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The nonperturbative instabilities of hot Kaluza-Klein (KK) spacetime are investigated. In addition
to the known instability of hot space (the nucleation of 4D black holes) and the known instability of
KK space (the nucleation of bubbles of nothing by quantum tunneling), we find two new instabilities:
the nucleation of 5D black holes, and the nucleation of bubbles of nothing by thermal fluctuation.
These four instabilities are controlled by two Euclidean instantons, with each instanton doing double
duty via two inequivalent analytic continuations; thermodynamic instabilities of one are shown to be
related to mechanical instabilities of the other. I also construct bubbles of nothing that are formed
by a hybrid process involving both thermal fluctuation and quantum tunneling. There is an exact
high-temperature/low-temperature duality that relates the nucleation of black holes to the nucleation
of bubbles of nothing.
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I. INTRODUCTION

Empty Minkowski is indefatigably stable. The positive
energy theorem [1] guarantees that there is no state with the
same asymptotics and same energy as the vacuum, and so
nowhere for the vacuum to go.
There are two destabilizing elements we can add. One is

a temperature. Hot space is unstable: Gross et al. showed
that it may nucleate a black hole that, if it is sufficiently
large and therefore sufficiently cool, will grow forever [2].
The other is a compact extra dimension. Kaluza-Klein
spacetime, even at zero temperature, is unstable: Witten
showed that it may nucleate a “bubble of nothing” (BoN)
where the extra dimension pinches off and a hole appears in
spacetime [3].
In this paper, I will combine these two complications.

I will add to empty Minkowski both a compact extra
dimension and a nonzero temperature. Unsurprisingly, we
will find that the instabilities both of [2] and of [3] persist, and
we will in addition find two more nonperturbative instabil-
ities.Wewill find that as well as nucleating four-dimensional
black holes (five-dimensional black strings thatwrap the extra
dimension) we may also nucleate five-dimensional black
holes. And we will find that as well as nucleating bubbles of
nothing by quantum tunneling, wemay also nucleate bubbles
of nothing by thermal fluctuation, as in Fig. 1.
The degrees of freedom of our theory are those of five-

dimensional Einstein gravity, so the nonzero temperature
fills spacetime with a thermal gas of gravitons. This thermal
gas, as well as introducing the nonperturbative instabilities
that will be the subject of this paper, also introduces
perturbative instabilities such as the Jeans instability [4]
famously responsible for the existence of Earth. Given
the presence of a perturbative instability, the question of the

existence of a nonperturbative instability, and therefore the
results of [2] and of this paper, may seem moot. However,
as we will see in Appendix A, the perturbative instabilities
occur on a wavelength that is much longer than the
characteristic size of the nonperturbative processes. This
means that with suitable IR boundary conditions [5,6] we
can kill the perturbative instabilities entirely and isolate the
nonperturbative instabilities as the only possible decays.
This is possible so long as we keep the temperature and
the Kaluza-Klein (KK) scale safely sub-Planckian. This
same limit will justify using the semiclassical and analo-
gous “semicold” approximations, as well as allowing us to
neglect the gravitational backreaction of the uncondensed
radiation while calculating our Euclidean instantons.
Because we have both a nonzero temperature and a

Kaluza-Klein extra dimension, the Euclidean instantons
that mediate our decays will have two compact directions—
they are vacuum solutions to Einstein’s equations with
asymptotic geometry R3 × S1 × S1. One of the S1’s is the
extra dimension and has asymptotic circumference L; the
other is the thermal circle and has asymptotic circum-
ference β≡ ℏ=T. Neither of the instantons we will consider
are symmetric with respect to swapping the S1’s, which
means that each instanton describes two different decays,
depending on which of the compact Euclidean directions
is taken to represent the thermal circle. Even though there
are four nonperturbative decay processes, we will find
that there are only two distinct instantons, and that each
instanton does double work.
For example, the Euclidean black string wraps one of the

S1’s but not the other. If we take the S1 it wraps to be the
extra dimension, then the instanton describes the nucleation
of a black string; if we take the S1 it wraps to be the thermal
circle, then the instanton describes the thermal nucleation
of a bubble of nothing. The Euclidean black hole does a
similar double duty, describing both the nucleation of a*adambro@stanford.edu
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five-dimensional black hole and the quantum nucleation of
a bubble of nothing.
Since relabeling the axes does not change the Euclidean

action, it does not change the decay rate. Thus the rate to
nucleate a black hole when the temperature is T and the
extra dimension has size L is the same as the rate to
nucleate a bubble of nothing when the temperature is ℏL−1

and the extra dimension has size ℏT−1. Since this relates
large values of LT to small values of LT, this is a high-
temperature/low-temperature duality.
[Aficionados of complex structure moduli will know

that the geometry of a T2 is characterized not only by
the length of its sides but also by an angle that deforms
the rectangle into a parallelogram. Thermodynamically,
this corresponds to turning on a Kaluza-Klein chemical
potential. In this paper we will set the chemical potential
to zero, but I will return to this complication in a
forthcoming work [7], and we will see how the high-
temperature/low-temperature duality fits into a larger
SLð2;ZÞ symmetry.]
The β ↔ L duality is visible in the rate for our four

decays, which we will see are given by Table I. The rate to
nucleate a 4D black hole agrees with that in [2]; the rate to

nucleate a quantum bubble of nothing corrects by a factor
of 2 the exponent of [3].
The exponents for the black-string-instanton decays

given in this chart are exact. But the exponent for the
quantum bubble of nothing is only exact when T ¼ 0: for
T > 0 decay is faster because of a thermal assist (from
fluctuating partway up the barrier). Similarly, the exponent
for the 5D black hole is only exact when L ¼ ∞: for
L < ∞ decay is faster because of the nucleated black hole’s
gravitational attraction to its images. Though the interpre-
tations differ, the duality guarantees the speed-up is the
same. To calculate the exact speed-up involves a compli-
cated numerical solution of coupled partial differential
equations; mercifully this is a heroic calculation that has
already been done in a different context by someone else
[8,9] and whose results we will first steal and then double
analytically continue. The final results are plotted in Fig. 17.
The duality maps thermodynamic instabilities to

mechanical instabilities. For example, both the black hole
and the bubble of nothing need to be large to persist. The
reasons for this are on the face of it quite different.
The black hole must be large in order to be cool—a black
hole that is too small will have a Hawking temperature
greater than that of the ambient gas and will evaporate
down and be reclaimed by the heat bath. The bubble of
nothing must be large for the same reason that all Coleman–
De Luccia bubbles (of which the bubble of nothing is one
limit [10,11]) must be large—so that the surface tension
trying to contract the bubble loses to the pressure differ-
ential trying to expand it. These two seemingly quite
different conditions—one mechanical, the other quantum
mechanical—are dual to one another.
Similarly, the temperature below which thermally fluc-

tuating all the way to the top stops being a locally optimal
way to make a bubble of nothing (what in de Sitter space
is known as the Steinhardt-Jensen transition [12,13] of the
Hawking-Moss instanton [14]) is dual to the onset of the
Gregory-Laflamme instability of a black string [15]. In
general, the dual bubble-of-nothing viewpoint will provide
an enlightening alternative perspective on the properties of
higher-dimensional black holes and black strings. But first
let us return to quantum mechanics.

FIG. 1 (color online). In one-dimensional quantum mechanics
there are two pure strategies for traversing obstacles—quantum
tunneling through the barrier (rate ∼ exp½− 1

ℏ�), or thermal fluc-
tuation over the barrier (rate ∼ exp½− 1

T�). Often the dominant
process will be a mixed strategy that fluctuates partway up the
barrier and then tunnels through the rest. In this paper we will see
that the same is true for the nucleation of bubbles of nothing. The
traditional Witten bubble of nothing results from pure quantum
tunneling; we will construct bubble-of-nothing instantons that
proceed by pure thermal fluctuation, as well as others that are part
thermal and part quantum.

TABLE I. The four nonperturbative decays of hot KK space; the temperature is ℏ=β, the extra dimension has circumference L, and
G5 ≡ l3

5=ℏ ¼ LG4 ≡ Ll2
4=ℏ. Expressed in 4D coordinates the rate to nucleate a 4D black hole is independent of L. There is a β ↔ L

duality that permutes the decays.

