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We construct a quasilocal formalism for conserved charges in a theory of gravity in the presence of
matter fields that may have slow falloff behaviors at the asymptotic infinity. This construction depends only
on equations of motion, and so it is irrespective of ambiguities in the total derivatives of the Lagrangian. By
using identically conserved currents, we show that this formalism leads to the same expressions of
conserved charges as those in the covariant phase space approach. At the boundary of the asymptotic anti-
de Sitter space, we also introduce an identically conserved boundary current that has the same structure as
the bulk current and then show that this boundary current gives us the holographic conserved charges
identical with those from the boundary stress tensor method. In our quasilocal formalism, we present a
general proof that conserved charges from the bulk potential are identical with those from the boundary
current. Our results can be regarded as the extension of the existing results on the equivalence of conserved
charges by the covariant phase space approach and by the boundary stress tensor method.
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I. INTRODUCTION

The AdS/CFT correspondence has made huge impact on
our understanding of strong coupling physics, which is far
beyond our usual perturbative approach in field theories.
Through this correspondence, the strongly coupled highly
quantal regime in the dual field theory side is explored by a
classical gravity computation. Many results have been
obtained in this route, and various cross-checks have
been made for such results verifying the power of the
AdS/CFT correspondence. Its successful realization in
four-dimensional supersymmetric Yang–Mills theory is
still an ongoing productive subject. On the other hand,
the quantum gravity is not yet fully understood even under
this correspondence, though it may in the future turn out to
be a crucial cornerstone of the complete understanding of
quantum gravity. However, the lack of its usefulness in the
full quantum regime of gravity does not mean that it is
powerless in the classical theory of gravity. One such
application of the AdS/CFT correspondence to the classical
gravity side is the new understanding on conserved charges
in a theory of gravity.
In a theory of gravity with diffeomorphism symmetry, it

is not so straightforward to define conserved charges. As is
well known, the Noether method is insufficient to connect
conserved charges and symmetries when those under
consideration are local gauge symmetries like diffeomor-
phisms. There have been various attempts to define con-
served charges in gravity, and the final form of such
attempts for the asymptotically flat geometry is molded

as the so-called Arnowitt-Deser-Misner formula [1,2],
which computes total conserved charges at the asymptotic
infinity. After failure of many attempts to construct local
conserved quantities in gravity, it has been gradually
recognized that a local conservation concept like conserved
currents has intrinsic ambiguities and denies its complete
specification. At most, one may try to construct quasilocal
quantities in such a theory. See Ref. [3] for a review on
general quasilocal concepts. We use the definition of the
term quasilocal conserved charge associated with an exact
Killing vector as a surface integral in the bulk, not only at
the asymptotic boundary, following the spirit given in
Refs. [4,5]. One of the important results by the quasilocal
construction of conservation law is the understanding of the
black hole entropy as a conserved quantity at the Killing
horizon [4], which was at first perceived at the level of the
analogy with thermodynamics [6] and then confirmed by a
semiclassical computation [7].
In contrast to gravity, conserved charges in the dual field

theory are rather clear to define and have no ambiguities in
their construction. The AdS/CFT correspondence implies
that there may be a way to construct quasilocal conserved
charges in the bulk gravity side for the asymptotically anti-
de Sitter (AdS) space, consistently with the unambiguous
field theory side. Indeed, there is a formalism known as the
counterterm method or the boundary stress tensor method
[8] to obtain holographic conserved charges consistent with
the dual field theory. Then, one may ask what is the relation
between this holographic approach and the traditional
approaches to conserved charges in gravity. This question
was answered quite concretely for the asymptotically AdS
geometry in Einstein gravity [9–11]. However, the status of
this equivalence at the general setup is not so explicit since
the boundary stress tensor method depends on the explicit
form of Gibbons–Hawking (GH) terms [12,13] and

*sjhyun@yonsei.ac.kr
†j.jeong@yonsei.ac.kr
‡sangapark@yonsei.ac.kr
§shyi@yonsei.ac.kr

PHYSICAL REVIEW D 90, 104016 (2014)

1550-7998=2014=90(10)=104016(16) 104016-1 © 2014 American Physical Society

http://dx.doi.org/10.1103/PhysRevD.90.104016
http://dx.doi.org/10.1103/PhysRevD.90.104016
http://dx.doi.org/10.1103/PhysRevD.90.104016
http://dx.doi.org/10.1103/PhysRevD.90.104016


counterterms that are not known in general. The boundary
stress tensor method is based on Ref. [14] and is basically a
kind of the Hamiltonian approach to conserved charges.
Because of this nature, this method becomes complicated
for a higher derivative theory of gravity. On the other hand,
in the bulk gravity side, there are general covariant methods
to obtain conserved charges. For instance, the covariant
phase space method [4,5,15,16] or Barnich–Brandt–
Compère formalism [17–20] can be used in a general
covariant theory of gravity. Though there is also a general
argument on the consistency of the boundary stress tensor
method for the asymptotically AdS geometry with the
covariant phase space method [11], it would be much better
to have an explicit verification of the equivalence between
the conserved charges in the holographic method and those
in the bulk covariant one.
To verify the equivalence of boundary and bulk formal-

isms for the asymptotically AdS geometry, it is useful to
recall that there are some modifications on the boundary
terms in the Lagrangian in the holographic method, which
does not change the bulk equations of motion (EOM).
Based on this fact, it is more natural to resort to a covariant
formalism for conserved charges that uses the bulk EOM or
more accurately the Euler–Lagrange expression. There is
one such formalism developed by Abbott, Deser, and Tekin
(ADT) [21–24], which has been used successfully for the
asymptotic AdS space.
In this paper, we construct a quasilocal formalism for

conserved charges in the presence of arbitrary matter fields
in the theory of gravity with diffeomorphism symmetry.
This construction is based on the EOM and free from any
ambiguity in the total derivatives of the Lagrangian, which
may be thought of as the extension of the well-known ADT
formalism for conserved charges. When the falloff of
matter fields is slow enough, the original ADT method
needs to be extended since their approach is based on the
assumption of the fast falloff of matter fields at the
asymptotic infinity so that only metric contribution sur-
vives. Here, we give the natural extension of the ADT
formalism in the case of the slow falloff of matter fields
through the construction of identically conserved currents.
It turns out that this quasilocal formalism gives conserved
charges that are identical with those from the covariant
phase space method. Furthermore, we propose a new
holographic method for asymptotically AdS geometry to
find the conserved charges at the boundary in the same
spirit with the bulk quasilocal formalism. We show that this
method gives consistent results with the boundary stress
tensor method for holographic conserved charges in
Einstein gravity. By using our holographic construction,
we confirm the equivalence between conserved charges in
the holographic method and those in the bulk covariant one.
This paper is organized as follows. In Sec. II, we

construct a quasilocal formalism for conserved charges,
based on the Euler–Lagrange expressions, in the presence

of arbitrary matter fields, which may be thought of as the
extension of the ADT formalism. We introduce the off-shell
ADT current and potential and show that the resultant
conserved charges are identical with those from the
covariant phase space method. In Sec. III, we introduce
the identically conserved current at the boundary and show
that the corresponding conserved charges are equivalent to
those in boundary stress tensor formalism. We also show
that the boundary current is equivalent to the bulk ADT
potential in appropriate coordinates. These results warrant
explicitly the equivalence of the bulk conserved charges
with the holographic ones. In Sec. IV, we summarize some
generic features for scalar fields. In Sec. IV, we apply our
formalism to some interesting examples and explain addi-
tional interesting features in our formalism. In the final
section, we summarize our results and comment on some
future directions.

II. QUASILOCAL FORMALISM AND COVARIANT
PHASE SPACE APPROACH

In this section, we extend a quasilocal formalism for
conserved charges to a theory of gravity with arbitrary
matter fields. We construct the off-shell ADT current and
potential and show that the resultant on-shell potential
becomes identical with the one from the covariant phase
space method. By using these results, we derive the ADT
potential straightforwardly for a class of model, which can
be used to compute conserved charges.

