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Dynamical instabilities in protoneutron stars may produce gravitational waves whose observation could
shed light on the physics of core-collapse supernovae. When born with sufficient differential rotation, these
stars are susceptible to a shear instability (the “low-T=jWj instability”), but such rotation can also amplify
magnetic fields to strengths where they have a considerable impact on the dynamics of the stellar matter.
Using a new magnetohydrodynamics module for the Spectral Einstein Code, we have simulated a
differentially-rotating neutron star in full 3D to study the effects of magnetic fields on this instability.
Though strong toroidal fields were predicted to suppress the low-T=jWj instability, we find that they do so
only in a small range of field strengths. Below 4 × 1013 G, poloidal seed fields do not wind up fast enough
to have an effect before the instability saturates, while above 5 × 1014 G, magnetic instabilities can actually
amplify a global quadrupole mode (this threshold may be even lower in reality, as small-scale magnetic
instabilities remain difficult to resolve numerically). Thus, the prospects for observing gravitational waves
from such systems are not in fact diminished over most of the magnetic parameter space. Additionally,
we report that the detailed development of the low-T=jWj instability, including its growth rate, depends
strongly on the particular numerical methods used. The high-order methods we employ suggest that growth
might be considerably slower than found in some previous simulations.
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I. INTRODUCTION

Stellar core collapse, accretion-induced white dwarf
collapse, and binary neutron star merger all naturally
produce rapidly spinning neutron stars with strong differ-
ential rotation. The resulting neutron stars could be subject
to well-known dynamical instabilities, and the resulting
stellar deformations could produce a strong gravitational
wave signal which, if detected, would provide invaluable
information on these violent phenomena.
Global m ¼ 2 instabilities (perturbations with an azimu-

thal dependence of eimϕ) are particularly relevant for
gravitational wave production. One source of such modes
is the dynamical bar mode instability. However, this
instability only sets in for extremely high values of the
ratio of the rotational kinetic energy T to the gravitational
potential energy W: T=jWj ≥ 0.27 (with small variations
depending on the equation of state and ratio of mass to
radius [1–4]). Simulations have revealed another dynamical
nonaxisymmetric instability that can appear at much lower
T=jWj if sufficient differential rotation is present [5–16].
Watts, Andersson, and Jones [17] have given compelling
arguments for identifying this “low-T=jWj instability”, as it

was called, as a form of corotation shear instability, similar
in basic principle to the better-known Papaloizou-Pringle
instability in thick accretion disks [18]. Namely, non-
axisymmetric modes trapped in a resonant cavity make
multiple passes across a corotation radius (the radius where
the mode pattern speed matches the local fluid angular
speed) and are amplified on each pass. A local minimum
of the radial vortensity profile has been suggested as the
mechanism for mode trapping [10]. Simulations of proto-
neutron stars indicate that realistic core collapse scenarios
can produce stars subject to this instability [19]. Indeed,
the gravitational waves from this instability have been
proposed as a distinctive signal from hypothesized mag-
netorotationally-driven galactic supernovae with rapidly
rotating cores [20].
Magnetohydrodynamic simulations have shown that

the dynamical bar mode instability can be suppressed by
magnetic forces, although only for unrealistically high
magnetic field strengths [21,22]. Fu and Lai have inves-
tigated the effect of a toroidal magnetic field on the low-
T=jWj instability using an analytic model, treating the star
as an infinite cylinder with no vertical structure [23].
Because of the strong differential rotation, a more modest
poloidal seed field (∼1014 G) could wind up to a suffi-
ciently strong toroidal field (∼1016 G) within the growth*curran@astro.cornell.edu
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time of the instability (around 30 ms). The protoneutron
stars most likely subject to the low-T=jWj instability have
strong differential rotation and potential for magnetorota-
tional dynamo action, and in such stars magnetic fields of
this magnitude are plausible [24]. Magnetic suppression
could therefore eliminate the potential gravitational wave
signal of core-collapse supernovae. However, Fu and Lai’s
model makes a number of strong simplifying assumptions:
cylindrical stars, a polytropic equation of state, and purely
toroidal fields. These could lead to the neglect of other
important magnetohydrodynamical effects and instabilities.
Thus, simulations of more realistic configurations in full
3D are needed to evaluate the robustness of the suppression
mechanism.
In this work, we simulate the effects of magnetic fields

on differentially-rotating neutron stars susceptible to the
low-T=jWj instability, and we do so using a new mag-
netohydrodynamics (MHD) module for the Spectral
Einstein Code (SPEC)[25]. The instability is indeed sup-
pressed for a narrow range of strong seed magnetic fields,
but the more commonly observed behavior is for either
magnetic fields to be too weak to affect the global quadru-
pole mode or for them to be sufficiently strong for magnetic
instabilities to set in and actually amplify the mode. In
general, we find gravitational waves comparable in mag-
nitude to the unmagnetized case.

A. Notation

Physical equations in this work are written in geom-
etrized units where the speed of light c and the gravitational
constant G are set equal to 1. Residual dimensions can be
expressed as powers of mass, for which we choose the mass
of the Sun, M⊙, as the unit. When discussing electromag-
netic fields in the context of our simulation formalism
and stability analysis, we adopt the Lorentz-Heaviside
convention, absorbing a factor of 1=

ffiffiffiffiffiffi
4π

p
into the definition

of the magnetic field B. However, when presenting physical
results, we express all quantities in CGS-Gaussian units. In
particular, BLH ¼ BG=

ffiffiffiffiffiffi
4π

p
.

We denote the Cartesian coordinates of space by x, y, z.
The coordinate distance from the origin of our system is
denoted by r≡ ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

x2 þ y2 þ z2
p

. When cylindrical coordi-
nates are used, ϖ ≡ ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

x2 þ y2
p

represents the coordinate
distance to the z-axis, and ϕ≡ tan−1ðy=xÞ defines a point’s
azimuthal angle.
Tensor indices from the beginning of the Latin alphabet

(a; b;…) represent spacetime components without refer-
ence to any particular coordinate system, while indices
from the Greek alphabet (μ; ν;…) range from 0 to 3 and
correspond to components in our Cartesian coordinate
system of ðt; x; y; zÞ. Indices from the middle of the
Latin alphabet (i; j;…) range from 1 to 3 and represent
spatial Cartesian components. An index corresponding to a
coordinate symbol (t;ϕ;…) represents a component in an

implied coordinate system (either Cartesian or cylindrical
in this work).

II. NUMERICAL METHODS

To simulate the behavior of magnetized, differentially-
rotating neutron stars, we solve Einstein’s equations of
general relativity coupled to both the relativistic Euler
equations for a perfect fluid and the induction equation of
ideal MHD. The solution is found using SPEC, which
implements a hybrid of spectral and finite volume methods
[26]. As in previous studies conducted with this code,
the spacetime metric and its derivatives are evolved on a
multidomain pseudospectral grid, while the hydrodynamic
variables are restricted to a uniform rectilinear grid encom-
passing all of the matter in the system and are evolved in
conservative form using a high-resolution shock-capturing
finite volume scheme. This work introduces the magnetic
field as a new degree of freedom and treats its evolution with
an upwind constrained transport scheme on a staggered grid.
The details of our numerical treatment of this system of

equations are described in Appendix A. Here we present
our definitions for quantities used throughout the rest of
the work:
The spacetime metric gab is decomposed into 3þ 1 form

with 3-metric γij, lapse α, and shift vector βi (see, e.g.,
Baumgarte and Shapiro [27]). The determinant of the
3-metric is denoted by γ. The matter in the system is
modeled as a perfect fluid with rest-mass density ρ, specific
internal energy ϵ, and 4-velocity ua. An equation of state
relates ρ and ϵ to the fluid’s pressure P, and from these,
the relativistic specific enthalpy is h ¼ 1þ ϵþ P=ρ. We
denote the Lorentz factor corresponding to the fluid’s
velocity by WL ≡ αut.
To this we add an electromagnetic field with Faraday

tensor Fab, from which we define the magnetic field in a
spatial slice to be Bi ¼ αð⋆F0iÞ (where ⋆Fμν is the Hodge
dual of the Faraday tensor). Several quantities of interest
are naturally expressed in terms of ba, the magnetic field in
a frame comoving with the fluid:

ba ¼ ð⋆FabÞub: ð1Þ

We adopt the assumptions of ideal MHD; namely, that the
fluid is perfectly conducting.

III. SETUP

A. Physical system

Since our purpose is to study the effect of magnetic field
strength and configuration on the low-T=jWj instability, we
focus here on one system that, in the unmagnetized case, is
subject to this instability. As a starting point, we choose a
differentially rotating neutron star model very similar to
one of the ones studied by Corvino et al. [15], namely their
configuration M.1.200, which they indeed find to be
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unstable. Our star has a baryon mass of Mb ¼ 2.44M⊙, a
central density of ρc ¼ 1.16 × 10−3M⊙−2, and a ratio of
kinetic to gravitational potential energy of T=jWj ¼ 0.2
(low enough to avoid the high-T=jWj dynamical bar mode
instability, which becomes accessible for T=jWj≳ 0.24
[3,28]). The degenerate component of the equation of state
is given by the SLy model [29], which we implement via
the fitting formula introduced by Shibata et al. [30].
Thermal contributions to the pressure and internal energy
are included by a simple Γ-law addition to the equation of
state (see Shibata et al., Duez et al. [26]), where we have
chosen Γth ¼ 2. At the start of simulations, the temperature
of the star is set to zero. Thus, we ignore for the purposes
of this study the significant thermal energy that would be
found in a realistic protoneutron star or binary postmerger
remnant scenario, but we do model the dominant cold
nuclear physics component of the equation of state.
For the initial state of the star, we create an axisymmetric

nonmagnetized equilibrium solution of the Einstein equa-
tions. The spacetime metric, set in quasi-isotropic coor-
dinates, takes the form

ds2 ¼ −eμþνdt2 þ eμ−νr2sin2ðθÞðdϕ − ωdtÞ2
þ e2ξðdr2 þ r2dθ2Þ; ð2Þ

where μ, ν, ω, and ξ are arbitrary functions of axisymmetric
space. Differential rotation is a key requirement for the
instability and is incorporated by setting the initial angular
velocity, Ω≡ uϕ=ut, according to

