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Analogue models of gravity have played a pivotal role in the past years by providing a test bench for
many open issues in quantum field theory in curved spacetime such as the robustness of Hawking radiation
and cosmological particle production. More recently, the same models have offered a valuable framework
within which current ideas about the emergence of spacetime and its dynamics could be discussed via
convenient toy models. In this context, we study here an analogue gravity system based on a relativistic
Bose-Einstein condensate. We show that in a suitable limit this system provides not only an example of an
emergent spacetime (with a massive and a massless relativistic fields propagating on it) but also that such
spacetime is governed by an equation with geometric meaning that takes the familiar form of Nordström
theory of gravitation. In this equation the gravitational field is sourced by the expectation value of the trace
of the effective stress-energy tensor of the quasiparticles while the Newton and cosmological constants are
functions of the fundamental scales of the microscopic system. This is the first example of analogue gravity
in which a Lorentz invariant, geometric theory of semiclassical gravity emerges from an underlying
quantum theory of matter in flat spacetime.
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I. INTRODUCTION

In recent years there has been considerable interest in
emergent gravity scenarios which envision that general
relativity and spacetime itself could be a sort of thermody-
namic limit of a more fundamental theory based on funda-
mental entities different from spacetime quanta. The links
between thermodynamics and gravitation–black-hole
thermodynamics [1–3]; derivation of the Einstein equation
from the thermodynamics of local causal horizons [4] (see,
however, [5] for different point of view), and membrane
description of event horizon [6,7] – are the underlying
motivations behind the emergent gravity program.
While this paradigm might seem at odds with some

approaches to quantum gravity it is not necessarily incom-
patible with them. In particular, emergence akin to that in
the condensed-matter systems has been increasingly stud-
ied within the quantum gravity community in order to
understand the emergence of spacetime and gravity from
different fundamental ontologies [8–13] (see also [14] for a
recent extension of these ideas to electromagnetism). In this
sense, emergent gravity settings might end up being more
of a completion of quantum gravity scenarios rather than a
drastic alternative.
Analogue models of gravity are provided by several

condensed-matter/optical systems in which the excitations
propagate in a relativistic fashion on an emergent pseudo-
Riemannian geometry induced by the medium. Since the

seminal work of Unruh [15] analogue models of gravity
have set a fruitful arena in which issues related to semi-
classical gravity can be studied in concrete toy models (see
e.g. [16,17] and references therein). While the main focus
in this area has been to experimentally simulate phenomena
expected within quantum field theory on curved spacetime,
e.g., analogue Hawking radiation [15,18,19] and cosmo-
logical particle production [20,21], it has also been shown
that the emergence of a Lorentz signature metric is a
characteristic of a large class of systems [22] and can also
be obtained starting from Euclidean field theories [23].
Among the various analogue systems, a preeminent role

has been played by Bose-Einstein condensates (BECs)
because these are macroscopic quantum systems whose
phonons/quasiparticle excitationscanbemeaningfully treated
quantum mechanically and hence used to fully simulate
the above mentioned quantum phenomena [19,24,25].
Most of the research on analogue gravity so far has dealt

with the questions related to the emergence of spacetime
and quantum field theory on it. The analogue of gravita-
tional dynamics however is generally missing; i.e., the
spacetime that emerges has a dynamics which cannot be
cast in the form of background-independent geometric
equations. Nonetheless, there have been in recent times
attempts of reproducing the emergence of some gravita-
tional dynamics within analogue gravity systems (see e.g.
[26–29]).
In particular, in a recent development, one of the present

authors and collaborators succeeded in finding the ana-
logue of the Poisson equation for the gravitational potential
associated with the background geometry experienced
by the quasiparticles propagating on a nonrelativistic
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BEC [30]. Noticeably this equation is sourced, as in
Newtonian gravity, by the density of the quasiparticles
(the analogue of the matter in this system) while a
cosmological constant is also present due to the back-
reaction of the atoms which are not part of the condensate
(the so-called depletion factor) [30,31]. While the appear-
ance of an analogue gravitational dynamics in a BEC
system is remarkable, it is not a surprise that this analogue
system is able to produce only Newtonian gravity since the
model itself is based on the nonrelativistic BEC to start
with. Nonetheless a derivation of relativistic gravitational
dynamics in analogue models has been missing so far.
Remarkably, BECs can also be described within a

completely relativistic framework, and indeed a relativistic
BEC (rBEC)—a BEC of a system of relativistic particles—
was first studied as an analogue model in [32] where it was
shown that the low-energy massless quasiparticles propa-
gate as massless minimally coupled scalar field on a curved
spacetime. The quasiparticles thus feel a curved effective
metric called the acoustic metric. The dynamics of the
acoustic metric itself, however, was not discussed in that
work. It is natural to expect that a rBEC might provide a
suitable model for the relativistic dynamics of an emergent
spacetime. This is the subject of this paper.
The plan of the paper is as follows. We begin in Sec. II

with a review of Bose-Einstein condensation in a complex
scalar field theory. In Sec. III we study the dynamics of the
condensate and show how the perturbations experience the
condensate as a curved spacetime geometry. In Sec. IV we
make contact with previous work on relativistic BECs [32]
stressing also the differences with respect to our work.
This section can be skipped by readers not familiar with
Ref. [32] as it is not strictly needed for the overall under-
standing of our results. In Sec. V we show how the dynamics
in this model can be interpreted as the emergence of a
Lorentz invariant theory of gravity—the Nordström gravity.
We conclude with a summary of results and outlook
in Sec. VI.
Our metric signature is ð−þþþÞ and the conventions

are those of Wald in Ref. [33].