Decay Instanton Rate

“Quantum” bubble of nothing Black hole exp
h
− 1

32π
L3

l3
5

ð1 − L2

16β2
þ L4

128β4
þ � � �Þ

i

“Thermal” bubble of nothing Black string exp
h
− 1

16π
βL2

l3
5

i

4D black hole Black string exp
h
− 1

16π
β2L
l3
5

i

5D black hole Black hole exp
h
− 1

32π
β3

l3
5

ð1 − β2

16L2 þ β4

128L4 þ � � �Þ
i
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A. Review of thermal and quantum decay

In this subsection I will pedantically review the theory
of thermally assisted decay in one-dimensional quantum
mechanics and highlight some notable phenomena that will
persist for the bubble of nothing.
If ℏ ¼ T ¼ 0, a ball in a local minimum of a potential

is stuck. It can be unstuck by introducing either quantum
mechanics or thermodynamics. Quantum mechanically
(ℏ > 0) it may tunnel through the barrier; thermally
(T > 0) it may fluctuate to the top of the barrier. With
both quantum mechanics and thermal physics in play, it
may also adopt a hybrid strategy the semiclassical descrip-
tion of which has three distinct steps: first thermally
fluctuate to x̄, then quantum tunnel to ¯̄x, then classically
roll from rest at ¯̄x out towards large x. The rate is

Γ∼exp

�
−
1

T
Uðx̄Þ−2

ℏ

Z
¯̄x

x̄
dx

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2½UðxÞ−Uðx̄Þ�

p �
ð1Þ

(2)

The first term, the Boltzmann suppression factor, wants x̄ to
be as low as possible; the second term, the WKB quantum
tunneling factor, wants x̄ to be as high as possible. There is
an optimal tradeoff [16] given by

∂Γ
∂x̄ ¼ 0 →

1

T
¼ 2

ℏ

Z
¯̄x

x̄

dxffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2½UðxÞ −Uðx̄Þ�p : ð3Þ

An alternative way to derive the same decay rate is to
look for “instantons.” These are Euclidean solutions with

periodicity β and one negative mode that extremize the
Euclidean action

IE ¼
Z

β

0

dτ

�
1

2

�
dx
dτ

�
2

þ UðxÞ
�
; ð4Þ

the decay rate is then exp½−IE=ℏ�. To extremize the action,
the instanton must obey 1

2
ðdxdτÞ2 ¼ UðxÞ −Uðx̄Þ for some x̄.

Only some values of x̄ will give rise to trajectories with the
right periodicity, but by plugging the instanton’s equation
of motion into Eq. (3) we see that those are exactly the
values of x̄ that extremize the decay rate. In this way of
looking at things, by insisting on periodicity ℏ=T we
automatically choose the optimum value of x̄.
Or, rather, by insisting on periodicity ℏ=T we automati-

cally choose a local extremum value of x̄, which need not
be the global or even local optimum. There may be more
than one extremum, which means more than one solution
with Euclidean periodicity β; how many there are depends
on the potential and on the temperature. Figure 3 shows the
phase diagram of instantons that traverse the potential of
Fig. 2. There are four regimes.
(1) T > T�quant: thermal only.

At high enough temperatures, the fastest way
across the barrier is to go straight to the top, with no
quantum tunneling at all. The corresponding “pure
thermal” instanton has xðτÞ ¼ xtop for all τ: the
instanton has a U(1) symmetry around the thermal
circle. The action of this instanton recovers the
classical Boltzmann rate, IE ¼ βUtop.

(2) T�quant > T > Tqt: thermal beats thermally assisted
quantum.

U
Utop

U(x̄)

x̄ ¯̄x

x

FIG. 2 (color online). To traverse the barrier, a particle may
thermally fluctuate to x̄, and then quantum mechanically tunnel
to ¯̄x. Since the quantum part of the process conserves energy,
Uðx̄Þ ¼ Uð ¯̄xÞ. In the semiclassical description, after tunneling
the particle appears at ¯̄x at rest, before classically rolling out to
large x.

purely thermal thermally
assisted
quantum

IE

T0

x̄

IE

x̄
xtop0

IE

x̄
xtop0

IE

x̄
xtop0

IE

xtop0

purely thermal 
  (extra -ve mode)

intermediate solution
(extra -ve mode)

TqtTtherm Tquant

FIG. 3. The Euclidean action of the instantons that traverse
the potential of Fig. 2, as a function of the temperature T. The
tunneling rate is exp½−IE=ℏ�, so smaller IE means faster
tunneling. Because of the thermal assist the quantum tunneling
instanton has an action that falls with T. The intermediate
solution chooses the worst possible value of x̄—it gives the
slowest case—and consequently has an extra negative mode.
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For T < T�quant there is another locally optimal
way across the barrier. The corresponding “ther-
mally assisted quantum” instanton goes from x̄ at
τ ¼ 0 to ¯̄x at τ ¼ β=2 (and then back to x̄ at τ ¼ β
as required by periodicity) with a path given by
1
2
_x2 ¼ UðxÞ −Uðx̄Þ: the instanton has only a Z2

symmetry in the direction of the thermal circle.
The two (locally optimal) instantons are separated

by a (locally pessimal) intermediate solution with an
extra negative mode.

(3) Tqt > T > T�therm: thermally assisted quantum beats
thermal.
At T ¼ Tqt the instantons exchange dominance in

a first-order transition.1

(4) T�therm > T: thermally assisted quantum only. Pure
thermal has extra negative mode(s).
For temperatures below

T�therm ¼ ℏωtop

2π
≡ ℏ

2π

ffiffiffiffiffiffiffiffiffiffiffiffi
−
V 00
top

m

r
; ð5Þ

the pure thermal solution is not even a locally
optimal way across the barrier and has extra negative
modes.
As T falls, the optimal x̄ falls with it: the instanton

becomes less thermal and more quantum. But the
Boltzmann factor is quadratic in x̄ near zero,
whereas theWKB factor is linear, so for any nonzero
temperature the optimal process has x̄ strictly
positive.

These results generalize straightforwardly to thermally
assisted decay in quantum field theory. Quantum field
theory is the quantum mechanics not of the disembodied
field value ϕ, but of the three-dimensional field configu-
ration ϕð~xÞ, and the correct analogue of UðxÞ is not VðϕÞ
but U½ϕð~xÞ� ¼ R

d3x½1
2
ð ~∇ϕÞ2 þ VðϕÞ�. The field does

not homogeneously traverse VðϕÞ (the corresponding
tunneling exponent would scale like the spatial volume);
instead ϕð~xÞ traverses U½ϕð~xÞ� by inhomogeneous
bubble nucleation. As depicted in Fig. 4, in the thin-wall
regime the pertinent family of field configurations has a
bubble of lower vacuum, ϕðr < RÞ ¼ ϕt, separated by an
interpolating wall from the ambient ϕðr > RÞ ¼ 0.
Neglecting gravity, and defining the wall tension as
σ ≡ R ϕt

0 dϕ
ffiffiffiffiffiffiffiffiffiffiffiffiffi
2VðϕÞp

, the energy of a static bubble of
radius R is

UðRÞ ¼ 4πσR2 −
4π

3
ϵR3: ð6Þ

This function goes from zero at R ¼ 0 to minus infinity as
R → ∞, but to get from one to the other—to go from no
bubble to a huge bubble—involves traversing a barrier.
As before, the barrier may be traversed in two ways: there

is the thermal way [18], and there is the quantum way [19].
The thermal instanton has a U(1) symmetry around the
thermal circle and U0ðRÞ ¼ 0 → R ¼ 2σ=ϵ; the quantum
instanton has only a Z2 symmetry around the thermal circle
and UðRÞ ¼ 0 → R ¼ 3σ=ϵ. These instantons are shown in
Fig. 5 and have a phase diagram analogous2 to Fig. 3.
After nucleation, a bubble bears the imprint of how it

was made: the thermal-made bubble is born smaller than
the quantum-made bubble (R ¼ 2σ

ϵ vs R ¼ 3σ
ϵ ); the thermal

bubble has positive energy whereas the quantum bubble has
zero energy; and the thermal bubble is in (unstable) static
equilibrium whereas the quantum bubble, while born at
rest, immediately accelerates outwards. We will see these
features repeated for bubbles of nothing.
Finally, let us connect this analysis with the well-studied

example of thermal and quantum tunneling in de Sitter
space [21,22]. De Sitter space exhibits all of the regimes
described above. For high enough Gibbons-Hawking
temperature there is only the pure thermal instanton (called
the “Hawking-Moss” in this case). For intermediate tem-
perature there is both the Hawking-Moss instanton and the
thermally assisted quantum instanton (the “Coleman–De
Luccia”), as well as intermediate solutions with extra

FIG. 4. Left: The potential energy density VðϕÞ of an example field. Center: A bubble of ϕt separated by a thin wall from the
background ϕ ¼ 0. Right: The energy U½R� of a static bubble of radius R in flat spacetime.

