
Aspects of the zero Λ limit in the AdS/CFT correspondence

R. N. Caldeira Costa*

Institute for Theoretical Physics, University of Amsterdam, Science Park 904, 1090 GL
Amsterdam, Netherlands

(Received 17 August 2014; published 17 November 2014)

We examine the correspondence between QFTobservables and bulk solutions in the context of AdS/CFT
in the limit as the cosmological constant Λ → 0. We focus specifically on the spacetime metric and a
nonbackreacting scalar in the bulk, compute the one-point functions of the dual operators, and determine
the necessary conditions for the correspondence to admit a well-behaved zero-Λ limit. We discuss
holographic renormalization in this limit and find that it requires schemes that partially break diffeo-
morphism invariance of the bulk theory. In the specific case of three bulk dimensions, we compute the
zero-Λ limit of the holographic Weyl anomaly and reproduce the central charge that arises in the central
extension of bms3. We compute holographically the energy and momentum of those QFT states dual to flat
cosmological solutions and to the Kerr solution and find an agreement with the bulk theory. We also
compute holographically the renormalized two-point function of a scalar operator in the zero-Λ limit and
find it to be consistent with that of a conformal operator in two dimensions fewer. Finally, our results can be
used in a new definition of asymptotic Ricci flatness at null infinity based on the zero-Λ limit of
asymptotically Einstein manifolds.
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I. INTRODUCTION

String theory in asymptotically AdS spaces admits a dual
nonperturbative formulation provided by the AdS/CFT
correspondence [1–3], and several proposals have been
constructed by analogy with AdS/CFT that relate string
theory on spacetimes with other asymptotics to field
theories formulated at the boundary. For the case of de
Sitter gravity, and motivated by studies of the asymptotic
symmetry group of de Sitter in a fashion similar to that of
AdS [4], it has been conjectured that the bulk theory can
be described by a Euclidean field theory defined at the
spacelike conformal boundary [5–11]. A further motivation
lies in the fact that every solution of AdS gravity is mapped
to a solution of de Sitter’s by an analytic continuation,
leading to a possible dS/CFT correspondence. In the
context of AdS/CFT, string theory correlation functions
are determined by computing QFT correlators and vice
versa, and the bulk/boundary dictionary is well established.
Statements in dS/CFT can then be worked out from the
AdS counterpart by analytically continuing the solutions
with AdS boundary conditions to de Sitter signature.1

In particular, the near-boundary asymptotics of AdS spaces
admits an analytic continuation to dS asymptotics (see e.g.
Ref. [13]), leading to a well-defined mapping between
asymptotic data in the bulk and boundary data in the case of
a positive cosmological constant Λ.

Despite many interesting results, a holographic descrip-
tion of de Sitter space remains unclear, mainly because
string theory in dS is not well understood. Even though de
Sitter vacua exist in string theory [14], unlike the case
of flat or AdS vacua, they are unstable and decay to vacua
of different Λ signatures. Another problem in a dS/CFT
formulation is the fact that the conformal weights of the
QFT operators are imaginary, and the boundary theory is
nonunitary. Nevertheless, one can still work out the details
of such a correspondence and point to those ingredients that
do not work.
The case of Ricci flat gravity is substantially different.

At the classical level, setting Λ to zero is just a fine-tuning
problem, and asymptotically flat spacetimes are the best
controlled backgrounds in string theory to compute corre-
lation functions. However, the mechanism in string theory
by which the cosmological constant vanishes is not clear
(see e.g. the discussion in Ref. [15]). More particularly, in
the context of AdS/CFT, the zero-Λ limit of the correspon-
dence in general is not well understood. The limit taken
on boundary correlators and vacuum expectation values
(VEVs) generically does not lead to sensible results. The
conformal weights of QFT operators dual to massive bulk
fields diverge in this limit, a problem associated with the
fact that the conformal boundary is null in the zero-Λ limit.
The limit taken on the near-boundary asymptotics of AdS
spaces in general does not result in Ricci-flat asymptotics,
unless specific constraints are imposed, and a bulk/boun-
dary dictionary has not been established. Furthermore, and
unlike the case of de Sitter gravity, holographic renorm-
alization does not extend in a straightforward manner to flat
gravity, essentially because the asymptotics of bulk fields in
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1Note, however, that to compute correlation functions in this

way, one has to take into account the global properties of
asymptotically de Sitter spaces [9,12].
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this case are nonlocal with respect to the sources [13,16–18].
Nevertheless, quantum gravity in asymptotically flat space-
times can be characterized by a unitary and analytic S matrix,
and it is believed that a holographic description of the flat-
space S matrix can be derived from the zero-Λ limit of AdS/
CFT. Indeed, explicit constructions for extracting S-matrix
elements from boundary correlators have been proposed in
Refs. [19–27] (see also the discussions in Refs. [7,28]).
A different approach to flat-space holography formulated

as a limit of AdS/CFT is based on studies of the asymptotic
symmetry group of asymptotically Minkowski spacetimes
at null infinity, the BMS group. In four dimensions, the
symmetry algebra was originally derived in Refs. [29–31]
and more recently investigated in Ref. [32] in general
dimensions (see also Refs. [33,34]). In the three-dimensional
case, the bms3 algebra consists of diffeomorphisms on
the circle and supertranslations and is isomorphic to the
two-dimensional Galilean conformal algebra (GCA) con-
sisting of a contraction of two copies of the Virasoro algebra.
The Poisson algebra of the surface charges was found to
admit a central extension with central charge c ¼ 3 [32,35],2

representing a generalization to the flat-space case of those
results originally obtained by Brown and Henneaux [4] for
AdS3 and which predated the AdS/CFT correspondence.
In the four-dimensional case, the bms4 algebra is also
isomorphic to a class of GCAs [36]. Based on these results, a
possible connection between string theory on asymptotically
flat spacetimes and nonrelativistic conformal field theories
defined at null infinity was proposed in Refs. [35–39].
In the same spirit, the authors in Refs. [35,39] were able
to reproduce the Bekenstein-Hawking entropy of three-
dimensional flat cosmological horizons by counting states
in a two-dimensional Galilean conformal field theory
defined at null infinity. However, these studies leave open
the question of how to compute field theory correlation
functions with the right properties from the bulk theory and
do not establish a precise bulk/boundary dictionary.
Similar earlier studies of flat-space holography via the

BMS group focused on constructing BMS-invariant field
theories, see Refs. [40–43]. Other different approaches
have investigated instead a possible dual description of flat
space at spatial infinity [44–49] by analyzing the variational
principle for asymptotically flat spaces and determining the
appropriate counterterms in a fashion similar to AdS
holographic renormalization, and by studying the putative
boundary stress-energy tensor and correlators constructed
at spatial infinity.
Returning to the context of AdS/CFT, let us quickly

review the flat-space limit in the duality [1] between string
theory in AdS5 × S5 and N ¼ 4 super Yang-Mills. In the
supergravity approximation, the dynamics of the massless

closed string states is governed by the IIB supergravity
action:

S ¼ 1

16πG10

Z
d10x

ffiffiffiffi
G

p �
R½G� − 1

4
jgsF5j2 þ � � �

�
; ð1:1Þ

where F5 ¼ dA4 is the self-dual R-R five-form and we are
omitting the remaining supergravity fields. The ten-dimen-
sional Newton constant is given in terms of the string
coupling gs and the string length scale ls by G10 ¼
8π6g2sl8

s . The metric solution corresponding to a stack of
N D3-branes that source the A4 potential is given by

ds210 ¼ HðrÞ−1=2ð−dt2 þ d~x23Þ þHðrÞ1=2ðdr2 þ r2dΩ2
5Þ∶

HðrÞ ¼ 1þ λ
l4
s

r4
; ð1:2Þ

where λ ¼ 4πgsN. The horizon of this black brane geom-
etry is located at r ¼ 0. We then introduce a new radial
coordinate z such that r ¼ l2

s=z and work in the near-
horizon or decoupling limit ls → 0 (such that λ=l4

s → ∞).
In this limit, the four-dimensional world-volume theory on
the D3-branes decouples from the closed string modes and
becomes N ¼ 4 super-Yang-Mills at leading order. The
parameter λ becomes the ’t Hooft coupling of the gauge
theory with N the rank of the gauge group. In the bulk,
the resulting near-horizon geometry is AdS5 × S5 para-
metrized as

ds210 ¼ l2
s

�
1ffiffiffi
λ

p −dt2 þ d~x23
z2

þ
ffiffiffi
λ

p dz2

z2
þ

ffiffiffi
λ

p
dΩ2

5

�
: ð1:3Þ

When considering perturbations or supergravity solutions
around this background, the compactification on the S5

results in an effective cosmological constant Λ ¼
−6=ðλl4

sÞ1=2. The flat-space limit of the noncompact
AdS5 background can then be obtained by defining

~x ¼ λ1=4~y; ð1:4Þ

t ¼ u −
ffiffiffi
λ

p
z ð1:5Þ

such that

ds25 ¼ l2
s

�
−

1ffiffiffi
λ

p du2

z2
þ 2dudz

z2
þ d~y23

z2

�
; ð1:6Þ

and taking the limit λ → ∞ under which the near-horizon
metric becomes flat.3 On the gauge theory side, observables
typically diverge in this limit. A simple example is the
central charge c of the theory. For a CFT4 with an AdS5

2The central charge cLM in Ref. [35] is related to ours as
cLM ¼ c=12, since we follow the convention of formula (1) in
that reference.

3One can also keep the full ten-dimensional near-horizon
metric and define θ ¼ ρ=λ1=4, where dΩ2

5 ¼ dθ2 þ sin2 θdΩ2
4.
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dual, this is given at strong coupling and large N by [50]
c ∼ ðλl4

sÞ3=4=G5, where the effective five-dimensional
Newton constant G5 ¼ G10=VolðS5Þ. In our case, we
obtain c ∼ N2. Since λ → ∞ requires N → ∞ in string
perturbation theory, we have that c diverges in the flat-
space limit.
In the case of AdS3=CFT2 [1], the near-horizon geom-

etry of the D1–D5 system is given in a similar fashion by

ds26 ¼ l2
s

�
1ffiffiffi
λ

p −dt2 þ dx2

z2
þ

ffiffiffi
λ

p dz2

z2
þ

ffiffiffi
λ

p
dΩ2

3

�
ðls ∼ 0Þ∶

ffiffiffi
λ

p
¼ g6

ffiffiffiffiffiffiffiffiffiffiffiffi
N1N5

p
; ð1:7Þ

where g6 < 1 is the effective six-dimensional string coupling
(recall that in this case we first compactify the theory on a
four-manifold such as a T4) and N1;5 is the number of D1,5
branes. After compactifying on the S3, the flat-space limit of
the AdS3 geometry can be taken by introducing coordinates
as in (1.4) and (1.5), and taking the limit λ → ∞ under which
the geometry becomes three-dimensional flat space. In the
dual CFT2, the central charge at strong coupling and large
charges N1;5 is given by c ¼ 6N1N5, which diverges in the
limit λ → ∞.
This type of divergence associated with the flat-space

limit arises in the correlation functions of the dual field
theory when computed holographically, and it is the main
purpose of this work to study the zero-Λ limit of these
observables in AdS/CFT. Since we will not be particular-
izing the correspondence to specific theories, in order to
take the limit of a dimensionless quantity, we introduce a
characteristic length scale lo and rewrite the AdS radius as
a multiple of lo with proportionality constant α:

l ¼ αlo: ð1:8Þ

In the specific examples given above, lo is the string length
scale, and α plays the role of the effective gauge coupling
constant. The zero-Λ limit in AdS/CFT then corresponds to
taking α → ∞ with lo fixed.4 We will make use of the
relation (1.8) throughout this work to study the limit of
vacuum expectation values and specific correlators in AdS/
CFT. This will be done formally and in a fashion somewhat
similar to the way VEVs and boundary correlators in dS/
CFTare derived from corresponding AdS results. The main
difference, however, is that not every bulk solution of
Einstein gravity with AdS boundary conditions is mapped
to an asymptotically flat solution in the zero-Λ limit.
We will discuss this aspect in the following sections.

This implies that we need to restrict the space of solutions
of AdS gravity to the subspace of those that admit the limit,
in the sense that they result in solutions of the bulk
equations of motion with Λ ¼ 0 once the limit α → ∞
is taken. Since gravity solutions are dual to QFT states, this
corresponds to restricting the Hilbert space of the field
theory to some subspace, say ~H. Furthermore, since the
limit α → ∞ is taken over solutions, on the QFT side this
should correspond to some limit taken over ~H. The objective
is then to derive the correspondence between the resulting
states in ~H and those bulk solutions of asymptotically flat
gravity that result from the limit α → ∞. This will be done
mainly by working out the mapping between QFT observ-
ables and the asymptotics of such solutions. Wewill find that
well-definedness of this limit seems to be a statement about
states and sources on the field theory side.
If the bulk field is in particular the spacetime metric, the

choice of possible coordinate systems is constrained by the
requirement that the solution be smooth in the zero-Λ limit.
Taking this limit on the metric must correspond to switch-
ing off the boundary lapse function so that the timelike
conformal boundary of the asymptotically AdS solution
becomes null as α → ∞. To some extent, the requirement
that the solution be mapped to an asymptotically flat one in
this limit is a gauge-dependent condition, and this fact will
have an interesting implication for the holographic renorm-
alization of the bulk theory as discussed below. This restric-
tion to the subspace of solutions with a well-defined limit
implies in particular that the standard Fefferman-Graham
coordinate system used in the near-boundary analysis of
asymptotically AdS and dS spaces cannot be extended to
derive the asymptoticsof those solutions that are smooth inα.
The choice of coordinates we will then make near the

asymptotic boundary are the well-known Gaussian null
coordinates. This gauge is closely related to Bondi coor-
dinates and was initially introduced by Isenberg and
Moncrief [51] in order to prove the existence of a
Killing vector field in any spacetime that contains a
compact null surface with closed generators. It was further
elaborated in Ref. [52] in order to generalize Isenberg and
Moncrief’s results, as well as Hawking’s rigidity theorems,
to nonanalytic spacetimes (see also Ref. [53]), and it has
been extensively used in the literature in order to study the
near-horizon geometry of black holes (see Refs. [54,55]
and references therein). This gauge choice is also motivated
by those investigations of the asymptotic symmetries of
asymptotically flat gravity discussed above.5 In this coor-
dinate system, the Einstein field equations decompose into
a set of dynamical and constraint equations that are very
tedious to solve asymptotically and increase in complexity
with the spacetime dimension. For this reason we will focus
specifically on the case of three and four bulk dimensions,
but it is straightforward to extend the procedure to any

4Note that the same limit has been discussed in Refs. [19,28].
In the above examples, α → ∞ corresponds to the limit of large
charges N;Ni with the string coupling (and length scale) fixed.
Also, and as emphasized in these references, this limit involves
the physics of bulk and gauge theory states with large (dimen-
sionless) energies. 5See also Ref. [56] for a brief overview in three dimensions.
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dimension. From this analysis we will obtain in particular
the unique asymptotics at null infinity of all those Ricci-flat
metrics that result from the zero-Λ limit of Einstein metrics.
As a final remark, it should be emphasized that, unlike

the case of dS/CFT, holographic renormalization does
not admit a straighforward extension to the asymptotically
flat case. In general, the holographic counterterms intro-
duce divergences in α that spoil the zero-Λ limit of the
renormalized on-shell gravity action. If one insists that
the action be finite in this limit, further counterterms
are needed to restore the well-definedness of the limit.
The latter are finite in the holographic regulator and
therefore are associated with a choice of renormalization
scheme on the field theory side. These finite counterterms
are covariant with respect to diffeomorphisms that preserve
the spacelike foliation induced at the boundary by the bulk
theory, but break invariance of the renormalized action with
respect to diffeomorphisms that are not foliation preserv-
ing. This reflects the fact that the well-definedness of the
limit is a gauge-dependent requirement. We will analyze
the effect of these anomalous counterterms on the holo-
graphic Ward identities of the field theory in the case of
four bulk dimensions. A pathological aspect of these
counterterms is that they introduce divergent contact terms
in the two-point correlators of scalar operators. We will
derive this result in Sec. IV C.
In the next section, we introduce our coordinate system

and determine the unique asymptotics of the bulk spacetime
metric by solving the vacuum Einstein equations with a
negative cosmological constant in a neighborhood of the
asymptotic boundary. We will then discuss the zero-Λ
limit of the solution and briefly compare the spacetime
asymptotics in this limit with the standard definitions of
asymptotic flatness at null infinity.
Section III contains the main results of this work. Wewill

holographically renormalize the bulk gravity action in three
and four dimensions and use the AdS/CFT prescription to
compute the vacuum expectation value of the QFT energy
tensor. The objective will be to analyze the correspondence
between the metric asymptotics and the boundary data in
the zero-Λ limit and to address the issues associated with
this limit. The three-dimensional case is the best controlled
setting, and no major problems arise. The holographic Weyl
anomaly in the zero-Λ limit will be of particular interest in
this case. The integrated anomaly is still a topological
invariant, and we will be able to obtain in this limit the
Virasoro central charge that arises in the central extension
of bms3 as the proportionality constant between the
anomaly and a geometric invariant. We will then apply
our results to the zero-Λ limit of the BTZ solution, which
represents a three-dimensional flat cosmological solution,
and find a matching between the energy and momentum of
the QFT and those of the bulk theory.
In the case of four bulk dimensions, we will find that the

holographic renormalization spoils the zero-Λ limit of the

gravity action, as described above, by terms that are finite in
the regulator and which can only be subtracted by a finite
counterterm that partially breaks diffeomorphism invari-
ance of the action. We will then compute the holographic
energy tensor and address the issues associated with its
zero-Λ limit. Of particular interest will be the holographic
Ward identities and the way they are affected by the
anomalous counterterm. In the absence of the latter, the
trace of the QFT energy tensor vanishes, but it is modified
by a total derivative in the presence of the anomalous
counterterm. As an application of our results, we will derive
specifically the asymptotics of the Kerr solution and find
a matching between the energy and momentum of this
solution and those of the dual state of the field theory. At the
end of the section, we will address and solve the issues
associated with the presence of null boundaries in the
spacetime in addition to the asymptotic conformal boundary.
Finally, in Sec. IV, we analyze the case of a non-

backreacting massive bulk field propagating in AdS in a
coordinate system appropriate to the zero-Λ limit. We
renormalize holographically the bulk action for the field,
address its zero-Λ limit, and compute the vacuum expect-
ation value and the renormalized two-point correlator of the
dual scalar operator. As in the case of the spacetime metric,
the objectivewill be to analyze the zero-Λ limit taken on the
VEV and correlator. For “large” values of the conformal
weights, contact terms associated with the anomalous
counterterms arise in the two-point function, but they
vanish away from coincident points in time. In general,
the two-point functions will be consistent with that of a
conformal operator in two dimensions fewer in this limit.

