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We determine the leading order falloff behavior of the Weyl tensor in higher-dimensional Einstein
spacetimes (with and without a cosmological constant) as one approaches infinity along a congruence of null
geodesics. The null congruence is assumed to “expand” in all directions near infinity (but it is otherwise
generic), which includes in particular asymptotically flat spacetimes. In contrast to the well-known four-
dimensional peeling property, the falloff rate of various Weyl components depends substantially on the
chosen boundary conditions and is also influenced by the presence of a cosmological constant. The leading
component is always algebraically special, but in various cases, it can be of type N, III, or II.
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I. INTRODUCTION

The study of isolated systems in general relativity is
based on the analysis of asymptotic properties of space-
times. Under certain assumptions, this enables one to define
physical quantities such as mass, angular momentum, and
energy flux. In particular, properties of gravitational radi-
ation can be determined by considering the spacetime
behavior “far away” along a geodesic null congruence.
In four dimensions, the Weyl tensor decay is described

by the well-known peeling property, i.e., components
of boost weight (b.w.) w fall off as 1=rwþ3 (where
w ¼ �2;�1; 0, and the 1=r term characterizes radiative
fields). This result was obtained by coordinate-based
approaches that studied Einstein’s vacuum equations
assuming suitable asymptotic “outgoing radiation” con-
ditions, which were formulated in terms either of the metric
coefficients [1,2] or directly of the Weyl tensor [3,4] (see
Refs. [5–7] for early results in special cases). From a more
geometrical viewpoint, the peeling-off behavior also nat-
urally follows from Penrose’s conformal definition of
asymptotically simple spacetimes (which also allows for
a cosmological constant) [8,9], at least under suitable
smoothness conditions on the conformal geometry (see
also Ref. [10]).
In an n-dimensional spacetime, the definition of asymp-

totic flatness at null infinity (along with the “news” tensor
and Bondi energy-momentum) using a conformal method
turns out to be sound only for even n [11] (see also
Ref. [12])—linear gravitational perturbation of the metric
tensor typically decays as r−ðn=2−1Þ, and the unphysical
(conformal) metric is thus not smooth at null infinity if
n is odd (see Ref. [13] for further results for even n).
In Ref. [14], linear (vacuum) perturbations of Minkowski
spacetime were studied in terms of the Weyl tensor, which

was found to decay as r−ðn=2−1Þ, thus again nonsmoothly in
odd dimensions.1 Reference [14] also pointed out a quali-
tative difference between n ¼ 4 and n > 4 in the decay
properties of various Weyl components at null infinity and
related this to a possible new peeling behavior when n > 4.
This expectation was indeed confirmed in the full theory in
Ref. [15] by studying the Bondi-like metric defined in
Refs. [16,17] (also mentioned in Refs. [11,12]) and thus an
expansion of the Weyl tensor along the generators of a
family of outgoing null hypersurfaces. Not only was the
r−ðn=2−1Þ result of Ref. [14] recovered at the leading order,
but at higher orders, a new structure of the r-dependence of
variousWeyl componentswas also obtained [15]. For odd n,
an extra condition on the asymptotic metric coefficients was
needed in Ref. [15] (see also Ref. [16]), in relation to the
simultaneous appearance of integer and semi-integer powers
in the expansions. (Note that the analysis of Ref. [15]
includes not only vacuum spacetimes but also possible
matter fields that decay “fast enough” at infinity;
cf. Ref. [15] for details.)
The present contribution studies the asymptotic behavior

of the Weyl tensor in higher-dimensional Einstein space-
times (Rab ¼ R

n gab) under more general boundary condi-
tions, for which a different method seems to be more
suitable. The basic idea is still to evaluate the Weyl
components in a frame parallelly transported along a
congruence of “outgoing” null geodesics, affinely para-
metrized by r (the congruence is rather “generic” and not
assumed to be hypersurface orthogonal—its precise proper-
ties will be specified in Sec. II A below). However, on the
lines of the classic four-dimensional (4D) work [3], we do
not make assumptions on the spacetime metric but work
directly with the Weyl tensor, in the framework of the
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1In the present paper, we discuss the physicalWeyl tensor only,
so here we have accordingly rephrased the results of Ref. [14]
(where the unphysical Weyl tensor of the conformal spacetime
was instead considered).

