportional to ¢4 can be subtracted
by adding the finite covariant counterterm to the action
(finite in both € and a)zs:

7

96 (4.43)

(@) [ daan(O, 70,

The term proportional to the spatial Laplacian of ¢,),
however, remains. Note then that the expectation value
admits a well-behaved zero-A limit. For finite «, the
coefficient ¢(y) is a functional of ¢g), so setting the source
to zero and then taking the limit @ — oo results in a
vanishing VEV for the operator. On the other hand, in
the case a~! = 0, the coefficient ®(2) is a nonlocal func-
tional of @(. From equation (4.18) for n =2,3 with

a~! =0, we find that ®(2) is defined by the differential

equation ¢p) = (ﬁz)z(p(o). In this way, first setting ™! = 0
in the VEV and then switching off the source results in a
nontrivial expectation value for the operator, . /g(g)(O)~

62(p<2), where $ ;) = 0. We expect this type of behavior to
be reproduced for generic values of k > 4.

C. Two-point correlator

In this last section, we will compute the two-point
function for the scalar operator with k = 2,4 and analyze
its zero-A limit. This is done by choosing a full solution of
the equations of motion that is well behaved in the bulk
interior and then taking a first-order variation of the VEVs
(4.29) and (4.61) in the presence of the source. If we return
to equation (4.7) for the Fourier transform ¢ of the scalar
field and look at the behavior of the Bessel functions as
Z — oo, we find that ¢ diverges as z — oo unless we set the
coefficient B(w, p) = 0. In this way, the solution that is
well behaved in the interior is given by

»As a technical point, the fact that the integrand is finite in a
follows from the discussion at the end of Sec. IVA. From
equation (4.19) with k=4, it follows that Dé(o)f/)(o) =
—(16/a*)p(). The coefficient @(4) is nondivergent in a by
definition (recall that we restricted the space of solutions in
AdS to the subspace where the coefficients are well behaved as
a — o0; i.e. we focus only on those solutions in AdS that result
in solutions in Minkowski space in this limit). This implies that

D?[(O)gﬂ(o) = 0(0_4).
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ol1-k/2
I'(k/2)

X/dwddpeimﬁeiﬁ~}e—a2wz¢(o)(a)’ﬁ)

X (0‘|P|)k/2Kk/2(

A—k/2

Pz, 4,%) =

Z

), (4.44)

where we have used the expression (4.12) for the

coefficient A(w, p), and where |p|:=+/p*+ o’
The solution can be rewritten as an integration in position

space by defining

00(0.5) = [ dod'pere i w.5)  (445)
and using the identity
d+1 e rX /2| k)2
/d * sz a(k)e™ 2| p|2K > (e pl).
(4.46)

where k=2A-(d+1), [X*=X;+XX, |p|=

\V/P? + @*w?, and a(k) is a proportionality constant that
depends only on k. The solution (4.44) can then be
rewritten as

. 21-k/2 gh=A-1 R
¢(z, 4, %) _W%/dﬁddy(ﬂ(o)(@)’)
x (@)t <. (447)

((a2)? + (ZF + iaz)” + [x = 3I?)

This is precisely the expression one would obtain by solving
the scalar field equation in Euclidean AdS,,, in Poincaré
coordinates (see e.g. Ref. [3]), requiring that the solution
be well behaved in the bulk interior and finally transforming
the scalar field to the coordinate system (4.1). From
this representation we can immediately read the bulk-to-
boundary propagator and obtain the expression for the
unrenormalized two-point function. If we use the identity [3]

=2 2
Plee2) = %2 <V —a?d% - (2}/5 —2log?2 + log <—% Dq(0)>>Dq(o)>(p(O),

Pt = & <—3a28§V —2a*0t -3 <2yE —3-2log2 + log( “—2 qu)) ) thz<o>> ?(0)-

with yg the Euler constant and [, = 20, +V° the
Laplacian with respect to the QFT metric. At the end of
Sec. IVA, we found that the requirement that the coef-
ficients ¢, 1) and @4 in the asymptotics be well defined in
the limit @ — oo results in constraints on the behavior in «
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A
lim 2 ; (x2) = =2\A
=0 ((az)* + (=2 4+ iaz)? + |x = y*)
~ab(k)(az)**s(n — )64 (x - V),

(4.48)

with b(k) a constant that depends only on k, then the
on-shell bare action (4.2) is given by

1
on-shell _ d+1 ZH
S 2/Z€d xVGHpG*#D,¢

k=3 pod
_T / diidx
b(k) Jome

o gy PO ) (i, X) @0
« [ aay Y& T -

with b(k) a dimensionless constant. Taking the variations
of the on-shell action with respect to the source and
absorbing the overall proportionality constant in the nor-
malization of the operator results in the unrenormalized two-
point correlator:

)(@ )
)A

(1+0(2)),

(4.49)

i52son-shell

2(0(0,7)0(i, %)) = — 7 %
40" (O(,y)O(a, x)) 3¢ 0) (D, Y)dp ) (&, X)

1
“@rarse 0

In the zero-A limit and away from coincident points, this
results in the correct expression for the two-point function of
a scalar operator of weight A but in d dimensions.

