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In this work we review the application of the theory of Gaussian processes to the modeling of noise in
pulsar-timing data analysis, and we derive various useful and optimized representations for the likelihood
expressions that are needed in Bayesian inference on pulsar-timing-array data sets. The resulting viewpoint
and formalism lead us to two improved parameter-sampling schemes inspired by Gibbs sampling. The new
schemes have vastly lower chain autocorrelation lengths than the Markov-chain Monte Carlo methods
currently used in pulsar-timing data analysis, potentially speeding up Bayesian inference by orders of
magnitude. The new schemes can be used for a full-noise-model analysis of the large data sets currently
being assembled by pulsar-timing-array collaborations, which generally present a serious computational
challenge to existing methods.
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I. INTRODUCTION

The high-precision timing of the radio emission from
pulsars has proved to be a valuable tool for probing a wide
range of science. Besides great successes such as the first
indirect confirmation of the emission of gravitational waves
(GWs) [1] and very accurate tests of general relativity [2],
pulsar timing is nowused in projects that aim todirectlydetect
low-frequency GWs (10−9–10−8 Hz) from extra-Galactic
sources by using a set of Galactic millisecond pulsars
(MSPs) as nearly perfect Einstein clocks [3], thanks to the
exceptional regularity of their pulses—once many physical
effects, such as the pulsar location and motion relative to the
Earth, its binary dynamics if it has a companion, the
propagation of pulses through the interstellar medium, and
the intrinsic evolution of pulsar spin, are modeled accurately
(indeed, an accurate timing model must account for every
rotation of the pulsar across observation epochs). The pres-
ence of GWs affects the propagation of the pulses from the
pulsar to the Earth, creating detectable deviations from the
strict periodicity of the pulse times of arrival (TOAs) [4–6].
In the last decade, scientists seeking to detect GWs with

pulsar timing have organized in pulsar-timing-array (PTA)
projects around the globe: the European Pulsar Timing
Array [7,8], the North American Nanohertz Observatory
for Gravitational Waves (NANOGrav) [9,10], and the
Australian Parkes Pulsar Timing Array [11,12], which have
now joined into a global collaboration, the International
Pulsar Timing Array (IPTA) [13,14]. Each PTA has now
collected regular observations of tens ofMSPs across several
years, creating data sets of ever-increasing sensitivity to low-
frequency GWs. As a result, a significant amount of effort
has already been placed into the development of sophisti-
cated data-analysis methods to extract GWs from pulsar

TOAs, both for stochastic GW-background signals (among
others [9,15–21]) and continuous waves (for instance,
Refs. [22–29]). Many such methods, and especially those
based on Bayesian principles, are very computationally
intensive and therefore slow. Although work is ongoing
on their acceleration, large modern data sets such as those
integrated by the IPTA are still very challenging to analyze.
Much of the sophistication required in PTA data analysis

is concerned with the description of noise. GWs must be
extracted from timing residuals (the differences between
the observed TOAs and the best timing-model fits), which
include measurement errors but also other types of noise,
such as “red” spin noise (or “timing noise,” the long-term
drifts in the rotational frequency of the pulsar), the time-
and frequency-dependent delays due to pulse propagation
through the interstellar medium, and effects that are
correlated across pulsars, such as low-frequency drifts of
atomic clocks or inaccuracies in the Solar System eph-
emerides. For a recent discussion of all of these, see
Refs. [30,31]. Each of these noise sources must be
distinguished from true GWs. The GWs themselves can
have a stochastic character (as for the background from the
superposition of signals from many supermassive black-
hole binaries), in which case they can be extracted thanks to
their correlations among pulsars.
Modern data-analysis methods model the statistics of the

noise components of timing residuals as time-correlated
stochastic signals, described by a power spectral density or
a correlation function. This paper focuses on (and reviews)
the description of stochastic signals as Gaussian processes,
the generalization of random variables to functions. This
description was implicit in earlier contributions (e.g.,
Ref. [17]), and we now make it fully explicit. Thus, we
give a formal treatment of the Gaussian-process approach
to pulsar-timing data analysis, and we derive (or rederive)
various expressions, optimized in different ways, for the*vhaasteren@gmail.com
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likelihood of the data in the presence of stochastic signals.
We also describe and test two novel Bayesian sampling
schemes, inspired by Gibbs sampling [32], which outper-
form the standard Markov-chain Monte Carlo samplers
used in pulsar-timing data analysis by greatly reducing the
autocorrelation lengths of the chains.
The outline of this paper is as follows. We introduce

Gaussian processes in Sec. II and their application to
pulsar-timing data in Sec. III. In Sec. IV we discuss the
analytical marginalization of likelihoods, and in Sec. V we
describe low-rank approximations of covariance matrices.
Both techniques are crucial to high-performance analysis
methods. In Sec. VI we present our new-and-improved
quasi-Gibbs schemes, which we test on mock data in
Sec. VII. We end with our conclusions in Sec. VIII.

II. GAUSSIAN PROCESSES

Gaussian processes [33] generalize the notion of
Gaussian random variables to the case of an infinite number
of degrees of freedom. They provide a modern treatment for
process noise, as defined in optimal filtering—a source of
uncertainty distinct from measurement error, which repre-
sents unmodeled stochastic or systematic effects in the
system under study. More formally [33], a Gaussian process
is a (possible infinite) “collection of random variables, any
finite number of which have a joint Gaussian distribution.”
This very property, which corresponds mathematically to
the (always surprising) cancellations of chained exponential
integrals, makes Gaussian processes especially suited to
describing systems that have underlying continuous
dynamics yet are necessarily measured at a finite set of
points (which could be times, locations, or events). Thanks
to this property, the likelihood of a measured data set as a
function of the Gaussian-process parameters depends only
on the behavior of the system at the points for which we
have measurements; furthermore, it is especially convenient
to interpolate or extrapolate inferences to points for which
measurements were not made, or are not available.
A Gaussian process can be specified fully in one of two

equivalent ways:
(i) As the sum

P
μϕμðxÞwμ ¼ ϕTðxÞw of a finite or

infinite set fϕμðxÞg of deterministic basis functions,
multiplied by the weights wμ, which are themselves
Gaussian random variables with mean vector w0

μ

and covariance matrix ϒμν. (This is the weight-
space view.)

(ii) As a continuous function fðxÞ, for which we prescribe
the ensemble mean mðxÞ ¼ E½fðxÞ� and the covari-
ance function kðx; x0Þ ¼ E½ðfðxÞ −mðxÞÞðfðx0Þ−
mðx0ÞÞ�. (This is the function-space view.)

In the following we will adopt the simplifying but ines-
sential assumption that mðxÞ ¼ w0

μ ¼ 0. The duality
between the two views and specifications is encapsulated
by the covariance-function expansion

kðx; x0Þ ¼
X
μ;ν

ϕμðxÞϒμνϕνðx0Þ: ð1Þ

Indeed, Mercer’s theorem [33] ensures that a (possibly
infinite) basis-function expansion exists for every positive-
definite covariance kðx; x0Þ. The power of switching
between the dual views is manifest in the two equivalent
expressions for the likelihood of a vector yi of observations
of the Gaussian process, taken at the set of points fxig, and
subject to Gaussian measurement noise ϵi with covariance
matrix Nij [33],

pðyijwμ;GPÞ ¼
e−

1
2

P
i;j
ðyi−

P
μ
ϕμðxiÞwμÞðNijÞ−1ðyj−

P
μ
ϕμðxjÞwνÞffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffið2πÞn detNp

×
e−

1
2

P
μν
wμðϒμνÞ−1wνffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffið2πÞm detϒ

p

pðyijGPÞ ¼
e−

1
2

P
i;j
yiðNijþKijÞ−1yjffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffið2πÞn detðN þ KÞp ;

with Kij ¼ kðxi; xjÞ ¼
X
μν

ϕμðxiÞϒμνϕνðxjÞ; ð2Þ

where i, j ¼ 1;…; n and μ, ν ¼ 1;…; m, and Kij is the
Gaussian-process covariance matrix (i.e., the covariance
function evaluated at the measured points). The first
expression in Eq. (2) shows the explicit dependence of
the likelihood on the basis-function weights; the second,
which is obtained by integrating over the wμ, is in effect the
marginal likelihood of the data given the Gaussian-process
hypothesis, in a compact form that is especially useful if
kðx; x0Þ [or equivalently the ϕμðxÞ and ϒμν] are taken to be
functions of a vector of hyperparameters, such as the
spectral amplitude and slope for power-law noise.
We take a moment to restate this important result:

compared to the full likelihood pðyijwμ;GPÞ, the mar-
ginalized likelihood pðyijGPÞ has been integrated with
respect to all possible values of the Gaussian process at
the measured points and everywhere else, subject to the
probabilistic constraints given by the noisy measure-
ments. In a Bayesian framework, pðyijGPÞ leads directly
to the posterior probability for the hyperparameters. If,
conversely, we are interested in the inferred values of
the Gaussian process given the observations, it can be
shown [33] that at any points x0 and x00 (whether
observed or not) the process is normally distributed
with mean x̄0 ¼ P

i;jkðx0; xiÞðNij þ KijÞ−1yj (and like-
wise for x00) and covariance Cðx0; x00Þ ¼ kðx0; x00Þ−P

ijkðx0; xiÞðNij þ KijÞ−1kðxj; x00Þ. This equality has
been rederived and used in various forms in pulsar
timing: for example, for the analytical marginalization
of timing-model parameters [17] and for the
reconstruction of dispersion-measure variations [34].
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For later reference, we rewrite Eq. (2) using a looser
notation where we omit vector indices, replace summations
by vector–matrix multiplications, work with log likeli-
hoods, and adopt a special notation for normal-distribution
normalization constants,

logpðyjw;GPÞ ¼ −
1

2
ðy − ΦTðxÞwÞTN−1ðy − ΦTðxÞwÞ

−
1

2
wTϒ−1w − logN n;N − logN m;ϒ;

logpðyjGPÞ ¼ −
1

2
yTðN þ KÞ−1y − logN n;NþK; ð3Þ

where n and m are the sizes of the squares matrices N and
ϒ and where

Φμ;i ¼ ϕμðxiÞ; K ¼ ΦTϒΦ; and

logN p;X ¼ p
2
logð2πÞ þ 1

2
log detX: ð4Þ

Gaussian processes have been studied for a long time in
statistics; in the last 20 years they have received renewed
attention in the fields of machine learning and statistical
inference [33].