A. Construction

Let us consider a generic theory of gravity in the
presence of arbitrary matter fields denoted collectively as
ψ ¼ ðϕI; Aμ;…Þ,

I½g;ψ � ¼ 1

16πG

Z
dDx

ffiffiffiffiffiffi
−g

p
Lðg;ψÞ: ð1Þ

For our convenience, we also denote the metric and matter
fields jointly as Ψ ¼ ðgμν;ϕI; Aμ;…Þ in the following. The
variation of the action would be taken as

δI½Ψ� ¼ 1

16πG

Z
dDx½ ffiffiffiffiffiffi

−g
p

EΨδΨþ ∂μΘμðδΨÞ�; ð2Þ

where EΨ ¼ ðEμν; Eψ Þ and Θμ denote the Euler–Lagrange
expression and the surface term, respectively. We have also
adopted the convention such that EΨδΨ≡ Eμνδgμν þ Eψδψ .
To introduce the off-shell ADT current and potential in

this generic case, we would like to note that there is an off-
shell identity in the form of

2ζν∇μEμν þ Eψ£ζψ ¼ ∇μðZμνζνÞ; ð3Þ

where £ζψ denotes the Lie derivative of ψ along the ζ
direction. The second rank tensor Zμν is a certain function
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of metric and matter fields of which the specific form will
be discussed below. This identity may be thought of as the
generalization of the usual Bianchi identity. In fact, one can
see that the Zμν tensor vanishes when the matter EOM are
satisfied by comparing the terms proportional to∇μζν in the
left- and right-hand sides of Eq. (3). In other words, theZμν

tensor should be proportional to a certain combination of
the Euler–Lagrange expression, Eψ , of matter fields. The
above off-shell identity can be written in the form of

∇μð2EμνζνÞ ¼ Eμν£ζgμν − Eψ£ζψ ¼ −EΨ£ζΨ; ð4Þ

where Eμν is defined by

Eμν ≡ Eμν −
1

2
Zμν: ð5Þ

Note that the current Sμζ ≡ 2Eμνζν may be identified with
the weakly vanishing Noether current in Refs. [17,18,20].
Some comments are in order:
(i) The explicit form of theZμν tensor may be written as

ffiffiffiffiffiffi
−g

p
Zμνζν ¼ ζμ

ffiffiffiffiffiffi
−g

p
Lþ ΣμðζÞ − Θμð£ζΨÞ

þ 2
ffiffiffiffiffiffi
−g

p
Eμνζν þ ∂νUμν;

where Uμν ¼ U½μν� is an arbitrary antisymmetric
second rank tensor. However, there are various
ambiguities in this expression. We have bypassed
these ambiguities by choosing the Zμν tensor such
that it is proportional to a certain combination of
Euler–Lagrange expressions for matter fields, Eψ .

(ii) In some cases, theZμν tensor turns out to vanish. Let
us consider scalar fields specifically. Since the Lie
derivative of scalar fields does not contain a deriva-
tive of diffeomorphism parameter as £ζϕI ¼ ζμ∂μϕ

I ,
one cannot obtain terms matching with Zμν∇μζν as
can be inferred from Eq. (3). Therefore, the Zμν

tensor should vanish generically for scalar fields,
though the contribution of the scalar field to Zμν

may exist indirectly through the interaction with
other matter fields. In the case of massless gauge
fields, if we use the modified Lie derivative £0ζ,
supplemented by the gauge transformation, one can
see that the Zμν tensor vanishes. The details will be
given in the following.

(iii) In most of the interesting cases, the Lagrangian
could be separated as L ¼ Lg þ Lψ for the pure
gravity part and the matter field part, respectively.
The equations of motion of the metric and matter
fields are given by

Eμν ¼ Gμν − Tμν ¼ 0; Eψ ¼ 0; ð6Þ

where Gμν and Tμν denote the generalized Einstein
tensor and the stress tensor of the matter fields,

respectively. In these cases, the generalized Einstein
tensor Gμν for the metric field satisfies the Bianchi
identity ∇μGμν ¼ 0, and the Euler–Lagrange expres-
sion of matter fields, Eψ , satisfies the following off-
shell identity, independently:

−2ζν∇μTμν þ Eψ£ζψ ¼ ∇μðZμνζνÞ: ð7Þ

Now, let us recall the form of the off-shell ADT current
for a Killing vector, ξ, in the case of pure gravity [25] (see
also Ref. [26]):

JμADTðξ; δgÞ ¼ δGμνξν þ
1

2
gαβδgαβGμνξν þ Gμνδgνρξρ

þ 1

2
ξμGαβδgαβ:

As was explained in Ref. [25], this is the natural off-shell
extension of the on-shellADTcurrent,which leads to the on-
shell ADT potential in Einstein gravity. One of the essential
ingredients in the off-shell conservation of this current is the
off-shell identity ∇μðGμνξνÞ ¼ 0 for a Killing vector, ξ. By
using the off-shell identity given in Eq. (4), one can see that
for a Killing vector, ξ, there is an analogous identity even in
the presence of arbitrary matters in the form of

∇μðEμνξνÞ ¼ 0: ð8Þ

Inspired by this observation, we introduce the off-shell
ADT current for a Killing vector, ξ, in the presence of
arbitrary matter fields by

J μ
ADTðξ;δΨÞ ¼ δEμνξνþ

1

2
gαβδgαβEμνξνþEμνδgνρξρ

þ 1

2
ξμEΨδΨ; ð9Þ

or, more compactly, in the form of

ffiffiffiffiffiffi
−g

p
J μ

ADTðξ; δΨÞ ¼ δð ffiffiffiffiffiffi
−g

p
EμνξνÞ þ

1

2

ffiffiffiffiffiffi
−g

p
ξμEΨδΨ;

ð10Þ
where δ denotes the generic variation of Ψ such that
δξμ ¼ 0. We would like to emphasize that the above
construction of the off-shell ADT current, J ADT, depends
only on the Euler–Lagrange expressions of metric and
matter fields. Using this result, it is straightforward to show
the identical conservation of the above off-shell ADT
current for a Killing vector, ξ, in the presence of matter
fields. The identical conservation of the off-shell ADT
current even in the presence of matter fields allows us to
introduce the off-shell ADT potential Qμν as

J μ
ADT ¼ ∇νQ

μν
ADT: ð11Þ
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B. Comparison with the covariant phase
space approach

We would like to connect the off-shell ADT current in
the presence of matter fields to the symplectic current in the
covariant phase space approach [15,16]. To this purpose, it
is very useful to introduce the off-shell Noether current. For
the simplicity of the presentation, let us focus on the action
without gravitational Chern–Simons terms in the following.
This means that we are considering the case of Σμ ¼ 0 in
Eq. (A2). Recall that the Lagrangian transforms under the
diffeomorphism as

δζð
ffiffiffiffiffiffi
−g

p
LÞ ¼ ffiffiffiffiffiffi

−g
p

EΨ£ζΨþ ∂μΘμð£ζΨÞ: ð12Þ

Then, one can deduce that the off-shell Noether current in
the presence of matter fields can be introduced as

JμðζÞ ¼ 2
ffiffiffiffiffiffi
−g

p
Eμνζν þ ζμ

ffiffiffiffiffiffi
−g

p
L − Θμð£ζg; £ζψÞ: ð13Þ

To check the identical conservation of this current,1 we
equate two forms of the diffeomorphism variation given in
Eqs. (A2) and Eq. (12) and use the off-shell identity given
in Eq. (4). From these, one can confirm that ∂μJμ ¼ 0,
identically. Note that the above off-shell Noether current
reduces to the on-shell one by using the EOM of metric and
matter fields, Eμν ¼ 0. The conservation of the off-shell
Noether current Jμ allows us to introduce the off-shell
Noether potential Kμν as

Jμ ≡ ∂νKμν: ð14Þ

Now, let us recall that symplectic current in the covariant
phase space formalism is introduced as [15]

ωμðδ1Ψ; δ2ΨÞ≡ δ1Θμðδ2ΨÞ − δ2Θμðδ1ΨÞ: ð15Þ

By using the generic variation of the Lagrangian, the Lie
derivative of the surface term

£ζΘμðδΨÞ ¼ ζν∂νΘμ − Θν∂νζ
μ þ Θμ∂νζ

ν;

and the invariance property of the diffeomorphism param-
eter under a generic variation, δζμ ¼ 0, we have

ζμ
ffiffiffiffiffiffi
−g

p
EΨδΨ ¼ δðζμ ffiffiffiffiffiffi

−g
p

LÞ − ∂νð2ζ½μΘν�ðδΨÞÞ
− £ζΘμðδΨÞ: ð16Þ

By varying Eq. (13) and using Eqs. (10) and (16), we obtain
one of our essential results:

2
ffiffiffiffiffiffi
−g

p
J μ

ADTðζ; δΨÞ ¼ ∂νðδKμνðζÞ − 2ζ½μΘν�ðδΨÞÞ
− ωμð£ζΨ; δΨÞ: ð17Þ

We would like to emphasize that this relation holds for any
background field configuration and any generic variation,
since the conservation of the off-shell ADT current does not
require the matter EOM nor the metric EOM. For a Killing
vector, ξ, the symplectic current vanishes because £ξΨ ¼ 0.
As a result, one can see that the off-shell ADT potential for
a Killing vector, ξ, is identical with the potentialWμν in the
covariant phase space approach [4,5] as

2
ffiffiffiffiffiffi
−g

p
Qμν

ADTðξ; δΨÞ ¼ δKμνðξÞ − 2ξ½μΘν�ðδΨÞ
≡Wμνðξ; δΨÞ: ð18Þ

This proves the complete equivalence between the quasi-
local formalism and the covariant phase space approach
even in the presence of generic matter fields.
To obtain finite conserved charges of black holes from

the above ADT potential, we integrate the infinitesimal
form of the potential with respect to parameters Qs in the
black hole solution, as was adopted in Refs. [16–20,28].
Finally, by assuming that the integral is path independent,
the finite conserved charge for a Killing vector can be
introduced as

QðξÞ≡ 1

8πG

Z
ds

Z
dD−2xμν

ffiffiffiffiffiffi
−g

p
Qμν

ADT

¼ 1

16πG

Z
dD−2xμν

�
ΔKμνðξÞ−2ξ½μ

Z
dsΘν�ðg;QsÞ

�
;

ð19Þ

where ΔKμν denotes the finite difference defined by
ΔKμν ≡ Kμν

Q − Kμν
Q¼0 and d

D−2xμν denotes the area element
of codimension-2 subspace. This final expression of
quasilocal conserved charges is completely identical with
the one in the covariant phase space [4,5] and in the
Barnich–Brandt–Compère formalism [17,18,20]. This for-
mula can be applied to the computation of the black hole
entropy as well as the mass and angular momentum of
black holes. From the properties of the Killing vector on a
Killing horizon and the rotational Killing vector, one can
see that the entropy and the angular momentum of black
holes can be computed just by the first term in the above
formula.

C. Some models

As an application of our formulation, let us consider the
general two derivative Lagrangian of the form

I ¼ 1

16πG

Z
dDx

ffiffiffiffiffiffi
−g

p ðLg þ Lϕ þ LAÞ; ð20Þ1For another direction for the use of off-shell currents, see
Ref. [27].
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where

Lg ¼ R − 2Λ;

Lϕ ¼ −
1

2
GIJðϕÞ∂μϕ

I∂μϕJ − VðϕÞ;

LA ¼ −
1

4
N ðϕÞFμνFμν: ð21Þ

Explicitly, the variation of the Lagrangian is given by

δð ffiffiffiffiffiffi
−g

p
LÞ ¼ ffiffiffiffiffiffi

−g
p ðEμνδgμν þ Eϕ

I δϕ
I þ Eμ

AδAμÞ þ ∂μΘμ;

ð22Þ

where the Euler–Lagrange expressions for each field are

Eμν ≡GΛ
μν − Tμν; Eν

A ≡∇μðNFμνÞ;
Eϕ
I ≡GIJðϕÞð∇2ϕJ þ ΓJ

KL∂μϕ
K∂μϕLÞ − ∂IVðϕÞ

−
1

4
∂INFμνFμν; ð23Þ

and the surface terms are given by

Θμðδg; δϕ; δAÞ ¼ Θμ
gðδgÞ þ Θμ

ϕðδϕÞ þ Θμ
AðδAÞ

¼ ffiffiffiffiffiffi
−g

p ½2gα½μ∇β�δgαβ − GIJðϕÞδϕI∂μϕJ

−NFμνδAν�: ð24Þ

Here, Einstein and bulk stress tensors become

GΛ
μν ¼ Rμν −

1

2
gμνRþ Λgμν;

Tϕ
μν ¼ 1

2
GIJðϕÞ∂μϕ

I∂νϕ
J þ 1

2
gμνLϕ;

TA
μν ¼

1

2
NFμαFα

ν þ
1

2
gμνLA:

The metric, scalar, and gauge field EOM are given by
Eμν ¼ 0, Eϕ

I ¼ 0, and Eμ
A ¼ 0.

As mentioned earlier, several interesting features appear
in the model with vector fields. One may modify the Lie
derivative of gauge fields since those fields may be
accompanied by a certain gauge transformation. To use
the off-shell identity for the gauge field, it is more useful to
introduce a modified Lie derivative that is augmented by a
certain gauge transformation such that

£0ζAμ ≡ −Fμνξ
ν ¼ £ζAμ þ ∂μΛ; Λ≡ −ζαAα:

By recalling that gauge fields satisfy a Bianchi identity in
the form of

∇½ρFμν� ¼ 0

and using this modified Lie derivative, one can show that
theZμνζμ term is absent in Eq. (3). Surely, this modification
is not essential, and the unmodified form can also be used
without affecting the final result of conserved charges. For
massive gauge fields, one cannot use the modified Lie
derivative since there is no gauge invariance. Rather, we
should keep the original Lie derivatives

£ζAμ ¼ −Fμνζ
ν þ ∂μðζνAνÞ:

In this case, it turns out that the tensorZμν is given in terms of
the Euler–Lagrange expression Eμ

A of a gauge field, Aμ, as

Zμν ¼ Eμ
AA

ν: ð25Þ

Just as in the massless case, one can see that the final results
on the relation between the off-shell ADT potential and the
covariant phase space potential should remain the same
as Eq. (18).
Now, we obtain the ADT potential in this model by using

Eq. (18). Since surface terms are given in Eq. (24), it is
sufficient to derive the expression of the Noether potential.
By using the off-shell identities in the Noether current and
potential,

−2
ffiffiffiffiffiffi
−g

p
Tμν
ϕ ζν þ ζμ

ffiffiffiffiffiffi
−g

p
Lϕ − Θμ

ϕð£ζϕÞ ¼ 0; ð26Þ

−2
ffiffiffiffiffiffi
−g

p
Tμν
A ζν þ ζμ

ffiffiffiffiffiffi
−g

p
LA − Θμ

Að£0ζAÞ ¼ 0; ð27Þ

one can see that the Noether potential is given by

KμνðξÞ ¼ 2
ffiffiffiffiffiffi
−g

p ∇½μξν�: ð28Þ

This Noether potential as well as the corresponding off-shell
Noether current Jμ, even in the presence of matter fields, take
the identical forms as those without matter fields. The form
of the Noether potential in Eq. (28) explains why there is no
apparent contribution of matter fields on the entropy of
charged black holes in Einstein gravity, and thus it is simply
determined by the area law. As is well known, the Wald’s
entropy of black holes is captured by the Noether potential
only since the contribution of the surface term in Wμν, in
Eq. (18), vanishes on a Killing horizon. In other words, any
contribution of matter fields to the black hole entropy should
be indirectly incorporated through the backreaction of the
metric due to matter fields.
In this model, the total off-shell ADT potential is given

by the sum of the metric, scalar, and gauge field contri-
butions as

Qμν
ADTðξ;δΨÞ¼Qμν

ADTðξ;δgÞþQμν
ADTðξ;δϕIÞþQμν

ADTðξ;δAÞ:
ð29Þ

By using our relation (18), one can easily show that, for a
Killing vector, ξ, the metric contribution to the off-shell
ADT potential is given by
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Qμν
ADTðξ; δgÞ ¼ −

1

2
gαβδgαβ∇½μξν� þ ξ½μ∇αδgν�α − ξα∇½μδgν�α

− gαβξ½μ∇ν�δgαβ þ δgα½μ∇αξ
ν�; ð30Þ

and the contributions from the scalar and gauge fields are
given by

Qμν
ADTðξ; δϕÞ ¼ GIJðϕÞδϕIξ½μ∂ν�ϕJ;

Qμν
ADTðξ; δAÞ ¼ N ξ½μFν�αδAα: ð31Þ

Traditionally, matter contributions through Qμν
ADT to total

conserved charges have been ignored by supposing that
matter fields fall off fast when they approach the asymptotic
infinity. However, one needs to incorporate those with the
slow falloff boundary condition, especially in the context of
the AdS/CFT correspondence since matter contributions
have some dual interpretation.