II. COMPLEX SCALAR FIELD THEORY:
RELATIVISTIC BECS

Let us start by considering the general theory for a
relativistic Bose-Einstein condensation. This is generically
described by a complex scalar field endowed with an internal
Uð1Þ symmetry which ends up to be spontaneously broken
below some critical temperature [34–37]. We closely follow
[34], to which we refer the reader for a detailed treatment.
The Lagrangian is given by

L ¼ −ημν∂μϕ
†∂νϕ −m2ϕ†ϕ − λðϕ†ϕÞ2: ð1Þ

The theory has a Uð1Þ invariance under phase rotation of
the fields. The corresponding conserved current is given by

jμ ¼ iðϕ†∂μϕ − ϕ∂μϕ
†Þ: ð2Þ

Space integral of the zeroth component of current gives the
conserved charge,

Q ¼ i
Z

d3xðϕ†∂tϕ − ϕ∂tϕ
†Þ: ð3Þ

To describe the theory at a finite temperature T ¼ 1=β we
Wick rotate the time τ ¼ −it and periodically identify the
fields with a period τ ¼ β. Instead of using a complex field,
it is convenient to use the real and imaginary parts of ϕ as
dynamical variables: ðϕ1 þ iϕ2Þ=

ffiffiffi
2

p
. Defining the momen-

tum conjugate to the fields as πi ¼ ∂ϕi=∂t for i ¼ 1, 2, the
partition function at a finite value of charge is then given by

Z ¼ N
Z

Dπ1Dπ2Dϕ1Dϕ2

× exp

�Z
β

0

dτ
Z

d3xðiπ1 _ϕ1 þ iπ2 _ϕ2 − ½H − μQ�Þ
�
;

ð4Þ

where μ is the chemical potential sourcing the charge density
Q ¼ ϕ2π1 − ϕ1π2 in the system and H is the Hamiltonian
density

H ¼ 1

2
ðπ21 þ π22 þ ð ~∇ϕ1Þ2 þ ð ~∇ϕ2Þ2 þm2ðϕ2

1 þ ϕ2
2ÞÞ

þ λ

4
ðϕ2

1 þ ϕ2
2Þ2: ð5Þ

The total amount of charge at equilibrium can be obtained
from the partition function as

Q ¼ 1

β

∂
∂μ lnZ: ð6Þ

In the laboratory, one prepares the system with some net
amount of charge Q and the value of μ is obtained by
inverting Eq. (6).
The integral over momenta in Eq. (4) is a Gaussian

integral. Hence, the momenta can be integrated away.
This gives

Z ¼ N β

Z
Dϕ1Dϕ2 exp

�
−
Z

β

0

dτ
Z

d3xLeff

�
; ð7Þ

whereN β is a β dependent constant and Leff is the effective
Lagrangian of the theory given by

Leff ¼
1

2
ð _ϕ2

1 þ _ϕ2
2 þ ð ~∇ϕ1Þ2 þ ð ~∇ϕ2Þ2Þ

þ iμðϕ2
_ϕ1 − ϕ1

_ϕ2Þ þ VðϕÞ; ð8Þ
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where VðϕÞ is the effective potential given by

VðϕÞ ¼ 1

2
ðm2 − μ2Þðϕ2

1 þ ϕ2
2Þ þ

λ

4
ðϕ2

1 þ ϕ2
2Þ2: ð9Þ

From the form of the effective potential it is clear that at a
given β if μ > m then the system is in the broken Uð1Þ
phase and the condensate has formed. It can be shown [34]
that this phase transition is second order and the critical
temperature is given by

Tc ¼
3

λ
ðμ2 −m2Þ: ð10Þ

Later we are interested in the massless limit for which the
critical temperature is given by Tc ¼ 3μ2=λ. Thus, in the
massless case, a nonzero chemical potential is necessary in
order for the Uð1Þ symmetry to be broken and the
condensate to be formed at a finite nonzero critical temper-
ature. In the following we always consider the system to
be at temperatures T ≪ Tc so that thermal effects can be
safely neglected.

III. RELATIVISTIC BEC AS AN ANALOGUE
GRAVITY MODEL

A. Dynamics of the condensate:
Gross-Pitævskii equation

The effective Lagrangian of Eq. (8) can be rewritten in
terms of the complex valued fields as

Leff ¼ −ημν∂μϕ
�∂νϕ −m2ϕ�ϕ − λðϕ�ϕÞ2

þ μ2ϕ�ϕþ iμðϕ�∂tϕ − ϕ∂tϕ
�Þ: ð11Þ

The equation of motion for ϕ is obtained by variation with
respect to ϕ� and we get

�
−□þm2 − μ2 − 2iμ

∂
∂t
�
ϕþ 2λðϕ�ϕÞϕ ¼ 0: ð12Þ

We can factor out explicitly the dependence on the
chemical potential and write the field as

ϕ ¼ φeiμt: ð13Þ
This gets rid of the μ dependent terms and we get

ð□ −m2Þφ − 2λjφj2φ ¼ 0: ð14Þ

This was the starting equation in Ref. [32] where the
acoustic metric was first derived. Let us now decompose φ
as φ ¼ φ0ð1þ ψÞ, where φ0 is the condensed part of the
field ðhφi ¼ φ0Þ, which we take to be real, and ψ is the
fractional fluctuation. The reality of the condensate order
parameter is the crucial assumption here. We comment on
this in the discussion section. Note that ψ is instead

complex and hψi ¼ 0. It can be written in terms of its
real and imaginary parts ψ ¼ ψ1 þ iψ2. Substituting this
decomposition in Eq. (14) and taking the expectation value
we get the equation of motion for the condensate

ð□ −m2Þφ0 − 2λφ3
0 − 2λφ3

0½3hψ2
1i þ hψ2

2i� ¼ 0; ð15Þ

where we have assumed that the cross-correlation of the
fluctuations vanish; i.e., hψ1ψ2i ¼ 0. This is justified a
posteriori by Eq. (19), which shows that ψ1 and ψ2 do not
interact with each other at the order of approximation we
are working. Equation (15) determines the dynamics of
the condensate taking into account the backreaction of the
fluctuations. It is the relativistic generalization of the
Gross-Pitævskii equation [38].

B. Dynamics of perturbations: acoustic metric

Having determined the dynamics of the condensate we
now want to calculate the equations of motion for the
perturbations themselves. To this end, we insert φ ¼
φ0ð1þ ψ1 þ iψ2Þ in Eq. (14) and expand it to linear order
in ψs. Using the Gross-Pitævskii equation to that order and
separating the real and imaginary parts we get the equation
of motion for ψ1 and ψ2,

□ψ1 þ 2ημν∂μðlnφ0Þ∂νψ1 − 4λφ2
0ψ1 ¼ 0; ð16aÞ

□ψ2 þ 2ημν∂μðlnφ0Þ∂νψ2 ¼ 0: ð16bÞ

We therefore see that ψ2 is the massless mode, which is the
Goldstone boson of the brokenUð1Þ symmetry, while ψ1 is
the massive mode with mass 2φ0

ffiffiffi
λ

p
. We now define a

“acoustic” metric, which is conformal to the background
Minkowski,

gμν ¼ φ2
0ημν: ð17Þ

The relation between the d’Alembertian operators for gμν
and ημν is given by

□g ¼
1

φ2
0

□þ 2

φ2
0

ημν∂μðlnφ0Þ∂ν: ð18Þ

Equation (16) can be written in terms of the d’Alembertian
of gμν as

□gψ1 − 4λψ1 ¼ 0; ð19aÞ

□gψ2 ¼ 0: ð19bÞ

We see from Eq. (19) that the fluctuations propagate on a
curved metric, called the acoustic metric, which in this case
is conformal to the background Minkowski space Eq. (17).
Note that in this derivation there was no low-momentum
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approximation needed in order to derive the acoustic
metric.