In order to compute the renormalized correlator, we
return to our original representation (4.44) for the physical
solution and use the expansion (4.8) around z = 0 for the
Bessel function with k£ = 2,4 to find

P(z,,%) = 22 (@) + - + 2o

+ M log(uz) Py + - -) (4.51)

where the normalizable mode ¢y, for k = 2,4 is given in
terms of the source by

(4.52)

of the time derivatives of the source. Since the normalizable
mode for each k is also well defined in the limit @ — oo by
definition, and from the above expressions (4.52) for the
physical solution we have that ¢ ;) is now a functional of
the source, we find that the requirement that the solution be
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well behaved in the interior results in a further constraint on
the source for each value of k. The constraint will be on the
behavior in a of the spatial derivatives. From equa-
tions (4.19) and (4.18) for k = 2,4, we have in particular
that

K2 kk/2 _ »
U @(0) = W= O(a™). (4.53)
It then follows from equation (4.52) that the non-
normalizable mode of the physical solution for k = 2,4
needs to satisfy
\Y @) = O(G_z). (454)
For k = 2, this implies that the VEV (4.29) evaluated on
such a solution is identically zero in the zero-A limit. For
k = 4, it implies that the bulk action (4.33) evaluated on
such a solution is well defined in the zero-A limit, as well as
the VEV for the dual QFT operator, without the need for the
anomalous counterterm. Nonetheless, the renormalization
should hold for any solution of the bulk equations of
motion, so in general the anomalous conterterm is needed
to restore the well-behavedness of the zero-A limit of the
bulk action.

1. Case k =2

If we take the variation of the one-point function (4.29)
(with ¢,y subtracted) with respect to the source @) and
use the expression (4.52) for the coefficient ¢,), we obtain

—ﬁ(

5fﬂ(0)(”»)’)

£e Ced =
:—7(1—|—2yE—210g2+210ga)Dq(0)5(u—v)5 (x=y)

Zd _ .
—Eolog(—ﬂ z[lq(o))[lq(mﬁ(u—v)éd(x— ). (4.55)
The first term proportional to the Laplacian on the delta
functions is scheme dependent, and it can be removed by
adding a finite and local counterterm to the action propor-
tional to (4.30). The scheme-independent piece is then

V40 (0(5,5)0(, X))
2 e -
:—Elog(—ﬂ‘zmq(o))ﬂqm)é(u—v)5d(x— ). (4.56)

If we use the identity [77],

xS 0g(RIXP) = ——log(u2Ipl?). (4.57
X og(u°|X[) e og(u*|pl). (4.57)
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with fi = ygu/2 and ¢ a proportionality constant that
depends only on d, and Fourier-transform it, we find

log (2] X|?)

Dn+l
|X|d—l

= clog(—u~20O0)"8% 1 (X).  (4.58)

If we apply this identity to the right-hand side of (4.56), we
obtain

i, X)
g log (D + [F - 31)
2ac 10 |(ED)? 4 [} - 5[
1

— . (4.59)
(552 + [ =57

where A = 1 + (d + 1)/2. The proportionality constant ¢
can be absorbed in a normalization of O. The term
R(1/|X|**) on the right-hand side is the renormalized
version of the correlator 1/|X|*4, and it coincides with the
latter away from coincident points [78]. In the zero-A limit
we find

1

lim | /g0*(0(9.5)0(a. %)) = RESP

(4.60)

which is the renormalized version of the correlator that we
found in (4.50) in the zero-A limit.