III. QUASILOCAL FORMALISM AND BOUNDARY
STRESS TENSOR METHOD

In this section, we introduce the boundary off-shell
current according to the spirit of our bulk construction
and compare conserved charges by this current with those
from the bulk off-shell ADT potential. In the context of the
AdS/CFT correspondence, there is another way to obtain
conserved charges from the renormalized boundary stress
tensor. We show that the construction of our boundary
current is a kind of the reformulation of the conventional
boundary stress tensor method along our bulk construction.
Furthermore, we show that conserved charges by our
boundary current or from the boundary stress tensor
method match completely with those from the bulk ADT
formalism.

A. Boundary off-shell current

For the construction of the boundary current in the
asymptotic AdS space, let us recall that Arnowitt-Deser-
Misner decomposition along the radial direction can be
taken as

ds2 ¼ gμνdxμdxν

¼ N2dr2 þ γijðr; xÞðdxi þ NidrÞðdxj þ NjdrÞ; ð32Þ

where i; j ¼ 0; 1;…; D − 2. In the following, we denote
the space-time dimension of the dual field theory as
d≡D − 1. To obtain conserved charges from the holo-
graphic renormalization perspective [29–34], one may
consider the renormalized action that includes the GH
boundary term IGB and the counterterm Ict as

Ir½g;ψ � ¼ I½g;ψ � þ IGH½γ� þ Ict½γ;ψ �;

where the GH boundary and counterterms are defined on a
hypersurface and depend on the boundary values of γ and ψ

there. The on-shell valued renormalized action Ionr would
be the functional of the boundary value ðγ;ψÞ at the
boundary B. The generic variation of the on-shell renor-
malized action is given by2

δIonr ½γ;ψ � ¼ 1

16πG

Z
B
ddx

ffiffiffiffiffiffi
−γ

p ½Tij
Bδγij þ Πψδψ �; ð33Þ

where the boundary stress tensor, up to the radial rescaling,
Tij
B , is identified with the stress tensor of dual conformal

field theory (CFT) according to the AdS/CFT correspon-
dence and the renormalized momentum Πψ of the matter
field ψ corresponds to the vacuum expectation value of the
operator dual to the matter field.
One can construct the identically conserved boundary

current J i
B from the on-shell renormalized action. We

begin with the identity, analogous to the bulk one given in
Eq. (7),

−2ζj∇iT
ij
B þ Πψ£ζψ ¼ ∇iðZij

BζjÞ; ð34Þ
where ζ denotes an arbitrary boundary diffeomorphism
paramter and the Zij

B tensor is a certain combination of Πψ .
This identity follows from the boundary diffeomorphism
invariance. Just as in the bulk case, the scalar field
contribution to the Zij

B tensor vanishes generically, and
the vector field contribution to the Zij

B tensor turns out to be
given by Πi

AA
j. Then, one can introduce the boundary

ADT-like current for a boundary Killing vector, ξB, as

J i
BðξBÞ≡ −δTij

Bξ
B
j −

1

2
γklδγklT

ij
Bξ

B
j − Tij

Bδγjkξ
k
B

þ 1

2
ξiBðTkl

B δγkl þ ΠψδψÞ; ð35Þ

where

Tij
B ≡ Tij

B þ 1

2
Zij

B : ð36Þ

By using δξiB ¼ 0, this boundary current can be written
more compactly as

ffiffiffiffiffiffi
−γ

p
J i

BðξBÞ ¼ −δð ffiffiffiffiffiffi
−γ

p
Tij
Bξ

B
j Þ

þ 1

2

ffiffiffiffiffiffi
−γ

p
ξiBðTkl

B δγkl þ ΠψδψÞ: ð37Þ

The above boundary current takes the analogous form of
the bulk off-shell ADT current given in Eq. (10) except for
the absence of a generalized Einstein tensor. This is natural
since the boundary metric field is nondynamical. By using
the fact that

2Our convention for the boundary stress tensor Tij
B is such that

it denotes only the finite part after holographic renormalization
and thus corresponds to πijðdÞ in Ref. [9]. And so does the matter
part Πψ .
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∇iðTij
Bξ

B
j Þ ¼ 0; ð38Þ

for the boundary Killing vector, ξB, one can show that the
corresponding current, J i

B, is also conserved identically for
a generic variation such that δξiB ¼ 0. Note that one may
regard J i

B as a 1-form on the solution parameter space. To
introduce boundary conserved charges, we integrate the
1-form boundary current in the same manner as in the
bulk case. Therefore, the boundary conserved charges are
given by

QBðξBÞ ¼
1

8πG

Z
∂B

dd−1xi

Z
ds

ffiffiffiffiffiffi
−γ

p
J i

BðξBÞ; ð39Þ

where we integrate over the path parametrized by s in the
parameter space in the given solution.3

B. Equivalence with the boundary stress tensor method

We would like to uncover the relation between (linear-
ized) conserved charges obtained from the boundary
current introduced in the previous section and those from
the conventional boundary stress tensor method in
Refs. [8–10]. As alluded to earlier, we perform the variation
δ along the one-parameter path in the solution space. As
will be explained through examples, the one-parameter
path in the solution space corresponds to the choice of a
representative in the conformal class at the boundary with a
restricted diffeomorphism preserving the gauge choice.
When the contribution from the second term of the

boundary current J i
B in Eq. (37) is absent, the boundary

current reduces to

ffiffiffiffiffiffi
−γ

p
J i

B ¼ −δð ffiffiffiffiffiffi
−γ

p
Tij
Bξ

B
j Þ: ð40Þ

By using the conventional expression of holographic
charges in the form of

Q̂BðξBÞ ¼ −
1

8πG

Z
∂B

dd−1xi
ffiffiffiffiffiffi
−γ

p
Tij
Bξ

B
j ; ð41Þ

the expression of finite conserved charges for the Killing
vector ξB from the boundary ADT formalism can be
obtained as

QBðξBÞ ¼ Q̂BðξBÞ − Q̂AdS
B ðξBÞ: ð42Þ

This verifies the equivalence, up to the AdS vacuum value,
between the boundary quasilocal ADT formalism and the
conventional boundary stress tensor method.
To see the meaning of the second term in Eq. (37), let us

focus on the specific model introduced in (20). In this

model, we would like to consider the relation between the
allowed boundary condition on the asymptotic AdS space
and the absence of the contribution from the second term of
the boundary current J i

B. As was discussed in Ref. [9] in
the context of the well-posedness of the variational prob-
lem, the boundary condition allowed in the asymptotic AdS
space needs to be relaxed as

δγij ¼ 2γijδσ; δAi ¼ 0; δϕI ¼ ðΔI − dÞϕIδσ;

ð43Þ

whereΔI is the conformal dimension of a dual operator to a
scalar field ϕI. This boundary condition shows us that the
second term in Eq. (37) is nothing but the conformal
anomaly A in the boundary field theory. Explicitly, the
second term becomes

Tkl
B δγkl þ Πψδψ ¼

�
2Ti

Bi þ
X
I

ðΔI − dÞΠϕIϕI

�
δσ ≡Aδσ:

ð44Þ

There is no conformal anomaly in the dual field theory of
the even-dimensional AdS geometry. On the other hand, in
odd-dimensional AdS geometry, the dual CFT has a
conformal anomaly. We consider the boundary conditions
of metric and matter fields satisfying

R
δσA ¼ 0, which

holds in all our examples. This leads to the absence of the
contribution from the second term in the boundary current
in Eq. (37).
Because of the absence of the scalar field contribution

to Zij
B , we have

Tij
B ¼ Tij

B þ 1

2
Πi

AA
j; ð45Þ

and we can see that Eq. (42), up to the AdS vacuum value,
gives us the identical expression of conserved holographic
charges with the one in the conventional boundary stress
tensor method (see Eq. (4.28) in Ref. [9]).

C. Equivalence with the bulk ADT potential

In this section, we would like to show that the boundary
current and the bulk potential lead to the same conserved
charges. One may recall that the holographic renormaliza-
tion process introduces new boundary terms in the given
Lagrangian with the on-shell condition. These new boun-
dary terms do not affect the bulk EOM, and thus the
construction of the bulk current given in Eq. (9), which
depends only on the bulk Euler–Lagrange expressions, is
valid and so can be used without any modification. The
effect of the new boundary terms comes in through the
modifications of the Noether potential Kμν and the surface
term Θμ given in Eq. (18).