Ωc −Ω ¼ Â−2utuϕ

¼ 1

Â2R2
e

� ðΩ − ωÞr2sin2ðθÞe−2ν
1 − ðΩ − ωÞ2r2sin2ðθÞe−2ν

�
; ð3Þ

where Re is the coordinate equatorial radius, Ωc is the
central angular velocity, and Â is a dimensionless parameter
characterizing the strength of differential rotation. For
the initial state of the system under study, Re ¼ 7.8M⊙,
Ωc ¼ 2π × 3.0 kHz, and Â ¼ 1. The ratio of polar to
equatorial coordinate radii is Rp=Re ¼ 0.414. We compute
the equilibrium configuration using the code of Cook,
Shapiro, and Teukolsky [31].
Since the equilibrium data are axisymmetric to numerical

precision, we seed the star with a small m ¼ 2 perturbation
in order to make the initial perturbation resolution-
independent and its subsequent growth numerically con-
vergent. This perturbation is applied to the rest-mass
density and takes the form

ρ → ρ

�
1þ δ2

x2 − y2

R2
e

�
: ð4Þ

The size of the initial perturbation is δ2 ¼ 2 × 10−5.
This yields an initial distortion [see Eq. (12)] of

ηþ ¼ 4.08 × 10−6. While we do not re-solve the general
relativity constraint equations, the increase in the general-
ized harmonic constraint energy is negligible (< 10−4%
of its volume-averaged L2 norm, which is 2.8 × 10−4
times that of the dynamical field gradients; see
Lindblom et al. [32]).
The properties of the star in its initial state are summa-

rized in Table I. While the mass is considerably higher than
would be expected for a protoneutron star (though not
implausible for a binary neutron star merger remnant), we
expect our conclusions regarding the interaction of mag-
netic fields and the low-T=jWj instability to apply quali-
tatively to lower-mass systems. Several properties differ
slightly from those of Corvino et al.’s M.1.200, as we did
not iterate our initial data to match that model exactly.
In particular, our star is roughly 2% less massive, so while
we expect the overall evolution to be quite similar, we
should not expect perfect correspondence in quantitative
measurements.
Finally, we introduce a seed poloidal magnetic field.

Following a standard practice in the numerical literature
(e.g., [33–35]), we introduce a toroidal vector potential
with strength

Aϕ ¼ Abϖ
2 maxðP − Pcut; 0Þns ; ð5Þ

where Ab sets the overall strength of the resulting B-field,
ns controls the smoothness of the field, and the cutoff
pressure Pcut (set to 4% of the central pressure) confines the
initial field to regions of high-density matter. The vector
potential is evaluated at cell edges, with a fourth-order curl
operator producing the initial B-field at cell faces. This field
is then superimposed on top of the unmagnetized equilib-
rium solution. While not formally self-consistent, at the
field strengths we consider we expect both the deviation
from equilibrium and the constraint violations in the
equations of general relativity to have negligible effects
on our conclusions. Specifically, the norm of the general-
ized harmonic constraint energy increased by < 1% with
the addition of the magnetic field. Selected field lines for
the initial and evolved states of the star are illustrated
in Fig. 1.

TABLE I. Basic properties of the neutron star. Re is the
equatorial coordinate radius, and Rp is the polar coordinate
radius. ΔΩ is the angular frequency range—the difference
between the central and equatorial rotation frequencies.

G; c;M⊙ ¼ 1 cgs

M0 2.44 4.85 × 1033 g
MADM 2.19 4.35 × 1033 g
Rp=Re 0.414 0.414
ρc 0.00116 0.717 × 1015 g × cm−3
Ωc 0.0922 2.98 × 2π kHz
ΔΩ 0.0650 2.10 × 2π kHz
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We explored a region of the two-parameter space
Ab × ns. However, it is more intuitive to talk about
magnetic field strengths measured in Gauss than the
poloidal coefficient Ab. The magnetic configurations stud-
ied are summarized in Table II, which reports both the

maximum strength of the B-field at t ¼ 0 as well as a
representative initial field strength B0 that more closely
reflects the average field in the star. We assign this
representative strength to each magnetic field configuration
by measuring the early growth of the magnetic energy
within the star, hereafter labeled HB [see Eq. (10)], and
fitting to it the formula

HB ≈ B2
0

�
ΔΩ2R3

6

�
t2 ð6Þ

to solve for B0. Here we take ΔΩ ¼ 2.1 × 2π kHz and
R ¼ 15.3 km (the proper equatorial radius, as opposed to
the isotropic coordinate radius reported earlier). This
formula was also used by Fu and Lai in their analysis
[23], easing comparisons with that work.
The dynamical importance of the magnetic field can

be inferred from the ratio of the gas to magnetic pressure
β ¼ 2P=b2 (where b2 ≡ baba). For our strongest initial
field, β starts no lower than 3.8 × 102.

B. Simulation parameters

We used several evolution grids over the course of this
investigation, but our final results were achieved on a
“reference” finite volume grid with Δx ¼ Δy ¼ 0.17M⊙ ¼
250 m and Δz ¼ 0.10M⊙ ¼ 150 m. Grids employed dur-
ing the exploratory phase (discussed in Sec. VA) used
uniform resolution and are detailed where mentioned.
Our spectral grid (for evolving the spacetime; see Fig. 2)

consists of a filled sphere (using a basis of three-
dimensional generalizations of Zernike polynomials; see

FIG. 1 (color online). Illustrations of magnetic field lines at
early (t ¼ 0, above) and intermediate (t ¼ 2160, below) times.
Contours represent regions of similar rest-mass density. Magnetic
field lines are seeded at coordinate radii of 2M⊙ (large vertical
extent; yellow) and 4M⊙ (small vertical extent; pink).

TABLE II. Summary of the magnetic configurations studied.
Bmax is the maximum strength of the initial poloidal magnetic
field, B0 is its “representative” strength as defined in the text, and
βmin is the minimum ratio of fluid pressure to magnetic pressure
found initially in the interior of the star.

Ab [G; c;M⊙ ¼ 1] ns Bmax=G B0=G βmin

0 n/a 0 0 ∞
0.00768 1 2.5 × 1014 4 × 1013 1.1 × 106

0.0379 1 1.3 × 1015 2 × 1014 5.2 × 104

0.0892 1 2.9 × 1015 5 × 1014 9.5 × 103

0.444 1 1.5 × 1016 2 × 1015 3.8 × 102

424 2 1.8 × 1015 2 × 1014 5.9 × 105

1000 2 4.1 × 1015 5 × 1014 1.1 × 105

FIG. 2 (color online). Illustration of x-z slice of domain
decomposition. The shaded region with a bold outline
represents the initial star. The dashed rectangle represents the
finite-difference domain, which has a coordinate width of 25M⊙
and a coordinate height of 14.5M⊙. For spectral subdomains, the
actual reference grid has twice as many collocation points in each
direction as are shown in the figure.
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Appendix B) surrounded by layers of “cubed spheres”—
products of Chebyshev polynomials distorted to conform to
1=6 of a spherical shell. These encompass the entire finite
volume grid and are in turn surrounded by true spherical
shells (a product of Chebyshev polynomials and spherical
harmonics) extending to 300 stellar equatorial radii. The
spectral resolution of our reference grid corresponds to
spherical harmonics out to l ¼ 21 for the central sphere and
l ¼ 17 for the outer spheres. The radial dimensions of these
spheres are resolved by 12 and 11 collocation points,
respectively. The cubed spheres contain 12 radial points
and 20 transverse points.

IV. ANALYSIS

To study the low-T=jWj instability in our simulations
and the effects that magnetic fields have on it, we consider
several global measures of the simulation results as
functions of time. These include various energy integrals,
defined as follows:
Rest mass:

Mb ¼
Z

ρWL
ffiffiffi
γ

p
d3x: ð7Þ

Kinetic energy:

T ¼ 1

2

Z
ρhWLuivi

ffiffiffi
γ

p
d3x; ð8Þ

where vi ≡ ui=u0.
Internal energy:

U ¼
Z

ρWLϵ
ffiffiffi
γ

p
d3x: ð9Þ

Magnetic energy:

HB ¼ 1

2

Z
b2WL

ffiffiffi
γ

p
d3x: ð10Þ

Since total energy is conserved (and our hydrodynamic
evolution is conservative), we can infer the change in
gravitational energy from the sum of the changes in these
nonvacuum energies. Some of this is lost in the form of
gravitational waves, which emit 2.1 × 10−4M⊙ of energy
over the duration of the simulation in the unmagnetized
case. Any remaining difference must therefore be a change
in the gravitational binding energy of the star.
Following previous studies, we consider the quadrupole

moment of the rest mass density about the origin (which is
the initial center-of-mass):

Iij ¼
Z

ρWLxixj
ffiffiffi
γ

p
d3x: ð11Þ

To reduce this to a scalar measure, we consider two
polarizations of the x and y components of the quadrupole
tensor,

ηþðtÞ≡ IxxðtÞ − IyyðtÞ
Ixxð0Þ þ Iyyð0Þ ð12Þ

η×ðtÞ≡ 2IxyðtÞ
Ixxð0Þ þ Iyyð0Þ ; ð13Þ

and, following Corvino et al. [15], take their magnitude to
define the “distortion parameter” η:

jηðtÞj ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
η2þðtÞ þ η2×ðtÞ

q
: ð14Þ

Note that the numerical atmosphere surrounding the star
(see Sec. A 2 c) has the potential to bias integral measure-
ments like those above. A common solution is to impose
density or radius thresholds when summing the integrand.
However, because our fluid grid only covers the region
immediately around the star and does not extend into the
wave zone, the effect of the atmosphere on these measure-
ments is negligible.
The invariant strength of the magnetic field is simply the

magnitude of ba, whose square is equal to

b2 ¼ B2

W2
L
þ
�
Bi

�
uj

WL
þ βj

α

�
γij

�
2

: ð15Þ

To report physical results, we convert this strength to
CGS-Gaussian units via

jBCGSj ¼
ffiffiffiffiffiffiffiffiffiffi
4πb2

p

1M⊙

�
c2

GM⊙

��
cffiffiffiffiffiffiffiffiffiffiffiffiffi

4πϵ0G
p

�
× 104 G

¼
ffiffiffiffiffi
b2

p
× 8.352 × 1019 G: ð16Þ

We also consider the evolution of some quantities in a
Lagrangian frame of reference. To do this, we seed “tracer”
particles in the fluid and evolve their positions according
to the fluid velocity in our Eulerian evolution frame. The
resulting trajectories provide useful information in their
own right, and observing quantities along those trajectories
allows for their Lagrangian analysis.
Finally, in order to accurately monitor the growth of

instabilities of arbitrary m in a robust manner, we consider
an additional measure of nonaxisymmetry that differs from
diagnostics used in previous investigations. Our approach
is discussed below.