III. GAUSSIAN-PROCESS APPROACH TO
PULSAR-TIMING NOISE

In pulsar timing, the properties of the emitting system are
inferred from the repeated timing of the its pulses. For
millisecond pulsars, a large number of pulses is collected
during each epoch of observation. Each single TOA is
determined by folding the pulses with respect to fiducial
period and by cross-correlating the folded profile to
an independently determined template; this process
produces also an estimated measurement uncertainty
(known as radiometer noise) for each TOA [35], which
can be understood qualitatively as the width of the cross-
correlation pattern around its maximum. The TOAs can be
predicted deterministically using models that include the
astrometric and physical parameters of the source (such as
its sky position and proper motion) and the intrinsic
evolution of the pulsar spin frequency, as well as binary-
orbit parameters for pulsars with a companion. Fitting a
deterministic TOA model to a set of observed TOAs results
in a timing solution. The differences between observed and
modeled TOAs are known as residuals, and the best-fit
model is usually chosen as the one that minimizes the
root-mean-square uncertainty-weighted residual.
The gist of the Gaussian-process approach to inferring

the noise properties of timing data sets and to searching for
GW imprints in the TOAs is this: the set of best-fit residuals
for one or more pulsars is modeled as a sum of Gaussian
processes, which may include:

(1) effects due to the necessarily imperfect determina-
tion of the timing solution;

(2) additional observational errors not included in the
cross-correlation estimate of TOA uncertainties;

(3) sources of time-correlated or uncorrelated noise
intrinsic to the pulsar;

(4) effects due to the propagation of the pulses through
the interstellar medium;

(5) common-mode effects that are correlated among
multiple pulsars, such as those due to the presence
of stochastic GWs or reference clock errors.

In this approach, we specify the covariance function or
matrix for each Gaussian-process component (except for
timing-solution errors, which are easiest to specify using
basis functions) as functions of a set of hyperparameters,
and we deploy the machinery of Bayesian inference to
derive posterior distributions for the hyperparameters (and
to characterize or marginalize over the timing-solution
errors). The approach was first formulated by van
Haasteren and Levin [17,36], without drawing an explicit
link to the theory of Gaussian processes, and in effect
rederiving basic results such as Eq. (3) as probability
manipulations in Bayesian inference.
Mathematically, we write the residuals y as the sum

yðθÞ ¼
X
ðAÞ

yðAÞðθðAÞÞ þ ϵ; ð5Þ

where the vector ϵ denotes measurement errors (which are
taken to be Gaussian with covariance matrix N); where the
set fyðAÞðθðAÞÞg includes one or more of the Gaussian
processes discussed above, with θðAÞ the hyperparameters
appropriate for each; and where θ denotes the collection
of all θðAÞ. The crucial result from Gaussian-process
theory, which enables Bayesian inference on the θ, is
the fact that the marginal likelihood pðyjθ;GPÞ can be
written simply as

logpðyjθ;GPÞ ¼ −
1

2
yT
�
N þ

X
ðAÞ

KðAÞ
�

−1
y

− logN n;Nþ
P

ðAÞK
ðAÞ : ð6Þ

(In fact, this simple description requires two slight
complications: first, the timing-solution errors are usually
given a special treatment, discussed in Secs. III A and IV;
second, the measurement-error matrix N is also parame-
trized by one or more hyperparameters, as described in
Sec. III B below.)
For one choice of hyperparameters, and under the

assumption that K is a dense matrix, the task of evaluating
a likelihood for a data set of n TOAs using Eq. (6) involves
the Oðn2Þ computation of the total covariance matrix
N þ K ¼ N þP

ðAÞKðAÞ, the Oðn3Þ computation of its
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determinant and inverse,1 and the Oðn2 þ nÞmultiplication
of the inverse covariance into the y. The cost of the inverse
usually dominates the accounting. Instead of computing
ðN þ KÞ−1 explicitly, one may obtain the upper-triangular
decomposition N þ K ¼ U�U, which yields the determi-
nant as the product of the squared diagonal elements, and
then compute yTðN þ KÞ−1y as yTðUnðUTnyÞÞ, where we
used the MATLAB notation Anb for the solution x of
Ax ¼ b. The decomposition is again Oðn3Þ, but with
a smaller numerical constant, while the linear-system
solutions are Oðn2Þ.
Although the individual covariance matrices in the sumP
ðAÞKðAÞ are positive definite by the very definition of

covariance, they may have very high condition numbers
[37], and thus they may be difficult to invert (or decom-
pose) numerically. Nevertheless, the inversion of N þ K is
usually regularized by the measurement-error matrix N,
which is typically diagonal, with elements that are large
compared to the KðAÞ. In the course of Bayesian inference,
one may yet encounter corners of (hyper)parameter space
where N þ K becomes numerically singular; it has been
our practice to assign a likelihood of 0 to those locations.
We now examine the individual Gaussian-process com-

ponents of pulsar-timing models and discuss the forms of
covariance matrices appropriate for each.

A. Timing-solution errors

The best-fit timing solution (TS) for a set of TOAs is
typically derived under the assumption that the template–
profile alignment uncertainties due to radiometer noise are
the only source of noise.2 Even in that case, the resulting
timing-model parameters would be slightly wrong because
the minimum-residual solution always overfits the noise; in
reality, the best-fit parameters will be systematically biased
by the other unmodeled sources of noise.
If, however, the best-fit solution is sufficiently close to

the truth and the various noise components are not too
overwhelming, the component of the residuals due to
timing-solution errors may be expressed as

yðTSÞ ¼
X
a

ϕðTSÞ
a ðtÞδηa ≡Mδη; ð7Þ

where δηa is the p-dimensional vector of the parameter

errors δηa ≡ ηbest-fita − ηtruea , where the ϕðTSÞ
a ðtÞ are the partial

derivatives of the TOAs with respect to the ηa, evaluated at

ηbest-fit, and whereM is the design matrix3 Mia ¼ ϕðTSÞ
a ðtiÞ.

The assumption that this linear regime for the yðTSÞ is
actually realized in the course of Bayesian inference can be
checked by carrying along the full nonlinear timing model
and exploring timing-model parameter space alongside
with the Gaussian-process hyperparameters [39,40].
We do not usually deal explicitly with the covariance

matrix that ensues from the basis functions ϕðTSÞ
a , because it

is awkward to attribute a prior covariance ϒTS to the δηa,
since physically motivated priors are not usually Gaussian
in form. Instead, we shall see in Sec. IV how we can
marginalize the likelihood with respect to an improper prior
for δη, which is equivalent to taking the limit λ → ∞ for a
prior of the form ϒTS ¼ λIp. Physically motivated (non-
Gaussian) priors, such as a non-negative parallax, can be
incorporated numerically as discussed in Refs. [39,40].

B. Measurement errors (EFAC, EQUAD,
and jitterlike noise)

We know empirically that the cross-correlation estimate
of radiometer noise is not always correct; a common fix has
been the inclusion in the model of a variable noise
multiplier, known as EFAC (for Error Factor). In fact,
the physics of the measurement suggests that separate
EFACs should be used for every receiver or back end
represented in the data set. We know also that there are
potential sources of measurement errors that are unrelated
to radiometer noise; these have been represented as a white-
noise component that adds to radiometer noise in quad-
rature, with an amplitude parameter known as EQUAD (for
Error added in Quadrature).4 Again, different EQUADs
may be assigned to multiple receivers and back ends.
Last, the circumstance that certain data sets (notably

those collected by the NANOGrav collaboration [9])
include TOAs measured at the very same time and for
the very same set of folded pulses, but in neighboring
frequency bands, creates the possibility of noise that is
largely or entirely correlated among TOAs measured
simultaneously, but entirely uncorrelated among TOAs
taken at different times. Some, but perhaps not all, of this
noise may be understood as pulse phase jitter [30] caused
by variable emission within pulsar magnetospheres.
In the case of a single receiver/back end, the total

covariance matrix for these three noise components can
be written as

KðMNÞ ¼ E2niδij þQ2δij þ J2δeðiÞeðjÞ; ð8Þ

where the indices i and j range over the TOAs, where the ni
are the cross-correlation estimates of radiometer noise for
each, where the δ are Kronecker deltas, and where eðiÞ

1The best known algorithms have slightly lower exponents, but
they are not always available in practical computational setups.

2It is, however, becoming increasingly common to adopt
more sophisticated noise models in timing work, following
Refs. [36,38–40].

3The design matrix yields the least-squares timing solution as
the end point of the iteration Mðη½i�ÞΔη½iþ1� ¼ TOAobs−
TOAmodelðη½i�Þ, η½iþ1� ¼ η½i� þ Δη½iþ1�.

4In the conventions of some timing packages, such as TEMPO2
[41], the EFAC parameter appears also in front of the EQUAD
amplitude. We prefer to keep the two separate, since we believe
that these hyperparameters should be uncorrelated.
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indexes the epochs (i.e., reference measurement times) of
each TOA. If the TOAs are sorted by epoch, the matrix
δeðiÞeðjÞ is block diagonal, with each block consisting
entirely of 1’s. Such a matrix has low rank corresponding
to the number of epochs, which allows useful computa-
tional optimizations, discussed below in Sec. V.
It is largely a matter of taste (and sometimes, as we will

see below, computational convenience) whether to include
all three components in the notional measurement noise ϵ
(in which case N ¼ KðMNÞ) or to designate EQUAD noise
and jitterlike noise as separate Gaussian processes (in
which case KðMNÞ ¼ N þ KðQÞ þ KðJÞ). For the case of
multiple receivers and back ends, separate EFAC, EQUAD,
and jitterlike terms for each would appear in Eq. (8), with
each set of terms applying to a disjoint subset of TOAs. If
the TOAs are sorted by receiver/back end, the total
covariance matrix is block diagonal, and each block has
the form of Eq. (8) with different E, Q, and J.

C. Correlated pulsar noise

Millisecond pulsars are excellent clocks, but they are not
perfect. Slight but measurable irregularities in their rotation
(which may be due, for instance, to random angular-
momentum exchanges between the normal and superfluid
components of the pulsar [30]) create a time-correlated
stochastic component in the TOAs that is referred to as
timing noise or “red spin noise.” This component of timing
residuals is typically modeled as a Gaussian, stationary
random process, with power-law spectral density,

PðPLÞðfÞ ¼ A2ðf=yr−1Þ−γ yr3; ð9Þ

where f is the frequency, A is a dimensionless amplitude,
and γ is the spectral index of the power law (the alternative
parametrization α ¼ 3=2 − γ=2 is also in use). By way of
the Wiener–Khinchin theorem,5 Eq. (9) results in the
correlation matrix

KðPLÞ
ij ¼ kðPLÞðti; tjÞ

¼ A2ðfL=yr−1Þ1−γ
�
Γð1 − γÞ sin

�
πγ

2

�
ðfLτijÞγ−1

−
X∞
n¼0

ð−1ÞnðfLτijÞ2n
ð2nÞ!ð2nþ 1 − γÞ

�
; ð10Þ

where Γð·Þ denotes the Euler gamma function, τij ¼
2πjti − tjj is the absolute difference of TOAs, and fL is

a low-frequency cutoff that regularizes the Wiener–
Khinchin integral. The series in Eq. (10) sums up to

1F2ðf1=2− γ=2g;f1=2;3=2− γ=2g;−ðfLτijÞ2=4Þ=ðγ − 1Þ,
where 1F2 is the generalized hypergeometric function
given by HYPERGEOMETRICPFQ in Mathematica and by
HYP1F2 in SCIPY.SPECIAL.
Blandford and colleagues [42] and later other authors

[17,36,43] showed that the exact value of fL is irrelevant in
pulsar applications, since it is absorbed in the fitting of the
linear- and quadratic-spin-downs term of the timing
model, at least for γ up to 7 (up to 5 using the linear term
alone). For γ ¼ 1, the total variance

R
PðfÞdf becomes

infinite even with the low-frequency cutoff. Thus, the
spectral index γ is usually taken in the interval ½1; 7�, although
imposing a high-frequency cutoff6 makes it possible to reach
γ ¼ 0, which corresponds to band-limited white noise.
The evaluation of Eq. (10) is numerically delicate, so

special care and tricks are needed.7 Furthermore, KðPLÞ
ij

is a dense, full-rank matrix, so its use in computing residual
likelihoods incurs the full Oðn3Þ cost of matrix inversion.