3As a working hypothesis, we assume that the 1-form
boundary current is independent of path. This assumption holds
in all the examples given in the following sections.
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For definiteness, it is convenient to use the, so-called,
Fefferman–Graham (FG) coordinates for an asymptotically
AdS space [35], which is given in the form of

ds2 ¼ dη2 þ γijdxidxj: ð46Þ
In the following, we take the radius of asymptotic AdS

space as unity and the cosmological constant Λ ¼ − dðd−1Þ
2

.
In these coordinates, the boundary is located at η0, which
will be sent to the infinity in the end. The radial expansion
of the metric and the matter fields is generically taken as

γij ¼ e2η½γð0Þij þOðe−ηÞ�;
ψ ¼ e−ðdψ−Δψ Þη½ψ ð0Þ þOðe−ηÞ�; ð47Þ

where Δψ is the conformal dimension of the operator dual
to ψ and dψ is given by dψ ¼ d − p for the rank p tensor

field ψ . The boundary metric γð0Þij represents the back-
ground geometry of the dual CFT according to the AdS/
CFT dictionary. Formally, the GH boundary term and
counterterm are taken by

IGH½γ� ¼
1

8πG

Z
ddx

ffiffiffiffiffiffi
−γ

p
LGHðγÞ;

Ict½γ;ψ � ¼
1

16πG

Z
ddx

ffiffiffiffiffiffi
−γ

p
Lctðγ;ψÞ; ð48Þ

which make the renormalized action finite in the
limit η0 → ∞.
The modification in boundary terms can be succinctly

captured by the introduction of a modified surface term
~Θη as

~ΘηðδΨÞ ¼ ΘηðδΨÞ þ δð2 ffiffiffiffiffiffi
−γ

p
LGHÞ þ δð ffiffiffiffiffiffi

−γ
p

LctÞ
¼ ffiffiffiffiffiffi

−γ
p ðTij

Bδγij þ ΠψδψÞ; ð49Þ

where the second line equality comes from Eq. (33). This
expression tells us that ~Θη ∼Oð1Þ in the radial expansion.
Correspondingly, the modified Noether current ~Jη for a
diffeomorphism parameter. ζ. becomes

~Jη ¼ ∂i
~KηiðζÞ ¼ ζη

ffiffiffiffiffiffi
−γ

p
Lon
r − ~Θηð£ζΨÞ; ð50Þ

where we have used the on-shell condition on the back-
ground fields in Eq. (13). Here, one may also note that the
on-shell renormalized Lagrangian

ffiffiffiffiffiffi−γp
Lon
r is related to the

so-called A-type trace anomaly [29,36].
Just as in Einstein gravity [9], the asymptotic behavior of

general diffeomorphism parameter ζ is given by

ζη ∼Oðe−dηÞ; ζi ∼Oð1Þ; ð51Þ

in order to preserve the asymptotic gauge choice and
the renormalized action. This asymptotic behavior in the

diffeomorphism parameter ζ allows us to discard the first
term in the right-hand side of Eq. (50) when we approach
the boundary. In the following, we keep only the relevant
boundary values of parameters such that a bulk Killing
vector, ξi, is replaced by its boundary value, ξiB. For the
diffeomorphism variation £ζΨ, the modified surface term
~Θη is given by

~Θηð£ζΨÞ ¼ ffiffiffiffiffiffi
−γ

p ð2Tij
B∇iζj þ Πψ£ζψÞ ¼ ∂ið2 ffiffiffiffiffiffi

−γ
p

Tij
BζjÞ;
ð52Þ

where we have used the identity given in Eq. (34). By using
this result, one can see that the Noether potential ~Kηi

becomes

~Kηi ¼ −2
ffiffiffiffiffiffi
−γ

p
Tij
Bζj þ ∂jð

ffiffiffiffiffiffi
−γ

p
U ij
BÞ; ð53Þ

where U ij
B is an arbitrary antisymmetric second rank tensor.

Since we are interested in conserved charges, the total
derivative term ∂jð ffiffiffiffiffiffi−γp

U ij
BÞ is irrelevant and can be

discarded for simplicity. As a result, the relation between
the ADT and Noether potentials in Eq. (18) for a Killing
vector, ξ, becomes

2
ffiffiffiffiffiffi
−g

p
Qηi

ADTjη→∞ ¼ −δð2 ffiffiffiffiffiffi
−γ

p
Tij
Bξ

B
j Þ

þ ffiffiffiffiffiffi
−γ

p
ξiBðTkl

B δγkl þ ΠψδψÞ
≡ 2

ffiffiffiffiffiffi
−γ

p
J i

B: ð54Þ

That is to say the leading parts of the bulk ADT potential
and the boundary current are identical when we go to the
asymptotic infinity.4 This proves the equivalence of con-
served charges by the bulk potential, Q, and those by the
boundary current, QB:

QðξÞ ¼ 1

8πG

Z
B
dD−2xηi

Z
ds

ffiffiffiffiffiffi
−g

p
Qηi

ADT

¼ 1

8πG

Z
∂B

dd−1xi

Z
ds

ffiffiffiffiffiffi
−γ

p
J i

B ¼ QBðξBÞ: ð55Þ

Our results extend, to a general theory of gravity, the
equivalence statement given for a specific model in Ref. [9]
and are completely consistent with the rather formal
argument on such equivalence given in Ref. [11]. We
would like to emphasize that the matching between the
ADT potential and the boundary current is valid only at the
boundary, while the bulk ADT potential in the quasilocal

4The holographic charges from boundary stress tensor method
are defined by the first term only. In Einstein gravity, it was
shown in Ref. [9] that the holographic charges are identical with
those from the covariant phase space formalism when conformal
anomaly is absent. Our modification of the holographic charges,
in which the second term is naturally incorporated, maintain the
equivalence between the holographic and bulk charges.
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sense could be applied even to the deep interior region like
the black hole horizon.

IV. GENERALITIES FOR SCALAR FIELDS

In this section, we introduce the radial expansion of the
metric and matter fields and explain some properties related
to the computation of conserved charges. We also explain
how to construct the boundary stress tensor. For simplicity,
we consider only a scalar field in the matter sector with the
action given in Eq. (22). The boundary metric is taken to be
flat as γð0Þij ¼ ηij. In pure Einstein gravity, the conformal
anomaly of the dual field theory is absent as a consequence
of the flat boundary metric. And thus logarithmic terms do
not appear in the metric, and the radial expansion of the on-
shell metric, in the FG coordinates, is generically given by

γij ¼ e2ηðηij þ e−dηγðdÞij þ � � �Þ: ð56Þ

It is well known that the leading-order term, e−dηγðdÞij , gives
the well-defined, finite, total conserved charges, like the
mass and angular momentum of black holes.

A. Radial expansion

We assume the scalar field depends only on the radial
coordinate η. In general, the leading order in the radial
expansion of the scalar field is given by ϕ ∼ e−ðd−Δ�Þηϕ�,
where ϕþ and ϕ− correspond to the leading-order terms of
the non-normalizable and normalizable modes, respec-

tively, and Δ� ¼ d
2
�

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
d2
4
þm2

q
. The mass of the scalar

field has unitary bound or the Breitenlohner–Freedman
(BF) bound [37], m2 ¼ m2

BF ¼ − d2
4
, in which the expo-

nents degenerate as Δþ ¼ Δ− ¼ d
2
. In this case, the scalar

field includes the logarithmic mode behaving as
ϕ ∼ ηe−

d
2
ηϕlog. We consider the BF-saturated case first.

1. Class I: m2 ¼ m2
BF ¼ − d2

4

We can apply our formalism to the case with the
logarithmic mode, which was studied in Refs. [38,39] by
using the Hamiltonian formalism. For simplicity, we
consider the case in which the leading-order term in the
radial expansion starts at the order e−

d
2
η and take the radial

expansion as

ϕ ¼ e−
d
2
ηðϕð0Þ þ � � �Þ: ð57Þ

The corresponding radial expansion of the metric solution
takes the same form given in Eq. (56).
Now, let us perform a linearized analysis to see the

backreaction of the metric to the scalar field. By taking
into account the leading-order behavior of the scalar
field, it is sufficient to take the scalar potential up to
quadratic order as

VðϕÞ ¼ 1

2
m2ϕ2 þ � � � : ð58Þ

The linearized EOM of our specific model become

h00ij þ ðd − 4Þh0ij þ ð4 − 2dÞhij − e2ηηijðh00 þ dh0Þ ¼ 0;

ð59Þ

ðd − 1Þh0 − d2

4
e−dηϕ2

ð0Þ ¼ 0; h≡ e−2ηηijhij ð60Þ

φ00 þ dφ0 −m2φ ¼ 0; ð61Þ

where primes denote derivatives with respect to η and γij ≡
e2ηηij þ hij and ϕ≡ e−

d
2
ηϕð0Þ þ φ. Since the leading-order

contribution of the scalar field to the metric starts from the
order e−dη, the linear analysis is sufficient to compute
conserved charges. From Eq. (60), the leading-order

coefficient γðdÞij in the metric satisfies the trace relation,

ηijγðdÞij ¼ −
d

4ðd − 1Þϕ
2
ð0Þ: ð62Þ

The form of the coefficients γðdÞij would be further specified
by the metric ansatz of the solution. As in the case of pure
Einstein gravity, these coefficients can be used to determine
the conserved charges.