II. SPACETIME ASYMPTOTICS

A. Choice of coordinates

We start with the action for the spacetime metric in dþ 2
dimensions written in the form

16πG0S ¼
Z
M

ddþ2x
ffiffiffiffi
G

p �
dðdþ 1Þ
α2l2

o
þ R½G�

�

þ 2

Z
∂M

ddþ1x
ffiffiffi
q

p
Q; ð2:1Þ

where the cosmological constant 2Λ ¼ −dðdþ 1Þ=ðαloÞ2
and where qab andQab are the induced metric and extrinsic
curvature of the boundary. As discussed in the previous
section, we have rewritten the AdS radius l as in (1.8) so
that Λ is switched off by taking the limit α → ∞ of the
dimensionless parameter α.
In order to solve asymptotically the Einstein field

equations, we introduce Gaussian null coordinates xμ ¼
ðr; xaÞ ¼ ðr; u; xiÞ near the boundary r ¼ ∞ of the mani-
fold. In such gauge, the spacetime metric has the form
[51,52]
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ds2dþ2 ¼ Gμνdxμdxν

¼ −ϕdu2 þ 2dudrþ γijðdxi þ σiduÞðdxj þ σjduÞ;
ð2:2Þ

where the metric components depend on all the coordi-
nates, the spatial metric γij is positive definite, and the
function ϕ is positive by definition. The vector ϕ−1=2ð∂u −
σi∂iÞ is future-directed timelike with unit norm. The
manifold is defined to be foliated by a family of timelike
hypersurfaces labeled by the coordinate r and by a family
of null surfaces of constant u. Each submanifold fr ¼
constantg is foliated by spacelike surfaces of constant time
coordinate u. All the above statements hold asymptotically.
In Appendix B, we briefly deduce this coordinate system
via an ADM analysis of the metric, but it all comes down to
using diffeomorphisms in order to bring the metric to the
desired form. In the case of asymptotically flat metrics in
Gaussian null coordinates, the metric components behave
asymptotically as [34,57–60]

γijðr; u; xÞ ¼ r2ðγð0Þijðu; xÞ þOðr<0ÞÞ; ð2:3Þ

ϕðr; u; xÞ ¼ ϕð0Þðu; xÞ þOðr<0Þ; ð2:4Þ

σiðr; u; xÞ ¼ Oðr<0Þ; ð2:5Þ

with null infinity given by r ¼ þ∞, so we will be interested
in solving the field equations around 1=r ¼ 0 with Λ
switched on, and in the end we analyze the limit α → ∞.
Before doing so, we introduce a new coordinate z ≔

l2
o=r and also define gij ≔ ðz=loÞ2γij and φ ≔ ðz=loÞ2ϕ

such that

ds2dþ2 ¼
l2
o

z2
ð−φdu2 − 2dudzþ gijðdxi þ σiduÞ

× ðdxj þ σjduÞÞ: ð2:6Þ

The decomposition of the Ricci tensor Rμν½G� in terms of
the metric components φ; gij and σi is given in Appendix C.
If we solve the field equations Rμν ¼ −ðdþ 1Þ=ðαloÞ2Gμν

around z ¼ 0 at leading and first subleading order, we find

φðz; u; xÞ ¼ 1

α2
þ zφð1Þ þOðz2Þ; ð2:7Þ

gijðz; u; xÞ ¼ gð0Þij þ zgð1Þij þOðz2Þ; ð2:8Þ

σiðz; u; xÞ ¼ σið0Þ þOðz2Þ; ð2:9Þ

where the coefficients φð1Þðu; xÞ, gð0Þijðu; xÞ, and σið0Þðu; xÞ
are completely arbitrary (i.e. integration constants), and
where gð1Þijðu; xÞ obeys the equation

1

α2
gð1Þij ¼ ð∂u − £σð0Þ Þgð0Þij þ φð1Þgð0Þij ð2:10Þ

with £ being the Lie derivative. The asymptotic behavior of
the metric components therefore implies that the metric
(2.6) is (at least C2) conformally compact,6 with defining
function z=lo and conformal boundary z ¼ 0. For α−2 > 0
the boundary is timelike, and it becomes null in the zero-Λ
limit. We also find from (2.10) that the leading-order term
gð0Þij becomes constrained in the case α−1 ¼ 0.
We will now use our freedom in the choice of defining-

function and introduce a more judicious one. We define a
new coordinate z̄ ≔ zNð0Þ, with Nð0Þðu; xÞ an arbitrary but
positive smooth function of u and xi. Under this change of
coordinates, the spacetime metric becomes

ds2dþ2 ¼
l2
o

z̄2
ð−φ̄Nð0Þdu2 − 2Nð0Þdudz̄

þ ḡijðdxi þ σ̄iduÞðdxj þ σ̄jduÞÞ; ð2:11Þ

where

φ̄Nð0Þ ¼ φN2
ð0Þ − 2z̄ð∂u − £σÞNð0Þ þ z̄2j∇g logNð0Þj2;

ð2:12Þ

σ̄i ¼ σi þ z̄N−2
ð0Þg

ij∂jNð0Þ; ð2:13Þ

ḡij ¼ N2
ð0Þgij: ð2:14Þ

The metric component φ̄ therefore has the asymptotics

φ̄ ¼ φ̄ð0Þ þ z̄φ̄ð1Þ þOðz̄2Þ∶ ð2:15Þ

φ̄ð0Þ ¼
1

α2
Nð0Þ; ð2:16Þ

φ̄ð1Þ ¼ φð1Þ − 2ð∂u − £σð0Þ Þ logNð0Þ: ð2:17Þ

We then choose our function Nð0Þðu; xÞ such that7

ð∂u − £σð0Þ Þ logN2
ð0Þ ¼ φð1Þ; ð2:18Þ

which results in the asymptotics φ̄ ¼ φ̄ð0Þ þOðz̄2Þ. Recall
that the coefficient φð1Þ was an integration constant, and
therefore Nð0Þ, or φ̄ð0Þ, remains arbitrary, i.e. undetermined
by the field equations.
From this choice of defining function z̄=lo and the

requirement that the metric components be well defined in
the limit α → ∞, it follows from equation (2.10) that

6See Appendix A.
7Note that if we write Nð0Þ ≔ Nð0Þ1Nð0Þ2 such that

ð∂u − £σð0Þ Þ logNð0Þ2 ¼ 0, we still have the freedom of choosing
Nð0Þ2ðu; xÞ in the space orthogonal to the vector ∂u − σið0Þ∂i.
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ð∂u − £σ̄ð0Þ Þḡð0Þij ¼ 0 ðα → ∞Þ; ð2:19Þ

and therefore the timelike vector ∂u − σ̄i∂i is an asymptotic
Killing vector of the spatial metric ḡij in this limit.
Furthermore, with such a defining function, the normal
to the boundary mμ ¼ ~Gμν∂νz̄ in the conformal embedding
~Gμν ¼ ðz̄=loÞ2Gμν is shear, expansion, and vorticity free in
the zero-Λ limit, and therefore totally geodesic:

lim
α→∞

~∇νmμ ¼ Oðz̄Þ: ð2:20Þ

This is the standard gauge used in the study of asymptoti-
cally flat spacetimes (see e.g. Ref. [61]). More importantly,
with our choice of coordinates, the boundary metric (with
components Nð0Þ; ḡð0Þij and σ̄ið0Þ) is completely uncon-
strained for finite α. In the following sections, this feature
will allow us to take the variations of the on-shell action
with respect to all components of the boundary metric in
order to derive the holographic energy tensor. The metric in
the original Gaussian null coordinates (2.6) therefore
corresponds to the metric (2.11) with the lapse function
1
αNð0Þ of the boundary fixed by diffeomorphisms to a
constant.
We will drop the bar notation from now on and work

with the spacetime metric in the final form:

ds2dþ2 ¼ Gμνdxμdxν ¼
l2
o

z2
ð−φNð0Þdu2 − 2Nð0Þdudz

þ gijðdxi þ σiduÞðdxj þ σjduÞÞ; ð2:21Þ

where

φ ¼ 1

α2
Nð0Þ þOðz2Þ; ð2:22Þ

gij ¼ gð0Þij þOðzÞ; ð2:23Þ

σi ¼ σið0Þ þOðzÞ: ð2:24Þ

The induced metric qab of the surfaces of constant z near
the boundary z ¼ 0 is given by

ds2dþ1 ¼ qabdxadxb

¼ l2
o

z2

�
−

1

α2
N2

ð0Þdu
2 þ gð0Þijðdxi þ σið0ÞduÞ

× ðdxj þ σjð0ÞduÞ þOðzÞ
�

≔
l2
o

z2
ðqð0Þab þOðzÞÞdxadxb; ð2:25Þ

where qð0Þab represents the metric tensor of the conformal
boundary and is the source for the energy tensor of
the dual quantum field theory. From the determinant

ffiffiffiffiffiffiffiffiqð0Þ
p ¼ 1

αNð0Þ
ffiffiffiffiffiffiffigð0Þ

p , we see clearly that the timelike
boundary becomes null in the zero-Λ limit.

B. Asymptotic solution

The decomposition of the Ricci tensor Rμν½G� in our
coordinate system (2.21) is given in Appendix C. If we
solve the Einstein field equations around z ¼ 0 with the
cosmological constant switched on, we find that the
asymptotics of the metric is uniquely determined:

gij ¼ gð0Þij þ zgð1Þij þ z2gð2Þij þ � � � þ zdþ1gðdþ1Þij
þ zdþ1 log z~gðdþ1Þij þ � � � ; ð2:26Þ

φ ¼ φð0Þ þ z2φð2Þ þ z3φð3Þ þ � � � þ zdþ1φðdþ1Þ
þ zdþ1 log z ~φðdþ1Þ þ � � � ; ð2:27Þ

σi ¼ σið0Þ þ zσið1Þ þ z2σið2Þ þ � � � þ zdþ1σiðdþ1Þ

þ zdþ1 log z ~σiðdþ1Þ þ � � � : ð2:28Þ

Note that the expansions in z are not predetermined but
uniquely fixed by the equations.8 The coefficients gð0Þij,
φð0Þ, and σið0Þ, which we will denote collectively by Gð0Þμν,
are integration constants and therefore completely arbitrary
functions of u and xi. These are the standard non-
normalizable modes, or sources, of asymptotically AdS
metrics.9 The coefficients gðdþ1Þij, φðdþ1Þ, and σiðdþ1Þ,
denoted collectively byGðdþ1Þμν, are arbitrary up to specific
constraints and are the standard normalizable modes. These
will be associated with the different components of the
holographic energy tensor and the constraints to its Ward
identities. The coefficients of the logarithms, which we will
denote by ~Gðdþ1Þμν, are only nonvanishing for odd values of
d > 1, and in such cases are local functionals of the sources
Gð0Þμν. The remaining coefficients GðnÞμν, as well as the
constraints on the Gðdþ1Þμν, are all local functionals of the
sources.
The expressions for the coefficients at the first and

second subleading orders are given by

1

2α2
gð1Þij ¼ kð0Þij; ð2:29Þ

8An arbitrary term zφð1Þ in the expansion of φ can always be
canceled by a choice of Nð0Þ as described above. See, however,
the discussion in Sec. III C 1. There is also the possibility of
including terms proportional to δΛ;0 that vanish for all finite
values of α, but we discard such terms since we are only
interested in solutions for which the limit α → ∞ exists.

9See Refs. [13,62] for a review of the asymptotics of such
metrics in Fefferman-Graham coordinates.
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d− 1

α2
gð2Þij ¼ ðd− 2Þ

�
kð1Þij−

1

d
gð0ÞijTr½g−1ð0Þkð1Þ�

�

−
�
Rð0Þij−

1

d
gð0ÞijRð0Þ

�

þ 1

4α2

�
−gð1ÞijTr½g−1ð0Þgð1Þ�þ

1

d
gð0ÞijTr2½g−1ð0Þgð1Þ�

þ 2ðgð1Þ · gð1ÞÞijþ
d− 3

d
gð0ÞijTr½gð1Þ · gð1Þ�

�
;

ð2:30Þ

φð0Þ ¼
1

α2
Nð0Þ; ð2:31Þ

dðd − 1Þ
Nð0Þ

φð2Þ ¼ −2ðd − 1ÞTr½g−1ð0Þkð1Þ�

þ Rð0Þ þ
1

4α2
ðTr2½g−1ð0Þgð1Þ�

þ ð2d − 3ÞTr½gð1Þ · gð1Þ�Þ; ð2:32Þ

σð1Þi ¼ ∂iNð0Þ; ð2:33Þ

2ðd − 1Þ
Nð0Þ

σð2Þi ¼ −ð0Þ∇jðg−1ð0Þgð1ÞÞji þ ∂iTr½g−1ð0Þgð1Þ�

− ðd − 1Þgð1Þijð0Þ∇j logNð0Þ; ð2:34Þ

where Rð0Þij ≔ Rij½gð0Þ� and ð0Þ∇igð0Þjk ≔ 0, and where the
indices are raised and lowered with gð0Þij and the inner
product taken with respect to the latter. It is also useful to
emphasize that in three and four bulk dimensions the
coefficient gð2Þij simplifies as10

gð2Þij ¼
1

4
ðgð1Þ · gð1ÞÞij ðd ¼ 1; 2Þ: ð2:35Þ

In Appendix C, where the decomposition of the Ricci
tensor is given, we introduce the tensor kij defined as

kij ≔
1

2Nð0Þ
ð∂u − £σÞgij: ð2:36Þ

This tensor is proportional to the extrinsic curvature of
the surfaces of constant time on each submanifold
fz ¼ constantg. From the metric asymptotics, kij admits
the expansion

kij ¼ kð0Þij þ zkð1Þij þ � � � þ zdþ1kðdþ1Þij

þ zdþ1 log z~kðdþ1Þij þ � � � : ð2:37Þ

Each coefficient kðn<dþ1Þij can be written in terms of
quantities defined at the boundary. For the first and second
subleading orders, we find11

kð0Þij ¼
1

2Nð0Þ
ð∂u − £σð0Þ Þgð0Þij ¼

1

α
Kð0Þij; ð2:38Þ

kð1Þij ¼
1

2Nð0Þ
½ð∂u − £σð0Þ Þgð1Þij − £σð1Þgð0Þij�

¼ £nð0ÞKð0Þij − ð0Þ∇iað0Þj − að0Þiað0Þj

¼ Rij½qð0Þ� − Rij½gð0Þ� þ 2ðKð0Þ · Kð0ÞÞij − Kð0ÞKð0Þij;

ð2:39Þ

where Kð0Þij is the extrinsic curvature of the surfaces of
constant time at the boundary, nað0Þ∂a ¼ αN−1

ð0Þð∂u − σið0Þ∂iÞ
is the unit normal to these surfaces, and að0Þi ¼ ∂i logNð0Þ
is the acceleration. Also, Rij½qð0Þ� are the spatial compo-
nents of the Ricci tensor Rab½qð0Þ� of the boundary metric,
and we will see in Sec. III B that its trace will represent the
holographic Weyl anomaly in three bulk dimensions in the
zero-Λ limit.
Let us start by discussing the solutions for the coef-

ficients GðnÞμν. If the cosmological constant is nonvanish-
ing, from the expressions (2.29)–(2.34) it follows that these
coefficients are indeed local functionals of the sources
Gð0Þμν. On the other hand, in the case α−1 ¼ 0, we find that
the algebraic equation for a given coefficient gðnÞij becomes
a differential equation for the coefficient gðn−1Þij, and
therefore the coefficients GðnÞμν become nonlocal func-
tionals of the sources. This feature is responsible for the fact
that holographic renormalization cannot be extended in a
straightforward way to Ricci-flat spacetimes (see e.g.
Refs. [13,17]), and we will discuss this aspect in the
following sections. The asymptotic expansions (2.26)–
(2.28) together with the equations for the coefficients with
α−1 ¼ 0 represent the unique asymptotics at null infinity of
all Ricci-flat metrics that result from Einstein metrics in the
zero-Λ limit.
In the case of α finite, the sources Gð0Þμν are arbitrary

functions, so we may have solutions of the equations of
motion with Λ switched on that diverge as α → ∞. The
same applies to the normalizable modes Gðdþ1Þμν. We are
interested in those Ricci-flat metrics that result from the
zero-Λ limit, so we need to restrict our space of solutions of
Einstein metrics to the subspace of those that admit the

10For d ¼ 1, the coefficient gð2Þij is totally determined by the
trace constraint Tr½g−1ð0Þgð2Þ� ¼ 1

4
Tr½g−1ð0Þgð1Þg−1ð0Þgð1Þ� that follows

from equations (C8) and (C11). For d ¼ 2, we use the matrix
identity (D3) to simplify equation (2.30).

11In the final expression for kð1Þ, we made use of equa-
tions (2.29) and (2.33) and of the standard Gauss-Codazzi
identities.

ASPECTS OF THE ZERO Λ LIMIT IN THE … PHYSICAL REVIEW D 90, 104018 (2014)

104018-7



limit. For this purpose, we require that the coefficients in
the expansions (2.26)–(2.28) be nondivergent as α → ∞.
For the normalizable modes, it is sufficient to restrict to
those configurations that satisfy Gðdþ1Þμν ¼ Oðα0Þ. On the
other hand, since the coefficients GðnÞμν and ~Gðdþ1Þμν are all
functionals of the sources up to order zdþ1, this requirement
imposes specific behaviors in α of the time derivatives of
gð0Þij. From equations (2.29) and (2.30), for example, it
follows that

ð∂u − £σð0Þ Þgð0Þij ¼ Oðα−2Þ; ð2:40Þ

ðd − 2Þ
�
kð1Þij −

1

d
gð0ÞijTr½g−1ð0Þkð1Þ�

�

−
�
Rð0Þij −

1

d
gð0ÞijRð0Þ

�
¼ Oðα−2Þ; ð2:41Þ

with kð1Þij expressed in terms of ð∂u − £σð0Þ Þ2gð0Þij by using
equations (2.29), (2.33), and the first identity in equa-
tion (2.39). From a holographic perspective, well-
definedness of the gravity solutions in the zero-Λ limit
then translates into a statement about the sources and states
on the QFT side. We will find another example of such a
correspondence between the existence of the zero-Λ limit
of bulk solutions and the time behavior of the sources when
we discuss nonbackreacting matter in AdS in Sec. IVA.
It is worth comparing the asymptotic behavior

(2.26)–(2.28) of the spacetime metric in the limit α → ∞
with the standard definitions of asymptotic flatness at null
infinity. For vacuum spacetimes in odd bulk dimensions
higher than four, half-integer powers in the asymptotics of
the metric (starting at order zd=2 in the conformal embed-
ding ~Gμν) are postulated in the definitions of asymptotic
flatness so that linearized perturbations of the metric
preserve the definition when the spacetime contains gravi-
tational radiation [57,58,63] (see also Refs. [59,60,64]).
The absence of half-integer powers in the asymptotics
(2.26)–(2.28) seems to indicate that vacuum, radiating
spacetimes cannot be obtained from the zero-Λ limit of
Einstein metrics in five or higher odd dimensions. It is also
worth emphasizing the presence of the inhomogeneous
logarithmic terms in the asymptotics of the metric,12 as
well as the fact that the first subleading terms in the
asymptotic expansions start at order z. The logarithmic
terms are usually absent in the definitions of asymptotic
flatness (see, however, the discussion in Ref. [65]), and
the first subleading terms are usually postulated to start at
order zd=2 in both even and odd bulk dimensions.
The above results suggest that vacuum spacetimes

containing gravitational radiation in the sense of

Refs. [57,58,63] cannot be obtained from the zero-Λ limit
of Einstein metrics in five or higher odd dimensions.
This subject will be analyzed in more detail elsewhere,
but we can already remark that this result is interesting in
the context of AdS/CFT. One possible way to study
holographically Hawking radiation from a black hole in
AdS is by coupling the dual CFT to another system such as
a heat bath that draws energy away from the original field
theory and which is used to measure the outgoing Hawking
radiation. In the bulk, this construction corresponds to
letting the radiation cross the boundary and then measuring
it. This type of setup can in principle be used to understand
more clearly the information loss problem in AdS. One
could then hope to draw lessons for the corresponding
problem in flat space by scaling the coupling constant in
the coupled system in a specific way and taking the zero-Λ
limit. One would then naively expect to obtain a radiating
solution in the bulk after this limit is taken, but the above
results suggest that this will not be the case.13

As discussed above, the integration constants of the
dynamical equations of motion for the metric are the modes
Gð0Þμν and Gðdþ1Þμν for nonvanishing Λ. On the other hand,
we have also seen that the algebraic equation for a given
gðnÞij is of the form

dþ 1 − n
α2

gðnÞij ¼ ωð∂u − £σð0Þ Þgðn−1Þij þ � � � ; ð2:42Þ

where the ellipsis denotes lower-order terms and ω is some
proportionality factor. In the limit α → ∞, the algebraic
equation for gðnÞ therefore results in the differential equa-
tion that defines the coefficient gðn−1Þ. However, from the
dynamical equations (C7) and (C11) for the metric com-
ponent gij, we find that ω is always proportional to
2ðn − 1Þ − d.14 This implies that the coefficient gðd=2Þij,
or more precisely kðd=2Þij, becomes the integration constant
in the limit α → ∞ instead of gðdþ1Þij. For odd values of d,
d=2 is half-integer, so there is no coefficient gðd=2Þij in the
expansion (2.26). This would be the leading mode that
spoils smoothness of the metric in the definitions of
asymptotic flatness at null infinity in odd dimensions as
discussed above. On the other hand, the coefficient gðd=2Þij
is nonvanishing for even bulk dimensions. Just as the
integration constants Gðdþ1Þμν are associated with the
different components of the holographic energy tensor
for the case of nonvanishing Λ, the coefficient gðd=2Þij, or
kðd=2Þij, will be related to the spatial components of the
QFT energy tensor in even dimensions in the limit α → ∞.
We will derive this result for the case d ¼ 2 in Sec. III C 2.