2. Case k=4

In this case, the one-point function for the QFT operator
receives a contribution from the anomalous counterterm
(4.39). This term renders the vacuum expectation value
finite in the zero-A limit, but it introduces contact terms in
the two-point function. In order to verify this more
explicitly, we isolate the contribution from this term in
the VEV:

44 204 =5 a?td =4
4(0)(0) = <a2 owt—5 Veg-—5V ¢(0)>
a’td -4

where the last term represents the contribution from the
anomalous counterterm. We have also subtracted the term
proportional to ¢4) which is scheme dependent. If we use
the expression (4.52) for the normalizable mode ¢4 and
take the variation of the one-point function with respect to
the source, we obtain
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)

3 3 _ neds o
= (2 +- (ZyE —2log2 —5+ 2loga>)D§(O)5(u —9)8(x =)

Q(0)2<O(57§)O(ﬁ,})>=m 9(0)(O(&, X))
a?td
6 4
a’t?

The first term proportional to the square of the Laplacian can
be removed by adding a finite and local counterterm to the
action proportional to (4.43). The last term arising from the
anomalous counterterm is a contact term that diverges when
the operators are defined at equal time # = ». This piece
cannot be removed from the correlator by a counterterm
without spoiling the zero-A limit of the bulk action. This
type of contact term spoils the behavior of the correlator at
coincident points in time and will always appear in the two-
point functions for values of k >4 if we simultaneously
require that the bulk action be well defined in the zero-A
limit. At noncoincident points, if we subtract the scheme-
dependent term and use the identity (4.58), we find

9(0)°(O(0,5)O(, X))
e g (RICS £ -3
Be 10 J(E5R + {50

1
21X =3P

=CR == 1 (i #D), (4.63)
(435

where A = 2 + (d + 1) /2. If we absorb the constant ¢ in the

normalization of the operator and take the limit @ — oo, we

again find the renormalized version of the correlator that we

obtained in (4.50) in this limit.

V. CONCLUSIONS

In this article, we discussed the zero-A limit of vacuum
expectation values and correlation functions in AdS/CFT at
a formal level, with the associated issues, and attempted to
address them. We found that the analysis requires a suitable
foliation of the spacetime, and we derived the mapping
between bulk and boundary data in the associated coor-
dinate system. We focused specifically on the case of the
bulk spacetime metric and a nonbackreacting scalar field,
determined their unique asymptotics, computed the one-
point function of the dual operators, and discussed the
necessary conditions for the correspondence between the
near-boundary asymptotics and the VEVs to admit a well-
behaved zero-A limit. We found that the existence of the
limit essentially translates into a statement about the
sources and states of the boundary theory. We discussed
the holographic Ward identities in three and four bulk
dimensions in the case of pure gravity, and reproduced the

log (—M‘zﬂq(m)ﬂém)é(ﬁ -0)8(x=y) +

.. o

S(a—o)V'e(F-3).  (4.62)

central charge that arises in the central extension of the
asymptotic symmetry algebra of three-dimensional flat space
via the zero-A limit of the holographic Weyl anomaly. We
also found that the energy and momentum of the QFT states
dual to three-dimensional flat cosmological spaces and to the
Kerr spacetime match with those of the bulk solutions. In
the context of holographic renormalization, we analyzed the
behavior of the holographic counterterms in the zero-A limit
and showed that the well-behavedness of the gravity action
in this limit can only be preserved by means of anomalous
counterterms. Based on the AdS/CFT dictionary, we then
argued that the renormalization of QFTs with states dual to
asymptotically flat solutions generically requires renormal-
ization schemes that break invariance of the QFT under
transformations that do not preserve the spacelike foliation at
the boundary. Finally, for the case of the nonbackreacting
bulk scalar, we computed holographically the renormalized
two-point function of the dual operator in the zero-A limit
and found it to be consistent with that of a conformal
operator in two dimensions fewer. In this case, however, we
found that the anomalous counterterms introduce contact
terms in the correlator that spoil the behavior of the latter at
coincident points.

In the context of the metric asymptotics at null infinity, we
emphasized the differences between the asymptotics
obtained in the zero-A limit and the standard definitions
of asymptotic flatness in the literature in the case of radiating
spacetimes in odd dimensions. It would be interesting to
investigate more precisely to which extent perturbations of
the asymptotically flat metric do not preserve the asymp-
totics in odd dimensions when the spacetime contains
gravitational radiation. We also did not address the question
of how to compute flat-space S-matrix elements in general
from the zero-A limit of boundary correlators. An interesting
direction would be to verify whether correlation functions
obtained by taking variations of the bulk action with respect
to those boundary configurations at past and future temporal
infinity (the “corners” discussed in Sec. III D) can be used in
a holographic computation of the bulk S-matrix elements.
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APPENDIX A: CONFORMAL COMPACTNESS

A manifold (M, G) is defined to be C"2° conformally
compact if there exists an asymptote (M G, p) consisting
of a manifold-with-boundary (M, G) with boundary dM
and a defining function p(x): M = R* satisfying the
following properties [79-81]: ~

(1) M =intM = {p € M:Jopen set p5U C M},

@) G =p2(x)G,: M ={p 20}, M = {p = 0},

(3) dp #0 on OM,
with p(x) of class C* and G nondegenerate and of class
C"20 in M. The region {p = 0} of M is referred to as the
conformal boundary of M and M as the conformal
embedding.