PHYSICAL REVIEW D 90, 104011 (2014)

1550-7998=2014=90(10)=104011(18) 104011-1 © 2014 American Physical Society

http://dx.doi.org/10.1103/PhysRevD.90.104011
http://dx.doi.org/10.1103/PhysRevD.90.104011
http://dx.doi.org/10.1103/PhysRevD.90.104011
http://dx.doi.org/10.1103/PhysRevD.90.104011


higher-dimensional Newman–Penrose (NP) formalism
[18–22] (we follow the notation of the review [22], and
we do not repeat here the definitions of all the symbols).
This permits a unified study for both even and odd
dimensions, and with little extra effort, it also allows for
a possible cosmological constant. In the case of asymp-
totically flat spacetimes, the Bianchi equations naturally
give the “r−ðn=2−1Þ result” for the leading Weyl components
[see Eq. (2) below], as previously obtained with the
methods of Refs. [14,15]. In addition to this special case,
a complete pattern of possible falloff behaviors both with
(Secs. III A 4, III B, and III C) and without (Secs. IVA 4,
IV B, and IV C) a cosmological constant is presented. The
precise falloff for a specific spacetime will be determined
by a choice of “boundary condition” at null infinity. These
are naturally specified by first fixing a bound on the decay
rate of b.w. þ2 Weyl components Ωij (which we will
assume to be faster than 1=r2), as in four dimensions.
However, while in four dimensions only the falloff
Ωij ¼ Oðr−5Þ needs to be assumed (and then the standard
peeling result follows [3]),2 forn > 4, ther-dependenceof the
remaining Weyl components will still be partially undeter-
mined, and various possible choices of boundary conditions
for lower b.w. components will lead to different falloff
behaviors. More specifically, how such numerous cases
(and subcases) arise can be better understood by observing
that the Weyl components containing arbitrary integration
“constants” are Ψijk (at order 1=rn or 1=r3) and, for n > 5,
Φijkl (at order 1=r2). This will be worked out in the paper.3

Certain cases of physical interest [including asymptoti-
cally (anti-)de Sitter and asymptotically flat spacetimes]
arise when we set to zero the terms of order 1=r3 inΨijk and
1=r2 in Φijkl. For R ≠ 0, we then obtain that necessarily
Ωij ¼ Oðr−1−nÞ (or faster), and the falloff generically is
[see (67)]

Ωij ¼ Oðr−1−nÞ;
Ψijk ¼ Oðr−nÞ;
Φijkl ¼ Oðr1−nÞ; ΦA

ij ¼ Oðr−nÞ ðR ≠ 0Þ;
Ψ0

ijk ¼ Oðr2−nÞ;
Ω0

ij ¼ Oðr3−nÞ; ð1Þ

where components are ordered by decreasing b.w. Under
the same assumptions, more possibilities arise for a
vanishing cosmological constant, depending more substan-
tially on the precise falloff prescribed for Ωij. In particular,
if Ωij falls faster than 1=rn=2 but not faster than 1=rn=2þ1,
we have [cf. (94) and the discussion after it]

Ωij ¼Oðr−νÞ
�
n
2
< ν ≤ 1þ n

2

�
;

Ψijk ¼Oðr−νÞ;
Φijkl ¼Oðr−n=2Þ; Φ¼Oðr−νÞ; ΦA

ij ¼Oðr−νÞ ðR¼ 0Þ;
Ψ0

ijk ¼Oðr−n=2Þ;
Ω0

ij ¼Oðr1−n=2Þ: ð2Þ

This includes the behavior found in Ref. [15] for asymp-
totically flat radiative spacetimes. The radiative term
Oðr1−n=2Þ in Ω0

ij vanishes if ν > 1þ n
2
, in which case the

falloff is completely different [e.g., it is given by (105) for
ν > n, but other cases are also possible; see Sec. IV for
details]. On the other hand, if Ωij falls as 1=rn=2 or slower,
one finds instead the behavior (99) (with ν > 3). Both (1)
and (2) are qualitatively different from the corresponding
results (69) and (107) for the four-dimensional case [apart
from ΦA

ij, (1) with n ¼ 4 would look the same as (69), but
see comments in the following sections].
More general asymptotia can also be of physical interest,

and the corresponding falloff properties are given in the
paper. Let us just mention here, for example, that a nonzero
term of order 1=r2 in Φijkl may correspond, e.g., to black
holes living in generic Einstein spacetimes (this is manifest
in the case of static black holes from the Weyl r-depend-
ence given in Ref. [24]). Although here we restrict to
Einstein spacetimes, several results can presumably be
easily extended to include matter fields that fall off
“sufficiently” fast (cf. Ref. [15]). The method employed
here can also be similarly applied to more general contexts
such as the coupled Einstein–Maxwell equations, which we
leave for future work. We further note that previous results
concerning the (exact) r-dependence of the Weyl tensor
for algebraically special Einstein spacetimes include
Refs. [24–29].