12The fact that the logarithmic terms are nonvanishing in five
or higher odd bulk dimensions is associated with the fact that the
conformal anomaly of the dual field theory is nonvanishing in
even (dþ 1) boundary dimensions.

13I would like to thank the referee for raising this point and
Marika Taylor for pointing out to me this setup.

14This fact follows from the two terms 4k0ij − 2d=zkij in the
last line of (C7).
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As a final remark, we will not discuss here the asymp-
totic symmetry group BMSdþ2 of the metric (2.21) in the
limit α → ∞ and the associated asymptotic charges, but we
would still like to point out that our gauge-fixed metric is
not invariant under boundary diffeomorphisms [i.e. trans-
formations of the form u → ~uðu; xÞ; xi → ~xiðu; xÞ] that do
not preserve the foliation in surfaces of constant u. In fact,
there is no gauge one can choose—where the gauge
freedom has been completely fixed—that simultaneously
admits a well-behaved zero-Λ limit and is invariant under
general boundary diffeomorphisms. This is so because the
asymptotic boundary should approach a null manifold in
the limit α → ∞, and therefore any gauge admitting a well-
behaved zero-Λ limit necessarily singles out the timelike
direction as a preferred direction over the remaining
boundary coordinates.
This observation implies in particular that the subgroup of

the asymptotic symmetry group of the metric consisting of
boundary diffeomorphisms must be foliation preserving15:

�
u → ~uðuÞ;
xi → ~xiðu; xÞ: ð2:43Þ

Furthermore, since full covariance, or gauge invariance, is
weakened by the requirement that the limit α → ∞ be well-
defined, the spectrum of possible holographic counterterms
that we can have in the counterterm action is widened.
We will see in the following sections that the canonical, fully
covariant counterterms [62] are sufficient to render the
on-shell gravity action finite once the regulator is removed,
but if we also require that the action be finite in the limit
α → ∞, further counterterms are needed. The latter preserve
invariance of the action under all but those diffeomorphisms
that are not foliation preserving.

Finally, it should be emphasized that the asymptotic
symmetry group of the metric contains a subgroup that
generates conformal transformations at the boundary.
This consists of the transformation z → z̄ ¼ zΩðu; xiÞ
together with xa → x̄a ¼ Xaðu; xiÞ þ zYaðu; xiÞ þOðz2Þ,
where the functions Xa are defined to satisfy
qð0ÞabdXadXb ¼ Ω2qð0Þabdxadxb, and where the functions
Yaðu; xiÞ can be chosen so that the transformation is
asymptotically a symmetry.16

III. HOLOGRAPHIC ENERGY TENSOR

A. Preliminaries

In order to compute the vacuum expectation value of
the dual QFT energy tensor via the AdS/CFT prescription,
we need to evaluate the gravitational action (2.1) on shell
and subtract the divergences via holographic renormaliza-
tion [13,62]. In the previous section, we found that the
coefficients in the asymptotic solution for the metric
become nonlocal functionals of the sources in the limit
α → ∞ and emphasized that this feature prevents the
holographic renormalization of the action in the case of
a vanishing cosmological constant. Indeed, if we attempt to
renormalize the gravity action (2.1) with α−1 ¼ 0, we find
that the divergent terms are functionals of the coefficients
GðnÞμν. In this way, the divergences are not local functionals
of the sources and therefore cannot be subtracted by local,
covariant counterterms. On the other hand, it is possible to
renormalize the action with the cosmological constant
switched on and in the end analyze the limit α → ∞, so
this is the procedure we will follow.
The induced metric and extrinsic curvature qab and Qab

of the surfaces of constant z are given by

qabdxadxb ¼
l2
o

z2
ð−φNð0Þdu2 þ gijðdxi þ σiduÞðdxj þ σjduÞÞ; ð3:1Þ

Qab ¼
1

2β
ð∂z − £βnÞqab

¼ nanb
1

2βφ

�
−φ0 þ 2

z
φþ 1

Nð0Þ

�
ðσiσiÞ0 −

2

z
σiσ

i

�
þ ð∂u − £σÞ logNð0Þ − ð∂u þ £σÞ logφ −

2

φ
σiσjkij

�

− nða∂bÞxi
1

Nð0Þ

�
σ0i −

2

z
σi − Nð0Þ∂i logφ −

2

φ
Nð0Þσjkij

�
þ ∂axi∂bxj

βφ

2Nð0Þ

�
g0ij −

2

z
gij −

2

φ
Nð0Þkij

�
; ð3:2Þ

where β ≔ ðlo=zÞ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Nð0Þ=φ

p
is the lapse function of the surfaces of constant z, σi ≔ gijσj, and the prime denotes

differentiation with respect to z. Also, na ¼ −φβ∂au, na∂a ¼ φ−1β−1ð∂u − σi∂iÞ represents the future-directed unit normal
to the surfaces of constant time on each hypersurface of constant z. The on-shell action is then given by

15See Ref. [66] and references therein for a review of foliation-preserving diffeomorphisms.
16See also Ref. [67] about the relation between bulk diffeomorphisms and conformal transformations at the boundary in the context of

AdS/CFT.
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16πG0Son-shell ¼
Z

ddxdu
Z

ϵ
dz

ldþ2
o

zdþ2
Nð0Þ

ffiffiffi
g

p �
−2

dþ 1

α2l2
o

�

þ
Z
z¼ϵ

ddxdu
ld
o

ϵd
ffiffiffi
g

p ð−2ðdþ 1Þϵ−1φ

þ ∂ϵφþ φTr½g−1g0�
þ ð∂u − £σÞ log ðφ=Nð0ÞÞ − 2Nð0ÞkÞ;

ð3:3Þ

where k ¼ gijkij. In the above, we have replaced the
asymptotic boundary fz ¼ 0g with a regulating surface
fz ¼ ϵg, and once the VEVs are computed, we will remove
the regulator by taking the limit ϵ → 0. Note also that the
last term in (3.3) is a total derivative and therefore can be
removed from the on-shell action17:

−2
ld
o

ϵd

Z
z¼ϵ

ddxdu
ffiffiffi
g

p
Nð0Þk¼−2

ld
o

ϵd

Z
z¼ϵ

ddxduð∂u−£σÞ
ffiffiffi
g

p
:

ð3:4Þ

The next step in determining the divergences of the action
is to use our asymptotic solutions (2.26)–(2.28) for the
fields φ, σi, and gij and replace the expressions in (3.3). We
then look for all the terms that are proportional to negative
powers of ϵ, as well as to factors of log ϵ, and rewrite the
respective coefficients in terms of the sources Gð0Þμν using
(2.29)–(2.34). These terms are those that diverge if the limit
ϵ → 0 is taken. Then, we invert the asymptotic expansions
(2.26)–(2.28) in order to express the sourcesGð0Þμν order by
order in ϵ in terms of the fields φ, σi, and gij, and then
replace the inverted expansionsGð0Þμν ¼ Gð0Þμν½φ; σi; gij� in
the coefficients of the ϵ<0 divergent terms (as well as the
log ϵ terms) in the on-shell action. This process results in
the set of terms that contribute to the divergences of the on-
shell action if the regulator ϵ is sent to zero. The divergent
terms obtained in this way are written in a covariant form
(except for possible anomalous terms depending explicitly
on the regulator via a factor of log ϵ) and can then be
subtracted from the action by a counterterm action Sct
consisting of minus such terms. The renormalized gravity
action Sren will then consist of the original action (2.1) plus
the counterterm action Sct derived in this way.
As the spacetime dimension increases, the number of

covariant boundary counterterms increases, so we will
focus separately on the cases of three and four bulk
dimensions. For each case, these counterterms must never-
theless coincide with the canonical counterterms originally

obtained in Refs. [62,68–71]. Although the latter were
derived in a different coordinate gauge near the asymptotic
boundary, these counterterms are covariant and therefore
independent of the coordinate system we use. The possible
exception are the anomalous counterterms in Ref. [62] that
are not invariant under the full diffeomorphism group
because of their explicit dependence on the regulator.
Apart from the canonical counterterm action, we are

always free to add finite boundary terms to the renormal-
ized gravity action Sren that do not contribute with diver-
gences in the limit ϵ → 0, and that provide a nonvanishing
contribution to the finite piece once the regulator is
removed. These terms are dual to a choice of renormaliza-
tion scheme in the quantum field theory. In our case, once
Sren has been determined by the above procedure, we will
have to take care of the zero-Λ limit α → ∞. This is done
by evaluating Sren on shell, taking the limit ϵ → 0,
and looking for all those terms that diverge if the limit
α → ∞ is taken. Such terms will always be proportional to
positive powers of αϵ0, and the respective coefficients will
always be local functionals of the sources Gð0Þμν. These
α-divergent terms can then be subtracted by adding a finite
boundary action Sfinite to Sren (finite in ϵ) consisting of
minus such terms. The subtraction of divergences associ-
ated with the zero-Λ limit is therefore related in this way to
a choice of scheme in the dual QFT. As emphasized at the
end of Sec. II, however, these finite boundary terms will be
invariant under spacetime diffeomorphisms that preserve
our foliation, but will break invariance of the gravity action
Sren þ Sfinite under those diffeomorphisms that are not
foliation preserving. This fact implies that the renormali-
zation of quantum field theories with gravity duals that
admit a well-defined zero-Λ limit must involve renormal-
ization schemes that break invariance of the QFT under
transformations that do not preserve the spacelike foliation
at the boundary.

B. Three bulk dimensions

1. Renormalization

If we follow the procedure described above for the case
dþ 2 ¼ 3, we find that the counterterm action is the
canonical one in standard AdS3 holographic renormalization:

16πG0Sren ¼
Z

d3x
ffiffiffiffi
G

p �
dðdþ 1Þ
α2l2

o
þ R½G�

�

þ 2

Z
z¼ϵ

d2x
ffiffiffi
q

p
Qþ 2d

αlo

Z
z¼ϵ

d2x
ffiffiffi
q

p
: ð3:5Þ

Note, however, the absence of the anomalous topological
invariant,

αlo

Z
z¼ϵ

d2x
ffiffiffi
q

p
R½q� log ϵ; ð3:6Þ

17If we also consider null boundaries fu ¼ u�g in the
spacetime, such a term results in a corner integral −2

R
ddx

ffiffiffi
γ

p
at fz ¼ ϵ; u ¼ u�g, with γij the induced metric on these
codimension-two surfaces. Corner terms will be analyzed in
Sec. III D.
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that arises in the canonical holographic counterterm
action. Although such a term does not contribute to the
variations of the action, it plays an important role in the
holographic correspondence: it represents the fact that we
cannot renormalize the generating functional Z of the dual
QFT and preserve all its symmetries. Such a term breaks
the invariance of the gravity action under bulk diffeo-
morphisms that result in a conformal transformation at the
boundary, and it is dual to those counterterms in the
renormalization of Z that do not preserve the conformal
symmetry.
This term is absent in the present case because we have

been careless about possible corner terms in the renormal-
ized gravity action, i.e. about integrals on the codimension-
two surfaces fz ¼ ϵ; u ¼ �∞g. Note that in the case of a
two-dimensional manifold, the Ricci scalar R½q� can always
be written as a total derivative (though not necessarily as an
exact form). This is so because we can always imagine
some hypersurface, say spacelike, in the two-dimensional
manifold and use the Gauss-Codazzi identities to express
R½q� as

R½q� ¼ R½γ� − K2 þ K · K þ 2DaðnaK − aaÞ; ð3:7Þ

where γij is the metric on the hypersurface, Kij its extrinsic
curvature, and na and aa the unit normal and acceleration of
the surface. Also, Dcqab ≔ 0. Since the hypersurface is
one-dimensional we have that R½γ� vanishes and the terms
K2 and K · K cancel one another, leaving us with a total
derivative. In our case, if we choose such a hypersurface to
be a surface of constant time u, we find

αlo

Z
z¼ϵ

dxdu
ffiffiffi
q

p
R½q� log ϵ

¼ −2αlo

�Z
z¼ϵ

dx
ffiffiffi
γ

p
K log ϵ

�
u¼þ∞

u¼−∞
; ð3:8Þ

which is a corner term. Such terms do not contribute to the
computations of the VEVof the QFT energy tensor, and we
will defer a detailed analysis of the possible corner terms
until Sec. III D. There we will find that the holographic
renormalization of the gravity action indeed requires the
term (3.8) as a counterterm.
Given the renormalized action (3.5), we now proceed as

discussed at the end of Sec. III A and analyze whether the
zero-Λ limit of the on-shell action was spoiled by the
counterterm. We evaluate (3.5) on shell, take the limit as
the regulator ϵ → 0 and, within the set of terms that survive
the limit, we look for those that are proportional to positive
powers of α. In three dimensions, no such terms exist,
which means that the canonical counterterm simultane-
ously renormalizes the gravity action and preserves the
well-definedness of the zero-Λ limit.

2. Vacuum expectation values

Now that we have guaranteed that the on-shell gravity
action is free of divergences, we are in position to compute
the holographic energy tensor. The variations of the
renormalized on-shell action are given by

16πG0δSon-shellren ¼
Z
z¼ϵ

d2x
ffiffiffi
q

p ðQab − qabQÞδqab

−
d
αlo

Z
z¼ϵ

d2x
ffiffiffi
q

p
qabδqab: ð3:9Þ

The renormalized Brown-York tensor [72] is then given by

Tab ≔
2ffiffiffi
q

p δSon-shellren

δqabðz ¼ ϵÞ

¼ 1

8πG0

�
Qab − qabQ −

1

αlo
qab

�
: ð3:10Þ

Using the expression (3.1) for the induced metric qab,
we now decompose the variations δqab in terms of the
variations of the lapse, shift, and spatial metric:

δqab ¼ ð2nanb=NÞδN þ ð2nðaγibÞ=NÞδσi þ γai γ
b
jδγ

ij;

ð3:11Þ

where N ¼ ðlo=zÞ
ffiffiffiffiffiffiffiffiffiffiffiffi
φNð0Þ

p
; γij ¼ ðlo=zÞ2gij, and γab ¼

qab þ nanb. Following Ref. [72], we then define the spatial
stress tensor density sij, the momentum and energy
densities ji, and ε as

sij ≔ γai γ
b
jTab ¼

2

N
ffiffiffi
γ

p δSon-shellren

δγij
; ð3:12Þ

ji ≔ −naγbi Tab ¼ −
1ffiffiffi
γ

p δSon-shellren

δσi
; ð3:13Þ

ε ≔ nanbTab ¼
1ffiffiffi
γ

p δSon-shellren

δN
: ð3:14Þ

We also define the trace density T as

T ≔ qabTab ¼ ðγab − nanbÞTab ¼ γijsij − ε: ð3:15Þ
Using the AdS/CFT prescription and recalling the leading-
order behavior (2.25), the expectation value of the dual field
theory energy tensor is given by

hTabi ¼
2ffiffiffiffiffiffiffiffiqð0Þ

p δSon-shellren

δqabð0Þ
¼ lim

ϵ→0

ld−1
o

ϵd−1
Tab: ð3:16Þ

In terms of the above decomposition of Tab, the spatial and
time components of the holographic energy tensor are then
given by
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hsiji ≔ gað0Þig
b
ð0ÞjhTabi ¼

2
1
αNð0Þ

ffiffiffiffiffiffiffigð0Þ
p δSon-shellren

δgijð0Þ

¼ lim
ϵ→0

�
ld−1
o

ϵd−1
sij

�
; ð3:17Þ

hjii ≔ −nað0Þg
b
ð0ÞihTabi ¼ −

1ffiffiffiffiffiffiffigð0Þ
p δSon-shellren

δσið0Þ
¼ lim

ϵ→0

�
ld
o

ϵd
ji

�
;

ð3:18Þ

hεi ≔ nað0Þn
b
ð0ÞhTabi ¼

1ffiffiffiffiffiffiffigð0Þ
p δSon-shellren

δ

�
1
αNð0Þ

� ¼ lim
ϵ→0

�
ldþ1
o

ϵdþ1
ε

�
;

ð3:19Þ

where the induced metric gabð0Þ ¼ qabð0Þ þ nað0Þn
b
ð0Þ. The VEV

of the trace of the QFT energy tensor is also given by

hTi ≔ qabð0ÞhTabi ¼ gijð0Þhsiji − hεi ¼ lim
ϵ→0

�
ldþ1
o

ϵdþ1
T

�
:

ð3:20Þ

Now, by construction, the above vacuum expectation values
cannot admit a well-behaved zero-Λ limit, because the
lapse 1

αNð0Þ vanishes in this limit. For the VEVof the stress
tensor, we have

hsiji ¼ α

�
2

Nð0Þ
ffiffiffiffiffiffiffigð0Þ

p δSon-shellren

δgijð0Þ

�
→ ∞ ðα → ∞Þ: ð3:21Þ

Similarly, for the VEV of the energy density,

hεi ¼ α

�
1ffiffiffiffiffiffiffigð0Þ

p δSon-shellren

δNð0Þ

�
→ ∞ ðα → ∞Þ: ð3:22Þ

What we need to do is to work with the quantities that are
well defined in both cases, Λ ≠ 0 and Λ ¼ 0, and these are
represented by the tensor densities:

ffiffiffiffiffiffiffiffi
qð0Þ

p hsiji ¼ 2
δSon-shellren

δgijð0Þ
; ð3:23Þ

ffiffiffiffiffiffiffiffi
qð0Þ

p hεi ¼ Nð0Þ
δSon-shellren

δNð0Þ
; ð3:24Þ

where ffiffiffiffiffiffiffiffiqð0Þ
p ¼ 1

αNð0Þ
ffiffiffiffiffiffiffigð0Þ

p . A straightforward computation
using (3.10) and (3.2) then leads to the following one-point
functions:

ffiffiffiffiffiffiffiffi
qð0Þ

p hsiji ¼
lo

8πG0

Nð0Þ
ffiffiffiffiffiffiffi
gð0Þ

p �
−

φð2Þ
2Nð0Þ

gð0Þij

�
; ð3:25Þ

ffiffiffiffiffiffiffiffi
qð0Þ

p hεi ¼ lo

8πG0

Nð0Þ
ffiffiffiffiffiffiffi
gð0Þ

p
×

�
1

α2
Tr½g−1ð0Þgð2Þ� −

φð2Þ
2Nð0Þ

− Tr½g−1ð0Þkð1Þ�
�
;

ð3:26Þ

hjii ¼ −
lo

8πG0

N−1
ð0Þ

�
σð2Þi þ

1

2
ðg−1ð0Þgð1ÞÞji∂jNð0Þ

�
: ð3:27Þ

We therefore find as usual that the normalizable modes
Gðdþ1Þμν are directly associated with the vacuum expect-
ation values [62]. Note that these expressions admit a
well-behaved limit α → ∞.