2. Class II: m2 > m2
BF ¼ − d2

4

In this class, we consider the case with Δϕ ¼ Δþ, and
then the radial expansion of the scalar field solution is given
in the form of

ϕ¼ e−ðd−ΔϕÞηðϕð0Þ þe−2ðd−ΔϕÞηϕð2Þ þe−4ðd−ΔϕÞηϕð4Þ þ �� �Þ;
ð63Þ

for the even scalar potential for which the generic expan-
sion is given by

VðϕÞ ¼ 1

2
m2ϕ2 þ 1

4
λϕ4 þ � � � : ð64Þ

If Δϕ ≥ d, the presence of this non-normalizable mode
changes the asymptotic AdS structure. Henceforth, we
restrict ourselves to the case Δϕ < d, which corresponds
tom2 < 0. The corresponding metric solution has the radial
expansion,

γij ¼ e2η½ηij þ e−2ðd−ΔϕÞηγð2d−2ΔϕÞ
ij þ � � � þ e−dηγðdÞij þ � � ��;

ð65Þ

where the leading-order term in the expansion of the metric
is given by
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γ
ð2d−2ΔϕÞ
ij ¼ −

ϕ2
ð0Þ

4ðd − 1Þ ηij: ð66Þ

The slower falloff terms than e−dηγðdÞij may give divergent
contributions to conserved charges. However, such diver-
gencies should be automatically taken care of, and finite
values emerge since our bulk formalism, by using the one-
parameter path in the solution space, gives identical results
with those from the boundary stress tensor formalism. One
may note that conserved charges are generically determined

by γðdÞij . Since the contribution of the scalar source to the
metric starts, at least, from the ϕ2 term, we need to know all
the coefficients up to the order e−ð2Δϕ−dÞη in the expansion
of the full solution of the scalar field. This will be clearly
shown through the explicit computation of conserved
charges in specific examples in Sec. V.

B. Counterterms and boundary stress tensor

In this section, we present the generic forms of the GH
and counterterms in the model (20). By using these forms,
we give the resultant form of the boundary stress tensor and
the renormalized momentum of the scalar field.
First of all, the GH term for the Einstein gravity is

given by

LGH ¼ KðγÞ; ð67Þ

whereKðγÞ is the extrinsic curvature scalar at the boundary.
The counterterms Lctðγ;ϕÞ consist of two parts,

Lct ¼ 2KctðγÞ þ ΦctðϕÞ; ð68Þ

where the first term is the counterterm for the pure
gravity and the second one is the one for the scalar field.
The counterterms for the pure gravity part are given by
[8,40–42]

KctðγÞ ¼ −ðd − 1Þ − 1

2ðd − 2ÞRB −
1

2ðd − 4Þðd − 2Þ2

×

�
RB
ijR

ij
B −

d
4ðd − 1ÞR

2
B

�
þ � � � ; ð69Þ

where RB
ij and RB are the intrinsic Ricci tensor and scalar at

the boundary, respectively. The counterterms for the scalar
field ϕ are chosen as the polynomial of the scalar field as

ΦctðϕÞ ¼ α1ϕ
2 þ α2ϕ

4 þ � � � ; ð70Þ

where αk are determined to cancel the divergences in the
renormalized action at the boundary.
It follows that the boundary stress tensor consists of two

parts,

Tij
B ¼ Tij

g þ Tij
ϕ ; ð71Þ

where Tij
g and Tij

ϕ come from the metric and scalar fields,
respectively. They are given by

Tij
g ¼ Kγij − Kij − ðd − 1Þγij

þ 1

ðd − 2Þ
�
Rij
B −

1

2
RBγ

ij

�
þ � � � ; ð72Þ

Tij
ϕ ¼ γij

2
ðα1ϕ2 þ α2ϕ

4 þ � � �Þ: ð73Þ

One may note that the contribution of the scalar field to the
boundary stress tensor comes only from the counterterm
action, and the concrete expression of TB depends on the
form of the counterterm action. One may also note that in
this case

Tij
B ¼ Tij

B ;

since we are considering a scalar field only. The renor-
malized momentum of the scalar field at the boundary is
given by

ffiffiffiffiffiffi
−γ

p
Πϕ ¼ ffiffiffiffiffiffi

−γ
p ½−∂ηϕþ 2α1ϕþ 4α2ϕ

3 þ � � ��: ð74Þ

In class I, it is sufficient to take α1 ¼ − d
4
, α2 ¼ � � � ¼ 0,

and then it turns out that Πϕ ¼ 0 generically.

V. APPLICATION TO VARIOUS BLACK HOLES

In this section, we apply our quasilocal formalism to
some specific examples. In particular, we compute the total
conserved charges from both bulk and boundary construc-
tions. We support the general proof of the equivalence on
total charges in the bulk and boundary constructions
through explicit computations. All the examples we have
presented in this section correspond to the specific cases
such that the one-parameter path in the solution space is
taken as δsγ

ð0Þ
ij ¼ 0. In our bulk construction, we compute

each contribution from the metric and matter sectors to
conserved charges, by using Eqs. (30) and (31). We find
each contribution to conserved charges matches with
the corresponding one in our boundary construction.
Specifically, we reproduce the mass and angular momen-
tum of AdS black holes in various dimensions and explain
additional salient features in our formalism through explicit
examples.

A. Three-dimensional black holes

In three-dimensional gravity, we have various analytic
black hole solutions that allow us to apply our formalism
concretely. Specifically, we consider the three-dimensional,
AdS black hole space with scalar hair.
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1. Class I: m2 ¼ m2
BF ¼ −1

By solving the linearized EOM, we obtain the most
general solution of the metric as

γð2Þij ¼
�C1 þ 1

4
ϕ2
ð0Þ −C2

−C2 C1 − 1
4
ϕ2
ð0Þ

�
; ð75Þ

where C1 and C2 are arbitrary parameters that turn out to be
proportional to the mass and the angular momentum,
respectively, of AdS black holes with scalar hair. To
compute the mass and angular momentum of these black
holes in the bulk quasilocal formalism, we take the timelike
and rotational Killing vectors as ξT ¼ ∂

∂t and ξR ¼ ∂
∂θ and

take the relevant path in the solution space parametrized by
C1; C2, and ϕð0Þ.
The ADT potentials in Eqs. (30) and (31) for the timelike

Killing vector ξiT ¼ ð1; 0Þ are computed as

ffiffiffiffiffiffi
−g

p
Qηi

ADTðξT ;δgÞjη→∞ ¼
�
δC1−

1

2
ϕð0Þδϕð0Þ;δC2

�
; ð76Þ

ffiffiffiffiffiffi
−g

p
Qηi

ADTðξT ; δϕÞjη→∞ ¼
�
1

2
ϕð0Þδϕð0Þ; 0

�
: ð77Þ

By using Eq. (19) with the convention dxηt ¼
1

2
ffiffiffiffi−gp ϵηtθdθ ¼ dθ, we obtain

Mg
ADT ¼

1

4G

�
C1−

1

4
ϕ2
ð0Þ

�
; Mϕ

ADT ¼
1

16G
ϕ2
ð0Þ: ð78Þ

Therefore, the total mass of these black holes is given by

MADT ≡Mg
ADT þMϕ

ADT ¼ 1

4G
C1: ð79Þ

The ADT potentials for the rotational Killing vector
ξiR ¼ ð0; 1Þ are computed as

ffiffiffiffiffiffi
−g

p
Qηi

ADTðξR; δgÞjη→∞ ¼
�
−δC2;−δC1 −

1

2
ϕð0Þδϕð0Þ

�
;

ð80Þ
ffiffiffiffiffiffi
−g

p
Qηi

ADTðξR; δgÞjη→∞ ¼ ð0; 0Þ: ð81Þ
Therefore, the scalar contribution to the angular momentum
is absent, and the total angular momentum of these black
holes is given by