1There are other possibilities for the phase diagram. By
deforming the potential we can either conjure additional instan-
tons (with corresponding extra-negative-mode solutions), or get
rid of the intermediate solution entirely by making the transition
second order [13,17]. However, the scheme described above is a
typical pattern, and will also turn out to be that exhibited by
bubbles of nothing in hot 5D KK space.

2One artifact of being in the thin-wall regime is that the thermal
assist of the quantum instanton is tiny.
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negative modes [13]. For low enough temperature the
Hawking-Moss itself has an extra negative mode and only
the Coleman–De Luccia instanton contributes to the
decay rate [12].

B. Review of black strings and “caged” black holes

In five-dimensional Kaluza-Klein spacetime, there are
two possible static horizon topologies. There are black
holes, for which the horizon topology is S3, and there are
black strings, for which the horizon topology is S2 × S1, as
in Fig. 6. The phase diagram of these solutions has been
extensively studied [23–26]; I now give a brief review. To
characterize the black objects we will use their Hawking
temperature, which is inversely proportional to their size:
smaller means hotter.
A black string of uniform girth wrapped around an extra

dimension of circumference L and in thermal equilibrium
with a heat bath of temperature T ≡ ℏ=β has free energy

Fðblack stringÞ≡m − TS ¼ 1

16π

βL
G5

: ð7Þ

A five-dimensional black hole breaks the symmetry in
the extra-dimensional direction and is therefore more
complicated. If the black hole is much smaller than L it

does not “notice” the compactification, and so its free
energy is that of five-dimensional Schwarzschild,

Fðblack hole; L ¼ ∞Þ≡m − TS ¼ 1

32π

β2

G5

: ð8Þ

For L < ∞ the situation is more intricate. First-order [27]
and second-order [28] corrections have been analytically
calculated to the metric of these so-called “caged”
black holes (we will see their solution in Sec. III). By
interrogating this metric we can extract the first- and
second-order corrections to the free energy,

Fð‘caged’ black hole; L < ∞Þ

¼ 1

32π

β2

G5

�
1 −

L2

16β2
þ L4

128β4
þ � � �

�
: ð9Þ

The black hole’s gravitational attraction to its images
lowers the free energy at fixed asymptotic temperature.
For black holes of size comparable to the extra dimension
the perturbative expansion breaks down and we will need
the numerical results of Headrick et al. [8].
Figure 7 shows the phase diagram of black holes and

black strings. There are four regimes:

 KK
direction

 KK
direction

FIG. 6. Black strings (top) and “caged” black holes (bottom) as a function of temperature. The shaded region is the interior of the event
horizon. At high temperatures the black hole is small and the black string is thin; for β < ð1.75…ÞL the black string is so thin that it has a
mechanical “Gregory-Laflamme” instability to become nonuniform. At lower temperatures the black hole is larger and is elongated in
the KK direction. Eventually, for β > ð3.39…ÞL, the would-be black hole is too large to be accommodated and there is no such solution.

FIG. 5. Thermal (top) and thermally assisted quantum (bottom) flat-spacetime quantum field theory instantons as a function of σT=ϵ;
the larger σT=ϵ, the larger the bubble needs to be relative to the thermal circle. (Since we are by assumption in fixed flat spacetime, the
periodicity of the thermal circle is fixed at β; if we turned on gravitational backreaction the thermal circle would shrink near the center of
the bubbles due to gravitational blueshifting, à la Tolman-Oppenheimer-Volkoff [20].) The thermal instantons have a U(1) symmetry
around the thermal circle; the quantum instantons have only a Z2 symmetry. The field first thermally fluctuates to ϕð~x; τ ¼ 0Þ (the
horizontal slice represented by the black lines—this is the analogue of x̄), then quantum tunnels to ϕð~x; τ ¼ β=2Þ (the horizontal slice
through the center of the bubbles—the analogue of ¯̄x).
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(4̄ ) ð1.7524…ÞL > β: black hole only.
At high temperature the black string is so thin that

it has a Gregory-Laflamme instability to become
nonuniform [15,30], and the only mechanically
stable solution is the black hole.

(3̄ ) ð2.75…ÞL > β > ð1.7524…ÞL: caged black hole
beats black string.
Below the Gregory-Laflamme point the black

string is mechanically stable, but at first still has
higher free energy than the black hole.
There is in addition a third solution to Einstein’s

equations, a “lumpy” black string [31] that is
nonuniform in the extra dimension. This intermedi-
ate solution has a mechanical instability that flows
in one direction towards the uniform black string
and in the other towards the black hole.

(2̄ ) ð3.39…ÞL > β > ð2.75…ÞL: black string beats
caged black hole.
For β ¼ ð2.75…ÞL the black string has the same

free energy as the black hole. (This equality would
have happened already at β ¼ 2L if not for the black
hole’s free-energy-lowering gravitational attraction
to its images.)

(1̄ ) β > ð3.39…ÞL: black string only.
At the “merger point” the black hole meets the

lumpy black string and annihilates [32]. Below
this temperature the would-be black hole is too
large to be accommodated by the extra dimension
and the only solution is the uniform black
string.

The phase diagram of quantum and thermal instantons
resembles that of black holes and black strings, only with
high and low temperatures switched. We will now see that
this is not a coincidence.

II. BLACK-STRING INSTANTON

The Euclidean black-string instanton controls both the
nucleation of black strings and the thermal nucleation of
bubbles of nothing.3 It is a vacuum solution of Einstein’s
equations that asymptotes to S1 × S1 × R3 given by

ds2 ¼
�
1 −

R
r

�
dw2 þ dr2

1 − R
r

þ r2ðdθ2 þ cos2θdϕ2Þ

þ dz2: ð10Þ

To avoid a conical singularity at r ¼ R, w must be periodic
under w → wþ 4πR; z may have any periodicity. The
black-string instanton has a U(1) symmetry in the w
direction, a U(1) symmetry in the z direction, and a
SO(3) spherical symmetry. In Appendix C, the
Euclidean action is shown to be

IE ¼ πR2

G5

× periodicity of z: ð11Þ

The Euclidean black string always has at least one
negative mode, associated with uniformly changing its
radius. It can also have another one. As we saw in Sec. I B,
when the periodicity in the z direction is more than 1.7524
times the periodicity in the w direction, there is another
negative mode associated with the Euclidean black string
becoming nonuniform.

A. 4D black holes/5D black strings

Upon analytic continuation w → it, the Euclidean
instanton of Eq. (10) becomes

black string caged
black
hole

unstable black string 

lumpy black string
(extra -ve mode)

GL

MP

FIG. 7. Free energy of black strings and black holes as a
function of their temperature. (This and all ensuing such diagrams
are schematic—the precise curves can be straightforwardly
plotted by adapting the numerical solution of Fig. 5 of [8], but
the result would be unsightly and unilluminating.) To accentuate
the similarity to Fig. 3 we have plotted F in units of LT2. This
quantity would be independent of T for an uncaged 5D black
hole, but for L < ∞ the gravitational attraction to the image black
holes bends the curve downwards [29]. Between the Gregory-
Laflamme point and the merger point there is also a nonuniform
black string.

FIG. 8 (color online). The black-string instanton of Eq. (10).
The angular S2 directions have been suppressed.