For γ ≳ 6 the matrix KðPLÞ
ij gains a very large condition

number [on the order of ðfL min τÞ−γ] so the inversion can
also be numerically unstable, although it may be regular-
ized by the fact that we invert N þ K rather than K, where
N is diagonal and has relatively large elements.
Both problems are solved by an alternative approach that

models correlated timing noise as a sum over a set of
Fourier modes (FM) [19],

yðFMÞðtÞ ¼
Xq
k¼1

ak cosð2πkxÞ þ bk sinð2πkxÞ; ð11Þ

where x ¼ ðt − t0Þ=T, with t0 and T the beginning and end
of the observation span, respectively. From a Gaussian-
process perspective, this amounts simply to specifying the
basis functions ϕμ instead of the covariance function and
solving for the weights wμ (here we subsume the cosines
and sines, and their coefficients, into a single vector of
bases of dimension 2q). This approach offers the additional

freedom of specifying the prior weight covariance ϒðFMÞ
μν as

a function of a set of hyperparameters. For instance, a

diagonalϒðFMÞ
μν specifying a set of variances ρμ, each shared

by the cos and sin modes of the same frequency fμ, can be
used for a form of spectral estimation [19] (which is not
quite “model independent,” as it is called in Ref. [19], since
a prior for the ρμ is still required).

5For a stationary process for which kðx0; x00Þ ¼ Cðx0 − x00Þ ¼
CðΔxÞ, the Wiener–Khinchin theorem relates the power spectral
density PðfÞ to the correlation function CðΔtÞ by way of
CðΔtÞ ¼ R

∞
0 cosð2πfΔtÞPðfÞdf. The total variance of the

process is then Cð0Þ.

6This can be achieved by taking the difference of two
expressions of the form (10) with different fL.7Equation (10) becomes singular for some values of γ, so
special-case expressions are required. An alternative, more
benign low-frequency regularization is to redefine PðfÞ ¼
A2ððfyrÞ2 þ ðfLyrÞ2Þ−γ=2, which leads to a CðτÞ expressed in
terms of modified Bessel functions of the second kind.
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The Fourier-sum approach can be seen also as a sub-
optimal spectral approximation of the time-domain
power-law covariance, by way of the fundamental
Gaussian-process duality relation:

KðPLÞ
ij ¼

X
μν

ϕðFMÞ
μ ðtiÞϒðFMÞ

μν ϕðFMÞ
ν ðtiÞ ð12Þ

with

ϒðFMÞ
μν ¼ PðPLÞðfμÞΔfδμν ¼ PðPLÞðfμÞδμν=T: ð13Þ

The approximation is suboptimal both because we usually
sum over a small number of modes (so it is a low-rank
approximation of a full-rank matrix) and because the modes

are not the true eigenfunctions ofKðPLÞ
ij . However, in practice

Eq. (12) can be very accurate (especially if additional,
logarithmically spaced modes are added at low frequencies
[44]). It can also offer very significant computational
savings because the inverse of a matrix expression involving
low-rank addends can be computed very efficiently. We
discuss this optimization extensively in Sec. V below.

D. Propagation through the interstellar medium

Pulsar radio signals travel across the electromagnetically
dispersive interstellar medium, incurring a frequency-
dependent, stochastic phase delay known as dispersion-
measure (DM) noise [30,45], given by

yðDMÞ ¼ ð4.15 × 10−3 sÞ
�

DM
pc cm−3

��
ν

GHz

�
−2

ð14Þ

for the delay of a pulse measured at frequency ν with
respect to a (hypothetical) pulse at infinite frequency. The
time-dependent quantity DM is the column density of free
electrons along the (time-changing) line of sight from the
pulsar to the radiotelescope. See Lee and colleagues [34]
for a discussion of previous work to characterize DM
variations and their impact on pulsar-timing GW searches.
In the analysis of pulsar-timing data sets that comprise
observations at multiple frequencies, DM variations have
been modeled with timing-model parameters that describe
DMðtÞ as a piecewise constant [9] or linear [46] function.
Alternatively, one can try to solve for DM variations from
the multifrequency observations at each epoch, effectively
generating a reduced infinite-frequency data set [34,47].
In the context of the Gaussian-process approach, DM

noise can be modeled as a correlated Gaussian process,
with an additional dependence on the frequency at which
each TOA was determined [34,39]. For DM variations
characterized by the power-law power spectral density

PðDMÞðfÞ ¼ A2
DMðf=yr−1Þ−γDM yr3; ð15Þ

the timing-residual covariance function is

KðDMÞ
ij ¼ kðDMÞðti; tjÞ ¼ ð4.15 × 10−3 sÞ2

×

�
νiνj
GHz

�
−2
jkðPLÞðti; tjÞjA→ADM;γ→γDM

; ð16Þ

where the last term is given by the red-noise power-law
covariance Eq. (10) after replacing A and γ with their DM
counterparts. For a Kolmogorov DM spectrum resulting
from plasma turbulence, γDM ¼ 11=3 [46,48].

The caveats given above for KðPLÞ
ij apply also to the

evaluation of KðDMÞ
ij . It is also possible to model yðDMÞ as

a sum over basis functions, in analogy to Eq. (11), using
either a “spectral-estimation” or power-law prior. If the basis
functions are Fourier modes at multiples of the fundamental
frequency 1=T (with T the duration of the data set), the very
low-frequency behavior of the Gaussian process is not
modeled well [39]; this can be remedied by enhancing the
timing-model design matrix with a term similar to quadratic
spin-down, but with ν−2 frequency dependence [39], or by
adding more modes at low non-Fourier frequencies [44].

E. Gravitational waves and clock errors

Pulsar TOAs carry an imprint of the space-time perturba-
tions (i.e., GWs) that they traverse as they travel from their
neutron-star source to the Earth [6]. For an individual source
of plane GWs, the frequency-shifting Doppler response of
the pulsar-to-radiotelescope baseline includes an Earth term
proportional (times geometric factors) to the GW strain at the
event (time and place) of pulse reception and a pulsar term
proportional to the GW strain at the event of pulse emission
[4]. Integrating both terms yields the TOA response, modulo
a constant time offset that is degenerate with the initial-phase
parameter of the timing model (see, e.g., Ref. [49] for the
case of GWs from a black-hole binary). In the Gaussian-
process approach to pulsar-timing analysis, such a deter-
ministic signal would not be modeled as a stochastic process,
but rather it would be subtracted from the residuals before
evaluating their likelihood.
By contrast, a stochastic background of GWs can be

modeled as a Gaussian process and included in Eq. (5).
Various commonly considered backgrounds have a power-
law power spectral density,

PðGWÞðfÞ ¼ A2
GW

12π2
ðf=yr−1Þ−γGW yr3; ð17Þ

where the 12π2 factor follows from defining AGW as the
dimensionless characteristic strain hc at f ¼ 1=yr [16],

hcðfÞ ¼ AGWðf=yr−1ÞαGW where γGW ¼ 3− 2αGW: ð18Þ
The spectral index γGW is 13=3 (but possibly less at
low frequencies) for the background from the sum of
unresolved black-hole binaries [50–52], 16=3 for a back-
ground from cosmic superstrings [53,54], and 5 for a back-
ground of inflationary relics [55]. Nonstrictly power-law
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spectra are also possible, as in the case of the QCD phase
transition [56].
Thus, a GW background can be modeled as a stochastic

process with a time-domain covariance matrix analog to
Eq. (10), or with a Fourier-sum covariance analog to
Eq. (12). However, the very concept of pulsar-timing array
depends on the fact that the TOA imprints of stochastic GWs
are correlated among different pulsars. For an isotropic
background, the correlation between the GW-induced resid-

uals yðGWÞ
ia (for pulsar a) and yðGWÞ

jb (for pulsar b) is given by

KðGWÞ
iajb ¼ ζðγabÞkðGWÞðtia; tjbÞ; ð19Þ

where ζðγabÞ is the Hellings–Downs coefficient [57,58] for
the angle γab between the pulsars:

ζðγabÞ ¼
3

2
sin2

�
γ

2

�
log sin2

�
γ

2

�
−
1

4
sin2

�
γ

2

�
þ 1

2
;

ζð0Þ ¼ 1: ð20Þ

The correlations have a more complicated structure if the
GW polarizations are not the two quadrupolar modes
predicted by general relativity [58–60] or if the background
is not isotropic [21,61].
It follows that the full GW-background covariance

matrix for a pulsar-timing-array data set can be very large
(N × N, where N ¼ P

ana is the sum of the TOA counts
for the individual pulsars); it is also dense, so its inversion is
a computationally expensive proposition. In Sec. VA we
will see that modeling the GW background as a Fourier
sum (and matching Fourier frequencies among pulsars)
offers a useful shortcut.
The fact that correlations between a multitude of pulsars

are used as a detection mechanism makes pulsar-timing
arrays robust detectors for GWs. Noise can generally be
expected to be uncorrelated between pulsars, and even
without doing proper parameter estimation and noise analy-
sis, a stochastic GW background can still be detected when
enough pulsars are observed (Jenet et al. [62], Siemens et al.
[63]).However,GWsare not the only types of signals that can
induce correlations. Slow drifts of atomic clocks can intro-
duce a slight error in terrestrial time standards, which would
manifest themselves as a common low-frequency signal in
the signals of all pulsars (Hobbs et al. [64]). Such a correlated
signal would be a source of noise when detecting a GW
background, and itmust bemodeled appropriately. The clock
signal consists of a time-correlated stochastic signal that is
common to all pulsars. As such, we use the same models as
for a GW background, except that we take ζ ¼ 1 instead of
Eq. (20). Although the covariance matrix component of the
clock signal is actually singular, in all realistic scenarios this is
always regularized by the other constituents of the covariance
matrix. If no regularizing signal is present in the model as
could be the casewith mock data, it is trivial to replace it with

a rank-reduced expansion similar to what we did in the
previous sections.
Besides clock errors, another possible source of timing

noise are inaccuracies in the Solar-System ephemeris.
Although these are unlikely to be a significant source of
noise for stochastic-GW searches, they are easily modeled
as a correlated stochastic signal, for which one should
replace Eq. (20) with ζðγabÞ ¼ cosðγabÞ [65].