JADT ≡ JgADT þ JϕADT ¼ 1

4G
C2: ð82Þ

Now, we present the boundary stress tensor explicitly
and confirm the equivalence relation (54) between the bulk
ADT potential and the boundary current. After a bit of
computation, one obtains the boundary stress tensor as

ðTgÞij ¼
�−C1 þ 1

4
ϕ2
ð0Þ −C2

−C2 C1 þ 1
4
ϕ2
ð0Þ

�
;

ðTϕÞij ¼
�− 1

4
ϕ2
ð0Þ 0

0 − 1
4
ϕ2
ð0Þ

�
: ð83Þ

It is straightforward to confirm the equivalence relation (54)
for Killing vectors ξT and ξR. One may note that the
equivalence relation holds for the metric and matter parts
separately.
Now, we present some known black hole solutions which

belong to this class:
(i) Banados-Teitelboim-Zanelli black hole solutions

[43,44]:

ds2 ¼ −
ðr2 − r2−Þðr2 − r2þÞ

r2
dt2

þ r2

ðr2 − r2−Þðr2 − r2þÞ
dr2

þ r2
�
dθ −

r−rþ
r2

dt

�
2

: ð84Þ

These are solutions in pure gravity with a cosmo-
logical constant or solutions without scalar hair,
ϕð0Þ ¼ 0. After transforming to FG coordinates, one
can read off

C1 ¼
r2− þ r2þ

2
; C2 ¼ r−rþ; ð85Þ

which reproduce the well-known expressions of the
total mass and angular momentum of Banados-
Teitelboim-Zanelli black holes,

M ¼ r2− þ r2þ
8G

; J ¼ r−rþ
4G

: ð86Þ

(ii) The extremal rotating black holes with scalar hair
[45–47]:

ds2 ¼ r2
�
−1þ μ0

r2
þO

�
1

r3

��
dt2

þ 1

r2

�
1þ

μ0 − 1
2
ϕ2
ð0Þ

r2
þO

�
1

r3

��
dr2 ð87Þ

þr2
�
dθ −

�
μ0
2r2

þO
�
1

r3

��
dt
�
2

;

ϕðrÞ ¼ ϕð0Þ
r

þO
�
1

r2

�
: ð88Þ

These are solutions corresponding to the case
C1 ¼ C2 ¼ μ0

2
. The total mass and angular momen-

tum of these black holes are computed as
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M ¼ J ¼ μ0
8G

; ð89Þ

which satisfy the extremality condition.

2. Class II: −1 < m2 < 0

In this class, we apply our formalism to those solutions
given in Refs. [39,48]. The scalar potential with a cosmo-
logical constant is taken as

VðϕÞ − 2 ¼ −2
�
cosh6

�
ϕ

4

�
þ νsinh6

�
ϕ

4

��
: ð90Þ

The radial expansion, Eq. (63), of the scalar field in FG
coordinates becomes

ϕ ¼ e−
1
2
η

�
ϕð0Þ þ

1

48
ϕ3
ð0Þe

−η þ � � �
�
; ð91Þ

while the coefficients in the radial expansion of the metric
solution up to the e−2η order are given by

γð1Þij ¼ −
1

4
ϕ2
ð0Þηij; γð2Þij ¼ 3

128
ϕ4
ð0Þ

�
ηij þ

ð1þ νÞ
4

δij

�
:

ð92Þ

The ADT potentials for the timelike Killing vector ξiT are
computed as

ffiffiffiffiffiffi
−g

p
Qηi

ADTðξT ; δgÞjη→∞ ¼
�
−
1

4
eηϕð0Þδϕð0Þ þ

1

32
ϕ3
ð0Þδϕð0Þ þ

3ð1þ νÞ
128

ϕ3
ð0Þδϕð0Þ

�
ξiT ; ð93Þ

ffiffiffiffiffiffi
−g

p
Qηi

ADTðξT ; δϕÞjη→∞ ¼
�
1

4
eηϕð0Þδϕð0Þ −

1

32
ϕ3
ð0Þδϕð0Þ

�
ξiT : ð94Þ

By using Eq. (19), we obtain the total mass of black holes:

MADT ≡Mg
ADT þMϕ

ADT ¼ 1

4G
3ð1þ νÞ
512

ϕ4
ð0Þ: ð95Þ

The ADT potentials for the rotational Killing vector ξiR become

ffiffiffiffiffiffi
−g

p
Qηi

ADTðξR; δgÞjη→∞ ¼
�
−
1

4
eηϕð0Þδϕð0Þ þ

1

32
ϕ3
ð0Þδϕð0Þ −

3ð1þ νÞ
128

ϕ3
ð0Þδϕð0Þ

�
ξiR; ð96Þ

ffiffiffiffiffiffi
−g

p
Qηi

ADTðξR; δϕÞjη→∞ ¼
�
1

4
eηϕð0Þδϕð0Þ −

1

32
ϕ3
ð0Þδϕð0Þ

�
ξiR: ð97Þ

Therefore, it turns out that the total angular momentum
vanishes,

JADT ≡ JgADT þ JϕADT ¼ 0: ð98Þ

Now, we turn to the boundary formalism. In this case, we
choose counterterms of the scalar field as

Φct ¼ −
1

4
ϕ2 −

1

96
ϕ4: ð99Þ

By using this form of counterterms, one can see that

ffiffiffiffiffiffi
−γ

p ðTGÞij ¼
�
1

8
eηϕ2

ð0Þ −
3

128
ϕ4
ð0Þ þ

3ð1þ νÞ
512

ϕ4
ð0Þ

�
δij

−
3ð1þ νÞ
256

ϕ4
ð0Þδ

itδjt; ð100Þ

ffiffiffiffiffiffi
−γ

p ðTϕÞij ¼ −
�
1

8
eηϕ2

ð0Þ −
3

128
ϕ4
ð0Þ

�
δij; ð101Þ

ffiffiffiffiffiffi
−γ

p
Πϕ ¼ 0: ð102Þ

Once again, it is straightforward to confirm the equivalence
relation (54) for Killing vectors ξT and ξR. As a result, the
identical expression for the mass and angular momentum
can be obtained through the boundary stress tensor method
as well. Furthermore, one can see that each leading
divergent term in QADTðδgÞ and QADTðδϕÞ matches with
the corresponding one in δð ffiffiffiffiffiffi−γp

TGÞ and δð ffiffiffiffiffiffi−γp
TϕÞ,

respectively. It is amusing to note that each ADT potential
Qηi

ADTðξÞ is proportional to the corresponding Killing vector
ξ, which is not clear a priori from the bulk formalism. This
seems natural from the equivalence relation since the
boundary stress tensor ðTBÞij for the static black holes
becomes diagonal.
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B. General d-dimensional static black holes

In general d dimensions, we focus on planar static black
holes with scalar hair in class I. The relevant coefficient in
the radial expansion of the metric is given by

γðdÞij ¼
�
C −

1

4ðd − 1Þϕ
2
ð0Þ

�
ηij þ dCδitδjt; ð103Þ

where C is an arbitrary constant. By using the expression of
the quasilocal ADT potential given in Eq. (30), one can see
that

ffiffiffiffiffiffi
−g

p
Qηt

ADTðξT ; δgÞjη→∞ ¼ −
d
4
ϕð0Þδϕð0Þ þ

dðd − 1Þ
2

δC;

ð104Þ

ffiffiffiffiffiffi
−g

p
Qηt

ADTðξT ; δϕÞjη→∞ ¼ d
4
ϕð0Þδϕð0Þ: ð105Þ

The full expression of counterterms for the metric field in
general d dimensions is not known explicitly even in
Einstein gravity. Yet one may still ignore their contributions
to the boundary stress tensor except for the boundary
cosmological constant if the boundary metric is taken flat,
γð0Þij ¼ ηij. With this assumption, the boundary stress tensor
is given by

ffiffiffiffiffiffi
−γ

p ðTgÞtjξTj ¼ d
8
ϕ2
ð0Þ −

dðd − 1Þ
2

C; ð106Þ

ffiffiffiffiffiffi
−γ

p ðTϕÞtjξTj ¼ −
d
8
ϕ2
ð0Þ; ð107Þ

ffiffiffiffiffiffi
−γ

p
Πϕ ¼ 0: ð108Þ

Once again, we confirm our general results given in
Eq. (54).
The total mass of these black holes is obtained as

M ¼ Mg þMϕ ¼ dðd − 1Þ
16πG

Vd−1C; ð109Þ

where Vd−1 denotes the volume of the ðd − 1Þ-dimensional
planar space. In class II, it is straightforward to apply our
formalism to the known analytic solutions, for instance,
those given in Ref. [49].