A. Invariance of the results

Once a null direction l is chosen, the presented results
hold in a generic parallelly transported frame. One may
thus wonder if the behavior we find is frame dependent.
Similarly as in four dimensions, the answer follows from
transformation properties of various Weyl components
under null rotations about l, i.e.,

2The Ωij components of the n-dimensional notation corre-
spond to the NP scalar Ψ0 in four dimensions.

3To be precise, by “arbitrary integration constants,” we refer
to r-independent quantities that generically may still depend
on coordinates different from r. Additionally, (some of) these
may be “arbitrary” only at the level of the r-integration of the
(asymptotic) NP equations—the remaining “transverse” NP
equations would in fact play a role of “constraint equations.”
This is of course important for a full analysis of the characteristic
initial value problem, but it goes beyond the scope of this paper
and will not be discussed in the following (for details in four
dimensions, see Ref. [4] and, e.g., the review [23]).
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l̂ ¼ l; n̂ ¼ nþ zimi −
1

2
zizil; m̂i ¼ mi − zil:

ð3Þ

Two different parallelly transported frames are related
by a transformation (3) (apart from trivial spatial rotations)
with the parameters zi being r independent [20]. Under (3),
the change of a Weyl component of a given b.w. w is
simply a term linear in components of b.w. smaller than w,
with coefficients determined by the zi (see, e.g.,
Eqs. (2.27)–(2.35) of Ref. [21]). It thus follows, in
particular, that at the leading order (when r → ∞) a certain
Weyl component will be unchanged if all Weyl components
of lower boost weight decay faster. This is always the case,
for instance, for the b.w. −2 components Ω0

ij when the
leading-order term is of type N. Therefore, this observation
will apply to several of the results of this paper, most
notably to the radiative behavior (2) [or (94)], in which case
the leading Weyl component can be related to the Bondi
flux [15]. By contrast, when leading-order terms are not
invariant in the sense just discussed, a transformation (3)
can be used to pick up preferred frames, which may
simplify certain expressions and be useful for particular
applications (see, e.g., Refs. [25,30] in the case of alge-
braically special spacetimes). This freedom will not be used
here since we are interested in the asymptotic behavior in a
generic parallelly transported frame.

B. Assumptions and notation

In this paper, we are interested in determining the
leading-order r-dependence of the Weyl tensor of
Einstein spacetimes, while a systematic study of subleading
terms and the analysis of asymptotic solutions of the NP
equations is left for future work (several results have been
already obtained in the case of algebraically special space-
times [30]). For this reason, we will not need to assume
that the NP quantities (Weyl tensor, Ricci rotation coef-
ficients, and derivative operators) admit a series expansion.
However, we will assume that for large r the leading terms
of those quantities have a powerlike behavior [so that for
our purposes the notation f ¼ Oðr−ζÞwill effectively mean
f ∼ r−ζ], where the powers will not be restricted to be
integer numbers. We will also assume that if f ¼ Oðr−ζÞ
then ∂rf ¼ Oðr−ζ−1Þ and ∂Af ¼ Oðr−ζÞ (where ∂A denote
a derivative with respect to coordinates xA different from r
and that need not be further specified for our purposes). In a
few cases it will be useful to consider subleading terms
of some expressions [most importantly (10)], and it will be
understood that those are also assumed to be powerlike.
Although we are not interested in giving the full set of

asymptotic field equations, in some cases it will be useful to
display relations among the leading terms of certain Weyl
components. For a generic frame Weyl component “f” we
thus define the notation

f ¼ fðζÞ

rζ
þ oðr−ζÞ; ð4Þ

where fðζÞ does not depend on r [so that we will have, e.g.,
ΦS

ij¼ΦSðn−1Þ
ij r1−nþoðr1−nÞ, or Ψijk¼Ψð3Þ

ijkr
−3þoðr−3Þ,

etc.]. For the Ricci rotation coefficients, we will instead
denote r-independent quantities by lowercase latin letters,

e.g., L1i ¼ l1ir−1 þ oðr−1Þ, Mi j1 ¼ m
i
j1 þ oð1Þ, etc.