A. Azimuthal modes

Previous studies have analyzed the “Fourier power” of
m-modes of a field ψ by integrating the quantity ψeimϕ.
Some have performed this integral over a ring, capturing
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the power at a single radius and height within the system
[10,19]. Others, including Corvino et al., have performed a
volume integral. While the latter approach incorporates
contributions from the entire system, it has several dis-
advantages. The integrand is in general discontinuous at the
origin form > 0, and thus naive numerical computations of
jPmj can produce spurious results (for example, computing
a finite volume integral with a gridpoint at the origin will
result in nonzero m > 0 power for axisymmetric data).
Additionally, m-modes of ψ whose phase changes with
radius or height will be biased (for instance, a tightly
wound spiral structure will produce canceling contributions
to the integral for each infinitesimal annulus). Diagnostics
defined in terms of multipole moments, like η, do not suffer
the discontinuity problem, but radial cancellations still
cause, for instance, the quadrupole moment to be a
potentially poor representation for what one would intui-
tively call “m ¼ 2 power.”
A hybrid approach is to sum the power of ψ in several

rings, thus sampling the field at multiple heights and radii.
More generally, ψ can be multiplied by a set of orthogonal
window functions isolating particular subsets of the
domain, with volume integrals used to compute the power
of each product. These functions would approach the origin
as ϖm, ensuring smoothness there, and would be localized
at various radii, avoiding cancellation from spiral structure.
A natural choice for such a set of functions are the radial
and vertical cardinal functions associated with a basis for
functions over a cylinder (for example, the product of
Zernike polynomials over a disk with Legendre polyno-
mials in z). These functions are smooth, orthogonal, and
generally localized around their corresponding node.
In fact, this approach is equivalent to a spectral measure

of m-power, defined in Eq. (C9), where the Fourier
components of ψ are decomposed into a set of basis
functions, and the squared magnitude of the spectral
coefficients are summed (see Appendix C for proof). It
is this definition of m-power, which we denote with Pm½ψ �,
that we employ in our analysis. To account for possible
center-of-mass motion, the origin is chosen to follow the
measured center-of-mass (

R
xρWL

ffiffiffi
γ

p
d3x=

R
ρWL

ffiffiffi
γ

p
d3x)

of the system.

V. RESULTS

Having established the accuracy and convergence of our
code on standard test problems (see Appendix A 3), we can
now compare our findings regarding the unmagnetized
low-T=jWj instability with previous simulations of the
same system, confirming the baseline against which mag-
netized results will be compared.

A. Unmagnetized instability

When simulating the unmagnetized system, we find the
behavior of the low-T=jWj instability to depend sensitively

on the reconstruction algorithm employed by the code
(see Appendix A 2 for the role and implementation of
reconstruction in our evolution scheme). In particular, the
growth of the distortion parameter jηj was not convergent
with resolution for the majority of reconstructors consid-
ered (a more thorough investigation is the subject of
ongoing work). We are, however, able to obtain consistent
results using WENO5 reconstruction, as shown in Fig. 3.
Even when using WENO5 reconstruction, insufficient

resolution, particularly in the vertical direction, can intro-
duce spurious features in the distortion parameter’s
evolution at intermediate times and otherwise increase
the simulation’s sensitivity to other choices in numerical
methods. We see long-term consistency in the growth of η
when Δz≲ 0.1M⊙.
We follow the unmagnetized system through the satu-

ration and initial decay of the instability, as shown in Fig. 4.
The growth is exponential with a time constant of
τ ≈ 3.6 ms, and the amplitude of the instability saturates
when the distortion parameter reaches jηjmax ≈ 0.035. This
is the reference against which our magnetized results will
be measured.
Comparing to the results of Corvino et al. [15] (who used

the piecewise parabolic method for reconstruction), we
find a large disagreement in the overall growth rate of η.
Our simulations exhibited clean exponential growth of
one mode for over 30 ms with a characteristic time of
τ ≈ 3.6 ms. For comparison, from Fig. 3 in Corvino et al.’s
work we estimate an overall growth time of τ ≈ 0.88 ms.

FIG. 3 (color online). Consistency of the growth rate of the low-
T=jWj instability when using WENO5 reconstruction at various
resolutions (no magnetic field is present). The black dashed line
represents the approximate growth rate found by Corvino et al.
for M.1.200. Results from resolutions of Δx ≲ 0.2M⊙, while not
formally convergent, are in good agreement and are clearly
distinct from those of Corvino et al. “SLev” indicates the spectral
resolution level, with higher levels corresponding to finer
resolution (the “reference” grid uses SLev 4), and grid spacings
are measured in solar masses.
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This rate is illustrated by the dashed line in Fig. 3 and
results in saturation of the instability considerably sooner
than in our simulations. Saturation amplitudes, however,
agree to within a factor of two (0.035 vs 0.055). In fact, the
simulation in that paper found growth of several modes,
some at rates more similar to ours, while their fastest-
growing mode does not exactly match ours. Apparently,
the numerical (especially reconstruction) algorithm can
have a significant effect on the spectrum of unstable modes
accessible to and excited by the star, whether by seeding
them or by damping them. We hope to clarify such
influences in future work.
Overall, the growth profile we observe for η is much

more similar to those Corvino et al. report for stars with
even lower values of T=jWj (0.15 and 0.16), showing
smooth exponential growth followed by decay, than what
they report for T=jWj ¼ 0.2.
The relative power of the density perturbation in the

lowest few Fourier modes is shown in Fig. 5. Unlike Ott
et al. [19], but consistent with Scheidegger et al. [14] and
Corvino et al., we find m ¼ 2 to be the dominant mode.
This is also the mode whose interaction with magnetic
fields was analyzed in detail by Fu and Lai [23]. Note
that, because the low T=jWj generally triggers growth at
many azimuthal modes, which one becomes dominant will
depend both on the exact profile of the star and on the
structure of the initial perturbation, so there is not neces-
sarily any incompatibility between the Ott et al. results and
other simulations.

B. Magnetic effects

We find that the presence of a magnetic field could have
two competing effects on the growth of the m ¼ 2 fluid
instability. Simulations with fields of 4 × 1013 G and

greater demonstrate suppression of the instability, with
the distortion parameter saturating at a significantly smaller
value (3–50×lower) than in an unmagnetized star. Even
stronger fields (starting at 5 × 1014 G), however, made the
star susceptible to a small-scale (few gridpoints per wave-
length) magnetic instability that rapidly amplified the
m ¼ 2 distortion of the star (in addition to other modes).
This instability may operate at lower field strengths as well,
but there its effects would not be resolvable at our current
resolution. The net behavior for all simulated cases is
plotted in Figs. 6 and 7 and is qualitatively independent of
the seed field geometry (parametrized by ns; in particular,
the threshold for instability appears to be the same).
Simulations of these magnetically unstable cases

were halted prior to the original saturation time, as

FIG. 4. Growth and saturation of the unmagnetized low-T=jWj
instability as expressed in the “plus” polarization of the distortion
parameter η. The “cross” polarization exhibits the same behavior
with a phase shift. Compare to Corvino et al. Fig. 3.

FIG. 5 (color online). Relative power of ρ in azimuthal modes
for m ¼ 1–4. Note that measurements of m ¼ 4 power have a
noise floor of 10−3 due to the Cartesian nature of the grid.

FIG. 6 (color online). Range of behavior of distortion parameter
η at different magnetic field strengths for ns ¼ 1. Curves that
terminate at early times developed significant outflows, making
further evolution impractical on our grid.
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magnetized outflows of matter began to leave the grid.
Both magnetically-dominated and pressure-dominated
matter leave the star relatively isotropically with mildly
relativistic velocities (WL ≲ 0.15). The stronger the mag-
netic field, the sooner these outflows develop. Similar
outflows have been noted in previous investigations
[36,37], though due to the small size of our grid, we
cannot make quantitative comparisons.

1. Suppression of the low-T=jWj instability
When we observe suppression, we would like to deter-

mine whether the mechanism is consistent with that
proposed by Fu and Lai. Unfortunately, the correspondence
is far from clear. In particular, while magnetic winding
produces peak toroidal field strengths comparable to those
considered in their work (and surpassing their threshold
for suppression of 2 × 1016 G), the total magnetic energy
saturates at much lower values than they deem necessary
for suppression to take place. This reflects the fact that the
toroidal field distribution in our simulations differ from the
linear function of cylindrical radius assumed by Fu and Lai.
Our runs with initial poloidal field strengths on the order of
B0 ≈ 2 × 1014 Gwind up toroidal fields as strong as 1017 G
but with magnetic energies of only half a percent of the
star’s kinetic energy. For comparison, their model implies
that such fields would possess magnetic energy equivalent
to 20% of T, which they find is the minimum energy ratio
for suppression to occur. We expect that the field strength
in the region of the corotation radius is the more relevant
measure of the field’s effect, so we believe the field strength
observed in our simulations are adequate to probe the
suppression mechanism.
We see that magnetic winding increases the magnetic

energy in the star at the expense of gravitational potential
energy, as shown in Fig. 8, but saturates within 30 ms in the

cases we considered (prior to the saturation of the low-
T=jWj instability). Matter near the core of the star is
compacted, increasing the central density. The internal
energy of the matter also increases in magnetized scenarios,
but the kinetic energy is barely affected in most cases. For
the magnetically-unstable systems, however, kinetic energy
from nonazimuthal fluid velocities grows exponentially at
late times as the rotational kinetic energy begins to decrease
at an amplified rate (the separation of rotational and
nonrotational kinetic energy is not shown in the figure).
This likely corresponds to small-scale fluid oscillations
associated with the magnetic turbulence described below.
Other comparisons are difficult as well. In Fig. 5 of their

paper, Fu and Lai show that the Lagrangian displacement
of fluid elements should diverge at the corotation radius
during the low-T=jWj instability, but that this resonance
should split in the presence of a strong toroidal magnetic
field. Using tracers, we do see an amplification in radial
displacement in the vicinity of the corotation radius in the
unmagnetized case (see Fig. 9), but the response is so broad
that we cannot resolve any splitting when magnetic fields
are added.
Nevertheless, there are clues pointing to a resonance

splitting. In particular, spectrograms of the distortion
parameter show a split peak when magnetic suppression
is observed (see Fig. 10). The magnitude of splitting for
B0 ¼ 2 × 1014 G, ns ¼ 2 is about Δω ≈ 2π × 0.1 kHz.
Defining the angular Alfvén speed,

ωA ≡ Bϕ=ðϖ ffiffiffi
ρ

p Þ; ð17Þ

FIG. 7 (color online). Range of behavior of distortion parameter
η at different magnetic field strengths for ns ¼ 2, showing same
classes of behavior as when ns ¼ 1 (see Fig. 6).