APPENDIX B: GAUSSIAN NULL COORDINATES

In this appendix, we will derive our coordinate system by
performing a brief ADM analysis of the spacetime metric
G,,. For a thorough treatment see the original works in
Refs. [51,52,54]. We introduce coordinates x* = (u, x*) =
(u, r,x") = (r,x*) and define the surfaces of constant u to
be null. We then do an ADM decomposition of G, with
respect to these surfaces as
ds? = —a?du® + hyp(dx* + a*du)(dx® + aBdu). (Bl)
We also decompose the induced metric /45 with respect to
the surfaces of constant r as

hapdx*dx® = p2dr? +y;;(dx' + Bidr)(dx’ + p/dr) (B2)

and define the spatial metric y;; to be positive definite.
Since the surfaces of constant u are null by definition, the
induced metric A p must be degenerate. Since the deter-
minant A = B/ and y;; >0, the degeneracy of hyp
implies that = 0 everywhere. With this condition, we
rewrite G, without loss of generality as

ds®> = —pdu® 4+ 2Mdudr + vij(dx' + o'du + p'dr)

X (dx/ + o/du + p/dr) (B3)

= N2dr? + qu(dx" + N°dr)(dx” + N*dr),  (B4)

where (N, N%) are the lapse and shift of the radial foliation
in r and where the induced metric ¢, is given by

qupdxtdx = —pdu* + y,;;(dx’ + o'du)(dx) + o/du).
(B5)
Let us then perform an ADM decomposition of the

Einstein-Hilbert Lagrangian with respect to the radial
foliation (B4):

PHYSICAL REVIEW D 90, 104018 (2014)

L =+GR[G] = N/q(Rlg] + 0> - Q- Q —2V,1+),
(B6)

where Q,, = 1/(2N)(0, — £5)qap is the extrinsic curva-
ture of the surfaces of constant r, and v* = Qn* — a*, with
n* and ¢” the unit normal and acceleration of these
surfaces, respectively. The last term in the Lagrangian is
a total derivative and thus will be discarded. The decom-
posed Lagrangian is now a functional of the lapse, shift,
and induced metric, N, N* and ¢,;,. A quick inspection of £
then reveals that only ¢,, contains radial derivatives, and
therefore the equations of motion for the metric will be
second-order differential equations in r for ¢, only. This
indicates as usual that N and N“ do not represent true
degrees of freedom and therefore can be gauge-fixed; i.e.,
they can be brought to any configuration by diffeomor-
phisms near a surface of constant r. If we then return to
(B5), we find that g,, depends only on ¢, ¢, and y; ;- This
means that the Lagrangian does not contain radial deriv-
atives of the functions M and f' that appear in (B3), and
therefore these can be gauge-fixed by diffeomorphisms.
The simplest gauge we can choose is the Gaussian gauge
(M =1, =0), in which the spacetime metric assumes
the final form

ds* = —pdu* + 2dudr + y;;(dx" + o'du)(dx/ + o/du),
(B7)

with determinant /G = \/7- In the particular case of black
hole spacetimes in Gaussian null coordinates, the horizon is
defined to consist of the surface r = 0. Then note that it is
still possible to use a further diffeomorphism of the form
x' = x' + fi(x,u) in (B7) and choose the set of functions
£ such that

o' = r'¢'(ru,x): a>0, o =0(r="). (B8)
Also, since the horizon is a null surface, we find that the
function ¢ must behave near r = 0 at least as

¢ =rPo(r.ux): p>0, o =0(r="). (B9)

In most cases, the equations of motion near the horizon then
fix the exponents «, # = 1 for a nondegenerate horizon, and
a =1, f =2 for a degenerate one.