IV. RELATION TO STANDARD RBEC

The following section is devoted to the connection of
the current work with the previous results on relativistic
BEC as analogue models presented in [32]. As such it can
be skipped, being not strictly needed for the overall
understanding of the rest of this work.
As noted earlier, Eq. (14) is exactly the starting equation

of the previous work on relativistic BEC by one of the
authors [32], in which the acoustic metric felt by the
perturbations of condensate was derived for the first time.
This work also showed that this acoustic metric coincides
with the one derived in Ref. [39] (see also [40,41] for an
earlier derivation) for the relativistic flow of an inviscid,
irrotational fluid with a barotropic equation of state. The
perturbations of such a fluid propagate on an acoustic
geometry which is disformally related to the background
Minkowski space,

gμν ¼ ρ
c
cs

�
ημν þ

�
1 −

c2s
c2

�
vμvν
c2

�
; ð20Þ

where cs is the speed of sound and vμ ¼ cuμ=∥u∥ is the
velocity of the fluid flow. Here uμ ≡ ℏ

m η
μν∂νθ is the usual

four vector directly associated with the spacetime depend-
ence of the phase of the background field written in the so-
called Madelung form φ ¼ ffiffiffi

ρ
p

eiθ (see [32] for a detailed
discussion). This acoustic metric was later linked to
previous studies of perturbations in the k-essence models
[42]. Given the disformal form of the acoustic metric found
in all of these studies, it might seem quite surprising that the
acoustic metric in the present case is conformal to the flat
space. More importantly, there is no Lorentz violation in
the dynamics of the perturbations in our system: perturba-
tions experience the same acoustic metric both at low
and high momenta. Since the acoustic metric is confor-
mally flat they propagate with the “speed of sound” equal to
c (the speed of light).
The point is that we have assumed φ0 to be real which is

tantamount to have a constant phase θ. It is indeed possible
to start from the general equations of Ref. [32] and try to
see what happens in the limit in which the phase of the
order parameter becomes a spacetime constant (in particu-
lar zero for simplicity). The results of this kind of limiting
procedure are the following: first of all the dispersion
relations in Eq. (38) of Ref. [32] become the dispersion
relations for a massless and a massive mode that one can
derive from Eq. (16); second, the parameter b used in
Ref. [32] to define the low momentum limit, i.e., the
approximation in which the acoustic metric can be derived,
goes to infinity in the limit so that the low momentum limit
is always satisfied. With the same limiting procedure it is
also possible to show that the speed of sound becomes

equal to the speed of light as it is in our current treatment
and as should be expected by the dispersion relations that
do not show anymore the Lorentz violating terms. Finally,
another quantity that remains well define despite the limit is
the fluid four velocity; in fact one can easily see that vμvμ ¼
−c2 and vμ are finite. This explanation has the weakness to
not be straightforwardly applicable to massless particles,
that we assume later, as the definition of uμ becomes
singular in this limit. But it seems to be possible to take the
massless limit at the end of the calculation when no
quantity directly depends on the mass. The discussion of
the massless boson gas condensation would need a separate
treatment in case one wants to purse the fluid analogy.
The previous discussion shows that the limiting pro-

cedure is well defined. The final step then is to see how the
acoustic metric can be read off from the perturbation
equations in such a limit of constant phase and if this
metric is really conformally flat. For doing this, it is
sufficient to start from Eq. (24) of [32] and take the limit
of constant phase; then one obtains

ð□þ ημν∂μ ln ρ∂νÞψ − 2λρðψ þ ψ†Þ ¼ 0

that is equivalent to our (16), where ρ corresponds to φ2
0.

From this equationwe already know that one can read out the
conformally flat acoustic metric felt by the perturbations.
Note also that the same conclusion can be obtained starting
from Eq. (20) and looking at the case in which cs ¼ c. It is
important to note that the equality between the speed of
sound and the speed of light gives rise to the fact that in this
system there has no interpolation phase between two
relativity groups with two limit speeds (cs in the Infrared
limit, c in the UV one) and the relativity group remains
always the same at any energy. This is hence an example of a
model of emergent spacetime where the low- and high-
energy regimes share the sameLorentz invariance. This point
is not trivial since, as far as we know, there is no toymodel of
emergent spacetime inwhich Lorentz violation is screened in
this way at the lowest order of perturbation theory. The case
at hand shows that it can be possible at the price of some
nontrivial conditions on the background system.
While the above discussion shows how the current result is

related to that of Ref. [32], we should also stress that the
starting formalism of the two works are indeed different. In
the previous work the condensation was assumed a priori and
the rest followed; here we have used the Grand Canonical
formalism that is more suited to show that a condensation
actually happens and also permits us to derive the critical
temperature for the interacting case. The crucial feature is that
this formalism allowed us to single out explicitly the chemical
potential that gives to us a mass scale that we use in the next
sections in order to rescale the fields.

V. EMERGENT NORDSTRÖM GRAVITY

In Sec. III B we saw that the fluctuations of the
condensate, also called the quasiparticle excitations, are
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oblivious of the flat background metric. They instead
experience a curved geometry dictated by the condensate
and the background. On the other hand, they backreact on
the condensate through the relativistic generalization of
the Gross-Pitaevskii equation (15). It is natural to ask if it
is possible to have a geometric description of the dynamics
of the condensate too.
The Ricci tensor of the acoustic metric (17) can be

calculated to be

Rg ¼ −6
□φ0

φ3
0

: ð21Þ

Dividing the relativistic Gross-Pitaevskii equation by φ3
0,

Eq. (15) can be written as

Rg þ 6
m2

φ2
0

þ 12λ ¼ hTqpi; ð22Þ

where we have defined hTqpi≔−12λ½3hψ2
1i þ hψ2

2i� and
the subscript “qp” reminds us that this quantity is deter-
mined by the quasiparticle excitations of the condensate.
Equation (22) is evidently reminiscent of the Einstein-