IV. MARGINALIZING OVER
TIMING-SOLUTION ERRORS

As mentioned above, the timing-solution parameter
errors δηa are usually given a special treatment: we can
include them among the inferred parameters in a Bayesian
analysis (i.e., among the parameters that would be sampled
explicitly in a Markov-chain Monte Carlo run) and use a
likelihood in the form

logpðyjθðnon-TSÞ; δηaÞ

¼ −
1

2
ðy −MδηÞTðN þ Kðnon-TSÞÞ−1ðy −MδηÞ

− logN n;NþKðnon-TSÞ ; ð21Þ
where the θðnon-TSÞ denote all the model parameters other
than the Timing-Solution errors δηa, or we can treat them
nonlinearly, as in Refs. [39,40], so that the residuals y are
recomputed from the full timing model for each value of the
η that we sample. This latter approach is desirable if we
think that the functional dependence of the residuals on the
η may be significantly nonlinear within the relevant
parameter ranges.
Otherwise, Eq. (21) can be marginalized analytically

over the δηa by computing the integral
R
pðyjθðnon-TSÞ;

δηaÞdðδηaÞ. When doing so, we are in effect assuming an
improper (infinitely vague) prior for the δηa, which is
acceptable from a Bayesian perspective as long as the
observed data is informative with respect to those param-
eters. The first authors to propose this marginalization were
van Haasteren and Levin [17], who showed that

pðyjθðnon-TSÞÞ

¼
Z

expf− 1
2
ðy−MδηÞTC−1ðy−MδηÞgffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffið2πÞnjCjp dðδηaÞ

¼ expf− 1
2
yTðC−1 −C−1MðMTC−1MÞ−1MTC−1Þygffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

ð2πÞn−mjCjjMTC−1Mj
p

≡ expf− 1
2
yTC0ygffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

ð2πÞn−mjCjjMTC−1Mj
p ; ð22Þ

where C ¼ N þ Kðnon-TSÞ.8

8To perform this integral, we remember the field-theoretical
version of Gaussian integrals,

R
e−

1
2
xTAxþJTxdx ¼ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

ð2πÞðsizeAÞjA−1j
q

e
1
2
JTA−1J , and identify A ¼ MTC−1M and

JT ¼ yTC−1M.
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A derivation of the van Haasteren–Levin result can also be
given that remains closer in spirit to the logic of Gaussian
processes. For that, we remember that the δηa can be seen
as the weights of the basis functions ϕðTSÞðtÞ (the columns

of the design matrix M). We can then use Eq. (3) with
KðTSÞ ¼ MϒðTSÞMT and ϒðTSÞ ¼ λIp and take the limit
λ → ∞ corresponding to an infinitely vague prior for the
TS weights:

lim
λ→∞

logpðyjθðnon-TSÞÞ ¼ lim
λ→∞

�
−
1

2
yTðCþMλMTÞ−1y − 1

2
log jCþMλMT j − n

2
log 2π

�

¼ lim
λ→∞

�
−
1

2
yTC−1yþ 1

2
yTC−1Mðλ−1Ip þMTC−1MÞ−1MTC−1y

−
1

2
log jCj − 1

2
log jλ−1Ip þMTC−1Mj − p

2
log λ −

n
2
log 2π

�

¼ −
1

2
yTC0y −

1

2
log jCj − 1

2
log jMTC−1Mj − n −m

2
log 2πðþinfinite constantÞ: ð23Þ

In the second row of Eq. (23) we used the Woodbury
formula and the matrix determinant lemma [66],

ðAþUWVTÞ−1 ¼ A−1 −A−1UðW−1þVTA−1UÞ−1VTA−1;

detðAþUWVTÞ ¼ detðW−1þVTA−1UÞdetW detA;

ð24Þ

we will have occasion to use these formulas repeatedly in
the rest of this paper, and we will discuss their computa-
tional significance in Sec. V.
Van Haasteren and Levin [36] later derived an alternative

form for the δηa-marginalized likelihood, which exploits
the singular-value decomposition (SVD) M ¼ UΣV� [67].
If M is an n × p matrix, then U and V are orthogonal
matrices of sizes n × n and p × p, respectively, while Σ is
an n × p diagonal matrix. If we partition U as ½FG�, where
F comprises the first p columns, we see that F spans
rangeðMÞ, while G spans the subspace orthogonal to
rangeðMÞ. Heuristically, we may reason that the projection
FFTy of the residuals involves components that can be
reabsorbed by a change in the δηa, so these components are
in effect unobserved from the Gaussian-process perspec-
tive; a likelihood can then be written directly for the
ðn − pÞ-dimensional observable data vector GTy (or more
precisely, for the coefficients of the y over the partial
orthonormal basis given by the G columns):

pðyjθðnon-TSÞÞ ¼ expf− 1
2
yTGðGTCGÞ−1GTygffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ð2πÞn−pjGTCGj

p : ð25Þ

In Appendix A we demonstrate that Eqs. (22) and (25) are
indeed equivalent up to a multiplicative constant that does
not affect Bayesian calculations.
The computation of the “M-matrix” marginal likelihood

[Eq. (22)] is again dominated by the Oðn3Þ inversion and

determinant of the non-Timing-Solution covariance C;
it involves also Oðpn2Þ and Oðp2nÞ matrix–matrix
multiplications, and the Oðp3Þ inversion and determinant
of MTC−1M, as well as negligible quadratic-order
matrix–vector multiplications. The computation of the
“G-matrix” marginal likelihood [Eq. (25)] is dominated
by the Oððn − pÞ3Þ inversion and determinant of the
projected covariance GTCG, and by Oððn − pÞn2Þ matrix
multiplications (some of these can be avoided by storing
the matrices GTKðAÞðθðAÞÞG for varying values of θðAÞ and
interpolating [36]); it requires also the Oðnp2Þ SVD
decomposition of M, which can be performed once and
for all when we set up Bayesian inference.

V. LOW-RANK FORMULATIONS FOR
CORRELATED NOISE

As we have seen so far, the bottleneck in the evaluation
of Gaussian-process marginal likelihoods is the Oðn3Þ
computation of the inverse and determinant of the total
covariance matrix N þP

ðAÞKðAÞ. It is possible to improve
on this situation by exploiting the specific structure of the
individual covariance matrices. For instance, the measure-
ment-noise covariance matrix N and some among the KðAÞ

are diagonal, with trivial OðnÞ inverses. By contrast, other
KðAÞ represent correlated noise and therefore a small
number of effective degrees of freedom; these matrices
are usually severely rank deficient (at least numerically,
which is why they are so hard to invert), and they can
be represented accurately by a truncated eigenvector
expansion USUT , where U is n × l with l ≪ n [37].
Thus, we are left with the task of computing the inverse

of the sum of a diagonal matrix D with a low-rank matrix
USUT . This is where the Woodbury lemma (24) comes to
the rescue. Indeed, its principal application in the literature
is the low-rank update of an inverse, which is just what
we need:
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ðDþUSUTÞ−1¼D−1−D−1U−1ðS−1þUTD−1UÞ−1UTD−1:

ð26Þ

We see that the matrix inversions in this reworked expres-
sion are those of D [an OðnÞ operation], S [an Oðl3Þ
operation], and ðS−1 þ UTDUÞ [again Oðl3Þ], gaining us
an impressive speedup. The corresponding lemma for the
determinant is jDþUSUT j ¼ jDjjSjjS−1 þ UTD−1Uj,
which reduces the original Oðn3Þ computation to OðnÞ
and Oðl2Þ operations.
The correlated-noise expansion is compatible with the

M-matrix formulation of Sec. IV, although the Oðp3Þ
inversion of MTC−1M is still necessary [in addition,
computing MTC−1M itself is Oðpn2Þ]. An alternative
way to include the M-matrix marginalization is to replace
U in Eq. (26) with the concatenation U0 ¼ ½MU�, adopting
an infinitely vague prior for the timing-model parameters,
as we did in Eq. (23).
With a little more work, the correlated-noise expansion is

also compatible with the G-matrix formulation, where it
leads to

yTGðGTðDþ USUTÞGÞ−1GTy

¼ yTWy − yTWUðS−1 þUTWUÞ−1UTWy; ð27Þ

with

W ¼ GðGTDGÞ−1GT: ð28Þ

Now, the computation of the “weight”matrixW involves
an Oðn3Þ inverse, which can be computed once and for all
at the beginning of inference if its only dependence on the θ
is a multiplicative constant such as an EFAC. If the
dependence of W is more complicated, we can still avoid
the Oðn3Þ scaling by rewriting

GðGTDGÞ−1GT ¼ D−1 −D−1FðFTD−1FÞ−1FTD−1

ð29Þ

[see Eq. (A6) in Appendix A], where F is the n × p
orthogonal complement ofG (see Sec. IV), and the required
matrix inversions are therefore OðnÞ and Oðp3Þ.
A computationally efficient expression for W is also

available when D is the sum aAþ bB of two constant
components, each multiplied by its own multiplicative
hyperparameter (as in the case of single receiver/back
end EFAC and EQUAD noise). We can then diagonalize
the two simultaneously with a nonorthogonal basis
transformation,

GTDG ¼ aGTAGþ bGTBG ¼ LVðaI þ bQÞVTLT;

ð30Þ
with

LLT ¼ GTAG and VQVT ¼ L−1GTBGLT−1; ð31Þ
where I is the identity matrix, L is a lower-diagonal
Cholesky decomposition [67], and VQVT is an eigende-
composition, with Q a diagonal matrix. The quantities
required in Eq. (27) are now trivial to calculate:

yGðGTDGÞ−1GTy

¼ yTGðVTLTÞ−1ðaI þ bQÞ−1ðLVÞ−1GTy; ð32Þ

detðGTDGÞ ¼ detðGTAGÞ detðaI þ bQÞ: ð33Þ

Because we need to calculate LVGTy (or any other
combination like LVGTU) only once, the computational
burden of the inverse is OðnÞ, and evaluating Eq. (27) is
OðnlÞ and Oðl3Þ.
We note that, besides the low-rank expansions we

outline in this section, another similar computational
trick has been explored in Ref. [68]. Instead of using
the Woodbury lemma to expand the low-rank representa-
tion of the covariance matrix, the data were compressed
to a similar low-rank basis. The low-rank basis was not
based on a frequency representation of the signal as we do
in the next few sections but was a high-fidelity basis
derived from a Fisher-information matrix approximation
of the likelihood. Linear interpolation of the compressed
covariance matrices was subsequently used to obtain the
covariance function for various model parameters. In
Appendix B we discuss linear data compression in the
context of the more versatile frequency representation of
signals, but in the rest of the paper we focus on the
uncompressed data.
In the rest of this section we discuss the applications of

low-rank expansions: in Sec. VA for correlated timing
noise, in Sec. V B for jitterlike noise in multifrequency data
sets, and in Sec. V C to define a notion of coarse-grained
residuals per epoch.