FIG. 8 (color online). Energy exchange for three magnetic field
strengths (ns ¼ 1 for each case). The change in gravitational
energy is inferred from the sum of the changes in the other
energies.
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and the slow magnetosonic wave frequency,

ωs ≡
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

c2s
c2s þ ðBϕÞ2=ρ

s
mωA; ð18Þ

(where cs is the adiabatic sound speed), resonances are
expected at Δω ¼ ωs and (in the full 3D case) Δω ¼ mωA.
In the strongly magnetized regions of the star, the observed

splitting agrees with the values of ωs and 2ωA to within a
factor of four. Given the differences in the particular
systems under study, this is reasonably consistent with
Fu and Lai’s proposed mechanism.

2. Magnetic instability

When the initial magnetic field exceeds B0¼5×1014G,
our simulations start to exhibit strong magnetic instability.
This instability results both in the amplification of low-m
global modes in the star and in turbulence at the smallest
scales we can resolve on our grid. The marginally-resolved
nature of this instability complicates its identification and
interpretation.
The growth of small-scale features is most visible in

poloidal field components, as illustrated in Figs. 11 and 12,
while large-scale nonaxisymmetric structure is easily seen
in the much stronger toroidal field (see Fig. 13). The crest-
to-crest separation of the poloidal perturbations is measured
to be approximately λ ∼ 1M⊙, which is resolved by roughly
five gridpoints. This suggests that the unstable modes
are only marginally resolved, so we cannot expect their
subsequent evolution to be more than qualitatively correct
(at best).
In fact, magnetically-driven instabilities in the fluid are

not unexpected. Magnetic winding generates a strong
toroidal field in the interior of the star, and toroidal field
gradients are potentially unstable to kink (Tayler) and
buoyancy (Parker) instabilities [38–42]. For a toroidal field
centered on the rotation axis, the Tayler instability can
occur at cylindrical radii ϖ less than the radial pressure
scale height HP (defined as in [40,43] as 2c2s=gϖ , with gϖ
denoting the radial acceleration) for positive dBϕ=dϖ.

FIG. 9 (color online). Lagrangian displacement of tracer
particles seeded at various cylindrical radii for an unmagnetized
star. For each initial radius, 12 tracers were distributed uniformly
in azimuth. The corotation radius for this system is at
ϖ ≈ 4.25M⊙.

FIG. 10 (color online). Spectrograms of the quadrupole moment Ixy for six cases. Power spectral density (PSD) estimated via FFT
periodogram using Welch’s method with a Hann window.
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Kink instabilities have in fact recently been identified in 3D
magnetized core-collapse simulations [37]. The Parker
instability can be triggered by radial or vertical field
gradients (negative dBϕ=dϖ for ϖ > HP or negative
dBϕ=dz). The growth rate of the Tayler instability is of
order the angular Alfvén speed ωA for weak rotation and
ω2
A=Ω for strong rotation, where Ω ≫ ωA is the condition

for strong rotation [44]. Growth time scales for the Parker
instability are similar. Although much analytic work on
field-gradient instabilities assumes weak differential rota-
tion, the Parker instability has been found to be operable even in some flows with strong shear [45]. In our

magnetically-unstable cases, ωA=Ω is Oð1=2Þ at the coro-
tation radius, suggesting an intermediate regime between
weak and strong rotation.
In addition to the above-mentioned field gradient-driven

instabilities, differential rotation will also trigger shear-
driven instabilities. The most famous is the classic
magnetorotational instability (MRI), an axisymmetric insta-
bility triggered by a nonzero (but arbitrarily small) poloidal
field and an outward-decreasing rotation rate [46]. More
generally, the MRI can also be found in nonaxisymmetric
configurations [47,48], in which case the background toroidal
field can also contribute to seeding the instability [40,47].
The fastest-growing unstable mode grows on a time scale of
∼Ω−1 and has a wave number given by

Ω=
ffiffiffiffiffiffiffiffiffiffi−g00p

∼ k · vA ≈
kϖBϖ þ kzBz þmBϕ=ϖffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

ρhþ b2
p ð19Þ

(on the relativistic factor, see Siegel et al. [49]). The main
challenge for numerical MHD simulations is to resolve the
MRI wavelength λMRI ¼ 2πjkj−1. Since the field is usually
azimuthally-dominated, we see that m ≠ 0 modes are poten-
tially easier to resolve, a fact also recently noted by Franci
et al. [22], who resolve MRI-like field growth only in
nonaxisymmetrically-unstable stars. On the other hand, the
growth of a given nonaxisymmetric mode will be expected to

FIG. 12 (color online). Magnitude of radial component of
B-field vs radius vs time in the z ¼ 1 plane for three configu-
rations (ns ¼ 1 in all cases), illustrating the onset of turbulence.
Color bars are scaled relative to the initial B-field strength. Plot
inspired by the analysis of Franci et al. [22].

FIG. 11 (color online). Magnitude of radial component of
B-field in the y-z plane at t ¼ 3760M⊙ for B0 ¼ 5 × 1014 G,
ns ¼ 2.

FIG. 13 (color online). Power of b2 in azimuthal modes for
m ¼ 1–4. Except in the most strongly magnetized systems, the
m ¼ 4 power does not rise above that of the ambient grid mode.
The growing strength of the magnetic field is factored out by
normalizing by the m ¼ 0 power; thus, trends shown here
represent growth of the proportional power of nonaxisymmetric
modes.
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terminate when the mode becomes too tightly wound [47]. In
fact, it has long been known that even a purely toroidal field
can seed a shear instability [40,47,48], although the growth
time scales tend to be longer than those associated with
poloidal seed fields, except for the case of very highm, and in
that case even a small poloidal field would be expected to
radically alter the flow [48].
Given the presence of differential rotation and a poloidal

magnetic field, our system is certainly susceptible to the
MRI; what is less clear is our ability to resolve it. Siegel
et al. [49] state that a minimum of five gridpoints per
wavelength was required to resolve the MRI in their
simulations. Using Eq. (19), we can estimate what the
wavelength of the fastest-growing unstable mode would be
at any point in our simulation, optimizing over propagation
directions. Comparing this to our effective grid resolution
in those directions, we find that when turbulence starts to
develop in our systems, there are OðfewÞ gridpoints per
wavelength in the unstable regions of the star even for
m ¼ 0 modes, and when considering higher m, these
unstable regions begin to meet the criterion of five grid-
points per wavelength. Therefore, resolving the MRI, if
only marginally, is conceivable given our resolution and
magnetic field strengths.
One approach to diagnosing the source of turbulence is

to measure the growth rates of observed instabilities and
match them to linear predictions. As mentioned above,
the Tayler and Parker instabilities should grow at a rate
between ωA and ω2

A=Ω, while the MRI’s growth rate is Ω,
independent of the B-field magnitude. The rotational
frequency of the star in the region of magnetic instability
(which occurs in the vicinity of the corotation radius) is
about Ω ≈ 1.45 × 2π kHz.
Looking at the growth of the most magnetized point on

the grid (see Fig. 14) reveals exponential behavior at rates
that increase with the magnetic field strength. This scaling,
in addition to the magnitude of the rates, is incompatible
with the MRI [while the expected rate of Ω is an
approximation derived from accretion disks, the numerical
prefactor for our system is expected to be Oð3=4Þ,
insufficient to explain the discrepancy].
Considering the field gradient-driven instabilities, the

“weak rotation” rate of ωA is too large as well and also does
not match the observed scaling with B-field strength. The
“strong rotation” prediction, however, while still larger than
observed, is only off by a factor of a few and is the closest
match to the data in terms of scaling. This suggests that,
while the MRI is potentially resolvable with our techniques,
the observed local maximum B-field growth is most
attributable to field gradient instabilities. Shear instabilities
are almost certainly still present and impacting the dynam-
ics, however, and likely play a large role in less-magnetized
cases where we currently cannot resolve them. In fact, their
expected growth rates suggest that they would dominate the
dynamics on relevant timescales were they resolved.

C. Detectability

To help put these results in an astrophysical context, we
consider the detectability of gravitational waves produced
by the (unmagnetized) low-T=jWj instability for this
system. We follow the procedure outlined by Sutton

FIG. 14 (color online). Growth of the maximum of the
cylindrical components of the B-field for three cases:
B0 ¼ 5 × 1014 G, ns ¼ 1 (top), B0 ¼ 5 × 1014 G, ns ¼ 2
(middle), and B0 ¼ 2 × 1015 G, ns ¼ 1 (bottom). The temporal
resolution during the period of rapid growth for the last case is
10 × finer than our default.
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[50]. Given both polarizations of the gravitational wave
strain, hþ and h×, at some distance from the source, define
the root-sum-square amplitude hrss to be

hrss ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiZ

ðh2þðtÞ þ h2×ðtÞÞdt
s

: ð20Þ

For a narrow-band signal from a rotating system like ours,
we expect the emitted gravitational wave energy EGW to be
well-approximated by

EGW ≈
2

5

π2c3

G
f20r

2h2rss; ð21Þ

where f0 is the central frequency of the signal. The
effective detection range Reff for a narrow-band burst
signal is given by

Reff ¼ β

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
G

π2c3
EGW

Sðf0Þf20ρ2det

s
; ð22Þ

where SðfÞ is the one-sided noise power spectrum for the
target detector, ρdet is the threshold signal-to-noise ratio
for detection, and β is a geometrical factor related to the
polarization of the waves. Specializing to rotating sources,
this becomes

Reff ¼ 0.698
rhrss
ρdet

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2

5

1

Sðf0Þ

s
: ð23Þ

We extract gravitational waves from our simulations at a
radius of 400M⊙ using Regge-Wheeler-Zerilli techniques
[51] and consider the strains hþ and h× for an observer
above the axis of rotation. For the unmagnetized star
considered in this work, the gravitational wave frequency
is sharply peaked at 2.9 kHz (this is slightly lower than
the 3.2 kHz primary peak observed by Corvino et al. [15]).
If we consider only the instability’s initial growth
through saturation, the total emitted gravitational wave
energy is 3.68 × 1050 erg (2.06 × 10−4M⊙). Using the
ZERO_DET_HIGH_P noise curve for Advanced LIGO
[52] and a signal-to-noise threshold of ρdet ¼ 20, this
instability would be detectable out to 92 kpc.
The emitted gravitational wave energy is significantly

larger than what was found in core-collapse supernovae
simulations [13,14] (EGW ∼ 1046–1047 erg for a similar
simulation length). However, the difference can easily be
understood by noting that the neutron star considered in
this work rotates significantly more rapidly (with the wave
signal peaking at 2.9 kHz vs ∼0.9 kHz in the core-collapse
results) and is also more massive than protoneutron stars
are expected to be. Since EGW ∝ M2Ω6, this accounts for
most of the difference in the emitted gravitational wave
energy. On the other hand, the more slowly rotating neutron

stars emit waves at a more favorable frequency, improving
their detectability.
The effect of magnetic fields on detectability is difficult

to discern from our data, as outflows prevented us from
evolving the most highly magnetized systems long enough
to see the instability saturate. For B0 ¼ 5 × 1014 G, ns ¼ 2,
the distortion parameter peaks nearly as high as the
saturation value in the unmagnetized case while the
frequency spectrum at that time peaks at a slightly lower
(and more favorable) value, suggesting that a gravitational
wave signal from magnetic instabilities could be just as
detectable as that of the unmagnetized low-T=jWj insta-
bility. On the other hand, mildly magnetized cases exhibit a
suppressed distortion parameter with an unchanged fre-
quency spectrum. Using the quadrupole approximation,
and the fact that Reff is linear in hrss, this means that the
effective detection range is decreased by factor of ∼2.4 for
B0 ¼ 4 × 1013 G, ns ¼ 1, and by a factor of ∼34 for
B0 ¼ 2 × 1014 G, ns ¼ 1, for an observer above the axis
of rotation.