Fokker equation describing Nordström gravity [43,44],

Rþ Λ ¼ 24π
GN

c4
T; ð23Þ

where R and T are, respectively, the Ricci scalar and the
trace of the stress-energy tensor of matter. Unfortunately,
the gravitational analogy of our equation is spoiled by the
mass term. Therefore we consider our system in the zero
mass limit. Notice that, as discussed earlier, this limit does
not spoil the presence of a condensate [see Eq. (10)] or the
uniqueness of the Lorentz group for constituents and
excitations found in Sec. IV. We come back to the physical
reasons for this limit in the discussion section.
The striking resemblance of Eq. (22) with zero mass term

and (23) should not distract us from the need of one more
step before comparing them. Indeed, the dimensions of the
various quantities appearing in Eq. (22) are not canonical
and need to be fixed for such a comparison to be mean-
ingful. This is due to the fact that, as is usual in the
analogue gravity literature, our acoustic metric is a dimen-
sional quantity because φ0 is dimensional. The fractional
perturbations ψ1 and ψ2, on the other hand, are dimension-
less. We therefore need rescaling of the fields in order to
have a dimensionless metric and (mass) dimension one
scalar fields propagating on the curved metric. We relegate
the detailed discussion of these rescalings in Appendix A.
The upshot of this dimensional analysis is that we need to

scale the field φ0 →
μffiffiffiffi
cℏ

p φ0 and perturbation ψ →
ffiffiffiffi
cℏ

p
μ ψ .

Finally, using these rescaled quantities we can rewrite
Eq. (22) (with m ¼ 0) in the form of Eq. (23) as

Rþ Λeff ¼ hTqpi; ð24Þ

where Λeff ≡ 12λ μ2

cℏ and Tqp here and in the following are
the same expression as in (22) but with the mass dimension
one fields. Equations of motion of the quasiparticles (16)
can also be rewritten in terms of the rescaled fields as

□gψ1 −
4λμ2

ℏc
ψ1 ¼ 0; ð25aÞ

□gψ2 ¼ 0; ð25bÞ

where all quantities, including the□g operator, now pertain
to those of the rescaled fields.

A. Stress-energy tensor and Newton constant

As a final step in order to verify the emergence of a true
Nordström gravity theory from our system we still need to
prove that Tqp is indeed related to the trace of the stress-
energy tensor for the analogue matter fields, i.e., our
quasiparticles T. This turns out to be indeed the case
and the proportionality factors relating these quantities will
allow us to identify the effective Newton constant for this
analogue system Geff . In the following, we refer the reader
mainly to Appendix C for technicalities and just state the
main results.
We have seen before that perturbations feel an acoustic

conformally flat metric (17); Appendix B shows in detail
how to write the effective action (11) in a geometric form in
terms of this acoustic metric [note that the equations for
perturbations (25) can also be derived from this effective
action]. Having said that, we want to compute the stress-
energy tensor for the perturbations by varying the action
with respect to the acoustic metric; i.e.,

Tμν ≡ −
1ffiffiffiffiffiffi−gp δð ffiffiffiffiffiffi−gp

S2Þ
δgμν

; ð26Þ

where S2 is only the quadratic (in perturbations) part of the
action [see Eq. (C2)] as the linear part S1 is shown (see
again Appendix C) to give no contribution to the trace of
the stress-energy tensor.
The final result for the expectation value of the trace

of the stress-energy tensor in the background of gμν ¼
μ2

ℏcφ
2
0ημν is given by

hTi ¼ −2λ
μ2

cℏ
½3hψ2

1i þ hψ2
2i� ¼

1

6

μ2

cℏ
hTqpi: ð27Þ

Due to this last expression one sees that the right-hand side
of Eq. (24) is actually given by 6cℏ

μ2
hTi and hence our

emergent Nordström gravity equation is exactly of the form
(23) with the identification Geff ¼ ℏc5=ð4πμ2Þ. This value
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corresponds to an emergent analogue Planck scale
MPl ¼ μ

ffiffiffiffiffiffi
4π

p
=c2.

We have thus succeeded in expressing the dynamics
of the background for our rBEC analogue model in a
geometric language

Rþ Λeff ¼ 24π
Geff

c4
hTi: ð28Þ

The acoustic metric itself is sourced by the expectation
value of the trace of the stress-energy tensor of the
perturbations of the condensate playing the role of the
matter. These matter fields in turns propagate relativistically
on a conformally flat acoustic metric (17) with Eq. (25).
A final comment is deserved by the emergent, positive,

cosmological constant term Λeff . The quantity of interest
for what concern the usual cosmological constant problem
is the ratio between the energy density associated with the

(emergent) cosmological constant ϵΛeff
∼ ðΛeffc4

Geff
Þ and the

emergent Planck energy density ϵpl ∼ c7

ℏG2
eff
. In our case, this

ratio is given by

ϵΛeff

ϵpl
≃ 3λℏc

π
: ð29Þ

As one can see, the ratio is proportional to λℏ and so is
clearly pretty small due to the presence of Planck constant
and the natural assumption of a weakly interacting system.
Of course in principle this term can be “renormalized” by
the vacuum contribution of the matter fields (basically the
vacuum expectation value hTi). It is however nontrivial,
and beyond the scope of the present work, to split our
ground state in a matter and vacuum part as it is not an
eigenstate of the number operator (which in our relativistic
system is not conserved).

VI. SUMMARY AND DISCUSSION

In this paper we have studied the relativistic Bose-
Einstein condensation in a theory of massless complex
scalar field with a quartic coupling. Below the critical
temperature the Uð1Þ symmetry is broken resulting in the
nonzero value of the expectation value of the field—the
condensate. We showed that the dynamics of the conden-
sate is described by the relativistic generalization of the
Gross-Pitaevskii equation given in Eq. (15). The fluctua-
tions of the condensate experience the presence of the
condensate through the acoustic metric, Eq. (17) that, with
the particular background state chosen here, turns out to be
conformal to the flat Minkowski metric. Propagation of
the two components of the perturbation is described by
Eq. (25) which is just the Klein-Gordon equation for
massive and massless scalar fields on the curved back-
ground provided by the acoustic metric. Perturbations in
turn gravitate through the trace of their stress-energy tensor

that is calculated in detail in Appendix C. The dynamics of
the acoustic metric is governed by the analogue Einstein-
Fokker equation (24), which is the equation of motion
for the Nordström gravity with cosmological constant.
To the best of our knowledge, this is the first study of
the emergence of Lorentz invariant dynamics for the
emergent spacetime in an analogue model (see however
Ref. [9]). As a side remark, note also that the emergence of
only conformally flat analogue spacetimes is in no way a
trivial result since cosmological solutions in general rela-
tivity are conformally flat as well and nevertheless they
incorporate characteristic features like expansion of the
Universe and cosmological particle creation.
The central assumption that has permitted us to carry out

the geometrical interpretation of the model is the reality of
the order parameter. Thanks to this it was possible to have a
conformally flat acoustic metric and to rewrite the back-
ground equation in a geometrical form. In the general case
in which the order parameter is complex there does not
seem to be much hope to cast the nonlinear Klein-Gordon
equation for the background in a geometrical form,
although an acoustic metric can still be derived and is in
general a disformal metric (20). This is due to the fact that
the general disformal acoustic metric depends both on the
(derivative of) phase and the modulus of the order param-
eter but the background equation is too simple to describe
the dynamics of both the (derivative of) phase and the
modulus of the order parameter so cannot be recast in a
background independent form. The reality of the conden-
sate, on the other hand, leaves only one degree of freedom
to play with and hence at best one can only hope to recover
a scalar theory of gravity such as the Nordström one in this
limit. It would be interesting to further characterize the
particular background state that has to be chosen in order to
recover a gravitational dynamics.
Another necessary approximation for the emerging