3. Weyl anomaly

For the VEV of the trace, we find

ffiffiffiffiffiffiffiffi
qð0Þ

p hTi ¼ lo

8πG0

Nð0Þ
ffiffiffiffiffiffiffi
gð0Þ

p
×

�
−

1

α2
Tr½g−1ð0Þgð2Þ� þ Tr½g−1ð0Þkð1Þ�

�
: ð3:28Þ

Notice now that if we perform a decomposition of the Ricci
scalar of the QFT metric as in (3.7), we obtain

R½qð0Þ� ¼ R½gð0Þ� − K2
ð0Þ þ Kð0Þ · Kð0Þ

þ 2ð0ÞDaðnað0ÞKð0Þ − aað0ÞÞ; ð3:29Þ

where ð0ÞDcqð0Þab ≔ 0. A quick computation using (2.38),
(2.29), and (2.35) then reveals that

R½qð0Þ� ¼ 2

�
−

1

α2
Tr½g−1ð0Þgð2Þ� þ Tr½g−1ð0Þkð1Þ�

�
: ð3:30Þ

Replacing this in (3.28) results in the standard holographic
Weyl anomaly:

ffiffiffiffiffiffiffiffi
qð0Þ

p hTi ¼ lo

16πG0

Nð0Þ
ffiffiffiffiffiffiffi
gð0Þ

p
R½qð0Þ�

¼ αlo

16πG0

ffiffiffiffiffiffiffiffi
qð0Þ

p
R½qð0Þ�

¼ c
24π

ffiffiffiffiffiffiffiffi
qð0Þ

p
R½qð0Þ�; ð3:31Þ

where c ¼ 3αlo=ð2G0Þ is the standard central charge in
the AdS3=CFT2 correspondence. Note that the anomaly
admits a well-behaved zero-Λ limit. Using equation (3.28),
we find

lim
α→∞

ffiffiffiffiffiffiffiffi
qð0Þ

p hTi ¼ lo

8πG0

Nð0Þ
ffiffiffiffiffiffiffi
gð0Þ

p
kð1Þ; ð3:32Þ
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where kð1Þij is given in equation (2.39) and therefore is
nondivergent as α → ∞ [it is totally written in terms of the
coefficients (2.26)–(2.28) without positive powers of α].
Since the anomaly admits a well-defined zero-Λ limit, a
central charge can be introduced in this limit. This can be
done by rewriting the right-hand side of equation (3.32) as
a geometric invariant of quantities that are well-defined at
the null boundary:

lim
α→∞

ffiffiffiffiffiffiffiffi
qð0Þ

p hTi ¼ lo

8πG0

Nð0Þ
ffiffiffiffiffiffiffi
gð0Þ

p ð0ÞDaðnað0ÞKð0Þ − aað0ÞÞ:

ð3:33Þ

In order to compare this result with that of Refs. [32,35], we
introduce the same limit discussed in these references to
obtain

lim
α→∞

�
G0

αlo

ffiffiffiffiffiffiffiffi
qð0Þ

p hTi
�

¼ 1

8π

ffiffiffiffiffiffiffiffi
qð0Þ

p ð0ÞDaðnað0ÞKð0Þ − aað0ÞÞ:

ð3:34Þ

The proportionality constant between the trace and the total
derivative is then

1

8π
¼ c

24π
; ð3:35Þ

where c ¼ 3 is the Virasoro central charge in the central
extension of the asymptotic symmetry group bms3 of
three-dimensional flat gravity [32,35].18

4. Improved energy tensor

If we return to the full Weyl anomaly (3.28) or (3.31) for
generic Λ and use equations (2.35), (2.39), and (2.33), we
can rewrite it in terms of the coefficient gð1Þij as

ffiffiffiffiffiffiffiffi
qð0Þ

p hTi ¼ lo

8πG0

Nð0Þ
ffiffiffiffiffiffiffi
gð0Þ

p �
−

1

4α2
ðgð1Þ · gð1ÞÞ þ

1

2Nð0Þ

× gijð0Þð∂u − £σð0Þ Þgð1Þij −
1

Nð0Þ
ð0Þ
□Nð0Þ

�
:

ð3:36Þ

Notice now from equation (2.29) that a nonvanishing
coefficient gð1Þij represents the fact that the QFT metric
is time dependent. The boundary shift σið0Þ can always be

fixed to any configuration by boundary diffeomorphisms;
in particular, we can fix σið0Þ to zero by the transformation

xi → xi −
R
duσið0Þ. In such coordinates, equation (2.29)

becomes Nð0Þ=α2gð1Þij ¼ ∂ugð0Þij. Therefore, if the QFT
metric (2.25) is static, the Weyl anomaly becomes

ffiffiffiffiffiffiffiffi
qð0Þ

p hTi ¼ −
lo

8πG0

ffiffiffiffiffiffiffi
gð0Þ

p ð0Þ
□Nð0Þ

¼ −
αlo

8πG0

ffiffiffiffiffiffiffiffi
qð0Þ

p ð0ÞDbabð0Þ; ð3:37Þ

where the acceleration aað0Þ ¼ gabð0Þ∂b logNð0Þ as before.

Using the definition of gabð0Þ, this can be rewritten as

ffiffiffiffiffiffiffiffi
qð0Þ

p hTi ¼ −
αlo

8πG0

ffiffiffiffiffiffiffiffi
qð0Þ

p ðð0ÞDa
ð0ÞDa logNð0Þ

þ ð0ÞDaðnað0Þnbð0Þ∂b logNð0ÞÞÞ: ð3:38Þ
Since the boundary metric is static, the second total
derivative vanishes: nbð0Þ∂b logNð0Þ ¼ α=Nð0Þð∂u − σið0Þ∂iÞ
logNð0Þ ¼ 0. The first total derivative that remains is
unphysical in the sense that it can be absorbed in an
improved energy tensor Θab defined in terms of the QFT
energy tensor Tab and covariant derivatives of the accel-
eration aað0Þ, or of the lapse logNð0Þ (see e.g. Ref. [73]).

The conformal Ward identity then becomesffiffiffiffiffiffiffiffi
qð0Þ

p hΘa
ai ¼ 0 ð3:39Þ

for a static metric qð0Þab. In Sec. III C 2, wewill find another
example where an improved energy tensor can be defined
such that staticity of the boundary metric restores con-
formal invariance of the field theory.

5. Diffeomorphism Ward identity

In order to verify that the holographic energy tensor is
conserved, we need to solve the constraint equations (C9)–
(C10) using (C11) for the normalizable modes. At first
subleading order with d ¼ 1, these two equations result in
the following constraints:

1ffiffiffiffiffiffiffigð0Þ
p ð∂u−£σð0Þ Þ

� ffiffiffiffiffiffiffi
gð0Þ

p
N−1

ð0Þ

�
σð2Þiþ

1

2
ðg−1ð0Þgð1ÞÞij∂jNð0Þ

��

¼−
1

2
∂iφð2Þþ

�
1

α2
Tr½g−1ð0Þgð2Þ�−

φð2Þ
2Nð0Þ

−Tr½g−1ð0Þkð1Þ�
�
∂iNð0Þ;

ð3:40Þ

1ffiffiffiffiffiffiffigð0Þ
p ð∂u − £σð0Þ Þ

� ffiffiffiffiffiffiffi
gð0Þ

p �
−

1

α2
Tr½g−1ð0Þgð2Þ�

þ φð2Þ
2Nð0Þ

þ Tr½g−1ð0Þkð1Þ�
��

¼ 1

2
φð2Þkð0Þ −

1

α2Nð0Þ

× ð0Þ∇i

�
Nð0Þ

�
σið2Þ þ

1

2
gijð1Þ∂jNð0Þ

��
: ð3:41Þ

18The central charge cLM in Ref. [35] is related to ours as
cLM ¼ c=12, since we follow the convention of formula (1) in this
reference, as can be seen by comparing the central charge in this
formula with that in the AdS case (3.31).
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These constraints result in the conservation equations for
the QFT energy tensor:

0 ¼ ð0ÞDað
ffiffiffiffiffiffiffiffi
qð0Þ

p hTa
iiÞ

¼ ð∂u − £σð0Þ Þð
ffiffiffiffiffiffiffi
gð0Þ

p hjiiÞ þ ð0Þ∇jð
ffiffiffiffiffiffiffiffi
qð0Þ

p hsjiiÞ
þ ffiffiffiffiffiffiffiffi

qð0Þ
p hεi∂i logNð0Þ; ð3:42Þ

0 ¼ 1

α
nbð0Þ

ð0ÞDað
ffiffiffiffiffiffiffiffi
qð0Þ

p hTa
biÞ

¼ −ð∂u − £σð0Þ ÞðN−1
ð0Þ

ffiffiffiffiffiffiffiffi
qð0Þ

p hεiÞ
− N−1

ð0Þ
ð0Þ∇iððNð0Þ=αÞ2

ffiffiffiffiffiffiffi
gð0Þ

p hjiiÞ
þ ffiffiffiffiffiffiffiffi

qð0Þ
p hsijikð0Þij: ð3:43Þ

6. BTZ and three-dimensional cosmology

In this section, we would like to make a brief application
of the results obtained so far to a particular bulk metric, and
the spacetime we are interested in is the BTZ black hole and
its zero-Λ limit, which represents a cosmological solution
[74]. In Eddington-Finkelstein coordinates, the BTZ metric
is given by

ds2 ¼ −
�
−8MG0 þ

r2

l2
þ
�
4aG0

r

�
2
�
du2 þ 2dudr

þ r2
�
dθ −

4aG0

r2
du

�
2

; ð3:44Þ

where the cosmological constant Λ ¼ −l−2, M is the mass
of the spacetime, and a is the angular momentum. Also, the
angular coordinate θ ∈ ½0; 2π½. In order to bring the metric
to the form (2.21), we introduce a coordinate z ≔ l2

o=r:

ds2 ¼ l2
o

z2

�
−
�
1

α2
−
8MG0

l2
o

z2 þ
�
4aG0

l3
o

�
2

z4
�
du2

− 2dudzþ l2
o

�
dθ −

4aG0

l4
o

z2du2
�

2
�
: ð3:45Þ

Note that the metric is well defined in the limit α → ∞.
For this solution the holographic energy tensor reads

ffiffiffiffiffiffiffiffi
qð0Þ

p hsiji ¼
ffiffiffiffiffiffiffi
gð0Þ

p �
M

2πlo
gð0Þij

�
; ð3:46Þ

ffiffiffiffiffiffiffiffi
qð0Þ

p hεi ¼ ffiffiffiffiffiffiffi
gð0Þ

p �
M

2πlo

�
; ð3:47Þ

hjii ¼
a

2πlo
; ð3:48Þ

where the spatial metric gð0Þijdxidxj ¼ l2
odθ2. In this case,

the characteristic length lo represents the radius of the

boundary cylinder. If we then introduce the average energy
hEi over a time interval 2T, we obtain

hEi ≔ 1

2T

Z
T

−T
du
Z

ddx
ffiffiffiffiffiffiffiffi
qð0Þ

p hεi ¼ M: ð3:49Þ

Also, for the angular momentum we find

hJii ≔
Z

ddx
ffiffiffiffiffiffiffi
gð0Þ

p hjii ¼ a: ð3:50Þ

Note that these results can be extended to the zero-Λ limit
of the solution and coincide with those obtained in
Refs. [35,39] via a thermodynamics analysis of the respec-
tive three-dimensional cosmological solution.

C. Four bulk dimensions

1. Renormalization

In the case of dþ 2 ¼ 4 dimensions, the renormalized
action is given by

16πG0Sren ¼
Z

d4x
ffiffiffiffi
G

p �
dðdþ 1Þ
α2l2

o
þ R½G�

�

þ 2

Z
z¼ϵ

d3x
ffiffiffi
q

p
Q

þ 2d
αlo

Z
z¼ϵ

d3x
ffiffiffi
q

p þ αlo

d − 1

×
Z
z¼ϵ

d3x
ffiffiffi
q

p
R½q�; ð3:51Þ

where the counterterms again coincide with the canonical
ones in four bulk dimensions. The next step is to determine
whether the renormalization spoils the zero-Λ limit of the
action. In the present case, if we evaluate Sren on shell and
take the limit ϵ → 0 as described in Sec. III A, we find
again that no terms proportional to positive powers of α
survive, and therefore that the limit α → ∞ is still well
defined in the presence of the counterterm action. However,
this feature is peculiar to our particular choice of boundary
lapse function Nð0Þ. In Secs. II A and II B, we found that, in
general, the metric component φ admits an arbitrary term
zφð1Þ in the asymptotic expansion. We then argued that it is
always possible to redefine the coordinate z and choose
some new function Nð0Þ as in (2.18) such that the term φð1Þ
is removed from the asymptotics. On the other hand, if we
choose to decouple Nð0Þ from φð1Þ by requiring that
equation (2.18) for Nð0Þ not hold, then the asymptotic
solution (2.27) for φ will admit a term zφð1Þ, with φð1Þðu; xÞ
an arbitrary function. In such case, the solution (2.29) is
modified to

1

2α2
gð1Þij ¼ kð0Þij þ

φð1Þ
2Nð0Þ

gð0Þij: ð3:52Þ
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Although the renormalization in the three-dimensional case
analyzed in the previous section remains unaffected, if we
switch on the coefficient φð1Þ by allowing the lapse Nð0Þ to
be independent, the canonical counterterm action in the
four-dimensional case will spoil the zero-Λ limit via the
term

lim
ϵ→0

16πG0Son-shellren ¼ α2l2
o

2

Z
z¼0

d3x
ffiffiffiffiffiffiffi
gð0Þ

p
φð1ÞR½gð0Þ�

þOðα≤0Þ; ð3:53Þ

where Oðα≤0Þ denotes terms proportional to nonpositive
powers of α. From equation (3.52), it follows that the
(finite) counterterm that restores the well-definedness of
the limit is given by

16πG0Sren ¼
Z

d4x
ffiffiffiffi
G

p �
dðdþ 1Þ
α2l2

o
þ R½G�

�

þ 2

Z
z¼ϵ

d3x
ffiffiffi
q

p
Q

þ 2d
αlo

Z
z¼ϵ

d3x
ffiffiffi
q

p þ αlo

d − 1

×
Z
z¼ϵ

d3x
ffiffiffi
q

p
R½q�

þ α2l2
o

2

Z
z¼ϵ

d3x
ffiffiffi
q

p
KR½γ�; ð3:54Þ

with γij and Kij the induced metric and extrinsic curvature
of the surfaces of constant time at the boundary as defined
in Sec. III B 1. This last counterterm is covariant with
respect to diffeomorphisms that preserve our foliation of
the spacetime, but it breaks invariance of the action under
those transformations that are not foliation preserving, as
discussed in Sec. III A. The latter include those bulk
diffeomorphisms that result in a conformal transformation
at the boundary, and therefore the trace Ward identity will
be affected by such terms, as discussed in the next section.
This counterterm is also finite in the regulator ϵ and
therefore must be related to a choice of renormalization
scheme in the dual field theory. In particular, it signals the
fact that the scheme cannot preserve the invariance of the
QFT under those transformations that are not foliation
preserving at the boundary if the gravity dual has a well-
defined zero-Λ limit. We will find more examples of
counterterms of this type in Sec. IV. With our choice of

Nð0Þ, however, the canonical action (3.51) is well defined,
so wewill ignore for now this extra counterterm and discuss
its necessity and implications in the next section.

2. Vacuum expectation values and the Ward identities

The variations of the renormalized on-shell action (3.51)
are given by

16πG0δSon-shellren ¼
Z
z¼ϵ

d3x
ffiffiffi
q

p ðQab − qabQÞδqab

−
d
αlo

Z
z¼ϵ

d3x
ffiffiffi
q

p
qabδqab þ

αlo

d − 1

×
Z
z¼ϵ

d3x
ffiffiffi
q

p �
Rab½q� −

1

2
qabR½q�

�
δqab:

ð3:55Þ

The spatial and time components of the Brown-York tensor
as defined in Sec. III B 2 are then given by

sij ¼ γai γ
b
j

�
2ffiffiffi
q

p δSon-shellren

δqabðz ¼ ϵÞ
�

¼ 1

8πG0

�
Qij − γijQ −

d
αlo

γij

þ αlo

�
Rij½q� −

1

2
γijR½q�

��
; ð3:56Þ

ji ¼ −naγbi

�
2ffiffiffi
q

p δSon-shellren

δqabðz ¼ ϵÞ
�

¼ 1

8πG0

ð−naQai − αlonaRai½q�Þ; ð3:57Þ

ε ¼ nanb
�

2ffiffiffi
q

p δSon-shellren

δqabðz ¼ ϵÞ
�

¼ 1

8πG0

�
γijQij þ

d
αlo

þ αlo

2

× ðnanbRab½q� þ γijRij½q�Þ
�
: ð3:58Þ

A lengthy computation using the prescriptions (3.23)–(3.24)
and (3.18) for the vacuum expectation values of the
components of the dual QFT energy tensor in dþ 2 ¼ 4
dimensions results in the following one-point functions:

ffiffiffiffiffiffiffiffi
qð0Þ

p hsiji ¼
l2
o

8πG0

Nð0Þ
ffiffiffiffiffiffiffi
gð0Þ

p �
3

2α2
gð3Þij −

φð3Þ
2Nð0Þ

gð0Þij þ α2
�
ð∂u − £σð0Þ Þkð1Þij −

1

2
gð0ÞijTr½g−1ð0Þð∂u − £σð0Þ Þkð1Þ�

�

þ ∂ði logNð0Þ∂jÞTr½g−1ð0Þgð1Þ� − ð0Þ∇kðg−1ð0Þgð1ÞÞkði∂jÞ logNð0Þ þ Xij −
1

2
gð0ÞijTr½g−1ð0ÞX�

�
; ð3:59Þ
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ffiffiffiffiffiffiffiffi
qð0Þ

p hεi ¼ l2
o

8πG0

Nð0Þ
ffiffiffiffiffiffiffi
gð0Þ

p
×

�
−
φð3Þ
Nð0Þ

þ ∂i logNð0Þð0Þ∇iTr½g−1ð0Þgð1Þ�

− ð0Þ∇igð1Þijð0Þ∇j logNð0Þ

�
; ð3:60Þ

hjii ¼
l2
o

8πG0

�
−

3

2Nð0Þ
σð3Þi − α2ð0Þ∇j

×

�
kð1Þij −

1

2
gð0ÞijTr½g−1ð0Þkð1Þ�

�
þ α2

4
∂iR½gð0Þ� þ Xi

�
:

ð3:61Þ
From the trace constraint equation (C8) using (C11), it
follows that the normalizable mode gð3Þij is traceless:
Tr½g−1ð0Þgð3Þ� ¼ 0. The trace (3.20) of the holographic energy

tensor is then given by

hTi ¼ gijð0Þhsiji − hεi ¼ 0: ð3:62Þ

This is the expected result for a conformal field theory in
three dimensions. From the above one-point functions for
finite α, we find that the normalizable modes Gðdþ1Þμν
are again mapped to the vacuum expectation values. The
expressions for the termsXij andXi are given in Appendix D
and consist of a set of terms in gð1Þij proportional to
nonpositive powers of α. These terms are scheme dependent
in the sense that they can be subtracted by a choice of finite
counterterms of the form

α2l2
o

Z
z¼ϵ

d3x
ffiffiffi
q

p ða1K3 þ a2KðK · KÞ

þ a3ðK · K · KÞ þ a4KR½γ� þ a5□γK þ � � �Þ: ð3:63Þ
As discussed in Sec. III B 4, a nonvanishing coefficient gð1Þij
represents the fact that the QFT metric is time dependent.
It follows that the terms Xij and Xi are possibly non-
vanishing only if the boundary metric is not static.
Let us then discuss the terms in the second line of (3.59)

and (3.61) that depend on α2. The last of these,
ðα2=4Þ∂iR½gð0Þ�, diverges in the limit α → ∞. Note, how-
ever, that if we preserve the counterterm introduced in (3.54),
it will contribute to the variations of the on-shell action as