A. Low-rank expansions by Fourier sums

The Fourier-sum approach discussed in Secs. III C–III E
for correlated timing noise, DM variations, and GWs leads
directly to a low-rank approximation for the covariance
matrix, which is obtained by setting, in the language of

Eqs. (12) and (26), Uiμ ¼ ϕðFMÞðtiÞ and Dμν ¼ ϒðFMÞ
μν . As a

reminder, μ ranges from 1 to 2q and indexes the Fourier
basis functions cosð2πfμtiÞ and sinð2πfμtiÞ with fμ a
multiple of 1=T, the inverse duration of the observation;

the matrix ϒðFMÞ
μν is diagonal, with equal elements for

each set of two bases of the same frequency. In the case
of DM variations, the basis functions would be
ðνi=GHzÞ−2 cosð2πfμtiÞ and ðνi=GHzÞ−2 sinð2πfμtiÞ,
following Eq. (16).
If we are modeling correlated noise, DM variations, and

GWs all together by way of low-rank expansions, we need
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to include a separate set of basis functions (and diagonal
priors) for each. The resulting global F matrix is obtained
by stacking the individual F’s horizontally, and the global
ϒ is the block-diagonal matrix of the individual ϒ’s.
However, since the bases for correlated noise and GWs
are the same, except possibly for a different choice of q, the
corresponding F matrix needs to be included only once,
and the two diagonal prior matrices can be summed. This
means that the correlated-noise and GW hyperparameters
will be correlated (partially or entirely, depending on the
structure of the priors).
In the case of multipulsar analysis, the Fourier-sum

modeling of GWs poses a challenge to the derivation of
low-rank expressions. Each pulsar gets its own Fourier
basis, but each such basis represents a Gaussian process
that is correlated with the GW processes of the other pulsar.
Let us label the residuals as yai, where a indexes the pulsar
and i ranges over the residuals of each (which can be
different numbers). If we use the same set ffμg of Fourier
frequencies for all pulsars (based, e.g., on the duration
of the longest data set), the resulting multipulsar GW
covariance is given by

KðGWÞ
aibj ¼

X
abμν

ΦaμðtaiÞϒðGWÞ
aμbν ΦbνðtbjÞ

¼
X
abμν

ΦaμðtaiÞðϒðGWÞ
μν ζabÞΦbνðtbjÞ ð34Þ

[see Eq. (19)]. Now, ϒðGWÞ
μν is diagonal, but ζab is dense,

so its inverse is potentially expensive. If we order the
Fourier coefficients in blocks corresponding to the N

pulsars, the matrix ϒaμbν appears to be made up of N × N
blocks, each of which is a diagonal matrix. By contrast, if
we order the coefficients in blocks corresponding to each
fμ, then the matrix ϒaμbν is block diagonal, with each
block a dense matrix given by ρμγab; thus, its inverse is
just ρ−1μ γ−1ab , which incurs an acceptable computational
cost OðqN3Þ.
In principle γ−1ab could be saved and reused; however, if

we are also modeling correlated noise with Fourier sums
that share the same basis functions as the GWs, the
resulting prior would be

ϒaμbν ¼ ϒðGWÞ
μν ζab þϒðredÞ

a;μν δab; ð35Þ

in this case each block is given by ρðGWÞ
μ γab þ ρðredÞa;μ δab, and

it must be inverted for each choice of ρðredÞa;μ .

B. Low-rank expansions for jitterlike noise

The covariance matrix corresponding to jitterlike noise,
as described in Sec. III B, can be expressed exactly as the
low-rank expression

CJ ¼ UEUT; ð36Þ

where E is a diagonal matrix with entries J2e corresponding
to squared amplitude of jitterlike noise at each epoch
(usually the same for all epochs corresponding to mea-
surements with the same receiver/back end) and where
Uie ¼ 1 if measurement i belongs to epoch e, 0 otherwise.
If the residuals are sorted by epoch, the structure of the
expansion is graphically obvious:

0
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0
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. .
.
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1
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0
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1 1 � � � 1

. .
.

1 1 � � � 1

1
CCCA: ð37Þ

This representation can be used together with the Fourier
sums of Sec. VA (for correlated noise, DM variation, and
GWs) by stacking the F and U matrices as well as the
priors. Otherwise, jitterlike noise can be kept in the matrix

D of Eqs. (26) and (27).D is then block diagonal (for sorted
residuals) rather than diagonal, but its inverse can be
computed very efficiently. Each block De has the form
of Eq. (8),
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D−1
e ¼ ðNe þ J2eueuTe Þ−1; ð38Þ

where ðNeÞij ¼ ðE2
eni þQ2

eÞδij, with indices ranging over
the epoch only, and uTe ¼ ð1; 1;…; 1ÞT . By Woodbury’s
lemma,

D−1
e ¼ N−1

e −
N−1

e ueuTeN−1
e

αe
; with

αe ¼ J−2e þ uTeN−1
e ue; ð39Þ

which is Oðb2Þ, with b the dimension of the block.
Altogether D−1 can be computed in Oðnb̄Þ time, b̄ the
average number of residuals in an epoch.

C. Low-rank expansion of coarse-grained residuals

A low-rank expansion can also be used to define a
statistically principled notion of coarse-grained residual
per epoch formultifrequency data sets such asNANOGrav’s
[69]. The idea is to write the total Gaussian-process
covariance matrix as N þ C ¼ N þ U ~CUT , where the
n × nmatrixN includes themeasurement noise components
(such as EFAC and EQUAD noise) that are independent for
each residual, while the ne × ne matrix ~C (with ne the
number of epochs) describes components such as jitterlike
noise, correlated noise, and GWs9 that depend only on the
observation time of each epoch and are therefore entirely
correlated among residuals in the same epoch; thus, the
“exploder” matrix U has the same structure as in Eq. (37).
AWoodbury expansion yields the likelihood in the form

−
1

2
yTðN þU ~CUTÞ−1y − 1

2
log jN þ U ~CUT j

¼ −
1

2
yTN−1y −

1

2
log jNj þ 1

2
yTN−1Uð ~C−1 þ UTN−1UÞ−1UTN−1y −

1

2
log j ~Cjj ~C−1 þ UTN−1Uj

¼ −
1

2
~χ2 −

1

2
log jNj þ 1

2
~yTð ~C−1 þ XÞ−1 ~y − 1

2
log j ~Cjj ~C−1 þ Xj; ð40Þ

where we have neglected logarithms of 2π. In Eq. (40)
the n-dimensional vector of residuals y is replaced by
the ne-dimensional vector of coarse-grained residuals
~y ¼ UTN−1y. Thus, in principle a full multifrequency data
set can be condensed into ~y, plus the white-noise ~χ2 of
the observation and the ne × ne matrix X ¼ UTN−1U of
averaged measurement noise. The marginalization over
the timing-model parameters can also by accommodated,
in the G-matrix formulation of Eq. (25), by redefining
~y ¼ UTWy, ~χ2 ¼ ~yTW ~y, and X ¼ UTWU, with
W ¼ GðGTDGÞ−1GT .
Unfortunately, coarse graining per epoch is not useful in

practice because the measurement-noise matrix N is usually
a function of several hyperparameters (the EFACs and
EQUADs for the various receiver/back end combinations),
so the full set of residuals must be carried along throughout
the analysis to recompute ~y, ~χ2, and X as the hyper-
parameters change. If a single EFAC and EQUAD describe
the entire data set, then coarse-grained residuals can be used
by way of the two-component expansion of Eq. (30).

VI. QUASI-GIBBS SCHEMES FOR BAYESIAN
INFERENCES ON PULSAR-TIMING DATA SETS

Performing Bayesian inference for model para-
meters and hyperparameters requires the exploration of a

high-dimensional parameter space to build a representa-
tion of the posterior parameter distributions. Reducing the
number of search parameters by marginalizing over some
of them analytically, as we discussed in Sec. IV, can be
part of the solution, but it is not the entire story. The
reason is that stochastic methods such as Markov-chain
Monte Carlo (MCMC) are typically used to explore the
space of the remaining parameters, so the efficiency of an
inference scheme depends crucially on the number of
likelihood evaluations required to sample the posteriors
broadly and accurately enough as well as the computa-
tional cost of an individual likelihood evaluation. The need
to choose wisely is especially pointed for large data sets
such as the upcoming IPTA data releases, which may
contain many tens of thousands of TOAs, requiring
(in principle) the inversion of matrices with billions of
elements.
MCMC methods explore parameter posteriors by using

(in effect) a guided random walk: they generate a sequence
of samples the distribution of which converges asymptoti-
cally to the posterior. The rate of convergence, regardless of
the dimension of parameter space, can be characterized as
1=

ffiffiffiffi
N

p
, where N is the number of samples [strictly speak-

ing, it is the fractional error of integrated quantities such asR
ϕðxÞpðxÞdx that scales as hϕi= ffiffiffiffi

N
p

, with hϕi the variance
of the function ϕðxÞ]. The N in this scaling, however, is
really the number of statistically independent samples,
which is related to the length of the chain by a multipli-
cative constant that depends on the dimension of parameter

9DM fluctuations require a slightly more complicated descrip-
tion where U gains n rows, with the same structure as those of
Eq. (37) but each multiplied by ν−2i .
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space, on the structure of the posterior, and on the particular
scheme used to generate the chain. For an actual chain, the
multiplicative constant is characterized well by the sample
autocorrelation function (ACF), defined as

ACFtðxÞ ¼
1

N−1
P

N−t
i¼1 ðxi − x̄Þðxiþt − x̄Þ
1

N−1
P

N
i¼1 ðxi − x̄Þ2 ; ð41Þ

where x and N are the vector and number of samples,
·̄ indicates the sample mean, and t is the sample lag. The lag
at which the ACF drops by a factor e is known as the
exponential autocorrelation length [70]; sampling schemes
that yield lower autocorrelation lengths for all parameters
require correspondingly fewer samples to achieve the same
accuracy.
In this section we present two schemes, inspired by

Gibbs sampling (see Sec. VI A below), that result in much
lower autocorrelation lengths than the state-of-the-art
methods currently in use. In Sec. VI B we introduce a
scheme optimized for spectral estimation (i.e., for
correlated-noise and GW models with free Fourier-sum
coefficients); in Sec. VI C we describe a modified scheme
that is useful for model spectra (e.g., power-law correlated
noise and GWs).