Nordström gravity is the zero mass limit of the underlying
atoms. Although we have seen that the massless case is
not pathological from the point of view of Bose-Einstein
condensation, one should be aware that strictly speaking
such a limit is not necessary since it is sufficient to require
for the mass term in Eq. (22) to be negligible with respect
to the others (though this would call for a careful analysis
and is beyond the scope of this work). One might wonder
why the mass term ruins the geometrical interpretation of
the equation. Let us just notice that this term breaks the
conformal invariance of the background equation (15).
Similarly, the addition of higher order interactions (see
also discussion below) would break the conformal invari-
ance of (15) and spoil the possibility of recasting the
equation in a geometric form. It would be interesting to
further investigate this apparent link and pinpoint the
exact connection (if any) between conformal invariance of
the background equation and its viability for a geometric
interpretation.
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From a pure effective field theory point of view, it is clear
that other interaction terms are admissible and, as men-
tioned above, higher mass dimension interaction terms, ϕn

as well as a cubic term (which could be discarded anyway
by parity arguments), would end up spoiling the geomet-
rical interpretation of the theory. However, while in
principle the aforementioned higher order interactions
are allowed, there are good physical reasons for the λϕ4

interaction to be the most relevant one. In fact, such term
models two body interactions which are generically dom-
inant in dilute systems as the condensate that we have
considered here. Higher order interaction terms will not only
be irrelevant from an EFT point of view but will be
associated with many-body interactions which will be
generically subdominant.
It is also interesting that we obtain quite naturally a

cosmological constant term whose size is set by the coupling
constant λ and the chemical potential μ. Remarkably, the
emergent cosmological constant is such that the ratio
between its energy density and the energy density associated
with the emergent Planck length Eq. (29) is small: so there
is no “cosmological constant problem” (in the sense of
unnatural smallness) present in such emergent gravity sys-
tems. This result is in close analogy with the nonrelativistic
case discussed in Ref. [31]. It is however important to stress
that in our relativistic case the recovery of such a term is
strongly dependent on the choice of the particular interaction
termcharacterizing the initialLagrangian (1), i.e., theλϕ4 one,
and it is not present in the nonrelativistic case.
Indeed, as discussed in [31], the small, negative, cos-

mological constant term found in the nonrelativistic BEC is
basically due to the depletion factor, i.e., to that ever-
present atoms which are not in the condensate phase. This
is a pure quantum effect due to the quantum inequivalence
of the phonon and atomic vacua. The relativistic case shows
instead a “bare” gravitational constant term, simply stem-
ming from the ϕ4 term, which is there independently from
the vacuum expectation value hTi contribution (the rela-
tivistic generalization of the term associated with depletion
in the nonrelativistic BEC). Of course, one can recover the
nonrelativistic BEC case from the relativistic BEC (see
[32]). In this case the dimensional bare coupling constant
(Λeff ¼ 12λμ2=cℏ, see Appendix A) goes to zero as c → ∞
and only the “depletion” contribution will remain.
Finally, Nordström gravity is only a scalar theory of

gravity and has been falsified by experiments; for example,
it does not predict the bending of light. However, it is the
only other known theory in four dimensions that satisfies
the strong equivalence principle [45]. With the aim of
getting closer to emerge general relativity, one necessarily
needs to look for richer Lagrangians than that in Eq. (1).
Of course, emergence of a theory characterized by spin 2
graviton would open the door to a possible conflict with the
Weinberg-Witten theorem [46]. However, one may guess
that analogue models (or analogue model inspired systems)

will generically lead to Lagrangians which show Lorentz
invariance and background independence only as approxi-
mate symmetries for the lowest order in the perturbative
expansion. The relativistic model proposed here shows that,
at least at the level of linear perturbations, such symmetries
are realized both in the equations of the linear perturbations
as well as in those describing the dynamics of the back-
ground. As such it might serve as toy model for the use of
emergent gravity scenarios in investigating, e.g., geometro-
genesis (here the condensation process) [47] or the nature
of spacetime singularities in this framework. We hope to
come back to these and related issues in the near future.
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APPENDIX A: FIELD REDEFINITION

Here we are going to redefine the fields in such a way to
have a dimensionless acoustic metric and mass dimension
one scalar fields propagating on it. In order to do so let us
do a little bit of dimensional analysis. By looking to the
standard kinetic term for a scalar field in four dimensions
one has that the dimension of the field is given by

½ϕ� ¼
ffiffiffiffiffiffiffiffi
ML
T2

r
;

in accordance with the fact that the mass dimension is
one in four dimensions. The chemical potential has the
dimension of an energy and so

½μ� ¼ ML2

T2
:

Since we have an interaction term of the form λϕ4 we have
also

½λ� ¼ T2

ML3
:

First of all we want to redefine the background field (the
condensate part) ϕ0 in such a way to render it dimension-
less; this can be achieved by the following redefinition

~φ0 ¼
ffiffiffiffiffiffi
ℏc

p

μ
φ0;

and this is the only way given the fact that we have only
one mass scale given by the chemical potential (that has
mass dimension one). In analogy we have to redefine the
perturbation field in the following way
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~ψ ¼ μffiffiffiffiffiffi
ℏc

p ψ :

Now we have a new acoustic metric given by

~gμν ¼ ~φ2
0ημν:

In term of this the perturbation equations became

□~g ~ψ1 − 4λ
μ2

ℏc
~ψ1 ¼ 0; □~g ~ψ2 ¼ 0:

The background equation instead become

~Rþ 12λ
μ2

cℏ
¼ 0;

and so we can call cosmological constant the factor Λeff ≡
12λ μ2

cℏ that has in fact the right dimension, 1=L2. Now from
only dimensional arguments it is easy to guess what will be
the emergent gravitational constant in our model; in fact the
only combination of constants of the model with the right
dimension is

ℏc5

μ2
≡G;

and so the would be Planck mass is dimensionally set by μ
c2.