VI. CONCLUSION

In this paper, we have constructed a quasilocal formalism
for conserved charges in a general theory of gravity with
diffeomorphism symmetry in the presence of arbitrary
matter fields. This construction can be regarded as the
full- fledged extension of the covariant formalism devel-
oped by Abott, Deser, and Tekin, which depends on the
Euler–Lagrange expressions only. While the original ADT
formulation incorporates the metric fields only at the

asymptotic infinity, our construction incorporates the con-
tribution of slow falloff matter fields and can be applied
even in the interior region in the sense of quasilocal
conserved charges.
We have shown that our formalism or the full-fledged

extension of the ADT formalism at the quasilocal level
gives us completely identical results on potentials as
those from the covariant phase space approach. In fact,
the equivalence of potentials in both formalisms is
proven at the off-shell level. Technically, we have adopted
a one-parameter path in the solution space in order to
obtain finite conserved charges from the off-shell
expression.
For the asymptotically (locally) AdS space, we have

also introduced identically conserved boundary currents in
the same spirit as in the bulk case and obtained the
corresponding conserved charges. We have shown that
these charges have the same expression as those from the
conventional holographic approach known as the boun-
dary stress tensor method. Furthermore, we have proved
that the bulk formalism on conserved charges leads to the
same results as the boundary one by showing that the bulk
off-shell ADT potential reduces to the boundary current
when we approach the asymptotic infinity. In all, we have
shown that our quasilocal formalism can be matched
completely with the previously well-known methods. As
a byproduct of these matchings, we have verified in a
general theory of gravity that conserved charges by the
covariant phase approach should be identical with those
by the holographic method. This result can be regarded as
the extension of the proof on the equivalence of conserved
charges in Einstein gravity from the covariant phase space
formalism and those from the boundary stress tensor
method.
As an application of our formalism, we have considered

some examples in order to show some details in our
formalism concretely. The necessity of the matter contri-
bution to conserved charges is manifest in these examples.
Through the linear analysis, some additional features on
matchings between the quasilocal ADT potential and the
boundary stress tensor have been explained.
Our matchings among various approaches to conserved

charges clarify some equivocal aspects in each formulation
on conserved charges. For instance, the consistency of
conserved charges with the first law of black hole thermo-
dynamics is not so manifest in the holographic approach,
while the finiteness of the ADT potential for the asymp-
totically AdS geometry is not manifest in the ADT
formalism. On the other hand, the consistency of conserved
charges with the first law of the black hole thermodynamics
is usually taken as the property in the covariant phase
space, and the finiteness of conserved charges is manifest,
by construction, in the holographic approach. All such
equivocal aspects disappear since conserved charges are
matched through our construction.
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One may note that the second term in Eq. (10) plays
essential roles to define conserved charge consistent with
known results. The analogous term in the boundary
formalism is the second one in Eq. (37), which is not
revealed in literature on the boundary stress tensor formal-
ism. By presuming that the conformal anomaly is invariant
along the path, we argue that there is no contribution from
the second term in Eq. (37), which corresponds to the
known results. Indeed, there is no contribution from the
second term in all the examples we have presented in this
paper. It is amusing to speculate the case in which the
conformal anomaly is not invariant along the path in the
solution space. In that case, the second term in Eq. (37)
would be essential, and our expression of holographic
conserved charges would be an improvement over the
known one.
We would like to give some comments on the further

extension of our formalism. As mentioned in the previous
sections, our bulk quasilocal construction can be applied
even to the case in which a bulk Lagrangian contains
nonmanifestly covariant terms like gravitational Chern–
Simons terms. Though explicit steps are not presented in
the presence of nonmanifestly covariant terms in the bulk
Lagrangian, it would be straightforward to match our final
expressions with those in the covariant phase space
approach by modifying it to accommodate such terms
[50–53]. The equivalence with holographic methods would
also hold in the presence of such terms. Though the
equivalence between conserved charges from the bulk
and boundary formalisms is shown by adopting FG
coordinates, it is expected to hold in other coordinates.
It would be interesting to prove this in general. In this
paper, we have focused on exact Killing vectors. It would
also be straightforward to extend our construction to
asymptotic Killing vectors by following steps worked
out in Refs. [54]. It would be an interesting direction to
extend our equivalence between the bulk and boundary
constructions to geometries that are not asymptotically
(locally) AdS space.
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APPENDIX A: DERIVATION OF THE
OFF-SHELL IDENTITY

To obtain the off-shell identity given in Eq. (3), let
us note that the diffeomorphism variation δζΨ ¼ £ζΨ
leads to

δζð
ffiffiffiffiffiffi
−g

p
LÞ ¼ ffiffiffiffiffiffi

−g
p ½−Eμν£ζgμν þ Eψ£ζψ � þ ∂μΘμð£ζΨÞ

¼ ffiffiffiffiffiffi
−g

p ½2ζν∇μEμν þ Eψ£ζψ �
þ ∂μðΘμð£ζΨÞ − 2

ffiffiffiffiffiffi
−g

p
EμνζνÞ; ðA1Þ

where we have used £ζgμν ¼ 2∇ðμζνÞ and performed the
integration by parts on the first term. Alternatively, since
the diffeomorphism is the symmetry of the given action, the
diffeomorphism variation of the Lagrangian can be written
as a total derivative in the form of

δζð
ffiffiffiffiffiffi
−g

p
LÞ ¼ ∂μðζμ

ffiffiffiffiffiffi
−g

p
Lþ ΣμðζÞÞ; ðA2Þ

where Σμ denotes an additional surface term that exists for
nonmanifestly covariant terms like gravitational Chern–
Simons terms. By equating the above two forms of
diffeomorphism variation, one can see that

ffiffiffiffiffiffi
−g

p ½2ζν∇μEμνþEψ£ζψ �
¼∂μðζμ

ffiffiffiffiffiffi
−g

p
LþΣμðζÞ−Θμð£ζΨÞþ2

ffiffiffiffiffiffi
−g

p
EμνζνÞ: ðA3Þ

Since the left-hand side of Eq. (A3) is composed only
of ζ and ∇ζ terms for an arbitrary function ζ, one can
deduce that the right-hand side should be taken in the
form of

r:h:s ¼ ffiffiffiffiffiffi
−g

p ∇μðYμνζν þ Y½μν�ρ∇νζρÞ
¼ ffiffiffiffiffiffi

−g
p ∇μðYμνζν −∇νY½μν�ρζρÞ;

where we have used ∇μ∇νðY½μν�ρζρÞ ¼ 0. As a result, the
off-shell identity follows.

APPENDIX B: FORMULAS FOR THE
CONSERVATION OF CURRENTS

In this Appendix, we show some formulas that are used
for the derivation of the conservation of off-shell currents.
One may note that the generic double variations of the bulk
action can be written as

δ2δ1I½Ψ� ¼ 1

16πG

Z
dDx½δ2ð

ffiffiffiffiffiffi
−g

p
EΨδ1ΨÞþ∂μδ2Θμðδ1ΨÞ�:

ðB1Þ

By using the fact that the antisymmetrization of double
variations of the action vanish, ðδ1δ2 − δ2δ1ÞI ¼ 0, and
taking one of the variations as a diffeomorphism variation,
one can see that

0 ¼ 1

16πG

Z
dDx½δζð

ffiffiffiffiffiffi
−g

p
EΨδΨÞ − δð ffiffiffiffiffiffi

−g
p

EΨδζΨÞ

− ∂μω
μðδΨ; δζΨÞ�: ðB2Þ
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Since δξΨ ¼ 0 and ωμðδΨ; δξΨÞ ¼ 0 for a Killing vector, ξ,
it is straightforward to obtain the following formula:

δξð
ffiffiffiffiffiffi
−g

p
EΨδΨÞ ¼ ∂μðξμ

ffiffiffiffiffiffi
−g

p
EΨδΨÞ ¼ 0: ðB3Þ

Combining this formula with Eq. (8), one can check the
identical conservation of J μ

ADT.

By applying the same argument to the on-shell renor-
malized action given in Eq. (33), one can obtain

∂i½ξiB
ffiffiffiffiffiffi
−γ

p ðTkl
B δγkl þ ΠψδψÞ� ¼ 0; ðB4Þ

which is used to show the identical conservation of the
boundary current J i
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