A. Gibbs sampling for pulsar-timing analysis

The simplest MCMC schemes are based on the
Metropolis–Hastings rule: each new sample in the
sequence fθðnÞg is generated by first proposing a new
parameter vector θðnþ1Þ from a proposal distribution
qðθðnþ1ÞjθðnÞÞ (which often describes a local perturbation)
then accepting it with probability given by the Metropolis–
Hastings ratio

pðθðnþ1ÞjdataÞ
pðθðnÞjdataÞ ×

qðθðnÞjθðnþ1ÞÞ
qðθðnþ1ÞjθðnÞÞ : ð42Þ

The resulting detailed balance (the fact that the flow of
samples between two locations in parameter space is
proportional to the ratio of the posteriors) guarantees the
existence of an equilibrium distribution. If the proposal is
such that the chain is ergodic (it can reach any corner of
parameter space), convergence is assured in the limit of
infinite samples. Choosing the proposal distribution
smartly (see, e.g., Ref. [71]) is paramount to achieving
good chain mixing (low autocorrelation lengths).
In a Gibbs scheme [32], by contrast, at each step one

modifies only a subset of parameters (often just one) and
does so by drawing the new value directly from the
conditional probability distribution of the modified param-
eters given the unmodified ones. If the blocks of parameters
that are modified together are chosen to minimize corre-
lations between blocks, the resulting chain mixing is very
good, because all parameters are in effect drawn from the

global posterior, except for the effects of residual interblock
correlations.
For pulsar-timing analysis, the opportunity of using

Gibbs sampling is motivated by a crucial observation on
the full unmarginalized likelihood for the case of Fourier-
sum correlated noise and GWs (see Sec. VA):

pðyjθÞ ¼ expf− 1
2
ðy −Mδη − FaÞTN−1ðy −Mδη − FaÞgffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffið2πÞnjNjp

×
expf− 1

2
aϒ−1agffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffið2πÞpjϒjp : ð43Þ

(Here the a and F are the weights and basis matrix of the
Fourier-sum Gaussian processes, and ϒ encodes their
priors; the δη and M are the timing-model parameter errors
and design matrix, and the infinitely vague prior is
implicit.) Equation (43) can be interpreted as a conditional
probability for the a and δη given the hyperparameters that
define N andϒ. Furthermore, the conditional probability is
Gaussian, which makes it easy to sample from it, as we see
below. If the hyperparameters that define ϒ are given in the
“spectral-estimation” formϒμν ¼ ρμδμν [see Eq. (12)], then
the ρμ can also be drawn easily from their conditional
posteriors, given the weights and the other hyperpara-
meters. Last, Eq. (43) requires the inversion of diagonal
matrices only [an OðnÞ operation], so it can be evaluated
very efficiently.
The reason why the full Fourier-sum likelihood has not

been used so far in pulsar-timing analysis is that the
resulting increase in computational efficiency is out-
weighed by the increased autocorrelation lengths in
MCMC schemes that evolve the hyperparameters together
with the weights in perturbative fashion. A quasi-Gibbs,
blocked sampling scheme overcomes this problem (the
scheme is not quite Gibbs because we still need
Metropolis–Hastings updates for the hyperparameters that
appear nontrivially in the likelihood). We describe it in the
next section.

B. Quasi-Gibbs, blocked sampling scheme
for spectral estimation

In this sampling scheme we successively modify the
values of blocks of parameters, holding all the others fixed
(hence, the scheme is blocked). The choice of blocks aims
at two goals: the covariance between parameters in separate
groups should be minimized to improve the ACF, and it
should be possible to sample directly from the conditional
probabilities for each block, or at least to evaluate them
cheaply. Thus, we choose the following groups:
(1) Quadratic parameters, consisting of the timing-

model parameter errors δη and the Fourier coeffi-
cients a for both correlated noise, GWs, and DM
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variations. (For a single pulsar, GWs would be
degenerate with correlated noise.)

(2) Hyperparameters describing white noise, and op-
tionally jitterlike noise, using Eqs. (38) and (39);
jitterlike noise could also be modeled with quadratic
parameters, per Eq. (36).

(3) Hyperparameters describing priors for correlated-
noise and GW Fourier coefficients.

(4) Hyperparameters describing priors for DM-variation
Fourier coefficients.

We cycle through these four steps, resampling the param-
eters in each block while holding the others fixed to their
most recent value; at the end of each cycle we obtain a full
Markov-chain sample. We now discuss each step in detail.
(1) Sampling the quadratic parameters: As mentioned

before, the quadratic parameters are the weights of

the basis functions ϕðTSÞ
μ ðtiÞ ¼ Miμ and ϕðFMÞ

μ ðtiÞ ¼
Fiμ of the timing model and the correlated noise,
respectively. We denote them collectively as wT ¼
ðδηT; aTÞ and with Φ ¼ ðM;FÞ. Fixing all the
hyperparameters θ, the log-posterior probability of
the w can be rewritten as

logPðwjy; θ;GPÞ

¼ −
1

2
ðw −Q−1ΦN−1yÞTQðw −Q−1ΦN−1yÞ

− 1

2
log detQþ const; ð44Þ

with

Q ¼ ΦN−1ΦT þϒ−1; ð45Þ

where N, ϒ, and the additive constant are functions
of the hyperparameters and of the residuals and
where we interpret ϒ−1 in the broad sense explained
in Sec. IV: by assuming an infinitely vague prior for
the timing-model parameters, we set ϒ−1 to zero in
their subspace. Equation (44) states that the quad-
ratic parameters w are distributed according to a
multivariate normal distribution with mean w̄ ¼
Q−1ΦN−1y and covariance Q−1. We can draw from
this distribution by computing wnew ¼ w̄þ Lϵ, with
ϵ a vector of zero-mean, unit-norm, uncorrelated
normal deviates (see, e.g., Ref. [72]) and L a square
root of Q−1 (i.e., LLT ¼ Q−1). For numerical
stability, we first evaluate Q−1 with a QR decom-
position (the product of an orthogonal matrix and an
upper-triangular matrix [67]), then use an SVD
decomposition [67] to compute the square root.
In multipulsar data sets, the effects of GWs on the

timing residuals of different pulsars are correlated
[see Eq. (34)]; thus, so are the posterior distributions
of the GW Fourier coefficients for each pulsar [by

way of Eq. (35)]. If we were to use the procedure
that we have just outlined to draw new GW quadratic
parameters, we would have to do so for all the
pulsars at once, which can be very computationally
expensive. Instead, the step can be performed
separately for each pulsar a by conditioning the
corresponding wa on the most recent wb for all
b ≠ a. Expanding Eq. (43) for a prior matrix ϒ that
includes cross terms between pulsars and collecting
all the terms that involve the wa results in the
conditional probability

logPðwajwb≠a; y; θ;GPÞ

¼ −
1

2
ðwa −Q−1

a zaÞTQaðwa −Q−1
a zaÞ

− 1

2
log detQa þ constðθ; wb≠aÞ; ð46Þ

where

za ¼ ΦaN−1
a ya þ

X
b≠a

ðϒ−1Þabwb;

Qa ¼ ΦaN−1
a ΦT

a þ ðϒ−1Þaa; ð47Þ

from which wa can be drawn directly with the
covariance-square-root procedure. Because of the
structure of the multipulsar prior [Eq. (35)], com-
puting the submatrices ðϒ−1Þaa and ðϒ−1Þab does
not require the inversion of the full ϒ, but only of
each pulsar block, which is much cheaper.

(2) Sampling the white-noise hyperparameters: The
conditional probability for the white-noise hyper-
parameters θw that determine N in Eq. (43) is very
simple,

logPðθwjyred; w; θp;GPÞ

¼ −
1

2
yTredN

−1yred −
1

2
log detN − logpðθwÞ;

ð48Þ

where the reduced residuals yred ¼ y − Φw are
obtained by subtracting the most recent realization
of the quadratic-parameter Gaussian processes from
the residuals and where pðθwÞ is the prior for the θw.
We cannot draw directly from this distribution, but
we can approximate such a draw by performing a
sequence of perturbative Metropolis–Hastings up-
dates (in effect, a small MCMC run) for the θw.
Because of the form of Eq. (48), this is not costly.
(In our tests, we performed the small MCMC run
with an adaptive Metropolis sampler, allowing for
significant burn in on the first iteration, and then
using the adaptively tuned proposal covariance in
subsequent iterations. Each small MCMC is run for
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longer than a full autocorrelation length, as esti-
mated in the first iteration.)

(3) and (4) Sampling the Fourier-sum hyperparameters:
The following description applies to the Fourier-sum
hyperparameters for correlated timing noise and
GWs, and for DM variations. We denote either set
as θp. The conditional probability for the θp, fixing
everything else, is given by

logPðθpjy; θw; w;GPÞ

¼ −
1

2
wTϒ−1w −

1

2
log detϒ − logpðθpÞ; ð49Þ

where, again, ϒ−1 is identically zero in the subspace
of the timing-model parameters, which do not
appear in this equation. (This is not an inherent
restriction of our scheme, but it is our choice.)

The spectral-estimation model discussed in Sec. III C
includes an independent variance parameter ρμ on the
diagonal of ϒ for each modeled frequency. Each ρμ applies
to a cosine and a sine mode; we will denote their weights as
aμ and bμ. If we adopt 1=ρμ Jeffreys priors for each ρμ [73],
Eq. (49) becomes fully separable, and we can write

Pðρμjaμ; bμ; θw;GPÞ ¼
ða2μ þ b2μÞ exp

�
− 1

2

a2μþb2μ
ρμ

�
ρ2μ

: ð50Þ

We can draw samples from this distribution analytically,
even if we adopt a proper Jeffreys prior with compact
support ρμ;min < ρμ < ρμ;max. To do so, we pick η uniformly
in the interval ½0; 1 − exp ðτ=ρμ;max − τ=ρμ;minÞ�, with
τ ¼ ða2μ þ b2μÞ=2, and we compute

ρμ;new ¼ τ

τ=ρμ;max − log ð1 − ηÞ : ð51Þ

With a more general prior pðθpÞ, we can still use the small-
MCMC strategy discussed above for θw.
This scheme is analog to augmented/missing-data

methods used in machine learning [70]: if we think of
the Fourier coefficients as unobserved data rather than
model parameters, then at the beginning of each cycle we
are in effect imputing their values (according to their
conditional probability with the current hyperparameters)
to “complete” the data set and evaluate model-parameter
likelihoods with greater convenience.
In actual use, this scheme turns out to be very efficient,

with extremely low autocorrelation lengths (see Sec. VII A).
This is because nearly all the parameters in the different
blocks turn out to be nearly uncorrelated; the only significant
correlations are between the quadratic-spin-down timing-
model parameter and the lowest Fourier coefficients, which
do not increase the overall autocorrelation length signifi-
cantly. In addition, the Fourier coefficients are also
effectively uncorrelated among themselves, because the

corresponding modes are approximately orthogonal (they
would be exactly orthogonal if the TOAs were sampled
regularly). This does notmatter to their update step, sincewe
are drawing from the joint posterior; however, this non-
correlation helps chain mixing, because it means that each
pair of ðaμ; bμÞ interacts (and correlates) with a single ρμ that
is updated in a different block.
However, if we apply the quasi-Gibbs scheme to a model

of correlated noise where the Fourier and timing-model
coefficients are correlated more strongly through the
hyperparameters (as in a model with power-law spectral
densities), the autocorrelation lengths increase sharply. To
illustrate this problem, in Fig. 1 we show the correlation
profile of the correlated-noise power-law parameters
(amplitude and spectral slope), as estimated in a standard
marginalized-poster MCMC, together with the much
smaller conditional-correlation profiles (white curves)
that is “seen” in one of the hyperparameter block updates
of the quasi-Gibbs scheme, where all the Fourier coeffi-
cients are fixed to specific values. The limited extension of
the effective correlation profiles greatly increases the
autocorrelation times of the hyperparameters in the
quasi-Gibbs chain.