APPENDIX B: ACTION IN
GEOMETRICAL FORM

In this appendix we are going to rewrite the action for
background field and perturbations making explicit the use
of the acoustic metric. We do it with the nonredefined field
and in natural units for the moment. In order to do so we
have to rewrite the effective Lagrangian (11), after geting
rid of the μ dependent term, splitting the background field
and the fractional perturbation, ϕ ¼ φ0ð1þ ψÞ (here and in
the following, for economy of space we will not split the
perturbations in real and imaginary parts unless needed).
In this way one obtains the following:

Leff ¼ L0 þ L1 þ L2 þ L3;4; ðB1Þ

where the number in the end represent the number of the
perturbation fields in the Lagrangians and

L0 ¼ −ημν∂μφ0∂νφ0 −m2φ2
0 − λφ4

0 ðB2Þ

L1 ¼ ð−ημν∂μφ0∂νφ0 −m2φ2
0 − 2λφ4

0Þðψ� þ ψÞ
− ημν∂μφ0φ0∂νψ − ημν∂μφ0φ0∂νψ

� ðB3Þ

L2 ¼ ð−ημν∂μφ0∂νφ0 −m2φ2
0Þðψ�ψÞ

− λφ4
0ðψψ þ ψ�ψ� þ 4ψ�ψÞ − ημνφ2

0∂μψ
�∂νψ

− ημνφ0∂μφ0ψ
�∂νψ − ημν∂μψ

�φ0∂νφ0ψ ðB4Þ

L3;4 ¼ −λφ4
0ð2ψ�ψψ þ 2ψ�ψ�ψ þ ψ�ψ�ψψÞ: ðB5Þ

Now we are going to put the action of the theory, up to
quadratic terms in the perturbation, in a geometrical form.
In order to do so we integrate by parts terms in the above
Lagrangian ignoring the boundary terms that will arise.
First of all, remember that for us

gμν ¼ φ2
0ημν;

ffiffiffiffiffiffi
−g

p ¼ φ4
0:

Then the expression

−ημνφ0∂μφ0∂μψ − ημνφ0∂μφ0∂μψ
�

− ημν∂μφ0∂μφ0ðψ� þ ψÞ

after integration by part of the first two terms becomes

ημν∂νφ0∂μφ0ψ þ ημνφ0∂ν∂μφ0ψ þ ημν∂νφ0∂μφ0ψ
�

þ ημνφ0∂ν∂μφ0ψ
� − ημν∂μφ0∂μφ0ðψ� þ ψÞ

¼ ημνφ0∂ν∂μφ0ψ þ ημνφ0∂ν∂μφ0ψ
�: ðB6Þ

Now lets look at the term in the action

Z
d4xφ0□φ0ðψ þ ψ�Þ ¼

Z
d4x

ffiffiffiffiffiffi
−g

p φ0□φ0

φ4
0

−6
−6

ðψ þ ψ�Þ

¼ −1
6

Z ffiffiffiffiffiffi
−g

p
Rðψ þ ψ�Þ: ðB7Þ

Let us now pass to the other terms and proceed in the same
way as above. The term

−ημν∂μφ0∂νφ0ψ
�ψ − ημν∂μφ0φ0ψ

�∂νψ

− ημν∂μφ0φ0∂νψ
� ψ

after integration by part of the first term becomes

ημνφ0∂μ∂νφ0ψ
�ψ þ ημνφ0∂νφ0∂μψ

�ψ þ ημνφ0∂νφ0ψ
�∂μψ

− ημν∂μφ0φ0ψ
�∂νψ − ημν∂μφ0φ0∂νψ

�ψ

¼ ημνφ0∂μφ0∂νφ0ðψ�ψÞ; ðB8Þ

and so in the action
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Z
d4xημνφ0∂μφ0∂νφ0ðψ�ψÞ

¼ −
1

6

Z
d4x

ffiffiffiffiffiffi
−g

p
Rðψ�ψÞ

− ημν∂μφ0∂νφ0 → ημνφ0∂μ∂νφ0

→
Z

d4x
ffiffiffiffiffiffi
−g

p φ0□φ0

φ4
0

¼ −
1

6

Z
d4x

ffiffiffiffiffiffi
−g

p
R: ðB9Þ

We have now other two remaining terms for which we do
not need to integrate by part. The first one is

−m2φ2
0½1þ ψ� þ ψ þ ψ�ψ �

− λφ4
0½1þ 2ðψ� þ ψÞ þ ψψ þ ψ�ψ� þ 4ψ�ψ � ðB10Þ

that becomes in the action

−
Z

d4x
ffiffiffiffiffiffi
−g

p fm2φ−2
0 ½1þ ψ� þ ψ þ ψ�ψ �

þλ½1þ 2ðψ� þ ψÞ þ ψψ þ ψ�ψ� þ 4ψ�ψ �g: ðB11Þ

The second and last term we are left with is

−ημνφ2
0∂μψ

�∂νψ → −
Z

d4x
ffiffiffiffiffiffi
−g

p φ2
0η

μν

φ4
0

∂μψ
�∂νψ

¼ −
Z

d4x
ffiffiffiffiffiffi
−g

p
gμν∂μψ

�∂νψ :

Putting all together and also putting the mass to be zero, we
have the following action

S ¼
Z

d4x
ffiffiffiffiffiffi
−g

p �
−
1

6
Rþ −1

6
Rðψ þ ψ�Þ − 1

6
Rðψ�ψÞ

−λ½1þ 2ðψ� þ ψÞ þ ψψ þ ψ�ψ� þ 4ψ�ψ �

− gμν∂μψ
�∂νψ

�
: ðB12Þ

APPENDIX C: STRESS-ENERGY TENSOR

In this last appendix we report the detailed calculation
for the stress energy tensor and its trace. So we want to
calculate

Tμν ≡ −
1ffiffiffiffiffiffi−gp δð ffiffiffiffiffiffi−gp

L2Þ
δgμν

: ðC1Þ

We consider the quadratic part of the action in the
perturbations fields given by (we also use the redefined
quantities omitting the tilde)