VI. CONCLUSIONS

In writing a MHD module for SPEC, we have expanded
the range and fidelity of astrophysical systems that can
be simulated while still taking advantage of its highly
accurate spacetime evolution. The future scope of this code
includes many systems of contemporary interest, including
magnetized compact binary coalescence, but here we focus
our attention on instabilities in differentially rotating
neutron stars.
Of significant relevance to existing literature regarding

these stars is the variability in simulated growth rates when
using different resolutions and reconstruction methods. We
find qualitative convergence when using high resolution
and high-order reconstruction, but these results differ
significantly from those of lower-accuracy techniques
and of some previous studies. Further investigation of such
instabilities’ delicate dependence on simulation methods is
warranted.
Regarding the low-T=jWj instability, it is clear that

poloidal magnetic fields on the order of 1014 G can have
a strong effect on the distribution of mass in differentially
rotating neutron stars and therefore on their gravitational
wave signatures. However, while suppression of the insta-
bility is feasible, it occurs in a small region of parameter
space. B-fields strong enough to enable the suppression
mechanism are likely also strong enough to trigger mag-
netic instabilities, accelerating the growth of a mass
quadrupole moment rather than suppressing it.
In our simulations, with clean poloidal initial fields, the

window between the onsets of magnetic suppression and
magnetic instability—roughly 4 × 1013 G–5 × 1014 G—is
rather small, and future runs with increased resolution may
lower the upper bound still further. Therefore, amplification
of matter perturbations seems to be the more likely
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magnetic effect, with peak amplitudes comparable to those
in the unmagnetized case. The spectrum of the gravitational
waves, while perhaps possessing more structure, will also
remain peaked near the same frequency. As a result, even
with such extreme field strengths, the net effect on burst
detectability is likely minor.
Regarding Fu and Lai’s conclusions, we find some

disagreement between their predictions for cylindrical stars
and our simulations of realistic ones. In particular, they
concluded that suppression would occur once the magnetic
energy HB reached about 20% of the kinetic energy T.
However, the magnetic energy in our simulations peaks at
0.56% of T, yet we still find suppression in some cases.
Despite this, we agree on the minimum strength of the
poloidal seed field, roughly 1014 G. Additionally, the
frequency spectrum of the instability is consistent with
their proposed mechanism for suppression.
Uncertainties in our investigation include the details of

the formation of the star and its seed field, as Nature will
not be nearly as clean as the system we considered.
Additionally, we expect that if the MRI were fully resolved,
it would grow on such a short time scale that it would
dominate the effects observed here.
Future work to understand the details of the suppression

mechanism could investigate the effects of purely toroidal
fields, removing the complications of magnetic winding
and the MRI. On the other hand, the impact of the magnetic
instabilities could be better understood by increasing
resolution and by extending the simulations to observe
their saturation behavior. Additionally, the systematic
effects of reconstruction order and grid resolution on the
growth rate of this particular instability warrant further
investigation. Lastly, while this paper has limited itself to
studying the growth of instabilities, the later evolution of
such stars, after the commencement of magnetically-driven
driven winds, would be a very astrophysically interesting
subject for future numerical modeling.
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APPENDIX A: NUMERICAL METHODS

1. Metric evolution

As in previous studies using SPEC, the spacetime is
evolved according to Einstein’s equations in generalized
harmonic form [32], and the coordinates xa are assumed
to obey

gab∇c∇cxb ¼ Ha ðA1Þ

for some gauge source function Ha (where ∇a is the
covariant derivative operator associated with gab). To
reduce the equations to first-order form, we evolve the
derivatives of the spacetime metric gab, defined as

Φiab ≡ ∂igab ðA2Þ

Πab ≡−nc∂cgab; ðA3Þ

where na is the normal to a spacelike slice. This slicing
defines a 3þ 1 decomposition of the metric into a 3-metric
γij, lapse α, and shift vector βi (see, e.g., Baumgarte and
Shapiro [27]), with line element given by:

ds2 ¼ −α2dt2 þ γijðdxi þ βidtÞðdxj þ βjdtÞ: ðA4Þ

The spacetime variables gab, Φiab, and Πab are evolved
according to the principal parts and constraint damping
terms in Appendix A of Foucart et al. [54] (augmented with
the matter and magnetic source terms described below), and
the gauge source Ha is evolved according to the “frozen”
condition in that work. The damping parameters for the
system considered in this work are distributed according to:
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γ0ðrÞ ¼
0.1
MNS

fðrÞ þ 0.1
MNS

; ðA5Þ

γ1ðrÞ ¼ −1; ðA6Þ

γ2ðrÞ ¼
1.5
MNS

fðrÞ þ 0.1
MNS

; ðA7Þ

where fðrÞ is given by:

fðrÞ ¼ e−r=ð6MNSÞ ðA8Þ

and MNS is the ADM mass of the neutron star.
The presence of matter and magnetic fields results in a

nonzero stress-energy tensor Tab, and this shows up in
additional source terms when evolving the spacetime fields.
In particular, the vacuum evolution equation for Πab is
modified as follows:

∂tΠab ¼ � � � − 2α

�
Tab − 1

2
gabTcdgcd

�
: ðA9Þ

The stress-energy tensor for our treatment of MHD is
given in Eq. (A10). Note that we expect the magnetic
contributions to Tab to be small, even for our strongest field
strengths (magnetic pressure is at most 1% of fluid pressure
at t ¼ 0).

2. Magnetohydrodynamics

The stress-energy tensor of a magnetized perfect fluid, as
described in Sec. II, is given by

Tab ¼ ρhuaub þ Pgab þ FacFb
c − 1

4
FcdFcdgab: ðA10Þ

Additionally, we adopt the assumption of ideal MHD
that the fluid is perfectly conducting:

Fabub ¼ 0 ðA11Þ

(that is, the electric field vanishes in a frame comoving with
the fluid). This eliminates the electric field as an indepen-
dent quantity and leaves eight degrees of freedom: five for
the fluid and three for the magnetic field.
The state of the fluid at each gridpoint is represented in

the code by the “primitive variables” ρ, T, ui, and Bi, where
T (not to be confused with kinetic energy) is a variable,
related to the temperature, parametrizing the thermal
pressure. The precise relationship of T to the temperature
and thermal pressure is allowed to vary with the equation of
state. Given ρ and T, the equation of state specifies the
pressure Pðρ; TÞ and specific internal energy ϵðρ; TÞ.
In order to express the equations of their evolution in

conservative form, we recompose them into the following
set of “conservative” variables:

ρ� ¼
ffiffiffi
γ

p
WLρ ðA12Þ

~τ ¼ ffiffiffi
γ

p �
WLρðWLh − 1Þ − Pþ B2 − 1

2

B2 þ ðBiuiÞ2
W2

L

�
ðA13Þ

~Si ¼ ffiffiffi
γ

p �
WLρhui þ

1

WL
ðB2ui − BjujBkγikÞ

�
ðA14Þ

Bi ¼ ffiffiffi
γ

p
Bi ðA15Þ

(see also, e.g., [27,55]). Here, γ is the determinant of
the 3-metric, WL ≡ αut is the Lorentz factor correspond-
ing to the fluid’s velocity, and B2 ≡ BiBjγij. These
“conservative” evolved variables map to the set of
“primitive” variables through an inversion procedure
described in Secs. A 2 a and A 2 b.
The conservative variables are evolved according to:

∂tρ� þ ∂iðρ�vjÞ ¼ 0; ðA16Þ

∂t ~τ þ ∂iðα2
ffiffiffi
γ

p
T0i − ρ�viÞ ¼ −α ffiffiffi

γ
p

Tμν∇νnμ; ðA17Þ

∂t
~Si þ ∂iðα ffiffiffi

γ
p

Tj
iÞ ¼

1

2
α

ffiffiffi
γ

p
Tμν∂igμν; ðA18Þ

where vi ¼ ui=ut is the “transport velocity” of the fluid.
To compute the behavior of the magnetic field, we define

an analog to the electric field,

Ei ≡−½ijk�vjBk; ðA19Þ

and then evolve the magnetic field according to

∂tBi ¼ −½ijk�∂jEk; ðA20Þ

where ½ijk� isþ1 for an even permutation of the indices and
−1 for an odd permutation. This evolution is constrained by
the zero-monopole criterion,

∇ð3Þ · B ¼ ∂iBi ¼ 0 ðA21Þ

(where∇ð3Þ is the covariant derivative operator correspond-
ing to the 3-metric). In general, a numerical evolution
scheme for the magnetic field will not preserve this
constraint, so we adopt a constrained transport framework
(first used by Yee [56] and later for generally relativistic
MHD by Evans and Hawley [57]) to do so.
Our constrained transport implementation follows the

prescription for “upwind constrained transport” proposed
by Londrillo and Del Zanna [58] and described in detail by
Del Zanna et al. as implemented in the ECHO code [59]. In
particular, the longitudinal components of Bi are evolved at
cell faces. This presents a convenient definition of magnetic
divergence at cell centers as the second-order divided
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difference of Bi. The constrained transport algorithm
guarantees that the time derivative of this quantity will
be zero to machine precision. When the B-field itself is
needed at cell centers, fourth-order polynomial interpola-
tion is used, since discontinuities in the longitudinal
direction are forbidden. Such interpolation is also used
when metric quantities are needed at cell faces, as these
fields are expected to be smooth.
In order to compute the fluxes of the evolution variables,

nonsmooth matter quantities must be reconstructed at cell
faces and edges. Our code allows a choice of reconstructors,
including a second-order monotonized centered (MC2)
limiter [60] and a fifth-order weighted essentially non-
oscillatory (WENO5) scheme [61–63]. The HLL approxi-
mate Riemann solver [64] determines a single value for the
flux on each interface. Flux derivatives are computed as
second-order divided differences, making our scheme for-
mally second-order accurate (that is, we do not perform the
DER operation employed by the ECHO code). However,
higher-order reconstructors, while not affecting the con-
vergence rate, can greatly improve the accuracy of the code
(see Sec. VA) at the expense of parallelization efficiency
(their larger stencils require additional ghost zones).
In common with other high-resolution shock-capturing

codes, SPEC requires procedures for inverting the relation-
ship between primitive and conservative variables, along
with a prescription for maintaining a tenuous atmosphere
around the star. The addition of a magnetic field neces-
sitates changes to these algorithms, the details of which we
describe below.