APPENDIX C: RICCI TENSOR

In this appendix, we provide the decomposition of the
Ricci tensor of our gauge-fixed metric:

fz
ds?,, = G, dxtdx” = Z—; (—(pN(O)du2 — 2N o) dudz

+ g;j(dx" + o' du)(dx’ + o/ du)), (C1)
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where N =N (0)(u,xi ), and the remaining components of the metric depend on all coordinates. The inverse and
determinant of the metric are given by

0 -1 0
GHv i 2]\]—1 -1 7 o' (CZ)
=z 0) ,

0 o' N(O)g”

VG = (£,/2)*N 9)\/3. (C3)
Define
1

ki = —£,)9;- C4
ij ZN(U) (au O’)gl] ( )

The decomposition of the Ricci tensor R, [G] is then given by [51,60]

2R.(6] =1 (=) + £ (g- )y~ OV ) = 3 T (o), - M)

N

+ vj(g_lgl)ji - 9,Tr[g™'q]. (CS)
. d+2  2d+1 L

2(Ra(6] - R f0]) = o = 2+ X g i) (S - Lo
S 1.
= Vi(o" = g0;Ng)) = N—U"((Q +0'); = 9;N(p))
)
2
=N <2Tf[9_1k]' - Tr[g'k] + (k- 9’)) , (C6)

1 d 2 2(d+1 [ .
2R,~,~[G]—2Ri,~[g]+N—[—(r/)gi;,-)’+—<0d,;,-+—<o’gij— ( 2 )rpgiﬁrp(—gu——dij)Tr[g l+old - 9)y
0) z z b4 z 2

+2V((g- 7)) = 9)N() = N5 (9-0)i(g- 0’),} + 0;log N)0;log N o)
4k'.._2_dk,. Trla 'k, ’.._% NTrla Kl = 4(k - d),.. Cc7
+ ij z lj+ I'[g g] 1]+ gz/ thj I‘[g ] ( g)(z])’ ( )
1
2R.[G] = Trlg™'g"] + 5 (9 - ). (C8)
. 1
2(R,;[G] = 0'R;j[G] — 9Ri[G]) = (0, — £,) [m ((g-0); = 3#"(0))] + Tr[g'k]((9- 0'); = DiN (o))
) . d 1
+2(g7'k)!;0;N o) — (979 ):0;0 + 0;¢' + N(o) (_E t5 Tr[g_lgl]>ai(€0/N(o>)

+2No)(V,(g7' k), = 0, Trlg™ k]) — @(V (97" ') = 0iTx[g™ g ]). (©9)

2 [Ruu[G] ~ 20'R,[G] + 0 R, [G] ~ 9(R..[G] - R, [G])]
(0)

= (=24 ™)) 0, - £)(0/N) - 200, - €T
+@Q2Tr[g k] + (k- ¢)) = ¢'Tr[g k] = 2N gy (k - k) + V'V,

L 1 ) .
+ g7 0;90;log N ) + N (pVic" —6"0,0), (C10)
(0)
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where the prime denotes differentiation with respect to z, the trace and inner product are taken with respect to g;;, and where
V.gjx = 0. When replaced by the Einstein equations,
d+1
a*es M

R;w[G] = (C] 1)

we find that equations (C5)—(C7) represent the dynamical equations for the metric components ¢, ¢, and g; j» respectively,
whereas equations (C9) and (C10) are constraint equations, since they do not contain second-order derivatives in z. After
(C7) is solved, equation (C8) can also be seen as a constraint equation because it can be replaced by an equation without
second-order derivatives in z if we use the trace of (C7).

APPENDIX D: TERMS X;; AND X;

The algebraic expressions for the terms X;; and X; that appear in equations (3.59) and (3.61) depend on the coefficient

9g(1)ij and vanish if the boundary metric is static. In general, the expressions are given by

1 3

5

Xij = Wga)ij(sz[g(ol)gu)] + (901 - 91))) — 1 Tr(g0)90)Jk1)ij = 1 Tr(g;0)k)]91)is

1 3
+ 5 R0)90)i; = 590)0* "'V O log o) +
+

4N,

3

1
1 ((O)ViajTr[g(_ol)g(l)] - OOg;;)

(Trlgig) 9] ' Vid;N o) + 90" BN o) = 9011 Trlgi0)901)) VON o)) (D1)

k

: 1 o1 3
Xi =590y 901))0;log Ng) + 59(1)1';(0)Vk9]({f> + E(O)Vk(gu) 90" = 7900:9iTrlgo)901)]

8

4

1 5
+EaiTr2[g(_ol)g(l)] _Eai(g(l) “9(1))- (D2)
To obtain these expressions, we made use of the matrix identity
1 1
(AB“A)ij - EB,-J-Tr[B“AB“A] = Tr[B~'A] (Aij - EBI-J-Tr[B‘lA]) (D3)

for any 2 x 2 matrices A and B such that det B # 0.
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