3This instanton actually mediates also a third transition, given
by continuing not w or z but instead θ. This gives the quantum
nucleation of a 2þ 1þ 2-dimensional bubble of nothing in
which the two extra dimensions, w and z, are compactified on
a torus and the w direction pinches off. Since this is not an
instability of hot space with a single KK direction, it is beyond the
remit of this paper.
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ds2 ¼ −
�
1−

R
r

�
dt2 þ dr2

1− R
r

þ r2ðdθ2 þ cos2θdϕ2Þ þ dz2:

ð12Þ

The size of the extra dimension is the same everywhere.
From the five-dimensional perspective this is a black string
uniformly wrapped around the extra dimension; from the
four-dimensional perspective this is a black hole, as in Fig. 9.
Since the z direction is to be matched to the extra

dimension and the w direction (being the continuation of
the time direction) is to be matched to the thermal circle, the
required periodicity is

z → zþ L ð13Þ
w → wþ β: ð14Þ

To avoid a conical singularity requires R ¼ β=4π. The rate
to nucleate black strings is given by the instanton’s
Euclidean action

Γ ∼ exp

�
−
IE
ℏ

�
¼ exp

�
−

1

16π

Lβ2

G5ℏ

�
¼ exp

�
−

1

16π

β2

G4ℏ

�
:

ð15Þ
This expression agrees with that found in [2].
The instanton gives the optimal route to traverse the

barrier; we will now examine the barrier itself. The free
energy of a black string of radius R [and therefore of
Hawking temperature THawk ¼ ℏ=ð4πRÞ] in a heat bath of
temperature T is

F≡m − TS ¼ L
2G5

�
R −

2πTR2

ℏ

�
: ð16Þ

This function plotted in Fig. 10, has a local minimum at
R ¼ 0 and a global minimum as R → ∞, but to get from
one to the other—to go from no string to a huge string—
involves traversing a barrier. A barrier may in principle be
traversed either quantum mechanically or thermally, but
this particular barrier is so broad that only the pure thermal
route is locally optimal. (Since the barrier itself depends on
T, we can be in the T > T�quant regime for all T.) The only
option is to go straight to the top.
The top of the barrier is at R ¼ β=4π, where the

Hawking temperature of the black string is equal to the
temperature of the heat bath, THawk ¼ T: the string is

nucleated in thermal equilibrium with the radiation. But the
equilibrium is an unstable one. If the string shrinks a little
then it gets hotter (its specific heat is negative), loses more
mass, gets hotter still, and is soon reclaimed by the heat
bath. Conversely if the string grows a little then it cools and
keeps on growing. The negative mode of the Euclidean
instanton has been continued to a thermodynamic insta-
bility of the nucleated string.
The exponentially most likely way to make a black string

that lives forever is to make one just over the threshold
for survival. Since no tunneling is required, only thermal
fluctuation, the rate to make this plucky string is given by
its Boltzmann suppression exp½−F=T�. This rate is the
same as that given by the instanton calculation since for
solutions with a U(1) syFigmmetry round the thermal circle
the Euclidean action is related to the free energy by

IE ¼ ℏF
T

¼ βm −
S
ℏ
: ð17Þ

The equivalence holds only for U(1)-symmetric thermal
circles. For decays that feature quantum tunneling as well
as thermal fluctuation [and therefore which break U(1) to
Z2] the action is not given by Eq. (17) and the free energy of
the decay product does not calculate the decay rate.
For β < ð1.7524…ÞL, the Euclidean instanton has in

addition a second negative mode. This mode is continued
to a mechanical Gregory-Laflamme instability of the black
string. For higher temperatures, therefore, the uniform
black string is not a locally optimal decay product.

B. Thermal bubbles of nothing

Upon analytic continuation z → it, the Euclidean instan-
ton of Eq. (10) becomes

ds2 ¼
�
1 −

R
r

�
dw2 þ dr2

1 − R
r

þ r2ðdθ2 þ cos2θdϕ2Þ − dt2:

ð18Þ
A snapshot of this metric is plotted in Fig. 11. The size
of the extra dimension is smaller for small r, eventually
pinching off entirely at r ¼ R; for r < R there is no space
and no time—there is literally nothing. Unlike the original

FIG. 9. The black string is given by a constant-w slice through
the instanton of Fig. 8.

black string hotter heat bath hotter

FIG. 10. The free energy of a black string, as a function of its
radius R.
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bubble of nothing discovered by Witten [the “quantum”
bubble of nothing in our vocabulary, see Eq. (32)], this
“thermal” bubble of nothing is static [33].
Since the w direction is to be matched to the extra

dimension and the z direction is to be matched to the
thermal circle, the required periodicity is

w → wþ L ð19Þ

z → zþ β: ð20Þ

To avoid a conical singularity requires R ¼ L=4π. The rate
to nucleate a thermal bubble of nothing is given by the
instanton’s Euclidean action

Γ ∼ exp

�
−
IE
ℏ

�
¼ exp

�
−

1

16π

L2

G5T

�
¼ exp

�
−

1

16π

L
G4T

�
:

ð21Þ

The barrier to nucleation is provided by the fact that
small bubbles of nothing automatically seal up. Consider
the minimum free energy for a spacetime that pinches off
at a given area-radius R. This function goes from zero at
R ¼ 0 to minus infinity as R → ∞ [34], but to get from one
to the other—to go from no bubble to a huge bubble—
involves traversing a barrier, and the thermal bubble of
nothing sits at the top of this barrier.
The top of the barrier is a precarious place to be. If the

radius shrinks slightly the bubble of nothing collapses under
its own surface tension4; if the radius grows slightly the
bubble wall accelerates outwards and grows forever. The
negative mode of the Euclidean instanton has been con-
tinued to a mechanical instability of the nucleated bubble.
Since no tunneling is required to make a thermal bubble

of nothing, only thermal fluctuation, the decay rate is given
by the Boltzmann suppression of the decay product,
exp½−F=T�. Said another way, since there is a U(1)
symmetry round the thermal circle, IE ¼ βF.
For L < ð1.7524…Þβ, the Euclidean instanton has a

second negative mode. This mode indicates that pure

thermal tunneling is no longer even locally the fastest path
across the barrier (which indicates that T < T�therm, in the
language of Sec. I A).

C. Black string vs thermal bubble of nothing

Figure 12 compares the two rates. At high temperature
(TL > ℏ) it is faster to nucleate a black string; at low
temperature (TL < ℏ) it is faster to thermally nucleate a
bubble of nothing. There is a β ↔ L duality that permutes
the decays.
The properties of the nucleated objects are shown in

Table 2 (see Appendixes C and D). The two Euclidean
actions are related by the duality β ↔ L, which swaps the
labels on the two Euclidean S1’s. At the self-dual point,
β ¼ L, the two actions, and therefore the two free energies,
are identical. But the duality applies only to Euclidean
quantities, and does not extend to Lorentzian quantities like
mass and entropy. The four-dimensional black hole is
heavier than the thermal bubble of nothing (twice as heavy),
but precisely compensates for having to borrow more from
the heat bath with its large entropy.

III. BLACK-HOLE INSTANTON

The Euclidean black-hole instanton controls both the
nucleation of 5D black holes and the quantum nucleation of
bubbles of nothing. It is a vacuum solution to Einstein’s
equations that asymptotes to S1 × S1 × R3. The Euclidean
black hole has a U(1) symmetry in the w direction and an
SO(3) spherical symmetry, but no U(1) symmetry in the
z direction; the location of the Euclidean black hole in the
z direction breaks the symmetry down to Z2. Because of
the reduced symmetry, there is not a general analytic
solution for the metric.

A. Ignoring periodicity of z

In the limit where the z direction is so large as to be
effectively uncompactified, the metric is the Euclidean 5D
Schwarzschild solution

ds2 ¼
�
1 −

R2

r2

�
dw2 þ dr2

1 − R2

r2

þ r2ðdθ2 þ cos2θðdϕ2 þ sin2ϕdψ2ÞÞ; ð22Þ
where z is defined cylindrically as z ¼ r sin θ. To avoid a
conical singularity at r ¼ R, w must be periodic under
w → wþ 2πR. The Euclidean action is derived in
Appendix C to be

IE ¼ 1

G5

π2R3

4
: ð23Þ

B. Including periodicity of z

For Euclidean black holes that are much smaller than the
periodicity of the z direction, a perturbative expression for the

FIG. 11. The thermal bubble of nothing, given by a constant-z
slice through the instanton of Fig. 8.