δ

�
α2l2

o

2

Z
z¼ϵ

d3x
ffiffiffi
q

p
KR½γ�

�

¼ α2l2
o

2

Z
z¼ϵ

d3x
ffiffiffi
g

p ∂iR½g�δσi

þ α2l2
o

2

Z
z¼ϵ

d3x
ffiffiffi
g

p ðgij∇k∇lðNð0ÞkklÞ

−∇i∇jðNð0ÞkÞÞδgij; ð3:64Þ

where ∇igjk ≔ 0. This result implies that the one-point
functions will be modified to19

hjii → hjiinew ¼ hjii −
l2
o

8πG0

�
α2

4
∂iR½gð0Þ�

�
; ð3:65Þ

ffiffiffiffiffiffiffiffi
qð0Þ

p hεi → ffiffiffiffiffiffiffiffi
qð0Þ

p hεinew ¼ ffiffiffiffiffiffiffiffi
qð0Þ

p hεi; ð3:66Þ
ffiffiffiffiffiffiffiffi
qð0Þ

p hsiji →
ffiffiffiffiffiffiffiffi
qð0Þ

p hsijinew

¼ ffiffiffiffiffiffiffiffi
qð0Þ

p hsiji þ
l2
o

32πG0

×
ffiffiffiffiffiffiffi
gð0Þ

p ðgð0Þijð0Þ∇kð0Þ∇lðNð0Þgð1ÞklÞ
− ð0Þ∇i

ð0Þ∇jðNð0ÞTr½g−1ð0Þgð1Þ�ÞÞ: ð3:67Þ

The anomalous counterterm therefore provides a contribu-
tion to hjii that cancels the α divergence proportional to
the gradient of the Ricci scalar without introducing further
divergences. This is done, however, at the expense of
modifying the conformal Ward identity (3.62) by a total
derivative:

ffiffiffiffiffiffiffiffi
qð0Þ

p hTi → ffiffiffiffiffiffiffiffi
qð0Þ

p hTinew

¼ 0þ l2
o

16πG0

ffiffiffiffiffiffiffi
gð0Þ

p ð0Þ∇ið0Þ∇j

×
�
Nð0Þ

�
gð1Þij −

1

2
gð0ÞijTr½g−1ð0Þgð1Þ�

��

¼ l2
o

8πG0

ffiffiffiffiffiffiffi
gð0Þ

p ð0Þ∇ið0Þ∇j

�
αNð0Þ

�
Kð0Þij −

1

2
gð0ÞijKð0Þ

��
;

ð3:68Þ

which is finite in the limit α → ∞. Note that if we define

vij ≔ αNð0Þ

�
Kð0Þij −

1

2
gð0ÞijKð0Þ

�
; ð3:69Þ

vab ≔ gaið0Þg
bj
ð0Þvij ð3:70Þ

and use the standard identities from the theory of embedded
hypersurfaces, we obtain that

α
ffiffiffiffiffiffiffiffi
qð0Þ

p ð0ÞDaðN−1
ð0Þ

ð0Þ∇bvabÞ ¼
ffiffiffiffiffiffiffi
gð0Þ

p ð0Þ∇ið0Þ∇jvij;

N−1
ð0Þ

ð0Þ∇bvab ¼ ð0ÞDbLab −
1

α
nað0ÞðLijLijÞ;

ð3:71Þ

19As a technical point, if the coefficient φð1Þ ≠ 0, then the last
integral in (3.64) will contribute with terms α2φð1Þ to hsijinew.
However, the previous spatial stress hsiji will contain the
symmetric of such terms if φð1Þ ≠ 0 such that they cancel overall.
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with ð0Þ∇a the covariant derivative induced on the surfaces
of constant time at the boundary manifold, associated
with the induced metric gð0Þab ¼ qð0Þab þ nð0Þanð0Þb, and
where

Lab ≔ N−1
ð0Þv

ab ¼ αgaið0Þg
bj
ð0Þ

�
Kð0Þij −

1

2
gð0ÞijKð0Þ

�
: ð3:72Þ

The modified trace Ward identity can then be rewritten as

ffiffiffiffiffiffiffiffi
qð0Þ

p hTinew ¼ l2
o

8πG0

ffiffiffiffiffiffiffiffi
qð0Þ

p ½αð0ÞDa
ð0ÞDbLab

− ð0ÞDaðnað0ÞðL · LÞÞ�: ð3:73Þ

The first total derivative is unphysical, because it can be
absorbed in an improved energy tensor Θab defined in terms
of the QFT energy tensor Tab and covariant derivatives of
Lab [73], but the second term remains. The Ward identity in
such case becomes

ffiffiffiffiffiffiffiffi
qð0Þ

p hΘa
ai ¼

l2
o

8πG0

ffiffiffiffiffiffiffiffi
qð0Þ

p ð0ÞDava; ð3:74Þ

where

ffiffiffiffiffiffiffiffi
qð0Þ

p ð0ÞDava

¼ −
ffiffiffiffiffiffiffiffi
qð0Þ

p ð0ÞDaðnað0ÞðL · LÞÞ

¼ −∂u

� ffiffiffiffiffiffiffi
gð0Þ

p 1

4

�
gð1Þ · gð1Þ −

1

2
Tr½g−1ð0Þgð1Þ�2

��

þ ∂i

� ffiffiffiffiffiffiffi
gð0Þ

p
σið0Þ

1

4

�
gð1Þ · gð1Þ −

1

2
Tr½g−1ð0Þgð1Þ�2

��
;

ð3:75Þ

which is finite in the limit α → ∞. This result is expected
because the anomalous counterterm in (3.54) breaks, in
particular, the invariance of the renormalized gravity
action under bulk diffeomorphisms that result in a
conformal transformation at the boundary. The generating
functional of the dual QFT therefore will not be con-
formally invariant unless the QFT metric is static (which
requires gð1Þij ¼ 0). As in Sec. III B 4, we find here
another relation between metric staticity and conformal
invariance. Scale invariance of the dual field theory is,
however, preserved because the anomaly is a total deriva-
tive. Recall that the breaking of conformal symmetry
follows from the requirement that the renormalized
gravity action be finite in the zero-Λ limit. Below, we
will still discuss the implications of the anomalous
counterterm to the diffeomorphism Ward identity.
With the divergent term ðα2=4Þ∂iR½gð0Þ� subtracted

in this way, the terms proportional to α2 that remain in
the expressions for the vacuum expectation values

represent derivatives of the traceless part of the coefficient
kð1Þij

20:

(
α2ð∂u − £σð0Þ Þðkð1Þij − 1

2
gð0ÞijTr½g−1ð0Þkð1Þ�Þ;

α2ð0Þ∇jðkð1Þij − 1
2
gð0ÞijTr½g−1ð0Þkð1Þ�Þ:

ð3:76Þ

These terms cannot be subtracted by covariant counter-
terms, nor by counterterms of the form (3.63). This fact
implies that the traceless part of kð1Þij needs to admit an
expansion in α of the form

kð1Þij −
1

2
gð0ÞijTr½g−1ð0Þkð1Þ� ¼

1

α2
ðκ½0�ij þOðα<0ÞÞ; ð3:77Þ

with κ½0�ij independent of α. In other words, in three
boundary dimensions, only field theory states dual to bulk
solutions that admit the behavior (3.77) in α result in finite
vacuum expectation values in the limit α → ∞. The
expression for κ½0�ij is given by the VEV of the QFT
stress tensor in the zero-Λ limit. As discussed at the end
of Sec. II B, in this limit the coefficient kð1Þij replaces the
normalizable mode gð3Þij as the integration constant of the
equations of motion for the case d ¼ 2. Notice then that
the coefficient gð3Þij drops out of equation (3.59) for the
expectation value of the spatial stress sij in the limit
α → ∞, and the latter is mapped to the Lie derivative of
κ½0�ij along nað0Þ in this limit. In this way, κ½0�ij is part of the
asymptotic bulk data that is mapped to boundary data in
the zero-Λ limit.
Finally, we will not compute here the diffeomorphism

Ward identity for the general case in dþ 2 ¼ 4 dimensions,
because the constraint equations for the metric are very
tedious to solve at second subleading order, but we will
verify it explicitly for the Kerr solution discussed below.
However, we would still like to emphasize that the terms in
the holographic energy tensor that arise from the anoma-
lous counterterm should not contribute to the spatial
component of the Ward identity. Indeed, if we use the
second identity in equation (3.42) and the expressions for the
components of hTabinew given in equations (3.65)–(3.67),
we find

ð0ÞDað
ffiffiffiffiffiffiffiffi
qð0Þ

p hTa
iinewÞ ¼ ð0ÞDað

ffiffiffiffiffiffiffiffi
qð0Þ

p hTa
iiÞ: ð3:78Þ

This is the statement that the anomalous counterterm does
not break invariance under boundary diffeomorphisms (2.43)
that are foliation preserving.21 On the other hand, if we
compute the time component of the divergence of hTabinew
using the second identity in (3.43), we find in general that it

20Note that α2gð0ÞijTr½g−1ð0Þð∂u − £σð0Þ Þkð1Þ� ¼ α2ð∂u − £σð0Þ Þðgð0ÞijTr½g−1ð0Þkð1Þ�Þ þ Oðα0Þ.
21These are essentially spatial diffeomorphisms plus a possible

redefinition of the time coordinate.
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is not equal to that of hTabi. This must necessarily be the
case, because the anomalous counterterm is not invariant
under those boundary diffeomorphisms in which the time
coordinate transforms as u → ~uðu; xiÞ, and therefore breaks
the spatial foliation of the boundary.

3. Kerr solution

As an application of the results of the previous section,
we would like to compute the expectation value of the QFT
energy tensor evaluated on those states dual to the asymp-
totically flat Schwarzschild and Kerr spacetimes. For the
case of Schwarzschild-AdS4, the metric in the coordinate
system (2.21) reads

ds2 ¼ l2
o

z2

�
−
�
1

α2
þ z2

l2
o
−
2MG0

l4
o

z3
�
du2

− 2dudzþ l2
odΩ2

�
; ð3:79Þ

with dΩ2 ¼ dθ2 þ sin2 θdϕ2 the metric on the S2, and
where the cosmological constant Λ ¼ −3=ðα2l2

oÞ. In the
limit α → ∞ the metric tends to four-dimensional
Schwarzschild. The expectation values of the components
of the holographic energy tensor in this case become

ffiffiffiffiffiffiffiffi
qð0Þ

p hsiji ¼
ffiffiffiffiffiffiffi
gð0Þ

p �
M

8πl2
o
gð0Þij

�
; ð3:80Þ

ffiffiffiffiffiffiffiffi
qð0Þ

p hεi ¼ ffiffiffiffiffiffiffi
gð0Þ

p �
M

4πl2
o

�
; ð3:81Þ

hjii ¼ 0; ð3:82Þ

where the spatial metric gð0Þijdxidxj ¼ l2
odΩ2. These

expressions still hold in the zero-Λ limit. The average
energy hEi as defined in (3.49) is then equal to M.
In the case of Kerr spacetime, the metric in Gaussian null

coordinates is very complicated,22 but we can deduce its
asymptotics up to the desired order from the following
considerations. The Kerr metric follows from the zero-Λ
limit of Kerr-AdS4, and the latter is asymptotically exactly
AdS4—with the cross section of the asymptotic boundary
with a spacelike hypersurface, topologically an S2. In our
coordinate system, Kerr-AdS4 must therefore be of the
form

ds2 ¼ l2
o

z2

�
−
�
1

α2
þOðz2Þ

�
du2 − 2dudzþ ðgð0Þij þOðzÞÞ

× ðdxi þOðzÞduÞðdxj þOðzÞduÞ
�
; ð3:83Þ

where gð0Þijdxidxj ¼ l2
odΩ2. Since the lapse Nð0Þ ¼ 1,

from equation (2.33) we have that σið1Þ ¼ 0.

Furthermore, since σið0Þ ¼ 0 ¼ ∂ugð0Þij, we find from equa-

tion (2.29) that gð1Þij ¼ 0. From equations (2.35) and
(2.34), we then find that gð2Þij ¼ 0 ¼ σið2Þ. Also, the spatial
Ricci scalar R½gð0Þ� ¼ 2=l2

o, so from (2.32) we have
φð2Þ ¼ l−2

o . In this way, Kerr-AdS4 must be asymptotically
of the form

ds2 ¼ l2
o

z2

�
−
�
1

α2
þ z2

l2
o
þ φð3Þz3 þOðz>3Þ

�
du2 − 2dudz

þ ðgð0Þij þ z3gð3Þij þOðz>3ÞÞ
× ðdxi þ ðz3σið3Þ þOðz>3ÞÞduÞ

× ðdxj þ ðz3σjð3Þ þOðz>3ÞÞduÞ
�
: ð3:84Þ

The coefficients φð3Þ; gð3Þij, and σið3Þ are the normalizable

modes Gðdþ1Þμν, and from the constraint equations (C8)–
(C10), supplemented by (C11), it follows that they satisfy

Tr½g−1ð0Þgð3Þ� ¼ 0; ð3:85Þ

1

α2
ð0Þ∇jðg−1ð0Þgð3ÞÞji ¼ ∂uσð3Þi þ

1

3
∂iφð3Þ; ð3:86Þ

3

2α2
ð0Þ∇iσ

i
ð3Þ ¼ −∂uφð3Þ: ð3:87Þ

The holographic energy tensor so far reads

ffiffiffiffiffiffiffiffi
qð0Þ

p hsiji¼
l2
o

8πG0

ffiffiffiffiffiffiffi
gð0Þ

p �
3

2α2
gð3Þij−

1

2
φð3Þgð0Þij

�
; ð3:88Þ

ffiffiffiffiffiffiffiffi
qð0Þ

p hεi ¼ l2
o

8πG0

ffiffiffiffiffiffiffi
gð0Þ

p ð−φð3ÞÞ; ð3:89Þ

hjii ¼
l2
o

8πG0

�
−
3

2
σð3Þi

�
: ð3:90Þ

By using the second identity in equations (3.42) and (3.43),
it then follows from the above constraints that the energy
tensor is covariantly conserved:

ð0ÞDað
ffiffiffiffiffiffiffiffi
qð0Þ

p hTa
iiÞ ¼ 0 ¼ nbð0Þ

ð0ÞDað
ffiffiffiffiffiffiffiffi
qð0Þ

p hTa
biÞ: ð3:91Þ

22See Refs. [75,76] for specific examples. Note that Bondi-
Sachs coordinates are related to the Gaussian null gauge by a
simple redefinition of the radial coordinate.

R. N. CALDEIRA COSTA PHYSICAL REVIEW D 90, 104018 (2014)

104018-18



Note that, apart from the constraints, the normalizable
modes are so far arbitrary. We then require that the solution
be stationary and axisymmetric, which results in the
constraints

Tr½g−1ð0Þgð3Þ� ¼ 0; ð3:92Þ

1

α2
ð0Þ∇jðg−1ð0Þgð3ÞÞji ¼

1

3
∂iφð3Þ; ð3:93Þ

1

α2
ð0Þ∇iσ

i
ð3Þ ¼ 0; ð3:94Þ

where the modes now depend only on the boundary
coordinate θ. These are the necessary conditions for
Kerr-AdS4. In the zero-Λ limit, however, there will be a
further constraint. Recall that the equation for a given
coefficient gðnÞij is of the form (2.42) and, therefore, that it
becomes a differential equation for gðn−1Þij in the limit
α → ∞. For the particular case of n ¼ 4 in dþ 2 ¼ 4 bulk
dimensions, the equation for gð4Þij turns into a differential
equation for the normalizable mode gð3Þij in the zero-Λ
limit. Therefore, if we solve the dynamical equation (2.26),
together with (C11), at order z2 we find in the limit α → ∞

4kð3Þij − gð0ÞijTr½g−1ð0Þkð3Þ� þ φð4Þgð0Þij þ 3ð0Þ∇ðiσ
ð3Þ
jÞ ¼ 0;

ð3:95Þ

where we have used the fact that gð1Þij ¼ gð2Þij ¼ σð1Þi ¼
σð2Þi ¼ 0 in our case. The equation for the coefficient φð4Þ
follows from the dynamical equation (C6) and (C11) for φ:

φð4Þ − 2Tr½g−1ð0Þkð1Þ� −
3

2
ð0Þ∇iσ

i
ð3Þ ¼ 0: ð3:96Þ

Replacing this in (3.95), we find

4kð3Þij þ gð0ÞijTr½g−1ð0Þkð3Þ�

þ 3

�
ð0Þ∇ðiσ

ð3Þ
jÞ þ 1

2
gð0Þijð0Þ∇iσ

i
ð3Þ

�
¼ 0: ð3:97Þ

Now, in our case we have

kð3Þij ¼
1

2Nð0Þ
ðð∂u − £σð0Þ Þgð3Þij − £σð1Þgð2Þij

− £σð2Þgð1Þij − £σð3Þgð0ÞijÞ
¼ −ð0Þ∇ðiσ

ð3Þ
jÞ : ð3:98Þ

Replacing this in equation (3.97) results in the following
constraint for σð3Þi:

ð0Þ∇ðiσ
ð3Þ
jÞ −

1

2
gð0Þijð0Þ∇kσ

k
ð3Þ ¼ 0: ð3:99Þ

Now, the constraint (3.94) for σið3Þ holds for all values of
α ∈ R, so we extend this to the limit α → ∞ so that the
metric is continuous in α. If this were not the case, then σið3Þ
would contain terms proportional to δΛ;0, and therefore
Kerr would not follow from the zero-Λ limit of Kerr-AdS4.
The same argument applies to the ϕ component of the
constraint (3.93). The constraint equations for the normal-
izable modes in the limit α → ∞ therefore become

Tr½g−1ð0Þgð3Þ� ¼ 0 ¼ ð0Þ∇jðg−1ð0Þgð3ÞÞji¼ϕ; ð3:100Þ

∂iφð3Þ ¼ 0; ð3:101Þ
ð0Þ∇iσð3Þj þ ð0Þ∇jσð3Þi ¼ 0; ð3:102Þ

where the modes depend only on θ. The coefficient σið3Þ is
therefore a Killing vector of the spatial metric gð0Þij on the
S2, and hence we choose σið3Þ∂i ≔ a=l4

o∂ϕ, with a some

dimensionless constant. Furthermore, φð3Þ is constant, so
we define φð3Þ ≔ −2MG0=l4

o. Note also that in the limit
a → 0 we must recover the Schwarzschild metric, so gð3Þij
must be proportional to the parameter a. The average
energy and angular momentum of those states dual to
asymptotically flat Kerr are then given by

hEi ¼ 1

2T

Z
T

−T
du
Z

d2x
ffiffiffiffiffiffiffiffi
qð0Þ

p hεi ¼ M; ð3:103Þ

hJii∂i ¼
Z

d2x
ffiffiffiffiffiffiffi
gð0Þ

p hjii∂i ¼ −
3

4G0

a∂ϕ: ð3:104Þ

More generally, for an asymptotically Minkowski space-
time we have that gð1Þij ¼ 0, so the energy density will be of
the form (3.89). The average energy will then be given by

hEi ¼ −
1

2T
l2
o

8πG0

Z
d2x

ffiffiffiffiffiffiffi
gð0Þ

p Z
T

−T
duφð3Þ

¼ 1

2T

Z
T

−T
duMðuÞ; ð3:105Þ

where MðuÞ is the Bondi mass (see e.g. Ref. [60]).