C. Collapsed quasi-Gibbs sampling scheme
for modeled spectra

To improve this behavior, we need to sample the Fourier
coefficients and their hyperparameters simultaneously. This
is what we do in the modified scheme described here,
which trades some computational efficiency for shorter
autocorrelation lengths. This scheme has the same four

FIG. 1. Comparison of the correlation profiles for the corre-
lated-noise amplitude and spectral slope parameters in a full
MCMC run (larger density profile) and as seen in a correlated-
noise hyperparameter block update, where the Fourier coeffi-
cients are fixed to specific “imputed” values. The runs were
performed on NANOGrav’s 5-year J1910þ 1256 data set, which
includes DM corrections as part of the timing model [9].
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steps as the quasi-Gibbs scheme of the last section, but we
modify the step 3=4 where we update the hyperparameters
of the modeled spectra. For these we adopt the following
procedure: a) we first draw new hyperparameters θp from a
perturbative proposal; b) we then generate new quadratic
parameters wp directly from their conditional posterior
given the new θp; finally c) we accept the new ðθp; wpÞ
according to the Metropolis–Hastings rule.
The Metropolis–Hastings ratio for the entire step is then

pðθðnþ1Þ
p ; wðnþ1Þ

p jy;…Þ
pðθðnÞp ; wðnÞ

p jy;…Þ
×
qðwðnÞ

p jwðnþ1Þ
p ÞqðθðnÞp jθðnþ1Þ

p Þ
qðwðnþ1Þ

p jwðnÞ
p Þqðθðnþ1Þ

p jθðnÞp Þ
;

ð52Þ

where we do not indicate the dependence of the proba-
bilities on all the hyperparameters and coefficients that are
not updated in this step. However, since the proposal for wp
is just its conditional given the new hyperparameters,

qðwðnþ1Þ
p jwðnÞ

p Þ ¼ pðwðnþ1Þ
p jθðnþ1Þ

p ; y;…Þ; ð53Þ
and since the overall posterior probability can be factorized as

pðθp; wpjy;…Þ ¼ pðθpjy;…Þpðwpjθp; y;…Þ; ð54Þ

where pðθpjy;…Þ is marginalized over the wp, the
Metropolis–Hastings ratio simplifies (collapses) to

pðθðnþ1Þ
p jy;…Þ

pðθðnÞp jy;…Þ
×
qðθðnÞp jθðnþ1Þ

p Þ
qðθðnþ1Þ

p jθðnÞp Þ
; ð55Þ

with

logpðθpjy;…Þ

¼ −
1

2
yTðN−1 − N−1ΦðΦTN−1Φþϒ−1Þ−1ΦTN−1Þy

−
1

2
log jΦTN−1Φþϒ−1j þ const: ð56Þ

Thus, we are just taking a Metropolis–Hastings step over the
θp using the marginalized posterior, and we can wait to draw

new wðnþ1Þ
p from the conditional probability given the θðnþ1Þ

p

only if the step is accepted (conveniently, we already have the
appropriate Q−1 covariance to do so).
In addition to reworking steps 3=4, we need also to

adjust the parameter blocks, by including among the
quadratic parameters that are updated also the timing-
model parameters that are significantly covariant with them
(i.e., the quadratic spin-down in the correlated-noise block
and the DM parameter10 in the DM-variation block). From

a computational-cost standpoint, this scheme is comparable
to an MCMC based on the fully marginalized posterior.
However, the resulting autocorrelation lengths are much
improved by the blocked updates of uncorrelated parameter
subsets (see Sec. VII B).

VII. TESTS OF THE QUASI-GIBBS SCHEMES
USING MOCK DATA

In this section we test the performance (and basic
correctness) of our quasi-Gibbs sampling schemes using
simulated timing residuals, which we obtain using the
LIBSTEMPO interface [74] to the TEMPO2 timing package
[41]. In Sec. VII A we compare the spectral-estimation
quasi-Gibbs method of Sec. VI B with a standard MCMC
method, applying both to a single-pulsar data set. In
Sec. VII B we compare the more general quasi-Gibbs
method of Sec. VI C with again a standard MCMCmethod,
apply both to a multipulsar data set that contains a GW
background.

FIG. 2. Mock data and spectral estimation in the test of the
quasi-Gibbs scheme. Top: Mock residuals for pulsar J0437-4715
used in the test of Sec. VII A. We generated 1,500 TOAs over a
time span of 6,000 days, injecting power-law timing noise
[Eq. (9)] with parameters A ¼ 3 × 10−14, and γ ¼ 4.33. Bottom:
Recovered Fourier-mode variances for the Metropolis and quasi-
Gibbs samplers. The error bars show 1-σ standard deviations, and
the spectrum of injected noise is shown as the dashed line.

10And when not accurately modeling the lowest DM variation
frequencies, also the first and second time derivatives of the DM.
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A. Test of spectral-estimation quasi-Gibbs scheme

The single-pulsar mock data set for this test is based on
the timing model of pulsar J0437-4715 in the pulsar catalog
of the Australia Telescope National Facility [75]. This is one
of the IPTA pulsars with the lowest TOA uncertainty, and it
has been observed regularly. We generate timing residuals
with real-world characteristics: the TOAs are sampled
unevenly (in the modified Julian date interval 50,000–
56,000), they reflect strong timing noise, and their TOA
uncertainties are varying. As typical for actual data collected
with ever-evolving observation systems, we partition the
data set in 15 blocks, all corresponding to different hard-
ware, each with a different EFAC and EQUAD. The
residuals for this mock data set are shown in Fig. 2.
In our test we determine the power spectral density of

injected noise, in the style of Eq. (11) and Ref. [19], using
two sampling schemes: a “vanilla” adaptive Metropolis
MCMC sampling method (as described in the appendix of
Ref. [69]) and the quasi-Gibbs method of Sec. VI B. With
both methods we adopt the same noise model: white noise
with 15þ 15 EFAC and EQUAD hyperparameters, plus
correlated noise described by 50 Fourier modes at fre-
quency multiples of 1=T, with 50 independent variance

parameters describing the spectral density. For the adaptive
Metropolis sampler, the posterior is marginalized analyti-
cally over all quadratic parameters, so the total dimension
of parameter space is 80. For the quasi-Gibbs sampler, the
unmarginalized posterior is a function of 214 parameters:
30 white-noise hyperparameters, 50 spectral-density prior
variances, 100 Fourier coefficients, and 34 timing-model
parameters, of which 12 model the unknown phase offsets
between different observing systems.
The Metropolis sampler was run for 4 million steps and

the quasi-Gibbs scheme for 30,000. The resulting estimates
of power spectral density, shown in Fig. 2 (bottom panel),
agree very well. The autocorrelation functions, shown in
Fig. 3, differ greatly, with much shorter autocorrelation
lengths in the quasi-Gibbs scheme—that is why we needed
only 30,000 steps for it. The observant reader will note that
the autocorrelation length of the Fourier-mode variances is
1 in the quasi-Gibbs scheme. This is the lowest possible,
indicating that our samples are virtually independent draws
from the posterior; no sampler can do better. In addition, we
note that since the Fourier-mode variances are inherently
uncorrelated their autocorrelation length does not depend
on the number of frequencies included in the model, in
sharp contrast to Metropolis samplers.

FIG. 3. Autocorrelation as a function of sample lag for various model parameters (EFAC and EQUAD for 50- and 20-cm receivers, and
Fourier-mode variances at 2.13 and 4.26 nHz), as measured in the adaptive-MCMC chain (dashed) and the quasi-Gibbs chain (solid),
both run on the mock J0437-4715 data set. The legends show the autocorrelation lengths, which were typically 400–1,000 times shorter
with the quasi-Gibbs sampler.
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B. Test of collapsed quasi-Gibbs scheme

For this test we use mock data for an entire PTA:
specifically, the second “open” data set in the IPTA Mock
Data Challenge [76], which consists of white radiometer
(EFAC) noise in 36 pulsars (with different EFACs) plus a
coherently injected GW background with hcð1 yr−1Þ ¼
5 × 10−14 and γ ¼ 4.33. For this set we need the collapsed
Gibbs sampler both because the GW background is para-
metrized as a frequency-domain power law and because the
data set includes multiple pulsars.
In our test we determine the EFACs and the level

and shape of the GW background using two sampling
schemes: again the vanilla adaptive Metropolis MCMC of
Ref. [69] and the collapsed quasi-Gibbs sampler
of Sec. VI C. We assume that the GW-background
covariance matrix is characterized well by a low-rank
expansion that includes 30 frequency components. The
MCMC scheme, which uses a fully marginalized
posterior, explores a 38-dimensional parameter space
(36 EFACs plus the GW-background A and γ), while the
quasi-Gibbs scheme must deal with a multitude of extra
parameters: 2 × 36 × 30 ¼ 2; 160 frequency modes and

36 × ðan average of 12Þ ¼ 441 timing-model parameters,
for a whopping total of 2,639.
The autocorrelation functions of the two MCMC chains

are shown in Fig. 4. As it was the case in the first test, the
quasi-Gibbs scheme vastly outperforms the adaptive
Metropolis MCMC, although it must contend with a much
larger parameter space. The smaller autocorrelation lengths
result from the fact that the Metropolis–Hastings updates
are never performed on all the parameters at once. In fact,
the GW-background steps are two dimensional, and the
noise steps are one dimensional.
In a more realistic analysis we would have to model

also correlated spin noise for every pulsar. The corre-
sponding hyperparameters are highly covariant with
those of the GW background, and together they would
create a 74-dimensional covariant block, a very signifi-
cant increase. However, that is as bad as it gets; all the
other parameters (such as white-noise, jitterlike-noise,
and DM-variation hyperparameters) would not further
increase autocorrelation lengths. Since 74 covariant
dimensions are manageable with modern computing
systems, our scheme makes a full-IPTA-sized, full-
parameter-set analysis feasible.