a. Full MHD primitive variable recovery

We mostly follow the prescription of Noble et al. [65]
for recovering primitive variables from the evolved
conservative variables, that is the task of numerically
inverting equations (A12)–(A15). We define

~S2 ¼ γij ~Si ~Sj; ðA22Þ

H ¼ hðρ; TÞρW2
L; ðA23Þ

so that the relations between primitive and conservative
variables can be written as

~S2W2
L ¼ γðW2

L − 1ÞðB2 þHÞ2 −W2
L
ð ~SiBiÞ2ðB2 þ 2HÞ

H2
;

ðA24Þ

−ρ�W2
Lþ ~τW2

Lffiffiffi
γ

p ¼B2

2
þW2

L

�ð ~SiBiÞ2
2γH2

−B2−HþPðρ;TÞ
�
:

ðA25Þ
We solve these equations for ðT;W2

LÞ using the
GNEWTON method as implemented by the GNU

Scientific Library [66], subject to the constraint W2
L ≥ 1.

These equations are more challenging for the root-finding
algorithm than the B ¼ 0 case, especially in cases where
the magnetic and/or kinetic energy of the fluid is large
compared to its rest mass energy. When the 2D root-finder
for ðT;W2

LÞ fails, we switch to a simple 1D bracketing
algorithm solving for H (WL is then considered as a known
function of H).

b. Low density force-free primitive variable recovery

Recovery of the full set of primitive variables can be
difficult or impossible at low-density, magnetically-
dominated gridpoints. Fortunately, it is also unnecessary.
Our treatment of such points is similar to that in Ref. [67].
For each gridpoint, the code first attempts to solve the full
2D system for ðT;W2

LÞ. If a root cannot be found, it checks
that the failing gridpoint is in the force-free regime by
checking the following conditions:
(1) ρWL=B2 < 0.001;

(2) B2 >
ffiffiffiffiffiffiffiffiffiffi
~S2=γ

q
, which is necessary to have B2 > E2;

(3) ð ~SjBjÞ2=ðB2ρ2�Þ < 10 to prevent very large veloc-
ities along field lines.

If the point satisfies these conditions, then the code
attempts a simpler 1D primitive variable recovery that
ignores the internal energy of the gas.
First, we solve for the 4-velocity:

ui ¼
WL

B2

�
− ϵijkðϵjlm ~SlBmÞBkffiffiffi

γ
p

B2 þ ρ�hWL
þ ð ~SjBjÞBi

WLρ�h

�
: ðA26Þ

Assuming T ¼ 0, h ¼ 1, and using the normalization
condition W2

L ¼ 1þ γijuiuj, we find

W2
L ¼ 1þW2

L

B4

�
ϵijkðϵjlm ~SlBmÞBkffiffiffi

γ
p

B2 þ ρ�WL

�2

þ ð ~SjBjÞ2
B2ρ2�

: ðA27Þ

The velocity u is composed of a parallel (to the magnetic
field) part and a perpendicular part W2

L ¼ 1þ u2∥ þ u2⊥, so
we have

u2⊥ ¼ W2
L

B4

�
ϵijkðϵjlm ~SlBmÞBkffiffiffi

γ
p

B2 þ ρ�WL

�2

; ðA28Þ

u2∥ ¼
ð ~SjBjÞ2
B2ρ2�

: ðA29Þ

Equation (A27) is solved for W2
L with a 1D Newton-

Raphson root solver; the other variables can be inferred
from the solved WL and the assumed T ¼ 0. For force-free
points with very low densities, or force-free points where
we fail to solve Eq. (A27), we remove the density-
dependent terms in Eq. (A27) and set ui to the drift
velocity ðu⊥Þi. We note that the h ¼ 1 approximation used
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above would have to be adjusted when using a nuclear
equation of state in which hðρ → 0; T → 0Þ is slightly less
than one (i.e. when the binding energy of nucleons is taken
into account, and the specific internal energy of the fluid is
negative when ρ → 0).

c. Atmosphere treatment

The methods used for the evolution of relativistic fluids
often assume that ρ > 0. In order to avoid numerical
problems in regions where no fluid is present, we have
to impose ρ ≥ ρfloor everywhere. In this simulation, ρfloor is
set to 10−14 and ρfloor=ρmax is about 8 × 10−12. However,
numerical errors in the evolution of low-density fluid can
easily lead to values of conservative variables for which
the inversion problem has no solution. We thus need
appropriate prescriptions to:

(i) Modify the conservative variables, if necessary, to
force them to correspond to some set of primitive
variables;

(ii) Require the primitive variables (mainly T and ua) in
the low-density region to be physically reasonable.

For a given ρ� and Bi, limits to the allowable range of ~τ and
~Si come from considering the limit of zero internal energy
(P ¼ 0, h ¼ 1). In this limit, we can write ~S2 as a function
of W2

L:

~S2 ¼
ρ2�ðWL þ

ffiffi
γ

p
B2

ρ�
Þ2ðW2

L − 1Þ
W2

L þ 2
ffiffi
γ

p
ρ�
B2μ2WL þ γ

ρ2�
B4μ2

; ðA30Þ

where μ≡ Bi ~Si=
ffiffiffiffiffiffiffiffiffiffi
B2 ~S2

p
. WL is given by a fifth-order

polynomial equation

0 ¼ W3
L þ

� ffiffiffi
γ

p
B2

ρ�
− ~τ

ρ�
− 1

�
W2

L

−
ffiffiffi
γ

p
B2

2ρ�

�
1þ

μ2ðWL þ
ffiffi
γ

p
B2

ρ�
Þ2ðW2

L − 1Þ
W2

L þ 2
ffiffi
γ

p
ρ�
B2μ2WL þ γ

ρ2�
B4μ2

�
: ðA31Þ

This equation has a real solution WL ≥ 1 if and only if the
condition B2 ≤ 2~τ=

ffiffiffi
γ

p
is satisfied. Thus, we can “fix” our

conservative variables (~τ and ~Si) by imposing:

~Si ≤

ffiffiffiffiffiffiffiffiffiffiffi
~S2max

ð ~S0Þ2

s
~S0i ; ðA32Þ

~τ ≥
ffiffiffi
γ

p
B2

2
; ðA33Þ

where ~S2max is the solution to Eqs. (A30) and (A31), and ~S0

is the value of ~S before it is “fixed.” This recipe to fix
conservative variables is similar to what is introduced by
Etienne et al. [67], except that they fix ~τ and ~S using stricter
“sufficient conditions” for invertibility [Eqs. (A48)–(A50)

in their work] for points deep inside their black hole
horizon, while for points elsewhere they only fix ~τ
using Eq. (A32).

d. Additional adjustments to the low-density evolution

We also impose several restrictions on the low-density
fluid in order to avoid extreme heating and relativistic
speeds in the atmosphere. This must be done differently in
magnetospheric regions than in nonmagnetic regions,
because in the former, the fluid velocity encodes informa-
tion about the electric field that should not be sacrificed.
For regions with low B2=ρ, we choose a threshold

density ρatm > ρfloor, and require that for ρ < ρatm we have
T ¼ 0 and ui ¼ 0. Additionally, in order to avoid a sharp
transition from the “live” evolution to the atmosphere
prescription, we add a smoothing region for ρatm < ρ <
10ρatm where we require h − 1 ≤ κðhmax − 1Þ and
u2 ≤ κu2max, with κ ¼ ðρ − ρatmÞ=ð9ρatmÞ. hmax and u2max
are values larger than the enthalpies and velocities encoun-
tered in the high-density region of the simulation.
On the other hand, for magnetically dominated low-

density regions, we have the same treatment as in weakly
magnetic regions for h and for ui∥ [the component of the
4-velocity along field lines, cf. Eq. (A29)], i.e. u2∥ ≤ κu2max
for ρatm < ρ < 10ρatm, and ui∥ ¼ 0 for ρ < ρatm. The
perpendicular (drift) part of velocity [Eq. (A28)] can
contain, even for very low densities, physically meaningful
information about the electric field, so it is controlled
much more weakly, by imposing the limit u2⊥max ≤ u2max
for ρ < 10ρatm.
Finally, a half-stencil’s worth of points are frozen at

atmosphere levels along all outer boundaries. This “boun-
dary condition” avoids the complexities of one-sided
differencing and has no effect on the bulk evolution of
the matter provided that the grid is large enough (for the
system considered here, magnetic fields are initially con-
fined to high-density regions, and we halt the simulation
upon the detection of significant outflows).

3. Test problems

The spacetime and hydrodynamics components of SPEC
have been tested previously [26,68]. Here, we check the
performance of our new MHD module, using a similar test
suite as Duez et al. [69]. In particular, we study its accuracy
and convergence by comparing results to known analytical
solutions exhibiting a range of nontrivial behaviors, includ-
ing shocks and strong gravity.

a. One-dimensional relativistic tests

To test the shock-capturing methods used in SPEC, we
evolve a set of one-dimensional problems first proposed by
Komissarov [70]. The initial data consist of two homo-
geneous states separated by a discontinuity at x ¼ 0. The
initial conditions for each test are listed in Table III. We
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integrate the relativistic MHD equations from t ¼ 0 to
t ¼ tfinal (also given in Table III). The fluid follows a
Γ-law equation of state with Γ ¼ 4=3:

P ¼ ρ4=3 þ ρT; ðA34Þ

ϵ ¼ 3
P
ρ
; ðA35Þ

where we have now defined the code’s internal temperature
variable T for the Γ-law case such that ρT is the thermal
pressure of the fluid. To facilitate comparisons with
previously published results, we use the same resolution
as in Duez et al. [69], where the same tests were performed
(see Figs. 7–8 and Table II of that work): our numerical
domain covers the region x ¼ ½−2; 2�, and uses 400 grid
points (higher resolution results are also provided to test
the convergence of our code). The tests are performed with
both the MC2 reconstructor used by Duez et al. and the
WENO5 reconstructor that we prefer in most of our
simulations. We use fourth-order Runge-Kutta time step-
ping, with a Courant factor of 0.5 (dt ¼ 0.005), except for
the fast shock problem using WENO5 reconstruction, for
which we use a Courant factor of 0.25 (the evolution is
unstable for a Courant factor of 0.5, an issue which was also
noted by Duez et al. when using the third-order piecewise
parabolic method for reconstruction).
Fast and slow shocks: For these two tests, the shock front

satisfies the relativistic Rankine-Hugoniot jump conditions
[71]. The exact solution to the evolution of the fluid
equation is known, with the shock propagating at constant
speed while the fluid variables on each side of the shock
remain constant [70,72]. The fast shock test is the hardest
test for our code: it evolves a strong shock, with the shock
front moving relatively slowly on the grid (0.2c) but the
fluid being highly relativistic (Lorentz factorWL ¼ 25.02).