D. Null boundaries and corner terms

So far, we have considered a single timelike boundary
fz ¼ ϵg for the spacetime and neglected all possible corner
integrals evaluated on the codimension-two surfaces fz ¼
ϵ; u ¼ �∞g that may arise in the gravitational action.
If one also considers null boundaries fu ¼ u�g in the
spacetime, where these surfaces can be at infinity, the
original bare action (2.1) is not the appropriate one in
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the sense that the variational problem is not well defined,
and a further surface term is needed. Furthermore, the
renormalized gravity action in each dimension will require
corner counterterms at fz ¼ ϵ; u ¼ u�g that ensure that the
action is finite once the regulator ϵ is removed. In order to
derive the correct bare action in general, we start by
performing an ADM decomposition of the spacetime
metric with respect to timelike hypersurfaces of constant
z as

ds2dþ2 ¼ Gμνdxμdxν

¼ β2dz2 þ qabðdxa þ βadzÞðdxb þ βbdzÞ: ð3:106Þ

The inverse and determinant of the metric are given by

Gμν ¼
 1

β2
− 1

β2
βa

− 1
β2
βa qab þ 1

β2
βaβb

!
; ð3:107Þ

ffiffiffiffi
G

p
¼ β

ffiffiffi
q

p
: ð3:108Þ

The unit normalmμ to the surfaces of constant z is given by

mμ ¼ β∂μz; ð3:109Þ

mμ∂μ ¼
1

β
ð∂z − βa∂aÞ; ð3:110Þ

mμmνGμν ¼ 1: ð3:111Þ

The metric qab represents the induced metric of the
hypersurfaces of constant z, and we can extend it to a
tensor in the whole spacetime by defining qμν ≔
Gμν −mμmν. Next, we perform an ADM decomposition
of qab with respect to surfaces of constant u. In each
submanifold fz ¼ constantg, we define these surfaces to
be spacelike:

ds2dþ1 ¼ qabdxadxb

¼ −N2du2 þ γijðdxi þ σiduÞðdxj þ σjduÞ: ð3:112Þ

The determinant of this metric is given by
ffiffiffi
q

p ¼ N
ffiffiffi
γ

p
, so

that
ffiffiffiffi
G

p ¼ βN
ffiffiffi
γ

p
. In each submanifold fz ¼ constantg,

the future-directed unit normal na to the surfaces of
constant u is given by

na ¼ −N∂au; ð3:113Þ

na∂a ¼
1

N
ð∂u − σi∂iÞ; ð3:114Þ

nanbqab ¼ −1: ð3:115Þ

We can extend this unit normal to a vector in the whole
spacetime by defining

nμ ≔ qμνð−N∂νuÞ: ð3:116Þ
We then find nμnνGμν ¼ −1 and mμnνGμν ¼ 0. Finally,
with the two unit normalsmμ and nμ, we construct two null
vectors nμ� defined as

nμ� ≔ nμ �mμ: ð3:117Þ
We find that nμ�n

ν
�Gμν ¼ 0 and nμ�m

νGμν ¼ �1. Given this
general construction, we will now show that, if the surfaces
fu ¼ u�g are null in the spacetime, the bare gravitational
action for which the variational problem is well-posed is
given by

16πG0S ¼
Z

dzduddx
ffiffiffiffi
G

p �
dðdþ 1Þ
α2l2

o
þ R½G�

�

þ 2

Z
z¼ϵ

duddx
ffiffiffi
q

p
Q

− 2

Z
u¼uþ

u¼u−

dzddxβ
ffiffiffi
γ

p ∇μn
μ
þ; ð3:118Þ

with ∇μGνα ≔ 0, and where Q is the extrinsic curvature of
the hypersurfaces of constant z as before, such that
Q ¼ ∇μmμ. Also, the last integral represents the differenceR
u¼uþ
u¼u−

≔
R
u¼uþ

−
R
u¼u−

. In order to show that the varia-
tional problem is well defined, we perform a Gauss-
Codazzi decomposition of the Ricci scalar R½G�:
R½G� ¼ R½q� þQ2 −Q ·Q − 2∇μðmμ∇ ·m −m · ∇mμÞ:

ð3:119Þ
Replacing this in (3.118) and integrating the total deriv-
atives results in the action

16πG0S ¼
Z

dzduddxβ
ffiffiffi
q

p

×

�
dðdþ 1Þ
α2l2

o
þ R½q� þQ2 −Q ·Q

�

− 2

Z
u¼uþ

u¼u−

dzddxβ
ffiffiffi
γ

p

× ðK þ ð1þ Nmμ∂μuÞ∇ ·mÞ; ð3:120Þ

where K ¼ qabDanb ¼ qμν∇μðqναnαÞ ¼ qμν∇μnν is the
extrinsic curvature of the surfaces of constant u in each
submanifold fz ¼ constantg, with Daqbc ≔ 0. Now, from
the decomposition (3.107) we find in particular that

∂μu∂νuGμν ¼ quu þ ðβu=βÞ2 ¼ −N−2 þ ðβu=βÞ2: ð3:121Þ

If the surfaces u ¼ u� are null in the spacetime, the left-
hand side vanishes at u ¼ u�, and we find up to a sign
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βu ¼ β=N at u ¼ u�. If we choose the opposite sign, then
we should replace the null vector nþ in (3.118) with its dual
n−. Replacing this condition for βu in equation (3.110)
results in

1þ Nmμ∂μu ¼ 0 ðu ¼ u�Þ: ð3:122Þ
Note that this holds everywhere if the surfaces of constant u
are everywhere null, and in such case the null vector nþ is
given by nþμ ¼ −N∂μu. Finally, using equation (3.122) in
the action (3.120) yields our final result23:

16πG0S ¼
Z

dz

�Z
duddxβ

ffiffiffi
q

p �
dðdþ 1Þ
α2l2

o
þ R½q�

þQ2 −Q ·Q

�
− 2

Z
u¼uþ

u¼u−

ddxβ
ffiffiffi
γ

p
K

�
:

ð3:123Þ
This is the correct action, for which the variational problem
is well posed [72]. Taking variations with respect to the
lapse, shift, and induced metric β, βa, and qab, and
requiring only that the boundary configurations of the
fields be fixed results in the ADM equations of motion.
If the spacetime contains null boundaries, the holo-

graphic renormalization of the gravitational action (3.118)
will result in corner counterterms, as emphasized above.
We will exemplify this for the particular case of dþ 2 ¼ 3
dimensions and derive the anomalous counterterm (3.8)
discussed in Sec. III B 1. Returning to our gauge-fixed
metric (2.21) for generic d, if we evaluate on shell the last
integral in the action (3.118), we obtain

− 2

Z
u¼uþ

u¼u−

dzddxβ
ffiffiffi
γ

p ∇μn
μ
þ

¼ −2
Z

u¼uþ

u¼u−
z¼ϵ

ddx
ffiffiffi
g

p �
lo

ϵ

�
d

þ 2ld
o

Z
u¼uþ

u¼u−

dzddx
ffiffiffi
g

p �
z−ðdþ1Þ −

1

2
z−d∂z logφ

�
:

ð3:124Þ
Using our asymptotic solutions (2.26)–(2.28), we find that,
for d ¼ 1, the divergences of this term are given by

− 2

Z
u¼uþ

u¼u−

dzdxβ
ffiffiffi
γ

p ∇μn
μ
þ

¼ −4
Z

u¼uþ

u¼u−
z¼ϵ

dx
ffiffiffiffiffiffiffi
gð0Þ

p �
lo

ϵ

�

þ 2α2lo

Z
u¼uþ

u¼u−
z¼ϵ

dx
ffiffiffiffiffiffiffi
gð0Þ

p
kð0Þ log ϵþOðϵ0Þ:

ð3:125Þ

The counterterm that subtracts these divergences is
given by

4

Z
u¼uþ

u¼u−
z¼ϵ

dx
ffiffiffi
γ

p
− 2αlo

Z
u¼uþ

u¼u−
z¼ϵ

dx
ffiffiffi
γ

p
K log ϵ: ð3:126Þ

If we also take into account the surface term (3.4) that we
discarded and use the result we found in (3.5), we find that
the renormalized gravitational action in dþ 2 ¼ 3 space-
time dimensions in the presence of null boundaries u ¼ u�
is given by

16πG0Sren ¼
Z

dzdudx
ffiffiffiffi
G

p �
dðdþ 1Þ
α2l2

o
þ R½G�

�

þ 2

Z
z¼ϵ

dudx
ffiffiffi
q

p
Q − 2

Z
u¼uþ

u¼u−

dzdxβ
ffiffiffi
γ

p ∇μn
μ
þ

þ 2

αlo

Z
z¼ϵ

dudx
ffiffiffi
q

p þ6

Z
u¼uþ

u¼u−
z¼ϵ

dx
ffiffiffi
γ

p
−2αlo

×
Z

u¼uþ

u¼u−
z¼ϵ

dx
ffiffiffi
γ

p
K log ϵ: ð3:127Þ

The last corner integral is exactly the anomalous counter-
term that we found in (3.8).

IV. NONBACKREACTING MATTER

In the remainder of this work, we will be interested in
computing the zero-Λ limit of the vacuum expectation
value and two-point correlator of a QFT operator dual to a
nonbackreacting massive scalar field in AdSdþ2. The
background metric we are interested in is pure AdS with
the cross section of the asymptotic boundary with a
spacelike hypersurface topologically Rd. In our coordinate
system, the metric reads

ds2 ¼ Gμνdxμdxν

¼ l2
o

z2

�
−

1

α2
du2 − 2dudzþ d~x2d

�
: ð4:1Þ

In the limit α → ∞, the spacetime is a subset of Minkowski
space, with z ¼ 0 representing future null infinity. The bulk
action for the scalar field ϕ in this background is given by

S ¼ 1

2

Z
ddþ2x

ffiffiffiffi
G

p �
Gμν∂μϕ∂νϕþ

�
m
α

�
2

ϕ2

�
: ð4:2Þ

The mass of the field is defined to be M ¼ m=α. For the
moment we will keep m arbitrary, but as is well known, the
conformal weight of the field theory operator dual to ϕ
will be finite in the limit α → ∞ only if m ¼ Oðα0Þ.

23Note that the Gibbons-Hawking surface term takes a minus
sign because we have defined the unit normal na to be future
directed.
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A. Solution and asymptotics

The equations of motion for the scalar in our background
are given by

�
m
α

�
2

ϕ ¼ □Gϕ

¼ zΔ−kþ2

l2
o

�
1

α2

�
φ00 −

k − 1

z
φ0
�
− 2∂uφ

0

þ k − 1

z
∂uφþ ~∇2

φþ ΔðΔ − ðdþ 1ÞÞ
α2z2

φ

�
;

ð4:3Þ

where we defined φ ≔ zk−Δϕ for Δ constant and
k ≔ 2Δ − ðdþ 1Þ. As usual, Δ will be the conformal
weight of the dual field theory operator. Also, φ0 ≔ ∂zφ

and ~∇2 ¼ δij∂i∂j. We will be interested in computing the
correlation functions of the QFT operator in Euclidean
signature, so we define the Euclidean boundary time
ū ≔ iu. The dynamical equation then becomes

1

α2

�
φ00 −

k − 1

z
φ0
�
− 2i _φ0 þ i

k − 1

z
_φþ ~∇2

φ

þ ΔðΔ − ðdþ 1ÞÞ − l2
om2

α2z2
φ ¼ 0; ð4:4Þ

where _φ ≔ ∂ ūφ. We define Δ as the highest root of the
equation ΔðΔ − ðdþ 1ÞÞ ¼ l2

om2. We also Fourier-
transform the dynamical equation in the coordinates ū
and xi and obtain

1

α2

�
φ̂00 −

k − 1

z
φ̂0
�
þ 2ωφ̂0 − ω

k − 1

z
φ̂ − ~p2φ̂ ¼ 0;

ð4:5Þ

where

φ̂ðz;ω; piÞ ¼
Z

dūddxe−iωūe−i~p·~xφðz; ū; xiÞ: ð4:6Þ

The solution for φ̂ can be written in terms of Bessel
functions as

φ̂ðz;ω; pÞ ¼ e−α
2ωzzk=2

h
Aðω; pÞKk=2

�
zα

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
~p2 þ α2ω2

q 	
þ Bðω; pÞIk=2

�
zα

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
~p2 þ α2ω2

q 	i
; ð4:7Þ

where the coefficients Aðω; pÞ and Bðω; pÞ are arbitrary,
and where Kk=2ðyÞ and Ik=2ðyÞ are the modified Bessel
functions of the first and second kind. These admit the
following asymptotics as y → 0:

Kk=2ðyÞ ¼ 2k=2−1Γðk=2Þy−k=2
�
1þ ðiyÞ2

2ðk − 2Þ

þ ðiyÞ4
2ðk − 2Þ4ðk − 4Þ þ � � � þ akyk

þ ~akyk log y2 þOðy>kÞ
�
; ð4:8Þ

Ik=2ðyÞ ¼
2−k=2

Γðk=2þ 1Þ y
−k=2ðyk þOðy>kÞÞ; ð4:9Þ

with ΓðaÞ the gamma function and ak a k-dependent
constant. The coefficient ~ak is nonvanishing only if k=2
is an integer and in such case is given by

~ak ¼ −
ð−1Þk=22−k

Γð1þ k=2ÞΓðk=2Þ ∶ k=2 ∈ N: ð4:10Þ

The solution for φ̂ therefore admits the expansion

φ̂ðz;ω; pÞ ¼ e−α
2ωz

��
1 −

α2ð~p2 þ α2ω2Þ
2ðk − 2Þ z2 þ α4ð~p2 þ α2ω2Þ2

8ðk − 2Þðk − 4Þ z
4 þ � � �

�
φ̂ð0Þðω; pÞ

þ bðω; pÞzk þ ~̂φðkÞðω; pÞzk log zþOðz>kÞ
�

¼ φ̂ð0Þ þ zφ̂ð1Þ þ z2φ̂ð2Þ þ z3φ̂ð3Þ þ � � � þ zkφ̂ðkÞ þ zk log z ~̂φðkÞ þOðz>kÞ; ð4:11Þ

where we write the function Aðω; pÞ as

Aðω; pÞ ¼ 21−k=2

Γðk=2Þ
�
α
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
~p2 þ α2ω2

q 	k=2
φ̂ð0Þðω; pÞ: ð4:12Þ

The coefficients φ̂ð0Þðω; pÞ and φ̂ðkÞðω; pÞ are arbitrary functions in ω and ~p2, and the coefficients φ̂ðn<kÞ are given up to
n ¼ 3 by
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φ̂ð1Þ ¼ −α2ωφ̂ð0Þ; ð4:13Þ

φ̂ð2Þ ¼
�
1

2
α4ω2 −

α2ð~p2 þ α2ω2Þ
2ðk − 2Þ

�
φ̂ð0Þ; ð4:14Þ

φ̂ð3Þ ¼
�
−
1

6
α6ω3 þ α4ωð~p2 þ α2ω2Þ

2ðk − 2Þ
�
φ̂ð0Þ: ð4:15Þ

The coefficient ~̂φðkÞ of the inhomogeneous term is
given by

~̂φðkÞ ¼ 2~akðα
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
~p2 þ α2ω2

q
Þkφ̂ð0Þ: ð4:16Þ

The full solution ϕðz; ū; xiÞ for the scalar field is then
given by

ϕðz; ū; xÞ ¼ zΔ−k
Z

dωddpeiωūei~p·~xφ̂ðz;ω; pÞ

¼ zΔ−kðφð0Þ þ zφð1Þ þ z2φð2Þ þ z3φð3Þ
þ � � � þ zkφðkÞ þ zk logðμzÞ ~φðkÞ þOðz>kÞÞ;

ð4:17Þ

where we have introduced a scale μ of dimension L−1 so
that the argument of the logarithm is dimensionless.
The coefficients φð0Þ ¼ φð0Þðū; xÞ and φðkÞ ¼ φðkÞðū; xÞ
are arbitrary functions and represent the standard non-
normalizable and normalizable modes in the AdS/CFT
correspondence. The boundary configuration φð0Þ is the
source for the scalar operator O in the dual QFT, and φðkÞ
will be mapped to the vacuum expectation value of O. The
coefficients φðn<kÞ together with the inhomogeneous term
~φðkÞ are local functionals of the source for the case of α
finite. Their expressions are given by

1

α2
φðnÞ ¼

1

nðk − nÞ ðiðkþ 1 − 2nÞ _φðn−1Þ

þ ~∇2
φðn−2ÞÞ∶ 0 < n < k; ð4:18Þ

1

α2
~φðkÞ ¼

�
1
k ðiðk − 1Þ _φðk−1Þ − ~∇2

φðk−2ÞÞ ∶k=2 ∈ N;

0 otherwise;

ð4:19Þ

where φð−1Þ ≔ 0. The above is exactly the asymptotic
solution one would obtain by solving the dynamical
equation (4.4) in powers of z in a neighborhood of
z ¼ 0. In the case α−1 ¼ 0, the coefficients are nonlocal
functionals of the sources in the same fashion as the
coefficients gðnÞij in the asymptotic expansion (2.26) of
the metric that we found in Sec. II B. For the case of α
finite, the source φð0Þ and the mode φðkÞ are arbitrary, so

there will be solutions for the scalar field in AdS that
diverge in the limit α → ∞. We are interested in those
configurations for the field that result in well-defined
solutions of the equations of motion in Minkowski space
in this limit, so we henceforth restrict our space of solutions
in AdS to the subspace of those that admit the limit. This
discussion mimics that in Sec. II B for the spacetime metric.
This is enforced by requiring that the coefficients in the
asymptotics (4.17) be nondivergent as α → ∞. Since the
modes φðn<kÞ and ~φðkÞ are functionals of φð0Þ, this require-
ment imposes constraints on the behavior in α of the
derivatives of the source. For k nonodd, these will be
constraints on the time derivatives. As an example, from
n ¼ 1; 2; 3 it follows that

_φð0Þ ¼ Oðα−2Þ; ð4:20Þ

φ̈ð0Þ ¼
1

α2

�
1

k − 3
~∇2
φð0Þ

�
þOðα−4Þ; ð4:21Þ

φ⃛ð0Þ ¼
1

α4

�
3

k − 5
~∇2ðα2 _φð0ÞÞ

�
þOðα−6Þ: ð4:22Þ

On the other hand, for odd values of k there will be a further

constraint, this time on the spatial derivatives: ~∇k−1
φð0Þ ¼

Oðα−ðk−1ÞÞ. As in Sec. II B, we find again that the well-
definedness of the bulk solutions in the zero-Λ limit
translates into a statement about the sources and states
on the dual QFT and, in particular, that the existence of the
limit is connected with the behavior in α of the time and
spatial derivatives of the source. The specific dependence in
powers of α found in (4.20)–(4.22) of the different time
derivatives of the source follow directly from the recursion
relations (4.18)–(4.19). For a given even value of k, for
example, there will be k constraints on the time derivatives
of φð0Þ. If at least one of these constraints is not satisfied by
the source, then at least one of the coefficients φðnÞ in the
asymptotic expansion (4.17) will be divergent, and the
solution will not be well defined in the limit α → ∞.
The same statement holds for k odd with an additional
constraint on the spatial derivatives as above. As an
exercise, from equation (4.18) for n ¼ 1, we have that

_φð0Þ ¼ −iα−2φð1Þ: ð4:23Þ
If the constraint (4.20) is not satisfied, it follows that φð1Þ
necessarily diverges as α → ∞. We can also differentiate
equation (4.23) with respect to time and use the recursion
relation (4.18) for n ¼ 2 to obtain

φ̈ð0Þ ¼
1

α2

�
1

k − 3
~∇2
φð0Þ

�
−

1

α4

�
k − 2

k − 3
φð2Þ

�
: ð4:24Þ

If the constraint (4.20) is satisfied but not (4.21), then it
is the coefficient φð2Þ that necessarily diverges as α → ∞.
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The same reasoning can be repeated for the remaining
constraints.
Equation (4.20) is particularly relevant, and it implies

that the source is time independent in the zero-Λ limit. This
is not an issue for the variational problem that we discuss in
the following sections, because the zero-Λ limit is taken
after varying the gravitational action with respect to the
source, so the latter remains arbitrary until the vacuum
expectation values and correlators are computed. In Sec. II
B, we have also discussed the behavior in α of the time
derivatives of the source gð0Þij for the boundary stress
tensor, and we have found in particular from equation (2.40)
that one can choose a time coordinate u such that gð0Þij is
time independent in the limit α → ∞ in the same fashion as
the source φð0Þ (recall that the boundary shift σið0Þ can be

fixed to zero by the boundary diffeomorphism xi →
xi −

R
duσið0Þ). Furthermore, we will find in Sec. IV C that

the two-point correlators of scalar operators are also
independent of the time coordinate in the limit α → ∞.
These results are compatible with those discussed in
Refs. [35,38] and suggest that the zero-Λ limit induces
an ultrarelativistic contraction ðu; ~xÞ → ðα−1u; ~xÞ on the
boundary field theory.

B. Renormalization and vacuum expectation values

In this section, we will renormalize holographically the
bulk action for the scalar field in the AdS background (4.1),
analyze the limit α → ∞, and compute the VEV of the
dual operator. Under this limit, the spacetime becomes
Minkowski space and the solution in AdS is mapped to a
solution of the scalar field equations in Minkowski. As in
Sec. III A, we proceed by replacing the asymptotic boun-
dary of the spacetime with a regulating surface z ¼ ϵ and
evaluate (4.2) on shell:

iSon-shell ¼ ld
o

2α2

Z
z¼ϵ

dūddxϵ−kððΔ − kÞφ2 þ ϵφφ0Þ

−
ld
o

4

Z
z¼ϵ

dūddxϵ−kþ1∂ ūφ
2: ð4:25Þ

The integrand in the last integral is a total derivative
and therefore can be removed from the on-shell action
in the absence of null boundaries fu ¼ constantg for the
spacetime. We then use the asymptotic solution (4.17) to
replace for φ and find those terms that diverge if we take the
limit ϵ → 0. For finite α, these will be local functionals of
the source φð0Þ and therefore, up to anomalies, can be
rewritten covariantly as described in Sec. III A. The
resulting divergent terms can then be subtracted by a
covariant counterterm action Sct consisting of minus such
terms. The renormalized action Sren will then be given
by Sren ¼ Sþ Sct. The number of counterterms increases

with k, so we will focus separately on the cases k ¼ 2
and k ¼ 4.