FIG. 4. Similar to Fig. 3, for the adaptive-MCMC chain (dashed) and collapsed quasi-Gibbs chain (solid), both run on the multipulsar
data set form the first IPTAMock Data Challenge. We plot the autocorrelation functions for four EFAC parameters, and for the two GW-
background parameters; the legends show the autocorrelation lengths, which are always shorter for the Gibbs sampler, although not as
dramatically as in Fig. 3.
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VIII. CONCLUSIONS

In this paper we have reviewed the description of
stochastic signals in pulsar-timing data analysis, which
we have recast in the language of Gaussian processes. In
this formal context we have rederived and optimized
various expressions that are used in Bayesian inference.
For some, the Gaussian-process description offers a more
insightful interpretation; for others, it allows computation-
ally more efficient implementations.
The Bayesian-inference schemes in current use have

trouble scaling up to large modern data sets such as those
assembled by current PTA collaborations. Their analysis
should include full pulsar noise models as in Ref. [69],
resulting in a very large parameter space to explore. Even
with the optimized likelihood expressions that we reviewed
in this manuscript, the ensuing MCMC autocorrelation
lengths are so large that practical analysis becomes com-
putationally challenging. In this paper we have addressed
this problem by constructing two sampling schemes
inspired by Gibbs sampling.
The first scheme is very well suited to power-spectral-

density estimation in single-pulsar data sets, where we
parametrize the power spectrum by independent variance
parameters at frequencies multiples of 1=T, with T the
length of the data set. Currently this is done in practice
for few frequencies (up to ∼20 [19]). However, an
extended analysis should include many more Fourier
modes, possibly all the way up to the Nyquist frequency.
In our scheme we partition parameter space in several
blocks; for some of them we can draw samples directly
from the conditional block posterior; others allow very
rapid conditional-posterior evaluations. The parameters
in different blocks are almost uncorrelated, resulting in
greatly reduced chain autocorrelation lengths. With tests
on mock data we demonstrated that the autocorrelation
lengths obtained with our Gibbs-inspired sampler
are nearly optimal for all Fourier-sum variances, which
makes extended spectral analysis practical for single
pulsars.
The second scheme, which we named a collapsed quasi-

Gibbs sampler, is well suited for the Bayesian analysis of
very large multipulsar data sets. Unlike the first scheme,
this sampler does rely on perturbative Metropolis–Hastings
updates, so autocorrelation lengths cannot be minimal.
However, by combining blocked updates with the direct
sampling of quadratic parameters from their conditional
posteriors, we were still able to reduce autocorrelation
lengths significantly compared to more conventional
MCMC methods. Furthermore, in our Gibbs-like scheme
the autocorrelation lengths are much less dependent on
the number of noise parameters. This makes full noise
modeling in Bayesian methods practical in very large data
sets: we look forward to actually tackling them in their
full glory.

ACKNOWLEDGMENTS

We are grateful to many NANOGrav and European
Pulsar Timing Array colleagues for helpful discussions,
to Scott Ransom for use of the NRAO Nimrod cluster,
where our tests were run, and to Stephen Taylor and an
anonymous referee for useful comments. R. v. H. is
supported by NASA Einstein Fellowship Grant No. PF3-
140116. M. V. is supported by the Jet Propulsion
Laboratory RTD program. The research was carried out
at the Jet Propulsion Laboratory, California Institute of
Technology, under a contract with the National Aeronautics
and Space Administration. Government sponsorship is
acknowledged.

APPENDIX A: EQUIVALENCE OF THE M- AND
G-MATRIX FORMULATIONS

The equivalence of Eqs. (22) and (25) (i.e., Eq. (18) of
Ref. [17] and Eq. (15) of Ref. [36]) is established by the
following derivation, which is implied but not shown in
Ref. [36]. Consider the full SVD decomposition M ¼
UΣV� [with dimensions ðn × nÞ × ðn × pÞ × ðp × pÞ],
which is equivalent to the reduced decomposition FΣ̂V�
[with dimensions ðn × pÞ × ðp × pÞ × ðp × pÞ], where
U ¼ ½FG�. In particular, the p columns of F span the
range of M, while the n − p columns of G form the
orthonormal completion of F to a full n-dimensional basis.
We first concentrate on the determinants that appear at

the denominator of Eq. (22), obtaining

jMTC−1Mj ¼ jVΣ̂FTC−1FΣ̂V�j ¼ jΣ̂FTC−1FΣ̂j
¼ jΣ̂j2jFTC−1Fj ðA1Þ

(since orthogonal transformations leave determinants
invariant and the determinant of the product of square
matrices is the product of their determinants); and

jCj ¼ jUTCUj ¼ jGTCGjjðFTC−1FÞ−1j
¼ jGTCGj=jFTC−1Fj; ðA2Þ

where the second equality can be read off from the block
matrix identity

UTCU ¼
�
GTCG GTCF

FTCG FTCF

�

¼
�
GTCG 0

FTCG I

�

×
�
I ðGTCGÞ−1GTCF

0 FTCF − FTCGðGTCGÞ−1GTCF

�

¼
�
GTCG 0

FTCG I

��
I ðGTCGÞ−1GTCF

0 ðFTC−1FÞ−1
�
: ðA3Þ
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Thus, the normalization factor of Eq. (22) is given byffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ð2πÞnjΣ̂j2jGTCGj

q
; we may drop jΣ̂j, which is essentially

arbitrary (it is the Jacobian of the coordinate transformation
η0 ¼ ðFTFÞ−1FTMη, while we take infinitely vague priors
for these parameters), and adjust the 2π exponent to match
the n − p dimension of GTCG.
Moving on to the main quadratic expression in Eq. (22),

we rewrite C0 ¼ C−1 − C−1MðMTC−1MÞ−1MTC−1 as

C0 ¼ C−1 − C−1ðFΣ̂V�ÞðVΣ̂FTC−1FΣ̂V�Þ−1ðVΣ̂FTÞC−1

¼ C−1 − C−1FðFTC−1FÞ−1FTC−1; ðA4Þ

where we have used the fact that for unitary V and
invertible X, ðVXV�Þ−1 ¼ VX−1V� and that for diagonal
Σ̂ and invertible Y, ðΣ̂YΣ̂Þ−1 ¼ Σ̂−1Y−1Σ̂−1. Now, if we
apply C0 to the data y rewritten as ðFFT þGGTÞy, we see
that the terms that involve FTy (either on the right or the
left) vanish trivially. For instance,

C0ðFFTyÞ ¼ ðC−1F − C−1FðFTC−1FÞ−1FTC−1FÞðFTyÞ
¼ ðC−1F − C−1FÞðFTyÞ ¼ 0: ðA5Þ

We are then left with

yTC0y¼ðGTyÞTGTC0GðGTyÞ
¼ðGTyÞTðGTC−1G−GTC−1FðFTC−1FÞ−1FTC−1GÞ
×ðGTyÞ
¼ðGTyÞTðGTCGÞ−1ðGTyÞ; ðA6Þ

where the last equality can be proved by direct matrix
multiplication. We thus recover Eq. (25).

APPENDIX B: DATA COMPRESSION

As we have seen in Sec. V, we have focused our efforts
on overcoming the bottleneck in evaluating the likelihood
on low-rank expansions of the covariance matrix. We
observed that the covariance matrix is the sum of a diagonal
matrix and a rank-reduced matrix, and we applied the
Woodbury lemma in various ways, thereby accurately
approximating the likelihood function.
Another approach that utilizes the rank deficiency of

various components in the covariance matrix was formu-
lated by van Haasteren [68], who observed that one is
usually not interested in all the parameters θðnon-TSÞ in the
likelihood function, which allows for the likelihood func-
tion to be modified in a way that retains sensitivity only to
the parameters of interest. This was presented in the form of
linear data compression ŷ ¼ Hy, with the compression
matrix H constructed in a way to maximize sensitivity to
some subset of θnon-TS with its number of columns as low as

possible. In the language of this paper, it means that the
information about our signal of interest is encoded in a
small subset of ϕμ functions of the Gaussian process. By
using a data vector of reduced size, the transformed
covariance matrix is reduced in size as well, which in turn
reduces the computational burden. Here we present these
ideas in a slightly altered way to conform to the formalism
presented in this work.
Essentially, to evaluate the likelihood, we want to

approximate two quantities, yTC−1y and detC [or when
including the timing model, these same quantities with the
G-matrix inserted as in Eq. (25)]. For some combinations of
D and U, it is possible to use the approximation

yTC−1y ¼ yTðDþ USUTÞ−1
≈ yTHðHTDH þHTUSUTHÞ−1HTy

þ yTHcðHT
cDHcÞ−1Hcy: ðB1Þ

Here H and Hc are matrices with the properties HT
cH ¼ 0,

and HHT þHcHT
c ¼ I, and they must be constructed

for a specific problem. It is only possible to find suitable
H and Hc when the following requirements can be
satisfied:

HT
cU ¼ 0; HHTU ¼ U; HT

cDH ¼ 0: ðB2Þ

We found that these criteria are sufficiently satisfied only in
limited cases, mainly when the columns of U consist of a
basis of Fourier modes as described in Sec. VA. The matrix
H can be constructed from U analogous to how the G
matrix was constructed from M in Sec. IV with an SVD.
Including the marginalization over the timing model with
the G-matrix formalism, we end up with ðH;HcÞ¼W, with
W from the SVD WΣV�¼GTUUTG. Here H consists of
the first l columns of W, with l the number of nonsingular
values in Σ.11

With Eq. (B1) we have made the likelihood function
separable, with one piece greatly rank reduced and the other
part large but with a diagonal covariance matrix. The
bottleneck will be the Oðl3Þ inversion of HTCH or the
Oðln2Þ operation of the multiplication HTC.
Our presentation of data compression differs from the

“ABC method” originally presented by van Haasteren [68],
which did not include both terms of the separated like-
lihood function. By only using the data HTy, and not HT

c y,
the ABC method loses sensitivity to some model param-
eters, and the actual value of the likelihood is changed.
Bayesian model selection is not possible in that case, or
when HT

cDH ≠ 0. We do note that, even when our like-
lihood function is not fully separable, Eq. (B1) represents a

11This is typically the number of columns in U, but it can be
smaller (numerically) when the timing basis is sufficiently close
to the basis in U.
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fully valid way to do analyze the observations. It is
equivalent to partitioning the data in two separate compo-
nents and analyzing the components simultaneously.
Some correlation information may have gotten lost, but

the result is still internally consistent for any H. This
does not mean that the parameter estimates are the same for
any H. Since the data is changed, the actual estimates
can vary.
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