S2≡1

c

Z
d4x

ffiffiffiffiffiffi
−g

p
Lgeom
2

¼−
Z

d4x
ffiffiffiffiffiffi
−g

p �
1

6
Rðψ�ψÞþ 1

12
Λ½ψψþψ�ψ� þ4ψ�ψ �

þgμν∂μψ
�∂νψ

�
: ðC2Þ

In the end we also show that indeed the linear part of the
action in the perturbations gives no contribution to the
stress-energy tensor. We also need the following relations

δð ffiffiffiffiffiffi
−g

p Þ ¼ −
1

2

ffiffiffiffiffiffi
−g

p
gμνδgμν; ðC3aÞ

δR ¼ Rμνδgμν þ gμν□gδgμν −∇μ∇νδgμν; ðC3bÞ

Z
d4x

ffiffiffiffiffiffi
−g

p ½fδR�

¼
Z

d4x
ffiffiffiffiffiffi
−g

p ½fRμν þ gμν□gf −∇μ∇νf�δgμν; ðC3cÞ

where the third one follows from the second integrating by
parts and neglecting boundary terms. Then we have

δS2 ¼ −
1

c

Z
d4x

ffiffiffiffiffiffi
−g

p �
1

6
Rμνψ

�ψ þ 1

6
gμν□gψ

�ψ

þ 2

6
gμν∇aψ�∇aψ þ 1

6
gμνψ�

□gψ

−
1

6
ð∇μ∇νψ

�Þψ −
1

6
ψ�∇ν∇μψ −

2

6
∇μψ

�∇νψ

−
Λ
12

1

2
gμν½ψψ þ ψ�ψ� þ 4ψ�ψ �

−
1

2
gμν∂αψ

�∂αψ þ ∂μψ
�∂νψ −

1

6
R
1

2
gμνψ�ψ

�
δgμν:

ðC4Þ

Then the stress-energy tensor is simply given by

Tμν ¼
1

6
Gμνψ

�ψ þ 1

6
gμν□gψ

�ψ þ 2

6
gμν∇aψ�∇aψ

þ 1

6
gμνψ�

□gψ −
1

6
ð∇μ∇νψ

�Þψ −
1

6
ψ�∇ν∇μψ

−
2

6
∇μψ

�∇νψ −
Λ
12

1

2
gμν½ψψ þ ψ�ψ� þ 4ψ�ψ �

−
1

2
gμν∂αψ

�∂αψ þ ∂μψ
�∂νψ ; ðC5Þ

and its trace is given by
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T ¼ −
�
Rþ Λ

6

�
ψ�ψ −

Λ
6
½ψψ þ ψ�ψ� þ 3ψ�ψ �

þ□gψ
�ψ

�
2

3
−
1

6

�
þ ψ�□gψ

�
2

3
−
1

6

�

þ ∂αψ
�∂αψ

�
−1 −

1

3
þ 4

3

�
: ðC6Þ

Finally, using the background and the perturbations
equations

Rþ Λ ¼ 0; ðC7aÞ

□gψ ¼ Λ
6
ðψ þ ψ�Þ ðC7bÞ

and splitting the field in imaginary and real part, we end up
with

T ¼ −2λ
μ2

cℏ
½3ψ2

1 þ ψ2
2�: ðC8Þ

To conclude this appendix we have to show that, as
anticipated, the linear (in the perturbations) part of the
action gives no contribution to the stress tensor. The linear
part is given by

S1 ∝ −
Z

d4x
ffiffiffiffiffiffi
−g

p �
1

6
Rðψ� þ ψÞ þ 1

6
Λðψ þ ψ�Þ

�
;

ðC9Þ

so then following the same steps as before we have

δS1 ∝ −
Z

d4x
ffiffiffiffiffiffi
−g

p �
1

6
Rμνðψ�þ ψÞ þ 1

6
gμνð□gψ

� þ□gψÞ

−
1

6
ð∇μ∇νψ

� þ∇μ∇νψÞ

−
1

6
R
1

2
ðψ� þ ψÞ − Λ

6
ðψ� þ ψÞ 1

2
gμν

�
δgμν: ðC10Þ

Now is easy to see what is the contribution to the trace of
the stress energy tensor given by the linear term

Tð1Þ ¼ −
�
Rþ Λ

6

�
ðψ þ ψ�Þ

þ 1

2

�
□gψ

� þ□gψ −
2Λ
6

ðψ þ ψ�Þ
�
; ðC11Þ

and using the background and perturbations equations this
gives zero.

[1] J. M. Bardeen, B. Carter, and S. Hawking, Commun. Math.
Phys. 31, 161 (1973).

[2] S. Hawking, Commun. Math. Phys. 43, 199 (1975).
[3] S. Hawking, Nature (London) 248, 30 (1974).
[4] T. Jacobson, Phys. Rev. Lett. 75, 1260 (1995).
[5] G. Chirco, H. M. Haggard, A. Riello, and C. Rovelli, Phys.

Rev. D 90, 044044 (2014).
[6] K. S. Thorne, R. Price, and D. Macdonald, Black Holes:

The Membrane Paradigm, edited by K. S. Thorne
(Yale University Press, New Haven, 1986).

[7] T. Damour, Phys. Rev. D 18, 3598 (1978).
[8] L. Sindoni, SIGMA 8, 027 (2012).
[9] S. Gielen, D. Oriti, and L. Sindoni, J. High Energy Phys. 06

(2014) 013.
[10] D. Oriti, Proc. Sci., QG-PH (2007) 030.
[11] B. Hu, Int. J. Theor. Phys. 44, 1785 (2005).
[12] O. Dreyer, Proc. Sci., QG-PH (2007) 016.
[13] O. Dreyer, arXiv:gr-qc/0604075.
[14] C. Barceló, R. Carballo-Rubio, L. J. Garay, and G. Jannes,

(2014).
[15] W. Unruh, Phys. Rev. Lett. 46, 1351 (1981).
[16] S. Liberati, F. Girelli, and L. Sindoni, arXiv:0909.3834.
[17] C. Barcelo, S. Liberati, and M. Visser, Living Rev. Rela-

tivity 8, 12 (2005).
[18] T. Jacobson, Phys. Rev. D 48, 728 (1993).

[19] C. Barcelo, S. Liberati, and M. Visser, Phys. Rev. A 68,
053613 (2003).

[20] S. Weinfurtner, P. Jain, M. Visser, and C. Gardiner, Classical
Quantum Gravity 26, 065012 (2009).

[21] S. Weinfurtner, M. Visser, P. Jain, and C. Gardiner, Proc.
Sci., QG-PH (2007) 044.

[22] C. Barcelo, M. Visser, and S. Liberati, Int. J. Mod. Phys. D
10, 799 (2001).

[23] F. Girelli, S. Liberati, and L. Sindoni, Phys. Rev. D 79,
044019 (2009).