1. k ¼ 2

In this case, the procedure described above results in the
following renormalized action:

iSren¼
1

2

Z
ddþ2x

ffiffiffiffi
G

p �
Gμν∂μϕ∂νϕþ

�
m
α

�
2

ϕ2

�

þ1

2

Z
z¼ϵ

ddþ1x
ffiffiffi
q

p �
−
Δ−k
αlo

ϕ2þðαloÞϕ□qϕ logϵ

�
;

ð4:26Þ

where qab is the induced metric on the regulating
surface,

qabdxadxb ¼
l2
o

ϵ2

�
1

α2
dū2 þ d~x2d

�

¼ l2
o

ϵ2
qð0Þabdxadxb; ð4:27Þ

and where □q is the Laplacian with respect to qab, and
qð0Þab is the QFT metric. The resulting couterterms are
precisely the canonical ones from standard holographic
renormalization in the AdS/CFT correspondence (see e.g.
Ref. [13]). This is expected because the canonical counter-
term action is covariant up to the anomaly in log ϵ. The
latter breaks invariance of the action under specific bulk
diffeomorphisms involving the radial coordinate z, but our
background (4.1) is mapped to the Poincaré patch of AdS
by the boundary diffeomorphism u → α2ðu − zÞ; xi → αxi.
The surfaces of constant z are therefore preserved by the
diffeomorphism, and hence the canonical counterterm
action is not affected by the transformation.
The next step is to determine whether the counterterms

spoil the zero-Λ limit of the renormalized on-shell action.
For that purpose, we evaluate Sren on shell, take the limit
ϵ → 0, and look for those terms proportional to positive
powers of α as described in Sec. III A. In the simple case of
k ¼ 2, no such terms survive once the regulator is removed,
and therefore the couterterm action does not spoil the zero-
Λ limit. As we increase the value of k, we will see that
further counterterms are needed apart from the canonical
ones in order to restore the well-behavedness of the action
in the limit α → ∞.

Vacuum expectation value.—The variation of the renor-
malized on-shell action is given by

iδSon-shellren ¼
Z
z¼ϵ

ddþ1x
ffiffiffi
q

p �
ϵ

αlo
ðϕ0 − iα2 _ϕÞ

−
Δ − k
αlo

ϕþ ðαloÞ□qϕ log ϵ

�
δϕ: ð4:28Þ
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Using the AdS/CFT prescription, the one-point function of
the dual operator O is then given by24

ffiffiffiffiffiffiffiffi
qð0Þ

p hOi ¼ iδSon-shellren

δφð0Þ
¼ lim

ϵ→0

�
ϵΔ−k

iδSon-shellren

δϕ

�

¼ ld
o

α2
ð2φð2Þ − ~φð2ÞÞ − ld

o
~∇2
φð0Þ: ð4:29Þ

We therefore find that the VEV is mapped to the normal-
izable mode φð2Þ for finite α as expected. The term
proportional to ~φð2Þ is unphysical in the sense that it can
be subtracted from the expectation value by adding to the
renormalized action the finite covariant counterterm (finite
in both ϵ and α):

−
αlo

4

Z
z¼ϵ

ddþ1x
ffiffiffi
q

p
ϕ□qϕ: ð4:30Þ

The variation of this term is then proportional to ~φð2Þ:

iδ
δφð0Þ

�
−
αlo

4

Z
z¼ϵ

ddþ1x
ffiffiffi
q

p
ϕ□qϕ

�

¼ lim
ϵ→0

�
−
αlo

4
ϵΔ−k

iδ
δϕ

Z
z¼ϵ

ddþ1x
ffiffiffi
q

p
ϕ□qϕ

�

¼ ld
o

α2
~φð2Þ: ð4:31Þ

The term proportional to the spatial Laplacian of the source
cannot be subtracted without partially breaking diffeo-
morphism invariance of the bulk action. The finite counter-
term that subtracts this term is given by

−
αlo

4

Z
z¼ϵ

ddþ1x
ffiffiffi
q

p
ϕ ~∇2

γϕ; ð4:32Þ

where ~∇2
γ is the Laplacian with respect to the spatial metric

γijdxidxj ¼ l2
o=ϵ2d~x2d and therefore breaks invariance

under diffeomorphisms that are not foliation preserving.
This is the same type of anomalous counterterm that we
found in Sec. III C. However, there is no need for a
counterterm of this type in the present case. It may seem
that the spatial Laplacian of the source in the VEV (4.29)
will give rise to contact terms proportional to the spatial
Laplacian of delta functions, and that therefore partially
break diffeomorphism invariance of the two-point corre-
lator computed by taking the variation of the VEV.
However, this will not be the case, because the variation

of the normalizable mode φð2Þ will provide a contribution
that precisely cancels these so that the two-point function is
completely covariant for finite α. We will see that this is
indeed the case in Sec. IV C.
Finally, note that the VEVadmits a well-behaved zero-Λ

limit. If we switch off the source and take the limit α → ∞,
the expectation value of the operator vanishes identically. In
other words, any scalar operator of conformal dimension
Δ ¼ 1þ ðdþ 1Þ=2 evaluated on QFT states dual to gravity
solutions with Λ ¼ 0 necessarily has a vanishing expect-
ation value in the absence of the source.

2. k ¼ 4

In this case, the renormalized action is given by

iSren ¼
1

2

Z
ddþ2x

ffiffiffiffi
G

p �
Gμν∂μϕ∂νϕþ

�
m
α

�
2

ϕ2

�

þ 1

2

Z
z¼ϵ

ddþ1x
ffiffiffi
q

p �
−
Δ − k
αlo

ϕ2 −
αlo

k − 2

× ϕ□qϕþ ðαloÞ3
4

ϕð□qÞ2ϕ log ϵ

�
; ð4:33Þ

where the counterterm action again coincides with the
canonical one. Let us now verify whether the counterterms
spoil the zero-Λ limit of the action. If we evaluate Sren on
shell, take the limit as the regulator ϵ → 0, and look for
those terms proportional to positive powers of α, we find

lim
ϵ→0

iSon-shellren ¼ −
ld
o

4

Z
z¼0

dūddxðα2φð0Þφ̈ð2Þ

þ α2φð1Þφ̈ð1Þ þ α2φð2Þφ̈ð0ÞÞ þOðα0Þ: ð4:34Þ

The second and third terms are of order Oðα0Þ. This is so
because from equation (4.18) for n ¼ 1; 2 we have

_φð0Þ ¼ Oðα−2Þ ⇒ φð2Þφ̈ð0Þ ¼ Oðα−2Þ; ð4:35Þ

_φð1Þ ¼ −i
�
4

α2
φð2Þ − ~∇2

φð0Þ

�
⇒ φ̈ð1Þ

¼ −i
�
4

α2
_φð2Þ þ

i
α2

~∇2
φð1Þ

�
⇒ φð1Þφ̈ð1Þ ¼ Oðα−2Þ: ð4:36Þ

On the other hand, the first term is of order α2. If we use
again equation (4.18) but for n ¼ 3, we find

_φð2Þ ¼ i

�
3

α2
φð3Þ − ~∇2

φð1Þ

�
⇒ φ̈ð2Þ

¼ i
�
3

α2
_φð3Þ þ i

�
4

α2
~∇2
φð2Þ − ~∇4

φð0Þ

��

⇒ φð0Þφ̈ð2Þ ¼ ~∇4
φð0Þ þOðα−2Þ: ð4:37Þ

24Recall from Sec. III B 2 that the well-defined observables are
always the tensor densities, in this case ffiffiffiffiffiffiffiffiqð0Þ

p hOi. By construc-
tion, the n-point functions themselves are divergent in the zero-Λ
limit because the boundary lapse vanishes in this limit.
In particular, for the one-point function, ð1= ffiffiffiffiffiffiffiffiqð0Þ

p ÞiδSon-shellren =
δφð0Þ ¼ αð1=ðNð0Þ

ffiffiffiffiffiffiffigð0Þ
p ÞiδSon-shellren =δφð0ÞÞ, which diverges as

α → ∞, where in this case Nð0Þ ¼ 1 and gð0Þij ¼ δij.
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In this way we find that the zero-Λ limit of the action is
spoiled by the counterterm action:

lim
ϵ→0

iSon-shellren ¼ −α2
ld
o

4

Z
z¼0

dūddxφð0Þð ~∇2Þ2φð0Þ þOðα0Þ:

ð4:38Þ

This divergence in α is subtracted by the finite counterterm
(finite in ϵ)

ðαloÞ3
4

Z
z¼ϵ

dūddx
ffiffiffi
q

p
ϕð ~∇2

γÞ2ϕ; ð4:39Þ

where ~∇2
is the Laplacian with respect to the spatial metric

γijdxidxj ¼ l2
o=ϵ2d~x2d as before. Unlike the case of k ¼ 2,

this new counterterm is needed in order to restore the well-
behavedness of the action in the zero-Λ limit. This is done,
however, at the expense of breaking invariance of the
renormalized action under diffeomorphisms that are not
foliation preserving. Since this counterterm is finite with
respect to the regulator, it is associated with a choice of
scheme on the QFT side. This means that a renormalization
scheme that breaks invariance of the QFT under trans-
formations that do not preserve the spacelike foliation of
the boundary is a necessary requirement, so that the QFT
states result in finite expectation values and correlators once
the QFT limit associated with the zero-Λ limit is taken. The
final renormalized action is then given by

iSren ¼
1

2

Z
ddþ2x

ffiffiffiffi
G

p �
Gμν∂μϕ∂νϕþ

�
m
α

�
2

ϕ2

�

þ 1

2

Z
z¼ϵ

ddþ1x
ffiffiffi
q

p �
−
Δ − k
αlo

ϕ2 −
αlo

k − 2
ϕ□qϕ

þ ðαloÞ3
4

ϕð□qÞ2ϕ log ϵ

�

þ 1

2

Z
z¼ϵ

ddþ1x
ffiffiffi
q

p �ðαloÞ3
2

ϕð ~∇2
γÞ2ϕ

�
: ð4:40Þ

Vacuum expectation value.—The variation of the on-shell
action is given by

iδSon-shellren ¼
Z
z¼ϵ

ddþ1x
ffiffiffi
q

p �
ϵ

αlo
ðϕ0 − iα2 _ϕÞ − Δ − k

αlo
ϕ

−
αlo

k − 2
□qϕþ ðαloÞ3

2
ð ~∇2

γÞ2ϕ

þ ðαloÞ3
4

ð□qÞ2ϕ log ϵ

�
δϕ: ð4:41Þ

The vacuum expectation value of the dual QFT operator is
then given by

ffiffiffiffiffiffiffiffi
qð0Þ

p hOi ¼ iδSon-shellren

δφð0Þ
¼ lim

ϵ→0

�
ϵΔ−k

iδSon-shellren

δϕ

�

¼ ld
o

α2

�
4φð4Þ −

7

3
~φð4Þ

�
þ 2ld

o

3
~∇2
φð2Þ: ð4:42Þ

For finite α, the VEV is again mapped to the normalizable
mode φð4Þ. The term proportional to ~φð4Þ can be subtracted
by adding the finite covariant counterterm to the action
(finite in both ϵ and α)25:

−
7

96
ðαloÞ3

Z
z¼ϵ

ddþ1x
ffiffiffi
q

p
ϕð□qÞ2ϕ: ð4:43Þ

The term proportional to the spatial Laplacian of φð2Þ,
however, remains. Note then that the expectation value
admits a well-behaved zero-Λ limit. For finite α, the
coefficient φð2Þ is a functional of φð0Þ, so setting the source
to zero and then taking the limit α → ∞ results in a
vanishing VEV for the operator. On the other hand, in
the case α−1 ¼ 0, the coefficient φð2Þ is a nonlocal func-
tional of φð0Þ. From equation (4.18) for n ¼ 2; 3 with
α−1 ¼ 0, we find that φð2Þ is defined by the differential

equation φ̈ð2Þ ¼ ð ~∇2Þ2φð0Þ. In this way, first setting α−1 ¼ 0

in the VEV and then switching off the source results in a
nontrivial expectation value for the operator, ffiffiffiffiffiffiffiffiqð0Þ

p hOi∼
~∇2
φð2Þ, where φ̈ð2Þ ¼ 0. We expect this type of behavior to

be reproduced for generic values of k ≥ 4.

C. Two-point correlator

In this last section, we will compute the two-point
function for the scalar operator with k ¼ 2; 4 and analyze
its zero-Λ limit. This is done by choosing a full solution of
the equations of motion that is well behaved in the bulk
interior and then taking a first-order variation of the VEVs
(4.29) and (4.61) in the presence of the source. If we return
to equation (4.7) for the Fourier transform φ̂ of the scalar
field and look at the behavior of the Bessel functions as
z → ∞, we find that φ̂ diverges as z → ∞ unless we set the
coefficient Bðω; pÞ ¼ 0. In this way, the solution that is
well behaved in the interior is given by

25As a technical point, the fact that the integrand is finite in α
follows from the discussion at the end of Sec. IVA. From
equation (4.19) with k ¼ 4, it follows that □2

qð0Þφð0Þ ¼
−ð16=α4Þ ~φð4Þ. The coefficient ~φð4Þ is nondivergent in α by
definition (recall that we restricted the space of solutions in
AdS to the subspace where the coefficients are well behaved as
α → ∞; i.e. we focus only on those solutions in AdS that result
in solutions in Minkowski space in this limit). This implies that
□

2
qð0Þφð0Þ ¼ Oðα−4Þ.
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ϕðz; ū; ~xÞ ¼ 21−k=2

Γðk=2Þ z
Δ−k=2

×
Z

dωddpeiωūei~p·~xe−α
2ωzφ̂ð0Þðω; ~pÞ

× ðαjpjÞk=2Kk=2ðαzjpjÞ; ð4:44Þ

where we have used the expression (4.12) for the
coefficient Aðω; pÞ, and where jpj ≔

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
~p2 þ α2ω2

p
.

The solution can be rewritten as an integration in position
space by defining

φð0Þðv̄; ~yÞ ¼
Z

dωddpeiωv̄ei~p·~yφ̂ð0Þðω; ~pÞ ð4:45Þ

and using the identity

Z
ddþ1X

e−ip·X

ðϵ2 þ jXj2ÞΔ ¼ aðkÞϵ−k=2jpjk=2Kk=2ðϵjpjÞ;

ð4:46Þ

where k ¼ 2Δ − ðdþ 1Þ, jXj2 ¼ X2
0 þ XiXi, jpj ¼ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

~p2 þ α2ω2
p

, and aðkÞ is a proportionality constant that
depends only on k. The solution (4.44) can then be
rewritten as

ϕðz; ū; ~xÞ ¼ 21−k=2

Γðk=2Þ
αk−Δ−1

aðkÞ
Z

dv̄ddyφð0Þðv̄; ~yÞ

×
ðαzÞΔ

ððαzÞ2 þ ðū−v̄α þ iαzÞ2 þ j~x − ~yj2ÞΔ : ð4:47Þ

This is precisely the expression one would obtain by solving
the scalar field equation in Euclidean AdSdþ2 in Poincaré
coordinates (see e.g. Ref. [3]), requiring that the solution
be well behaved in the bulk interior and finally transforming
the scalar field to the coordinate system (4.1). From
this representation we can immediately read the bulk-to-
boundary propagator and obtain the expression for the
unrenormalized two-point function. If we use the identity [3]

lim
z→0

ðαzÞΔ
ððαzÞ2 þ ðū−v̄α þ iαzÞ2 þ j~x − ~yj2ÞΔ
∼ αbðkÞðαzÞΔ−kδðū − v̄Þδdð~x − ~yÞ; ð4:48Þ

with bðkÞ a constant that depends only on k, then the
on-shell bare action (4.2) is given by

Son-shell ¼ 1

2

Z
z¼ϵ

ddþ1x
ffiffiffiffi
G

p
ϕGzμ∂μϕ

¼ αk−3ld
o

~bðkÞ

Z
z¼ϵ

dūddx

×
Z

dv̄ddy
φð0Þðū; ~xÞφð0Þðv̄; ~yÞ
ððū−v̄α Þ2 þ j~x − ~yj2ÞΔ ð1þOðzÞÞ;

ð4:49Þ
with ~bðkÞ a dimensionless constant. Taking the variations
of the on-shell action with respect to the source and
absorbing the overall proportionality constant in the nor-
malization of the operator results in the unrenormalized two-
point correlator:

ffiffiffiffiffiffiffiffi
qð0Þ

p
2hOðv̄; ~yÞOðū; ~xÞi ¼ iδ2Son-shell

δφð0Þðv̄; ~yÞδφð0Þðū; ~xÞ

¼ 1

ððū−v̄α Þ2 þ j~x − ~yj2ÞΔ : ð4:50Þ

In the zero-Λ limit and away from coincident points, this
results in the correct expression for the two-point function of
a scalar operator of weight Δ but in d dimensions.
In order to compute the renormalized correlator, we

return to our original representation (4.44) for the physical
solution and use the expansion (4.8) around z ¼ 0 for the
Bessel function with k ¼ 2; 4 to find

ϕðz; ū; ~xÞ ¼ zΔ−kðφð0Þ þ � � � þ zkφðkÞ
þ zk logðμzÞ ~φðkÞ þ � � �Þ; ð4:51Þ

where the normalizable mode φðkÞ for k ¼ 2; 4 is given in
terms of the source by

8>><
>>:

φðk¼2Þ ¼ α2

4

�
~∇2 − α2∂2

ū −
�
2γE − 2 log 2þ log

�
− α2

μ2
□qð0Þ

��
□qð0Þ

�
φð0Þ;

φðk¼4Þ ¼ α4

24

�
−3α2∂2

ū
~∇2 − 2α4∂4

ū − 3
4

�
2γE − 3

2
− 2 log 2þ log

�
− α2

μ2
□qð0Þ

��
□2

qð0Þ

�
φð0Þ;

ð4:52Þ

with γE the Euler constant and □qð0Þ ¼ α2∂ ū þ ~∇2
the

Laplacian with respect to the QFT metric. At the end of
Sec. IVA, we found that the requirement that the coef-
ficients φðn<kÞ and ~φðkÞ in the asymptotics be well defined in
the limit α → ∞ results in constraints on the behavior in α

of the time derivatives of the source. Since the normalizable
mode for each k is also well defined in the limit α → ∞ by
definition, and from the above expressions (4.52) for the
physical solution we have that φðkÞ is now a functional of
the source, we find that the requirement that the solution be
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well behaved in the interior results in a further constraint on
the source for each value of k. The constraint will be on the
behavior in α of the spatial derivatives. From equa-
tions (4.19) and (4.18) for k ¼ 2; 4, we have in particular
that

□
k=2
qð0Þφð0Þ ¼ −

kk=2

αk
~φðkÞ ¼ Oðα−kÞ: ð4:53Þ

It then follows from equation (4.52) that the non-
normalizable mode of the physical solution for k ¼ 2; 4
needs to satisfy

~∇k
φð0Þ ¼ Oðα−2Þ: ð4:54Þ

For k ¼ 2, this implies that the VEV (4.29) evaluated on
such a solution is identically zero in the zero-Λ limit. For
k ¼ 4, it implies that the bulk action (4.33) evaluated on
such a solution is well defined in the zero-Λ limit, as well as
the VEV for the dual QFToperator, without the need for the
anomalous counterterm. Nonetheless, the renormalization
should hold for any solution of the bulk equations of
motion, so in general the anomalous conterterm is needed
to restore the well-behavedness of the zero-Λ limit of the
bulk action.