4The collapse will presumably give rise to a black string, but
since the mass of the static bubble of nothing is so small, the
black string will itself have a Gregory-Laflamme instability and
soon become nonuniform [26,35].
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metric5 is given by suitably analytically continuing the results
of [27]. For Euclidean black holes that are comparable in size
to the periodicity of the z direction, wewill use the numerical
results of Headrick et al. [8]. Euclidean black holes of size
much larger than the periodicity of the z direction do not
exist. As we saw in Sec. I B, when the periodicity of the w
direction is more than 3.39 times the periodicity of the z
direction, thewould-beEuclideanblack hole is too large to be
accommodated. Whenever it does exist, the Euclidean black
hole has exactly one negative mode.

C. 5D black holes

The 5D black hole is given by continuing the black-hole
instanton w → it. A snapshot of this metric is plotted
in Fig. 14.

1. Ignoring periodicity (L ¼ ∞)

Upon analytic continuation w → it, the Euclidean
instanton of Eq. (22) becomes

ds2 ¼ −
�
1 −

R2

r2

�
dt2 þ dr2

1 − R2

r2

þ r2ðdθ2 þ cos2θðdϕ2 þ sin2ϕdψ2ÞÞ: ð26Þ
This is the 4þ 1-dimensional Schwarzschild solution.
Since the w direction is to be matched to the thermal
circle, the required periodicity is

w → wþ β: ð27Þ
To avoid a conical singularity requires R ¼ β=2π. In
uncompactified 5D Minkowski, the rate to nucleate a
black hole is

Γ ∼ exp

�
−
IE
ℏ

�
¼ exp

�
−

1

32π

β3

G5ℏ

�
: ð28Þ

2. Including periodicity (L < ∞)

Upon analytic continuation w → it, the Euclidean
instanton of Eqs. (24) and (25) becomes a caged black

HOTTER
LARGER XD

COLDER
SMALLER XD

thermal 
bubble of 
nothing

black
string

nucleation
GL therm

black string 
(extra -ve mode)

thermal BoN 
(extra -ve mode)

FIG. 12. The Euclidean action IE of the instantons that make a black string and a thermal bubble of nothing, in units of β3=2L3=2=G5

(schematic). The tunneling rate is Γ ∼ exp½−IE=ℏ�, so smaller IE means faster tunneling. Above the Gregory-Laflamme temperature the
string has an extra negative mode; below T�therm the thermal tunneling instanton has an extra negative mode (and so is not even locally the
fastest way across the barrier). A β ↔ L duality permutes the decays.

TABLE II. The properties of the nucleated black string and
thermal bubble of nothing.

Black string Thermal BoN

Mass 1
8π

βL
G5

1
16π

L2

G5

Entropy 1
16π

β2L
ℏG5

0

Action 1
16π

β2L
G5

1
16π

βL2

G5

5To first order in ϵ, when the asymptotic periodicity of z is L̄,
the close-in metric is

ds2 ¼
�
1 −

ϵL̄2

ρ2
−

π2ϵ

12ρ2
½4ð1 − sin4θÞðρ2 − ϵL̄2Þ þ ϵL̄2�

�
dw2

þ 1þ π2ϵ
3
½ð3 ρ2

ϵL̄2 − 1Þsin4θ − 1�
1 − ϵL̄2

ρ2
− π2ϵ

12ρ2
½4ð1 − sin4θÞðρ2 − ϵL̄2Þ þ ϵL̄2� dρ

2

− 2π2
ρ3

L̄2
sin3θ cos θdρdθ

þ ρ2
�
1þ π2ϵ

�
ρ2

ϵL̄2
− 1

�
sin2θcos2θ

�
dθ2 þ ρ2cos2θdΩ2

2;

ð24Þ
which is a slightly prolate version of Eq. (22). This matches via
z ∼ ρ sin θ onto the far-out metric

ds2 ¼
�
1 − ϵ

πL̄
r

sinh 2πr
L̄

cosh 2πr
L̄ − cos 2πzL̄

�
dw2

þ
�
1 − ϵ

πL̄
2r

sinh 2πr
L̄

cosh 2πr
L̄ − cos 2πzL̄

�
dr2

þ r2dΩ2
2 þ

�
1 − ϵ

πL̄
2r

sinh 2πr
L̄

cosh 2πr
L̄ − cos 2πzL̄

�
dz2: ð25Þ

The value of ϵ is set by requiring that there be no conical
singularity at the pinch-off point ρ ¼ ffiffiffi

ϵ
p

L̄ð1þ π2ϵ
24
Þ. The far-out

metric makes manifest the Z2 symmetry (both the z ¼ 0 and
z ¼ L̄=2 fixed points) whereas the close-in region only overlaps
with one of the fixed points (the z ¼ 0 fixed point, equivalent
to θ ¼ 0).
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hole, localized in the extra dimension. The required
periodicity is

z → zþ L ð29Þ
w → wþ β: ð30Þ

Since the instanton has a U(1) symmetry around the
thermal circle—which is to say since no quantum tunneling
is required, only thermal fluctuation—the Euclidean action
can be determined directly from the free energy of the
decay product. We already calculated the free energy of a
caged black hole in Eq. (9), so using IE ¼ βF the
nucleation rate is

Γ ∼ exp

�
−
IE
ℏ

�

¼ exp

�
−

β3

32πG5ℏ

�
1 −

β2

16L2
þ β4

128L4
þ � � �

��
: ð31Þ

The leading-order correction makes decay faster—the
gravitational attraction between the hole and its images
makes it easier to nucleate a five-dimensional black hole.
Just as was true for the black string, the exponentially

most likely way tomake a caged black hole that lives forever
is to make one just over the threshold for survival. The black
hole is born in unstable thermal equilibrium with the heat
bath, so the negative mode of the Euclidean instanton has
been continued to a thermodynamic instability.

D. Quantum bubbles of nothing

The quantum bubble of nothing is given by continuing
the black-hole instanton z → it. A snapshot of this metric is
plotted in Fig. 15.

1. Ignoring thermal assist (β ¼ ∞)

Upon analytic continuation z → it [given in the coor-
dinates of Eq. (22) by continuing θ → it̂, where
t ¼ r sinh t̂], the Euclidean instanton becomes

ds2 ¼
�
1 −

R2

r2

�
dw2 þ dr2

1 − R2

r2

þ r2ð−dt̂2 þ cosh2 t̂ðdϕ2 þ sin2ϕdψ2ÞÞ: ð32Þ

This is the quantum bubble of nothing. The size of the extra
dimension shrinks for small r, eventually pinching off
entirely at r ¼ R; for r < R there is no space and no time—
there is literally nothing. Unlike the three other Lorentzian
spacetimes considered so far, this spacetime is not static.
Instead the bubble expands, a wall of annihilation that
leaves nothing in its wake.
Since the w direction is to be matched to the extra

dimension, the required periodicity is

w → wþ L: ð33Þ

To avoid a conical singularity requires R ¼ L=2π. At zero
temperature, the rate to nucleate a quantum bubble of
nothing is

Γ ∼ exp

�
−
IE
ℏ

�
¼ exp

�
−

1

32π

L3

G5ℏ

�
¼ exp

�
−

1

32π

L2

G4ℏ

�
:

ð34Þ

This exponent is a factor of 2 smaller6 than that found by
Witten [3].

FIG. 15. A snapshot of the (thermally assisted) quantum bubble
of nothing at nucleation, given by a constant-z slice through
the instanton of Fig. 13. At the moment of nucleation the bubble
is at rest; it then expands, accelerating outwards and annihilating
spacetime.

FIG. 14. The five-dimensional caged black hole, given by a
constant-w slice through the instanton of Fig. 13.

FIG. 13 (color online). The black-hole instanton. The angular
S2 directions have been suppressed.