[24] L. Garay, J. Anglin, J. Cirac, and P. Zoller, Phys. Rev. Lett.
85, 4643 (2000).

[25] L. Garay, J. Anglin, J. Cirac, and P. Zoller, Phys. Rev. A 63,
023611 (2001).

[26] F. Girelli, S. Liberati, and L. Sindoni, Phys. Rev. D 78,
084013 (2008).

[27] G. Volovik and M. Zubkov, Ann. Phys. (Amsterdam) 340,
352 (2014).

[28] G. Volovik, JETP Lett. 89, 525 (2009).
[29] G. Jannes and G. Volovik, JETP Lett. 96, 215

(2012).
[30] L. Sindoni, F. Girelli, and S. Liberati, AIP Conf. Proc. 1196,

258 (2009).
[31] S. Finazzi, S. Liberati, and L. Sindoni, Phys. Rev. Lett. 108,

071101 (2012).

ALESSIO BELENCHIA, STEFANO LIBERATI, AND ARIF MOHD PHYSICAL REVIEW D 90, 104015 (2014)

104015-10

http://dx.doi.org/10.1007/BF01645742
http://dx.doi.org/10.1007/BF01645742
http://dx.doi.org/10.1007/BF02345020
http://dx.doi.org/10.1038/248030a0
http://dx.doi.org/10.1103/PhysRevLett.75.1260
http://dx.doi.org/10.1103/PhysRevD.90.044044
http://dx.doi.org/10.1103/PhysRevD.90.044044
http://dx.doi.org/10.1103/PhysRevD.18.3598
http://dx.doi.org/10.3842/SIGMA.2012.027
http://dx.doi.org/10.1007/JHEP06(2014)013
http://dx.doi.org/10.1007/JHEP06(2014)013
http://dx.doi.org/10.1007/s10773-005-8895-0
http://arXiv.org/abs/gr-qc/0604075
http://dx.doi.org/10.1103/PhysRevLett.46.1351
http://arXiv.org/abs/0909.3834
http://dx.doi.org/10.12942/lrr-2005-12
http://dx.doi.org/10.12942/lrr-2005-12
http://dx.doi.org/10.1103/PhysRevD.48.728
http://dx.doi.org/10.1103/PhysRevA.68.053613
http://dx.doi.org/10.1103/PhysRevA.68.053613
http://dx.doi.org/10.1088/0264-9381/26/6/065012
http://dx.doi.org/10.1088/0264-9381/26/6/065012
http://dx.doi.org/10.1142/S0218271801001591
http://dx.doi.org/10.1142/S0218271801001591
http://dx.doi.org/10.1103/PhysRevD.79.044019
http://dx.doi.org/10.1103/PhysRevD.79.044019
http://dx.doi.org/10.1103/PhysRevLett.85.4643
http://dx.doi.org/10.1103/PhysRevLett.85.4643
http://dx.doi.org/10.1103/PhysRevA.63.023611
http://dx.doi.org/10.1103/PhysRevA.63.023611
http://dx.doi.org/10.1103/PhysRevD.78.084013
http://dx.doi.org/10.1103/PhysRevD.78.084013
http://dx.doi.org/10.1016/j.aop.2013.11.003
http://dx.doi.org/10.1016/j.aop.2013.11.003
http://dx.doi.org/10.1134/S0021364009110010
http://dx.doi.org/10.1134/S0021364012160035
http://dx.doi.org/10.1134/S0021364012160035
http://dx.doi.org/10.1063/1.3284392
http://dx.doi.org/10.1063/1.3284392
http://dx.doi.org/10.1103/PhysRevLett.108.071101
http://dx.doi.org/10.1103/PhysRevLett.108.071101


[32] S. Fagnocchi, S. Finazzi, S. Liberati, M. Kormos, and
A. Trombettoni, New J. Phys. 12, 095012 (2010).

[33] R. M. Wald, General Relativity (The University of Chicago
Press, Chicago and London, 1984).

[34] J. I. Kapusta, Phys. Rev. D 24, 426 (1981).
[35] J. Bernstein and S.Dodelson, Phys. Rev. Lett. 66, 683 (1991).
[36] H. E. Haber and H. A. Weldon, Phys. Rev. D 25, 502 (1982).
[37] H. E. Haber and H. A. Weldon, Phys. Rev. Lett. 46, 1497

(1981).
[38] L. Pitaevskii and S. Stringari, Bose-Einstein Condensation

(Claredon Press, Oxford, 2003).

[39] M. Visser and C. Molina-Paris, New J. Phys. 12, 095014
(2010).

[40] N. Bilic, Classical Quantum Gravity 16, 3953 (1999).
[41] V. Moncrief, Astrophys. J. 235, 1038 (1980).
[42] N. Bilic and D. Tolic, Phys. Rev. D 88, 105002 (2013).
[43] N. Deruelle, Gen. Relativ. Gravit. 43, 3337 (2011).
[44] D. Giulini, arXiv:gr-qc/0611100.
[45] E. Di Casola, S. Liberati, and S. Sonego, Phys. Rev. D 89,

084053 (2014).
[46] S. Weinberg and E. Witten, Phys. Lett. 96B, 59 (1980).
[47] D. Oriti, Stud. Hist. Phil. Mod. Phys. 46, 186 (2014).

EMERGENT GRAVITATIONAL DYNAMICS IN A … PHYSICAL REVIEW D 90, 104015 (2014)

104015-11

http://dx.doi.org/10.1088/1367-2630/12/9/095012
http://dx.doi.org/10.1103/PhysRevD.24.426
http://dx.doi.org/10.1103/PhysRevLett.66.683
http://dx.doi.org/10.1103/PhysRevD.25.502
http://dx.doi.org/10.1103/PhysRevLett.46.1497
http://dx.doi.org/10.1103/PhysRevLett.46.1497
http://dx.doi.org/10.1088/1367-2630/12/9/095014
http://dx.doi.org/10.1088/1367-2630/12/9/095014
http://dx.doi.org/10.1088/0264-9381/16/12/312
http://dx.doi.org/10.1086/157707
http://dx.doi.org/10.1103/PhysRevD.88.105002
http://dx.doi.org/10.1007/s10714-011-1247-x
http://arXiv.org/abs/gr-qc/0611100
http://dx.doi.org/10.1103/PhysRevD.89.084053
http://dx.doi.org/10.1103/PhysRevD.89.084053
http://dx.doi.org/10.1016/0370-2693(80)90212-9
http://dx.doi.org/10.1016/j.shpsb.2013.10.006