1. Case k ¼ 2

If we take the variation of the one-point function (4.29)
(with ~φð2Þ subtracted) with respect to the source φð0Þ and
use the expression (4.52) for the coefficient φð2Þ, we obtainffiffiffiffiffiffiffiffi
qð0Þ

p 2hOðv̄; ~yÞOðū; ~xÞi

¼ δ

δφð0Þðv̄; ~yÞ
ð ffiffiffiffiffiffiffiffi

qð0Þ
p hOðū; ~xÞiÞ

¼−
ld
o

2
ð1þ 2γE − 2 log2þ 2 logαÞ□qð0Þδðū− v̄Þδdð~x− ~yÞ

−
ld
o

2
logð−μ−2□qð0Þ Þ□qð0Þδðū− v̄Þδdð~x− ~yÞ: ð4:55Þ

The first term proportional to the Laplacian on the delta
functions is scheme dependent, and it can be removed by
adding a finite and local counterterm to the action propor-
tional to (4.30). The scheme-independent piece is then

ffiffiffiffiffiffiffiffi
qð0Þ

p
2hOðv̄; ~yÞOðū; ~xÞi

¼ −
ld
o

2
log ð−μ−2□qð0Þ Þ□qð0Þδðū − v̄Þδdð~x − ~yÞ: ð4:56Þ

If we use the identity [77],

Z
ddþ1X

eip·X

jXjd−1 logð~μ
2jXj2Þ ¼ −

c
jpj2 logðμ

−2jpj2Þ; ð4:57Þ

with ~μ ¼ γEμ=2 and c a proportionality constant that
depends only on d, and Fourier-transform it, we find

□
nþ1

logð ~μ2jXj2Þ
jXjd−1 ¼ c logð−μ−2□Þ□nδdþ1ðXÞ: ð4:58Þ

If we apply this identity to the right-hand side of (4.56), we
obtain

ffiffiffiffiffiffiffiffi
qð0Þ

p
2hOðv̄; ~yÞOðū; ~xÞi

¼ −
ld
o

2αc
□

2
qð0Þ

log ð ~μ2½ðū−v̄α Þ2 þ j~x − ~yj2�Þ
jðū−v̄α Þ2 þ j~x − ~yj2jðd−1Þ=2

¼ ~cR
1

jðū−v̄α Þ2 þ j~x − ~yj2jΔ ; ð4:59Þ

where Δ ¼ 1þ ðdþ 1Þ=2. The proportionality constant ~c
can be absorbed in a normalization of O. The term
Rð1=jXj2ΔÞ on the right-hand side is the renormalized
version of the correlator 1=jXj2Δ, and it coincides with the
latter away from coincident points [78]. In the zero-Λ limit
we find

lim
α→∞

ffiffiffiffiffiffiffiffi
qð0Þ

p
2hOðv̄; ~yÞOðū; ~xÞi ¼ R

1

j~x − ~yj2Δ ; ð4:60Þ

which is the renormalized version of the correlator that we
found in (4.50) in the zero-Λ limit.

2. Case k ¼ 4

In this case, the one-point function for the QFT operator
receives a contribution from the anomalous counterterm
(4.39). This term renders the vacuum expectation value
finite in the zero-Λ limit, but it introduces contact terms in
the two-point function. In order to verify this more
explicitly, we isolate the contribution from this term in
the VEV:

ffiffiffiffiffiffiffiffi
qð0Þ

p hOi ¼
�
4ld

o

α2
φð4Þ þ

2ld
o

3
~∇2
φð2Þ −

α2ld
o

2
~∇4
φð0Þ

�

þ α2ld
o

2
~∇4
φð0Þ; ð4:61Þ

where the last term represents the contribution from the
anomalous counterterm. We have also subtracted the term
proportional to ~φð4Þ which is scheme dependent. If we use
the expression (4.52) for the normalizable mode φð4Þ and
take the variation of the one-point function with respect to
the source, we obtain
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ffiffiffiffiffiffiffiffi
qð0Þ

p 2hOðv̄; ~yÞOðū; ~xÞi ¼ δ

δφð0Þðv̄; ~yÞ
ð ffiffiffiffiffiffiffiffi

qð0Þ
p hOðū; ~xÞiÞ

¼ −
α2ld

o

6

�
2þ 3

4

�
2γE − 2 log 2 −

3

2
þ 2 log α

��
□

2
qð0Þδðū − v̄Þδdð~x − ~yÞ

−
α2ld

o

8
log ð−μ−2□qð0Þ Þ□2

qð0Þδðū − v̄Þδdð~x − ~yÞ þ α2ld
o

2
δðū − v̄Þ ~∇4

δdð~x − ~yÞ: ð4:62Þ

The first term proportional to the square of the Laplacian can
be removed by adding a finite and local counterterm to the
action proportional to (4.43). The last term arising from the
anomalous counterterm is a contact term that diverges when
the operators are defined at equal time ū ¼ v̄. This piece
cannot be removed from the correlator by a counterterm
without spoiling the zero-Λ limit of the bulk action. This
type of contact term spoils the behavior of the correlator at
coincident points in time and will always appear in the two-
point functions for values of k ≥ 4 if we simultaneously
require that the bulk action be well defined in the zero-Λ
limit. At noncoincident points, if we subtract the scheme-
dependent term and use the identity (4.58), we find

ffiffiffiffiffiffiffiffi
qð0Þ

p
2hOðv̄; ~yÞOðū; ~xÞi

¼ −
αld

o

8c
□

3
qð0Þ

log ð ~μ2½ðū−v̄α Þ2 þ j~x − ~yj2�Þ
jðū−v̄α Þ2 þ j~x − ~yj2jðd−1Þ=2

¼ ~cR
1

jðū−v̄α Þ2 þ j~x − ~yj2jΔ ðū ≠ v̄Þ; ð4:63Þ

whereΔ ¼ 2þ ðdþ 1Þ=2. If we absorb the constant ~c in the
normalization of the operator and take the limit α → ∞, we
again find the renormalized version of the correlator that we
obtained in (4.50) in this limit.

V. CONCLUSIONS

In this article, we discussed the zero-Λ limit of vacuum
expectation values and correlation functions in AdS/CFT at
a formal level, with the associated issues, and attempted to
address them. We found that the analysis requires a suitable
foliation of the spacetime, and we derived the mapping
between bulk and boundary data in the associated coor-
dinate system. We focused specifically on the case of the
bulk spacetime metric and a nonbackreacting scalar field,
determined their unique asymptotics, computed the one-
point function of the dual operators, and discussed the
necessary conditions for the correspondence between the
near-boundary asymptotics and the VEVs to admit a well-
behaved zero-Λ limit. We found that the existence of the
limit essentially translates into a statement about the
sources and states of the boundary theory. We discussed
the holographic Ward identities in three and four bulk
dimensions in the case of pure gravity, and reproduced the

central charge that arises in the central extension of the
asymptotic symmetry algebra of three-dimensional flat space
via the zero-Λ limit of the holographic Weyl anomaly. We
also found that the energy and momentum of the QFT states
dual to three-dimensional flat cosmological spaces and to the
Kerr spacetime match with those of the bulk solutions. In
the context of holographic renormalization, we analyzed the
behavior of the holographic counterterms in the zero-Λ limit
and showed that the well-behavedness of the gravity action
in this limit can only be preserved by means of anomalous
counterterms. Based on the AdS/CFT dictionary, we then
argued that the renormalization of QFTs with states dual to
asymptotically flat solutions generically requires renormal-
ization schemes that break invariance of the QFT under
transformations that do not preserve the spacelike foliation at
the boundary. Finally, for the case of the nonbackreacting
bulk scalar, we computed holographically the renormalized
two-point function of the dual operator in the zero-Λ limit
and found it to be consistent with that of a conformal
operator in two dimensions fewer. In this case, however, we
found that the anomalous counterterms introduce contact
terms in the correlator that spoil the behavior of the latter at
coincident points.
In the context of the metric asymptotics at null infinity, we

emphasized the differences between the asymptotics
obtained in the zero-Λ limit and the standard definitions
of asymptotic flatness in the literature in the case of radiating
spacetimes in odd dimensions. It would be interesting to
investigate more precisely to which extent perturbations of
the asymptotically flat metric do not preserve the asymp-
totics in odd dimensions when the spacetime contains
gravitational radiation. We also did not address the question
of how to compute flat-space S-matrix elements in general
from the zero-Λ limit of boundary correlators. An interesting
direction would be to verify whether correlation functions
obtained by taking variations of the bulk action with respect
to those boundary configurations at past and future temporal
infinity (the “corners” discussed in Sec. III D) can be used in
a holographic computation of the bulk S-matrix elements.
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APPENDIX A: CONFORMAL COMPACTNESS

A manifold ðM; GÞ is defined to be Cn≥0 conformally
compact if there exists an asymptote ð ~M; ~G; ρÞ consisting
of a manifold-with-boundary ð ~M; ~GÞ with boundary ∂ ~M
and a defining function ρðxÞ∶ ~M → Rþ satisfying the
following properties [79–81]:
(1) M ¼ int ~M ¼ fp ∈ ~M∶∃ open setp∋U ⊂ ~Mg,
(2) ~Gμν ¼ ρ2ðxÞGμν∶ ~M ¼ fρ ≥ 0g, ∂ ~M ¼ fρ ¼ 0g,
(3) dρ ≠ 0 on ∂ ~M,

with ρðxÞ of class C∞ and ~G nondegenerate and of class
Cn≥0 in ~M. The region fρ ¼ 0g of ~M is referred to as the
conformal boundary of M and ~M as the conformal
embedding.

APPENDIX B: GAUSSIAN NULL COORDINATES

In this appendix, we will derive our coordinate system by
performing a brief ADM analysis of the spacetime metric
Gμν. For a thorough treatment see the original works in
Refs. [51,52,54]. We introduce coordinates xμ ¼ ðu; xAÞ ¼
ðu; r; xiÞ ¼ ðr; xaÞ and define the surfaces of constant u to
be null. We then do an ADM decomposition of Gμν with
respect to these surfaces as

ds2 ¼ −α2du2 þ hABðdxA þ αAduÞðdxB þ αBduÞ: ðB1Þ

We also decompose the induced metric hAB with respect to
the surfaces of constant r as

hABdxAdxB ¼ β2dr2 þ γijðdxi þ βidrÞðdxj þ βjdrÞ ðB2Þ

and define the spatial metric γij to be positive definite.
Since the surfaces of constant u are null by definition, the
induced metric hAB must be degenerate. Since the deter-
minant

ffiffiffi
h

p ¼ β
ffiffiffi
γ

p
and γij > 0, the degeneracy of hAB

implies that β ¼ 0 everywhere. With this condition, we
rewrite Gμν without loss of generality as

ds2 ¼ −ϕdu2 þ 2Mdudrþ γijðdxi þ σiduþ βidrÞ
× ðdxj þ σjduþ βjdrÞ ðB3Þ

¼ N2dr2 þ qabðdxa þ NadrÞðdxb þ NbdrÞ; ðB4Þ

where ðN;NaÞ are the lapse and shift of the radial foliation
in r and where the induced metric qab is given by

qabdxadxb ¼ −ϕdu2 þ γijðdxi þ σiduÞðdxj þ σjduÞ:
ðB5Þ

Let us then perform an ADM decomposition of the
Einstein-Hilbert Lagrangian with respect to the radial
foliation (B4):

L ¼
ffiffiffiffi
G

p
R½G� ¼ N

ffiffiffi
q

p ðR½q� þQ2 −Q ·Q − 2∇μvμÞ;
ðB6Þ

where Qab ¼ 1=ð2NÞð∂r − £NÞqab is the extrinsic curva-
ture of the surfaces of constant r, and vμ ¼ Qnμ − aμ, with
nμ and aμ the unit normal and acceleration of these
surfaces, respectively. The last term in the Lagrangian is
a total derivative and thus will be discarded. The decom-
posed Lagrangian is now a functional of the lapse, shift,
and induced metric,N,Na and qab. A quick inspection ofL
then reveals that only qab contains radial derivatives, and
therefore the equations of motion for the metric will be
second-order differential equations in r for qab only. This
indicates as usual that N and Na do not represent true
degrees of freedom and therefore can be gauge-fixed; i.e.,
they can be brought to any configuration by diffeomor-
phisms near a surface of constant r. If we then return to
(B5), we find that qab depends only on ϕ, σi, and γij. This
means that the Lagrangian does not contain radial deriv-
atives of the functions M and βi that appear in (B3), and
therefore these can be gauge-fixed by diffeomorphisms.
The simplest gauge we can choose is the Gaussian gauge
ðM ¼ 1; βi ¼ 0Þ, in which the spacetime metric assumes
the final form

ds2 ¼ −ϕdu2 þ 2dudrþ γijðdxi þ σiduÞðdxj þ σjduÞ;
ðB7Þ

with determinant
ffiffiffiffi
G

p ¼ ffiffiffi
γ

p
. In the particular case of black

hole spacetimes in Gaussian null coordinates, the horizon is
defined to consist of the surface r ¼ 0. Then note that it is
still possible to use a further diffeomorphism of the form
xi → xi þ fiðx; uÞ in (B7) and choose the set of functions
fi such that

σi → rα ~σiðr; u; xÞ∶ α > 0; ~σi ¼ Oðr≥0Þ: ðB8Þ

Also, since the horizon is a null surface, we find that the
function ϕ must behave near r ¼ 0 at least as

ϕ ¼ rβφðr; u; xÞ∶ β > 0; φ ¼ Oðr≥0Þ: ðB9Þ

In most cases, the equations of motion near the horizon then
fix the exponents α; β ¼ 1 for a nondegenerate horizon, and
α ¼ 1, β ¼ 2 for a degenerate one.

APPENDIX C: RICCI TENSOR

In this appendix, we provide the decomposition of the
Ricci tensor of our gauge-fixed metric:

ds2dþ2 ¼ Gμνdxμdxν ¼
l2
o

z2
ð−φNð0Þdu2 − 2Nð0Þdudz

þ gijðdxi þ σiduÞðdxj þ σjduÞÞ; ðC1Þ
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where Nð0Þ ¼ Nð0Þðu; xiÞ, and the remaining components of the metric depend on all coordinates. The inverse and
determinant of the metric are given by

Gμν ¼
�
z
lo

�
2

N−1
ð0Þ

0
B@

0 −1 0

−1 φ σi

0 σi Nð0Þgij

1
CA; ðC2Þ

ffiffiffiffi
G

p
¼ ðlo=zÞdþ2Nð0Þ

ffiffiffi
g

p
: ðC3Þ

Define

kij ≔
1

2Nð0Þ
ð∂u − £σÞgij: ðC4Þ

The decomposition of the Ricci tensor Rμν½G� is then given by [51,60]

2Rzi½G� ¼
1

Nð0Þ

�
−ðg · σ0Þi0 þ

d
z
ððg · σ0Þi − ∂iNð0ÞÞ −

1

2
Tr½g−1g0�ððg · σ0Þi − ∂iNð0ÞÞ

�

þ∇jðg−1g0Þji − ∂iTr½g−1g0�; ðC5Þ

2ðRzu½G� − σiRzi½G�Þ ¼ φ00 −
dþ 2

z
φ0 þ 2ðdþ 1Þ

z2
φþ Tr½g−1g0�

�
1

2
φ0 −

1

z
φ

�

−∇iðσ0i − gij∂jNð0ÞÞ −
1

Nð0Þ
σ0iððg · σ0Þi − ∂iNð0ÞÞ

− Nð0Þ

�
2Tr½g−1k�0 − 2

z
Tr½g−1k� þ ðk · g0Þ

�
; ðC6Þ

2Rij½G� ¼ 2Rij½g� þ
1

Nð0Þ

�
−ðφg0ijÞ0 þ

d
z
φg0ij þ

2

z
φ0gij −

2ðdþ 1Þ
z2

φgij þ φ

�
1

z
gij −

1

2
g0ij

�
Tr½g−1g0� þ φðg0 · g0Þij

þ 2∇ðiððg · σ0ÞjÞ − ∂jÞNð0ÞÞ − N−1
ð0Þðg · σ0Þiðg · σ0Þj

�
þ ∂i logNð0Þ∂j logNð0Þ

þ 4k0ij −
2d
z
kij þ Tr½g−1g0�kij þ

�
g0ij −

2

z
gij

�
Tr½g−1k� − 4ðk · g0ÞðijÞ; ðC7Þ

2Rzz½G� ¼ −Tr½g−1g00� þ 1

2
ðg0 · g0Þ; ðC8Þ

2ðRui½G� − σjRij½G� − φRzi½G�Þ ¼ ð∂u − £σÞ
�

1

Nð0Þ
ððg · σ0Þi − ∂iNð0ÞÞ

�
þ Tr½g−1k�ððg · σ0Þi − ∂iNð0ÞÞ

þ 2ðg−1kÞji∂jNð0Þ − ðg−1g0Þji∂jφþ ∂iφ
0 þ Nð0Þ

�
−
d
z
þ 1

2
Tr½g−1g0�

�
∂iðφ=Nð0ÞÞ

þ 2Nð0Þð∇jðg−1kÞji − ∂iTr½g−1k�Þ − φð∇jðg−1g0Þji − ∂iTr½g−1g0�Þ; ðC9Þ
2

Nð0Þ
½Ruu½G� − 2σiRui½G� þ σiσjRij½G� − φðRzu½G� − σiRzi½G�Þ�

¼
�
−
d
z
þ 1

2
Tr½g−1g0�

�
ð∂u − £σÞðφ=Nð0ÞÞ − 2ð∂u − £σÞTr½g−1k�

þ φð2Tr½g−1k�0 þ ðk · g0ÞÞ − φ0Tr½g−1k� − 2Nð0Þðk · kÞ þ∇i∇iφ

þ gij∂iφ∂j logNð0Þ þ
1

Nð0Þ
ðφ∇iσ

0i − σ0i∂iφÞ; ðC10Þ
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where the prime denotes differentiation with respect to z, the trace and inner product are taken with respect to gij, and where∇igjk ≔ 0. When replaced by the Einstein equations,

Rμν½G� ¼ −
dþ 1

α2l2
o
Gμν; ðC11Þ

we find that equations (C5)–(C7) represent the dynamical equations for the metric components σi, φ, and gij, respectively,
whereas equations (C9) and (C10) are constraint equations, since they do not contain second-order derivatives in z. After
(C7) is solved, equation (C8) can also be seen as a constraint equation because it can be replaced by an equation without
second-order derivatives in z if we use the trace of (C7).

APPENDIX D: TERMS Xij AND Xi

The algebraic expressions for the terms Xij and Xi that appear in equations (3.59) and (3.61) depend on the coefficient
gð1Þij and vanish if the boundary metric is static. In general, the expressions are given by

Xij ¼
1

4α2
gð1ÞijðTr2½g−1ð0Þgð1Þ� þ ðgð1Þ · gð1ÞÞÞ −

3

4
Tr½g−1ð0Þgð1Þ�kð1Þij −

5

4
Tr½g−1ð0Þkð1Þ�gð1Þij

þ 1

2
Rð0Þgð1Þij −

3

2
gð1Þðikð0Þ∇jÞ∂k logNð0Þ þ

1

4
ðð0Þ∇i∂jTr½g−1ð0Þgð1Þ� − ð0Þ

□gð1ÞijÞ

þ 1

4Nð0Þ
ðTr½g−1ð0Þgð1Þ�ð0Þ∇i∂jNð0Þ þ gð1Þijð0Þ□Nð0Þ − gð0ÞijTr½g−1ð0Þgð1Þ�ð0Þ□Nð0ÞÞ; ðD1Þ

Xi ¼
3

8
ðgð1Þ · gð1ÞÞij∂j logNð0Þ þ

1

2
gð1Þijð0Þ∇kg

kj
ð1Þ þ

1

2
ð0Þ∇kðgð1Þ · gð1ÞÞki −

3

4
gjð1Þi∂jTr½g−1ð0Þgð1Þ�

þ 1

16
∂iTr2½g−1ð0Þgð1Þ� −

5

16
∂iðgð1Þ · gð1ÞÞ: ðD2Þ

To obtain these expressions, we made use of the matrix identity

ðAB−1AÞij −
1

2
BijTr½B−1AB−1A� ¼ Tr½B−1A�

�
Aij −

1

2
BijTr½B−1A�

�
ðD3Þ

for any 2 × 2 matrices A and B such that detB ≠ 0.
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