As already noted, it is the only test that is unstable when
using a Courant factor of 0.5 (for WENO5 reconstruction).
It is also fairly sensitive to the choice of variables that are
interpolated from cell centers to cell faces when computing
the fluxes entering the conservative hydrodynamics equa-
tions: if we interpolate the transport velocity vi, the shock
evolves as expected, while if we interpolate the spatial
components of the 4-velocity ui the shock immediately
stalls. Considering that in practice, in 3-dimensional evolu-
tions of neutron stars or binary mergers, we do not reliably
evolve fluid elements withWL ∼ 25 (the occurrence of such
high Lorentz factors is prevented by the corrections applied
to the velocity and temperature of low-density points in the
atmosphere), this difference is unimportant in practice. The
fast shock test is mostly evolved in order to verify that our
implementation of the MHD equations is correct in the limit
of ultrarelativistic fluids. In fact, because of the practical
advantages of using ui instead of vi, we usually reconstruct

the former (WL ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ gijuiuj

q
is always well defined

whileWL ¼ 1=
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 − gijvivj

q
is not if numerical errors in the

low-density regions cause vi to satisfy gijvivj > 1). In
Figs. 15 and 16, we show the result of that test when
using the MC2 reconstruction method (and reconstructing
vi), for 400 and 4000 grid points. The results converge
toward the solution at the expected first-order rate. The
slow shock test is generally less extreme. As in previous
studies [69,70,73], we observe that the evolution is very
accurate on the left side of the shock, while oscillations
are visible on the right side of the shock (see Fig. 15).
Although these oscillations converge away as we increase
the resolution, they do so more slowly than expected past
200-400 points in the evolution domain (convergence
order of ∼0.6). This is the only test for which we do not
observe at least first-order convergence.

TABLE III. Initial data for the shock tests

Test Initial state for x < 0 Initial state for x > 0

Fast shock ρ ¼ 1, P ¼ 1 ρ ¼ 25.48, P ¼ 367.5
(tfinal ¼ 2.5) ui ¼ ð25; 0; 0Þ, Bi ¼ ð20; 25.02; 0Þ ui ¼ ð1.091; 0.3923; 0Þ, Bi ¼ ð20; 49; 0Þ
Slow shock ρ ¼ 1, P ¼ 10 ρ ¼ 3.323, P ¼ 55.36
(tfinal ¼ 2.0) ui ¼ ð1.53; 0; 0Þ, Bi ¼ ð10; 18.28; 0Þ ui ¼ ð0.9571;−0.6822; 0Þ, Bi ¼ ð10; 14.49; 0Þ
Switch-off ρ ¼ 0.1, P ¼ 1 ρ ¼ 0.562, P ¼ 10
(tfinal ¼ 1.0) ui ¼ ð−2; 0; 0Þ, Bi ¼ ð2; 0; 0Þ ui ¼ ð−0.212;−0.590; 0Þ, Bi ¼ ð2; 4.71; 0Þ
Switch-on ρ ¼ 0.00178, P ¼ 0.1 ρ ¼ 0.01, P ¼ 1
(tfinal ¼ 2.0) ui ¼ ð−0.765;−1.386; 0Þ, Bi ¼ ð1; 1.022; 0Þ ui ¼ ð0; 0; 0Þ, Bi ¼ ð1; 0; 0Þ
Shock tube 1 ρ ¼ 1, P ¼ 1000 ρ ¼ 0.1, P ¼ 1
(tfinal ¼ 1.0) ui ¼ ð0; 0; 0Þ, Bi ¼ ð1; 0; 0Þ ui ¼ ð0; 0; 0Þ, Bi ¼ ð1; 0; 0Þ
Shock tube 2 ρ ¼ 1, P ¼ 30 ρ ¼ 0.1, P ¼ 1
(tfinal ¼ 1.0) ui ¼ ð0; 0; 0Þ, Bi ¼ ð0; 20; 0Þ ui ¼ ð0; 0; 0Þ, Bi ¼ ð0; 0; 0Þ
Collision ρ ¼ 1, P ¼ 1 ρ ¼ 1, P ¼ 1
(tfinal ¼ 1.22) ui ¼ ð5; 0; 0Þ, Bi ¼ ð10; 10; 0Þ ui ¼ ð−5; 0; 0Þ, Bi ¼ ð10;−10; 0Þ
Wave ρ ¼ 1, P ¼ 1 ρ ¼ 1, P ¼ 1
(tfinal ¼ 2.5) ui ¼ −0.4133 · ð0; cos x; sin xÞ, Bi ¼ ð1; cos x; sin xÞ ui ¼ −0.4133 · ð0; cos x; sin xÞ, Bi ¼ ð1; cos x; sin xÞ
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Other shock tests: The five other one-dimensional shock
tests, for which results are presented in Figs. 15 and 16, are
comparable to previously published results in accuracy (for
the simulations using 400 points), and convergent when the
resolution is increased to 4000 points. As expected, the
convergence is fairly slow (first-order), which explains why
sharp features remain visible even at high resolution. These

tests cover a wide range of potential behaviors (shock
waves, rarefaction waves, contact discontinuities), and
indicate that the shock capturing methods implemented
in SPEC are capable of handling the discontinuities which
are likely to arise in our simulations.
Wave: The last one-dimensional test to which we submit

our code is the propagation of a wave on a periodic grid.
In this case, all variables are continuous, and the error in
the simulations should be second-order convergent. In the
exact solution, the initial profile (given in Table III) simply
propagates with velocity v ¼ 0.3820. The error in the
density ρ at the end of the simulation for 3 different
resolutions (50, 100, and 200 points per wavelength) is
shown in Fig. 17, rescaled for the assumed second-order
convergence. Our results also appear in good agreement
with the theoretical predictions for this smooth
configuration.

b. Bondi accretion

We also test the ability of our code to evolve a
magnetized fluid in the strong gravitational field of a black
hole. We check its ability to maintain stationary and
spherically symmetric accretion onto a Schwarzschild
black hole according to the relativistic Bondi accretion
solution. This test is nontrivial since we have an extremely
strong gravitational field and relativistic fluid which con-
tains nonzero magnetic terms. There is also an exact
solution to which we can compare our numerical results.
We write the metric in the Kerr-Schild coordinates; as a

result, all the variables are well-behaved at the horizon
(horizon penetrating). We fix the metric for this test and
evolve the fluid equations only.
For this test, we evolve the same configuration used by

Duez et al. [69]. The accretion rate is _M ¼ 1, the sonic
radius is at r ¼ 8M (whereM is the mass of the black hole),
and the equation of state obeys a Γ ¼ 4=3 power law [see

FIG. 15 (color online). Rest-mass density at t ¼ tfinal for the
shock tests described in Table III, shown for two resolutions
(N ¼ 400 and N ¼ 4000 points).

FIG. 16 (color online). Velocity at t ¼ tfinal for the shock tests
described in Table III, shown for two resolutions (N ¼ 400 and
N ¼ 4000 points).

FIG. 17 (color online). Error in the final value of uy for the wave
test at 3 resolutions (N ¼ 50, N ¼ 100, N ¼ 200), rescaled for
the expected second-order convergence.
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Eqs. (A34)–(A35)]. We freeze the hydro evolution varia-
bles at the inner and outer boundaries. We set the inner
boundary radius outside of the horizon at r ¼ 2.8M (the
horizon is at r ¼ 2M), and the outer boundary is placed at
r ¼ 9M; the Cartesian grid extends�10M along each axis.
We evolve this accretion flow at three different reso-

lutions: 643, 963, and 1283. The initial magnetic field is
radial such that b2=ρ ¼ 1 and the solution is stationary.
Reconstruction is performed using WENO5. We add
Kreiss-Oliger dissipation [74] to the evolution of all con-
servative variables. This removes short-wavelength noise
that would otherwise interfere with clean convergence.
We compute the volume L2 norm of the deviation of the

conservative variables from their exact Bondi solutions:

δu ¼
�R ju − uexactj2 ffiffiffi

γ
p

d3xR ffiffiffi
γ

p
d3x

�
1=2

: ðA36Þ

In Fig. 18 we plot the error norm measured by Eq. (A36)
for all conservative variables after 100M of evolution for
three different resolutions. These show that our results are
converging at second-order, as expected (and as also
observed in previous studies of this problem, e.g. [75,76]).