6For independent confirmation that the answer quoted in [3] is
out by a factor of 2, see [36]. They calculate the rate for the
quantum nucleation of a bubble of nothing in the presence of a
magnetic field; taking the B → 0 limit of their rate [their Eq. (8)]
recovers my Eq. (34).
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2. Including thermal assist (β < ∞)

The Euclidean black-hole instanton does not have a U(1)
symmetry in the z direction. If we interpret the z direction
as the thermal circle, this mean that not all slices of constant
Euclidean time are equivalent, and so it matters which slice
we continue. To get a real Lorentzian section we must
continue one of the two fixed points of the Z2 symmetry.
These two choices give rise to two different Lorentzian
spacetimes with two different interpretations:

(i) continuing z → it gives the spacetime as it appears
after the nucleation of a bubble of nothing. In the
language of Sec. I A, this is analogous to ¯̄x.
(This continuation surface straddles both the

far-out coordinates of Eq. (25) and the close-in
coordinates of Eq. (24). For the close-in coordinates,
z → it is given by θ → it̂.)

(ii) continuing z → β
2
þ it gives the spacetime after

thermal fluctuation but before quantum tunneling.
In the language of Sec. I A, this is analogous to x̄.
(This continuation surface avoids the close-in

region entirely.)
The required periodicity is

w → wþ L ð35Þ

z → zþ β: ð36Þ

The rate to nucleate a thermally assisted quantum bubble
of nothing is given by acting with the duality L ↔ β on
Eq. (31),

Γ ∼ exp

�
−

L3

32πG5ℏ

�
1 −

L2

16β2
þ L4

128β4
þ � � �

��
: ð37Þ

The thermal assist speeds decay. The instanton gives the
local optimum of all paths across the barrier, including
those that take different amounts of energy from the heat
bath, so the effect of the thermal assist can only be to make
the quantum decay faster.

The other three processes considered in this paper
proceeded by pure thermal fluctuation, with no quantum
tunneling required, so the decay rate was given by the
Boltzmann suppression of the decay product, exp½−F=T�.
The thermally-assisted-quantum-bubble-of-nothing decay
features quantum tunneling as well as thermal fluctuation,
and is therefore further suppressed over and above the
Boltzmann suppression by a WKB tunneling factor. The
absence of a U(1) symmetry round the thermal circle means
that for the quantum bubble of nothing, IE ≠ βF.

E. Black hole vs quantum bubble of nothing

Figure 16 compares the two rates. At high temperature
(TL > ℏ) it is faster to nucleate a black hole; at low
temperature (TL < ℏ) it is faster to nucleate a quantum
bubble of nothing. There is a β ↔ L duality that permutes
the decays.

IV. DISCUSSION

If you are inside a black hole you cannot get out—the
gravitational field is too strong. If you are outside a bubble
of nothing you cannot get in—there is no “in.”
It has long been known that bubbles of nothing may form

by quantum tunneling [3]. We have seen that bubbles of
nothing may also form by thermal fluctuation, or by a
mixture of thermal fluctuation and quantum tunneling. Just
as in quantum field theory, the thermal instanton has a U(1)
symmetry around the thermal circle, whereas the quantum
instanton has only a Z2 symmetry. And just as in quantum
field theory, after nucleation the bubble bears the imprint of
how it was made: the thermal-made bubble is born smaller
than the quantum-made bubble (R ¼ L

4π vs R ¼ L
2π); the

thermal bubble has positive energy whereas the quantum
bubble has zero energy; and the thermal bubble is in
(unstable) static equilibrium whereas the quantum bubble,
while born at rest, immediately accelerates outwards.
Figure 17 shows the decay rate for all four nonperturba-

tive instabilities of hot KK space. For low temperature
(TL < ℏ) the globally fastest decay is to make a bubble of
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LARGER XD
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thermally 
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quantum BoN
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black hole 
nucleation
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FIG. 16. The Euclidean action IE of the instantons that make a caged black hole and a quantum bubble of nothing, in units of
β3=2L3=2=G5 (schematic). The tunneling rate is Γ ∼ exp½−IE=ℏ�, so smaller IE means faster tunneling. A β ↔ L duality permutes the
decays. Black holes only exist for temperatures above the merger point; the quantum bubble-of-nothing instanton only exist for
temperatures below T�quant.
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nothing via a thermally assisted quantum process. Indeed,
for these temperatures that is the only locally optimal way
to make a bubble of nothing, since the thermal process has
an extra negative mode. It is also possible to nucleate black
holes and black strings, and even though these processes are
exponentially subdominant at low temperatures, they lead
to distinct end points, and so are independently interesting.
Starting at the lowest temperature, the locally optimal ways
to make black objects go though our four familiar regimes:

(1̄ ) β > ð3.39…ÞL: black string only.
(2̄ ) ð3.39…ÞL > β > ð2.75…ÞL: black string beats

caged black hole.
(3̄ ) ð2.75…ÞL > β > ð1.7524…ÞL: caged black hole

beats black string.
(4̄ ) ð1.7524…ÞL > β: caged black hole only.

At β ¼ L there is an exchange of dominance between black
holes and bubbles of nothing. For high temperature
(TL > ℏ) the globally fastest decay is to make a caged
black hole. Indeed, for these temperatures that is the only
locally optimal way to make a black object, since the black
string has an extra negative mode. It is also possible to
nucleate bubbles of nothing, and even though these proc-
esses are exponentially subdominant at high temperatures,
they lead to distinct end points, and so are independently
interesting. As we keep raising the temperature, the locally
optimal ways to make a bubble of nothing go though our
four regimes, the exchange now playing out in reverse:
(4) ð1.7524…Þβ > L: thermally assisted quantum bub-

ble of nothing only.
(3) ð2.75…Þβ > L > ð1.7524…Þβ: thermally assisted

quantum beats pure thermal.
(2) ð3.39…Þβ > L > ð2.75…Þβ: pure thermal beats

thermally assisted quantum.
(1) L > ð3.39…Þβ: thermal bubble of nothing only.

At the highest temperatures, the fastest way to make any-
thing is to make a black hole, and the fastest way to make
nothing is to do so thermally.
We have seen that there is a duality that relates the

nucleation of bubbles of nothing to the nucleation of black
holes and black strings. The duality acts only on Euclidean

quantities, like the Euclidean action or the number of
negative modes, and does not apply to Lorentzian quan-
tities, like mass or entropy. The duality acts with the
dictionary shown in Table 3:
The nucleation of a bubble of nothing changes the spatial

topology. Before nucleation, the topology is R3 × S1; after
nucleation, space has a hole and the topology is R2 × S2.
While there is not believed to be anything wrong with
topology changes in quantum gravity [37], in classical
general relativity topology changes are governed by
restrictive no-go theorems [38]. It is therefore worth asking
whether the thermal bubble of nothing should be thought of
as an example of a classical topology change.
What we usually mean by a process being “classical” is

that the rate stays nonzero as we take the classical limit,
ℏ → 0. However, the ultraviolet catastrophe means that in
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FIG. 17. The Euclidean action IE of the instantons that control each of the four nonperturbative instabilities of hot KK space, in units
of β3=2L3=2=G5 (schematic). The tunneling rate is Γ ∼ exp½−IE=ℏ�, so smaller IE means faster tunneling. A β ↔ L duality permutes the
decays. (Not shown: solutions with extra negative modes, such as the lumpy black string, the black string past the Gregory-Laflamme
point, or their corresponding duals.)

TABLE III. The dictionary between black objects and bubbles
of nothing.