APPENDIX B: SPECTRAL METHOD FOR
CYLINDERS AND SPHERES

When evolving the spacetime metric on a spectral grid,
we try to adapt the domain decomposition to the geometry
of the evolved fields. This often means using sections of a
sphere, in the form of spherical shells or “cubed spheres.”
In black hole spacetimes, this is sufficient to cover the area

surrounding the excised region within the apparent horizon.
However, for neutron star spacetimes, a different approach
is taken to cover the center of the star.
Polar and spherical coordinates are singular at the origin,

creating difficulties if one tries to use tensor products of
one-dimensional function bases. This same problem exists
at the poles of a spherical surface. Spherical harmonics,
Ym
l ðθ;ϕÞ, provide a clean solution in that case, able to

represent smooth functions without artificial boundaries
and without severely restricting the time step allowed by
the Courant-Friedrichs-Lewy stability limit [77]. For the
radial “pole problem,” Zernike polynomials and their
higher dimensional generalizations provide a similar
solution.
The use of Zernike polynomials in spectral methods over

the unit disk was explored independently by Matsushima
and Marcus [78] and by Verkley [79]. Notation varies
throughout the literature, so we summarize ours here:
Denote an orthonormal azimuthal (Fourier) basis as

FmðϕÞ≡
8<
:

1ffiffiffiffi
2π

p m ¼ 0

1ffiffi
π

p eimϕ m > 0
: ðB1Þ

Then an arbitrary smooth function fðϖ;ϕÞ over the unit
disk can be decomposed into its Fourier coefficients
fmðϖÞ:

fðϖ;ϕÞ ¼ ℜ
Xmmax

m¼0

fmðϖÞFmðϕÞ; ðB2Þ

where mmax ¼ ⌊Nϕ=2⌋, Nϕ being the number of azimuthal
collocation points. (Note that ifNϕ is odd, the highest mode
will lack a sine component.)
These Fourier coefficients can be further decomposed

into a radial sub-basis Rm
n ðϖÞ, composed of one-sided

Jacobi polynomials multiplied by ϖm:

Rm
n ðϖÞ≡ ffiffiffiffiffiffiffiffiffiffiffiffiffiffi

2nþ 2
p

ϖmPð0;mÞ
ðn−mÞ=2ð2ϖ2 − 1Þ; ðB3Þ

where Pðα;βÞ
k ðxÞ represents the Jacobi polynomial of degree

k. In this notation, the radial functions are only defined for
n ≥ m, 2jðn −mÞ. For smooth functions, the fmðϖÞ satisfy
the pole condition: fmðϖÞ → ϖm as ϖ → 0. This basis
manifestly respects that condition.
The Zernike polynomials are then defined as

Zn
mðϖ;ϕÞ≡ Rm

n ðϖÞFmðϕÞ: ðB4Þ

They form an orthonormal basis for smooth functions over
the unit disk:

FIG. 18 (color online). Error norm for the Bondi test at three
resolutions, rescaled for second-order convergence.
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fðϖ;ϕÞ ¼
Xmmax

m¼0

Xnmax

n¼m
nþ¼2

fnmZn
mðϖ;ϕÞ; ðB5Þ

where nmax ¼ 2Nϖ − 1, Nϖ being the number of radial
collocation points. Note that if Gauss-Radau quadrature is
used (placing collocation points on the outer boundary of
the disk), then the highest-order radial basis functions
should be normalized with respect to the quadrature rule
(rather than analytically) or else omitted entirely.
Specifications for the quadrature nodes and weights can
be found in the references.
As mentioned by Livermore et al. [80], this can be

generalized to filled spheres. In that case, a function
fðr; θ;ϕÞ is decomposed into fnlm such that

fðr; θ;ϕÞ ¼
Xmmax

m¼−mmax

Xlmax

l¼jmj

Xnmax

n¼l
nþ¼2

fnlmRl
nðrÞYm

l ðθ;ϕÞ; ðB6Þ

where now Rl
nðrÞ is given by

Rl
nðrÞ ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2nþ 3

p
rlPð0;lþ1=2Þ

ðn−lÞ=2 ð2r2 − 1Þ; ðB7Þ

which corresponds to an integration weight of r2 instead
of ϖ. Here, Ym

l ðθ;ϕÞ are the spherical harmonics, and
lmax ¼ Nθ − 1 for Nθ latitudinal collocation points.
Spectralmethods can be susceptible to aliasing instabilities

when, for instance, nonlinear interactions allow the creation
of higher spectral modes through the mixing of lower ones.
Appropriate filtering of the solution is therefore required for
stable evolutions [81]. When using cylindrical and spherical
domains in SPEC, we have found filtering to be unnecessary
in the radial direction. Filtering in angular directions, mean-
while, is performed as for spherical shells [82].

APPENDIX C: MEASURING POWER IN
AZIMUTHAL MODES

1. Preliminaries

Consider a function space spanned by a set of N basis
functions ϕnðxÞ that are orthonormal with respect to a
weight function wðxÞ. That is,Z

ϕmðxÞϕnðxÞwðxÞdx ¼ δmn: ðC1Þ

Further, assume the existence of a quadrature rule on a set
of N collocation points xi that is exact for all products of
two functions in this space weighted by wðxÞ. In other
words,

XN−1

i¼0

ϕmðxiÞϕnðxiÞwi ¼ δmn; ðC2Þ

where wi are the quadrature weights. Note that Gaussian
quadrature meets this criterion for polynomial bases.
Let fðxÞ be a member of this space, which we write as a

linear combination of the basis functions:

fðxÞ ¼
XN−1

n¼0

fnϕnðxÞ; ðC3Þ

where the spectral coefficients fn can be computed via

fn ¼
Z

fðxÞϕnðxÞwðxÞdx ¼
XN−1

i¼0

fðxiÞϕnðxiÞwi: ðC4Þ

There exists a unique set of cardinal function CiðxÞ in
this space with the property that

fðxÞ ¼
XN−1

i¼0

fðxiÞCiðxÞ; ðC5Þ

which we can solve for as follows: First, expand each CiðxÞ
into its spectral coefficients cn;i. Then we have

fðxÞ ¼
XN−1

i¼0

fðxiÞCiðxÞ ¼
XN−1

i¼0

fðxiÞ
XN−1

n¼0

cn;iϕnðxÞ;

which implies that

XN−1

n¼0

fnϕnðxÞ ¼
XN−1

n¼0

�XN−1

i¼0

fðxiÞcn;i
�
ϕnðxÞ;

and thus that

fn ¼
XN−1

i¼0

fðxiÞϕnðxiÞwi ¼
XN−1

i¼0

fðxiÞcn;i:

This means that

cn;i ¼ ϕnðxiÞwi;

and therefore

CiðxÞ ¼ wi

XN−1

n¼0

ϕnðxiÞϕnðxÞ: ðC6Þ

Observe that the cardinal functions obey the property

CiðxjÞ ¼ δij ðC7Þ

and are orthogonal to one another with norm
ffiffiffiffiffi
wi

p
:Z

CiðxÞCjðxÞwðxÞdx ¼ wiδij: ðC8Þ
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Thus, the functions ~CiðxÞ≡ CiðxÞ= ffiffiffiffiffi
wi

p
form another

orthonormal basis for the space. [Note that this also
provides a convenient way of computing the quadrature
weights via 1=wi ¼

P
nϕ

2
nðxiÞ.]

2. Azimuthal power

Within the space of smooth functions defined in a
cylindrical volume, consider the subspace spanned by a
finite number of orthonormal basis functions of the form
PlðzÞZn

mðϖ;ϕÞ, where PlðzÞ is a basis for functions on a
finite interval (such as Legendre polynomials) and
Zn
mðϖ;ϕÞ ¼ Rm

n ðϖÞFmðϕÞ are the Zernike polynomials
(see Appendix B for notation). Any function f in this
subspace can be decomposed into spectral coefficients
flmn. The amount of power in a given azimuthal mode
m is defined to be

Pm½f� ¼
X
l

X
n

jflmnj2: ðC9Þ

One approach to computing this power for an arbitrary f is
to compute each flmn by integrating fðz;ϕ; rÞ against the
corresponding product of basis functions. If f is band-
limited and the integration is of sufficiently high order,
this will produce the exact result. Alternatively, f can be
integrated against the set of cardinal functions along z and
r. Here we show the equivalence of this nodal approach to
the aforementioned modal one.
Let us denote our nodal power measurement by Qm½f�:

Qm½f�

≡X
i;j

����
ZZZ

dzdϕϖdϖfðz;ϕ;ϖÞ ~CiðzÞ ~Cm
j ðϖÞFmðϕÞ

����2;
ðC10Þ

here, ~CiðzÞ are the normalized cardinal functions associated
with PlðzÞ and ~Cm

j ðϖÞ are the normalized cardinal func-
tions associated with Rm

n ðϖÞ. Expanding those cardinal
functions in terms of their associated basis functions yields

Qm½f� ¼
X
i;j

����
Z Z Z

dzdϕϖdϖfðz;ϕ;ϖÞ

×
� ffiffiffiffiffiffi

wP
i

q X
l
PlðziÞPlðzÞ

�

×

� ffiffiffiffiffiffi
wR
j

q X
n
Rm
n ðϖjÞRm

n ðϖÞ
�
FmðϕÞ

����2: ðC11Þ

The presence of the weights suggests that the outer sums
can be interpreted as integrals (note that the corresponding
integrands are products of two basis functions and therefore
exactly integrable by quadrature). And since the basis
functions are orthonormal, the integral of a product of

sums is equal to a sum of products. This simplifies the
above expression to

Qm½f�

¼
X
l;n

����
ZZZ

dzdϕϖdϖfðz;ϕ;ϖÞPlðzÞRm
n ðϖÞFmðϕÞ

����2:
ðC12Þ

But the integral above is merely the projection of f onto the
basis function indexed by l; m; n; thus

Qm½f� ¼
X
l;n

jflmnj2 ¼ Pm½f�: ðC13Þ

This gives us two formally equivalent ways to measure the
azimuthal power in f: one involving projections onto the
modal basis, the other projecting onto the nodal (cardinal)
basis. The latter matches an intuitive approach to avoiding
the problem of power cancellation due to phase changes at
different ϖ and z.

3. Error floor

Unfortunately, when performing these integrations on a
finite volume domain, the Cartesian nature of the grid
results in spurious power in m ¼ 4; 8;… modes propor-
tional to the error of the integration scheme (these “ambient
grid modes” are also noted in studies where mode meas-
urement is restricted to rings [14,19]). If the function does
not approach zero at the boundary of the reference cylinder,
then this spurious power will be significant because of the
“Lego circle” approximation to the boundary.
This effect can be mitigated by windowing the data with

a smooth function that transitions between one at the center
and zero at the boundary. We have achieved good results
using the window

WðϖÞ ¼ 1

2
f1 − tanh ½tan ðπðϖ þ 1=2ÞÞ�g: ðC14Þ

The effect of the windowing on the power spectrum can
then be undone via a deconvolution (made robust by using
a truncated singular value decomposition). Expressing the
convolution of the spectrum as

Cijλj ¼ λ0i; ðC15Þ

the elements of C are given by

Cij ¼
Z

WðϖÞRm
i ðϖÞRm

j ðϖÞϖdϖ: ðC16Þ

However, if the function being analyzed is entirely
contained within the reference cylinder (by making its
radius larger than that of the star, for instance), then this
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windowing technique offers minimal improvement to the
error floor. Additionally, for our setup, evolved data
exhibits 100× more spurious power than initial data.
The net result is that, at our resolution,m ¼ 4 perturbations

can only be measured if they are larger than 10−5 relative to
the background. The act of windowing does make this
procedure more robust, however, should the data expand
beyond the chosen reference cylinder.
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