Bubbles of nothing Black holes and black strings

β & L L & β
Thermal BoN Black string
Quantum BoN Black hole
Thermally assisted
quantum BoN

Caged black hole

Most improbable BoN Nonuniform black string
Mechanical instability of
thermal BoN

Thermodynamic instability
of black string in heat bath

Thermal “assist” of
quantum BoN

Attraction between image
black holes

Quantum BoN disappears
at T�quant L ¼ ð3.39…Þβ

Black hole ceases to exist at
merger point β ¼ ð3.39…ÞL

Exchange of dominance
between thermal and
quantum BoN
L ¼ ð2.75…Þβ

Exchange of dominance between
black string and black hole
β ¼ ð2.75…ÞL

Thermal BoN no longer
locally optimal path
across barrier
L ¼ ð1.7524…Þβ

Gregory-Laflamme instability
of black string
β ¼ ð1.7524…ÞL
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thermal field theory there is no obvious unique classical
limit, and the answer will depend on which classical limit
we take. Including factors of ℏ, the rate to nucleate a
thermal bubble of nothing is

Γðthermal BoNÞ ∼ exp

�
−

1

16π

β

ℏ
L2

G5

�

∼ exp

�
−

1

16π

1

ℏ3=4ρ1=4
L2

G5

�

∼ exp

�
−

1

16π

1

T
L2

G5

�
; ð38Þ

where β≡ ℏ=T is the thermal wavelength of the radiation
and ρ≡ T=β3 is proportional to its energy density.
Equation (38) displays three different classical limits one
might be tempted to consider; they all take ℏ → 0, but they
differ in what happens to T. The first limit keeps β fixed:
the wavelength of the thermal radiation stays constant (this
is the limit advocated by [2]). In this limit the decay rate
scales as exp½−1=ℏ� so the topology change is quantum.
The second limit keeps ρ fixed: the energy density of the
thermal radiation stays constant. Here too the topology
change is quantum, though with a weaker power of ℏ. The
final limit keeps T fixed: the mean energy of a photon stays
constant. In this limit, there are no factors of ℏ in the decay
rate, and the topology change is classical. However, I would
caution that this classical limit is rather eccentric: the
wavelength is going to zero, the energy density is going to
infinity, the Jeans instability is becoming short wavelength,
and not only is the topology change classical, but so too is
the photoelectric effect.
Wrapping the Euclidean black string around the extra

dimension describes the nucleation of a Lorentzian black
string; wrapping it around the thermal circle describes the
thermal nucleation of a bubble of nothing. But the
asymptotic Euclidean T2 has more cycles than just these
two. For every coprime fn1; n2g there is a cycle that goes
n1 times round the z direction and n2 times round the w
direction. Since the fn1; n2g cycle of a rectangle is related
by an SLð2;ZÞ transformation to the f1; 0g cycle of a
parallelogram, I will defer discussion of these extra
solutions until I turn on an angle between the two S1’s,
which is to say until I turn on a KK chemical potential [7].
It will still remain true that when the chemical potential is
zero the four nonperturbative decays described in this paper
exponentially dominate the decay rate.
In higher dimensions the phase diagram of black holes

and black strings is known to differ from the five-
dimensional case studied in this paper. There are new
phenomena, like stable nonuniform black strings [39],
and a more intricate pattern of appearances and disappear-
ances. It would be interesting to repeat the analysis of this
paper in higher dimensions, and see whether thermal
bubbles of nothing can ever be the globally fastest decay.

To do this analysis would require extending the numerical
work of [8,9] to higher dimensions, but thankfully with the
same cohomogeneity. In Appendix E I show that one thing
that we can say without any new numerics is that in eight or
more dimensions the two halves of Fig. 17meet, in the sense
that at the self-dual point β ¼ L all four instantons still have
only one negative mode and therefore are all still in play.
This paper has considered the decay of hot KK space in

the canonical ensemble. What if we moved to the micro-
canonical ensemble, by enclosing our system in a box and
demanding that it have fixed energy, not fixed temperature?
For the largest boxes, this makes no difference—the heat
bath is so huge that the temperature does not change during
nucleation. However, as we will see in Appendix B, for
smaller boxes an appreciable fraction of the heat bath’s
energy condenses into the decay product, and the temper-
ature of the radiation appreciably drops. This punishes
thermal decays relative to quantum decays, and in so doing
breaks the duality between black holes and bubbles of
nothing.
The entropy of a thermal-made bubble of nothing was

calculated in Sec. II C, and found to be zero. This is as it
should be. If unperturbed, the thermal bubble of nothing
just sits there forever; it can be circumambulated at leisure
and gives rise to no Lorentzian horizons. Not so the
quantum-made bubble of nothing. The quantum bubble
of nothing expands so vigorously [40] that it casually
separates antipodal observers—the hole in spacetime grows
faster than it can be walked around—and one might
imagine that those Lorentzian horizons have an associated
entropy. Unfortunately the U(1) symmetry around the
thermal circle that made it easy to calculate the entropy
of a thermal bubble of nothing is absent from the quantum
case. With a colleague, Xi Dong, I am adapting the method
of [41] to calculate the entropy of a quantum bubble of
nothing.
The florid final paragraphs of a certain kind of theoretical

physics paper often quote Robert Frost’s meditation on
whether the world will end with fire or with ice (and, this
being poetry, on how those two competing possibilities
make Frost feel). An echo of this choice appears in the two
fates of hot KK space outlined above: whether to be
consumed by a black hole that cannot be sated, or to be
annihilated by a bubble of nothing that cannot be stopped.
Frost, the great dualist, would no doubt have found it fitting
that these two fates are really just two sides of the same
coin, that there is a high-temperature/low-temperature
duality relating black hole to bubble of nothing, consump-
tion to annihilation, and fire to ice.
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APPENDIX A: PERTURBATIVE INSTABILITIES

Hot KK space is a dangerous place. The Jeans instability
makes overdensities grow; the gravitational backreaction of
the thermal radiation and of the Casimir energy makes both
extended and compact dimensions change size. For β ∼ L
the perturbative length scale is

Hubble length ∼ Jeans length ∼
β2

l4

∼
L2

l4

: ðA1Þ

The existence of perturbative instabilities threatens to
swamp the nonperturbative instabilities considered in this
paper. What can prevent this swamping is the separation of
scales. The characteristic length scales of the nonperturba-
tive decays are

size of critical black hole=string ∼ β ðA2Þ

size of critical bubble of nothing ∼ L; ðA3Þ

which are much shorter than the perturbative decays (for
β ≫ l5 and L ≫ l5), roughly speaking because nonlinear
gravity is much stronger than linear gravity. This means
that by cutting off our theory far out beyond β and L but
before the Jeans/Hubble scale, we can eliminate the
perturbative instabilities while retaining and isolating the
nonperturbative ones.
There is an important intermediate scale, given by the

linear size of the region whose radiation must be harvested
in order to make the decay product. For β ∼ L this is
given by

mass of critical black hole=black string=BoN

∼mass of radiation in box of size
β5=3

l2=3
4

: ðA4Þ

This is the scale at which the nucleated object, while still
only accounting for a tiny fraction of the total volume, starts
to account for an appreciable fraction of the total energy.
(For a fixed total energy, this is the AdS-length at which
large Hawking-Page black holes first become thermody-
namically stable [6].) Since the nucleation changes the
temperature of the heat bath, for boxes of this size we must
move to the microcanonical ensemble.

APPENDIX B: MICROCANONICAL ENSEMBLE

If the temperature of the heat bath changes during the
nucleation process, what T should be used in exp½−ΔE=T�,
and what β should be used to set the periodicity of the

Euclidean instanton? The partition function approach does
not reveal the answer, but the rather more direct approach
embodied in Eq. (1) does. The Boltzmann factor is replaced
by the change in entropy of the heat bath

exp
�
−
ΔE
T

�
→ exp

�
−
Z

ΔE

0

dE
T½E�

�
; ðB1Þ

and since the mixed-strategy transition involves first
fluctuating and then tunneling, the periodicity of
Euclidean time is not the inverse temperature before the
transition but rather the inverse temperature after the
transition.

APPENDIX C: EUCLIDEAN ACTIONS

The nþ 1-dimensional Euclidean Schwarzschild
metric is

ds2 ¼
�
1 −

Rn−2

rn−2

�
dw2 þ

�
1 −

Rn−2

rn−2

�−1
dr2 þ r2dΩ2

n−1:

ðC1Þ
Near r ¼ R the angular directions peel off as a constant-
sized n − 1-sphere, leaving an effective two-dimensional
cone. To leading order

ds2 ¼
�
n − 2

2R

�
2

y2dw2 þ dy2 þ R2dΩ2
n−1; ðC2Þ

where

y≡ 2R
n − 2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 −

Rn−2

rn−2

r
: ðC3Þ

For there to be no conical singularity, w must be periodic
under

w → wþ 2π
2R

n − 2
; ðC4Þ

which for n ¼ 3 comes to 4πR and for n ¼ 4 comes to 2πR.
In nþ 1 dimensions the action of a Euclidean

Schwarzschild black hole is

IE ¼ −
Z
M

1

16πG
R

ffiffiffi
g

p
−
Z
∂M

1

8πG
K

ffiffiffi
h

p
: ðC5Þ

The Ricci curvature is identically zero for our Ricci-flat
vacuum solutions, so the only contribution is the boundary
term. There is no boundary at r ¼ R, the metric is smooth
there, and the only boundary is at r → ∞. The extrinsic
curvature is defined as

Kμν ≡∇μnν − nμnρ∇ρnν; ðC6Þ

where nμ is the normalized normal
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nμ ¼ f0; χ; 0;…; 0g ðC7Þ

nμ ¼ f0; χ−1; 0;…; 0g; ðC8Þ

and χ ≡ ð1 − Rn−2

rn−2 Þ
1
2. It follows that

Kμν ¼ nμΓr
rν − Γr

μνnr: ðC9Þ

We haveKrr ¼ 0 as required. Since Γr
rν ¼ 0 (for ν ≠ r) and

since Γr
μν ¼ − 1

2
grr∂rgμν (for μ; ν ≠ r), we have

Kμν ¼
1

2
χ∂rgμν for μ; ν ≠ r: ðC10Þ

The extrinsic curvature scalar is then

K ¼ gwwKww þ ðn − 1ÞgθθKθθ

¼ 1

2χ
∂rχ

2 þ ðn − 1Þ χ

2r2
∂rr2

¼ ðn − 2ÞRn−2

2χrn−1
þ ðn − 1Þχ

r
: ðC11Þ

(Notice that gttKtt recovers the proper acceleration of a
constant-r trajectory.) If we took the same surface and
embedded it in flat space (R4 × S1) then the extrinsic
curvature would be

K0 ¼ lim
R→0

K ¼ n − 1

r
: ðC12Þ

The action is given by

IE ¼ − lim
r→∞

1

8πG

Z
∂M

ðK − K0Þ
ffiffiffi
h

p

¼ 1

n − 2

Rn−1Ωn−1

4G

¼ 1

n − 2
S: ðC13Þ

For n ¼ 3 this reduces to the result of Hawking and
Gibbons [42]. We use the n ¼ 3 result in Sec. II and the
n ¼ 4 result in Sec. III.
For Euclidean solutions such as these that have a U(1)

symmetry around the thermal circle, the Euclidean action is
the Helmholtz free energy divided by the temperature

IE ¼ βF ¼ βm −
S
ℏ
: ðC14Þ

In nþ 1 dimensions the Schwarzschild mass scales as
Rn−2, whereas the entropy scales as Rn−1 so

S ∼m
n−1
n−2 →

1

T
≡ ∂S

∂m ¼ n − 1

n − 2

S
m
: ðC15Þ

In terms of the entropy, we therefore have

Boltzmann suppression factor ¼ m
T
¼ n − 1

n − 2
S ðC16Þ

entropy of black hole ¼ S ðC17Þ

decay exponent ¼ IE=ℏ ¼ 1

n − 2
S: ðC18Þ

The Euclidean action is equal to the entropy only
when n ¼ 3.

APPENDIX D: ADM MASSES

Consider a metric whose asymptotic behavior is given to
first order in r−1 by

ds2 ¼ −
�
1 −

2G4Mt

r

�
dt2 þ dr2

1 − 2G4Mr=r
þ r2dΩ2

2

þ
�
1 −

2G4Mz

r

�
dz2: ðD1Þ

If this is to correspond to a vacuum solution, R ¼ 0, then
necessarily

Mr ¼ Mt þMz: ðD2Þ
(This condition follows either from direct calculation or
from the combination of linearity, knowing the Mz ¼ 0
answer, and knowing that there is a symmetry between Mt
and Mz if we continue to Euclidean spacetime.) We will
now show that the Arnowitt-Deser-Misner (ADM) mass for
this metric is

m ¼ Mr −
1

2
Mz ¼ Mt þ

1

2
Mz ¼

1

2
ðMr þMtÞ: ðD3Þ

[Notice that even though there is a t ↔ z symmetry in the
vacuum condition, Eq. (D2), there is no such symmetry in
the expression for the ADMmass, since the ADMmass is a
“Lorentzian” quantity that cares about which Lorentzian
continuation you take. This asymmetry underlies the fact
that for β ¼ L there is still a difference between the mass of
the critical black string and the mass of the thermal bubble
of nothing, and also a difference between the mass of the
critical black hole and the mass of the quantum bubble of
nothing.]
The ADM formalism asks us to transform to asymp-

totically Cartesian coordinates, a request we can accom-
modate with r2 ¼ ~x · ~x. In these coordinates the metric is

dr2 ¼
�
~x · d~x
r

�
2

ðD4Þ

r2dΩ2 ¼ d~x · d~x − dr2 ðD5Þ
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ds2 ¼ −
�
1 −

2GMt

r

�
dt2

þ
��

1 −
2GMr

r

�
−1

− 1

��
~x · d~x
r

�
2

þ d~x2

þ
�
1 −

2GMz

r

�
dz2: ðD6Þ

The leading-order perturbations of this metric from flat KK
space are

hij ¼ 2GMr
xixj
r3

ðD7Þ

∂khij ¼ 2GMr
1

r3

�
δikxj þ δjkxi − 3

xixjxk
r2

�
ðD8Þ

∂khzz ¼
2GMz

r3
xk: ðD9Þ

The original formula for the ADM energy was written
down by ADM [43], the generalization to cases with a
compact extra dimension was given in Eq. (2.7) of [44] as,
in our notation,

m¼ lim
r→∞

X
i;j

1

16πG5

ð2πLÞ
�
4πr2

xk
r

�
½∂jhkj−∂khjj−∂khzz�

ðD10Þ

¼ r
4G4

�
2GMr

r3
2~x2 −

2GMz

r3
~x2
�

ðD11Þ

¼ Mr −
1

2
Mz; ðD12Þ

recovering Eq. (D3). [The same answer may be reached by
integrating out the extra dimension and converting to four-
dimensional Einstein frame; the Weyl factor rescales the
four-dimensional metric by

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 − 2Mz=r

p
, and leads

to Eq. (D12).]
For completeness, now let us calculate not just the ADM

energy but also the ADM momentum and tension: the full
ADM stress tensor. We will use Eq. (3.13) of [45],

Tab ¼
4πr2

16πG
ni½ηabð∂ihcc þ ∂ihjj − ∂jhjiÞ − ∂ihab�;

ðD13Þ

where fa; b; cg range over fz; tg and fi; j; kg range over
the other directions.
For the black string, the ADM stress tensor comes to

Tab ¼ Mr

� 1
2

0

0 −1
�
: ðD14Þ

The “−” in the “− 1
2
” indicates that the black string is under

tension; the “1
2
” in the “− 1

2
” shows that this tension is

smaller than the mass per unit length.
For the thermal bubble of nothing, the ADM stress tensor

comes to

Tab ¼ Mr

� 1
2

0

0 −1
�
: ðD15Þ

The tension is large—twice as large as the mass per unit
length—so large that the thermal bubble of nothing
violates the ADM version of the null energy condition.
(The point-by-point null energy condition, by contrast, is
trivially saturated since we have a vacuum solution.) The
equation of state parameter is given by w ¼ −2, which
could have been anticipated either from knowing that the
mass scales superlinearly with the length m ∼ L2=G5, or
by taking the dual of the black string parameter w → 1=w.
As with any stress tensor that violates the null energy
condition (NEC), by longitudinal boosting we can reach a
frame in which the energy is arbitrarily negative.

APPENDIX E: GREGORY-LAFLAMME IN
HIGHER DIMENSIONS

In five spacetime dimensions, the black string has
a Gregory-Laflamme instability whenever β ≤ βGL ¼
ð1.7524…ÞL. Since 1.7524 is larger than 1, this means
that at the self-dual point, β ¼ L, both the black string and
the thermal bubble of nothing have an extra negative mode.
(Pictorially, the lines in Fig. 12 only meet after they have
first become dashed.)
In nþ 1 ≥ 8 dimensions this is no longer true.

Combining Eq. (C4) and the numerical results reported
in Table 1 of [30] and Table 1 of [46], in nþ 1 spacetime
dimensions βGL is shown in Table IV.

TABLE IV. The critical inverse temperature for the Gregory-Laflamme instability in nþ 1 spacetime dimensions.

nþ 1 5 6 7 8 9 10 100

βGL 1.7524 L 1.2689 L 1.0539 L 0.9243 L 0.8349 L 0.7696 L 0.203 L
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