Many of the equations will take a more compact form
using the rescaled Ricci scalar

~R ¼ R
nðn − 1Þ : ð5Þ

We will be interested in the asymptotic behavior along a
geodesic null congruence with an affine parameter r and
tangent vector field l. Calculations will be performed in a
frame ðl; n;miÞ (with i; j; k;… ¼ 2;…; n − 1), which is
parallelly transported along l. The above assumptions
imply the vanishing of the following Ricci rotation coef-
ficients (cf. Ref. [22] for more details on the notation):

κi ¼ 0 ¼ L10; M
i

j0 ¼ 0; Ni0 ¼ 0: ð6Þ

Directional derivatives along the frame vectors ðl; n;miÞ
will be denoted, respectively, by D, δi, and Δ.
Section II A and the first parts of Secs. III A and IVA are

devoted to results on the Ricci rotation coefficients, to
preliminary analysis of the Weyl tensor, and to setting up
the method. Readers not interested in those details can
jump to the summary of the results for the Weyl tensor in
Secs. III A 4, III B, and III C ( ~R ≠ 0) and IVA 4, II B, and
II C ( ~R ¼ 0). For comparison, four-dimensional results
are also reproduced in the various cases and given in
(62) and (69) ( ~R ≠ 0) and (98), (100), and (107) ( ~R ¼ 0).

II. BOUNDARY CONDITIONS AND RICCI
ROTATION COEFFICIENTS

In this section, we explain our assumptions on the
asymptotic behavior of l and of the Weyl tensor compo-
nents of b.w. þ2 and use those to fix the leading-order
behavior of the Ricci rotation coefficients and derivative
operators (both for ~R ≠ 0 and ~R ¼ 0). It will also follow
that subsequent analysis will need to consider three differ-
ent choices of boundary conditions on the Weyl compo-
nents of b.w. þ1, which we will do in later sections.

A. Sachs equation and optical matrix

In the frame ðl; n;miÞ (see above), the optical matrix of
l ¼ ∂r is given by

ρij ¼ la;bma
ðiÞm

b
ðjÞ: ð7Þ
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From now on, we assume that ρij is asymptotically non-
singular and expanding; i.e., the leading term of ρij (for
large r) is a matrix with nonzero determinant and nonzero
trace. Roughly speaking, this means that near infinity l
expands in all spacelike directions at the same speed, which
is compatible, in particular, with asymptotically flat space-
times (as follows from Refs. [15–17]—however, we will
see in the following that these assumptions hold also in
more general spacetimes).
Next, one needs to specify the speed at which the Weyl

tensor tends to zero for r → ∞. In general, we will make
only the following rather weak assumption for the falloff
for the b.w. þ2 components of the Weyl tensor,

Ωij ¼ Oðr−νÞ; ν > 2; ð8Þ

although, in most cases of interest, ν will in fact be larger,
as wewill show (recall that in four dimensions the existence
of a smooth null infinity requires ν ≥ 5 [3,8–10]).
With the assumptions listed above, the Sachs equation

reads Dρij ¼ −ρikρkj −Ωij (cf. (11g), Ref. [20]), from
which one finds4

ρij ¼
δij
r
þ oðr−1Þ: ð9Þ

In general, it is easy to see from (11g) in Ref. [20] that
Ωij will affect ρij at orderOðr−νþ1Þ. At all lower orders, the
r-dependence of ρij is given by negative integer powers
of r, which can be fixed recursively as done (to arbitrary
order) in Ref. [30]. Thus, for example, if ν > 3 (which will
indeed occur in several cases discussed in the following),
one has

ρij ¼
δij
r
þ bij

r2
þ oðr−2Þ ðν > 3Þ; ð10Þ

where the subleading term contains an arbitrary “integra-
tion matrix” bij independent of r. Note that when l is
twistfree then b½ij� ¼ 0 (the reverse is also true if l is a Weyl
aligned null direction (WAND) [27]).
Since we have now outlined all our assumptions (see also

Sec. I), for readers’ convenience, let us summarize those
before proceeding: (i) the spacetimes in question are
Einstein (possibly, Ricci flat); (ii) l ¼ ∂r is a vector field
tangent to a congruence of null geodesics, affinely para-
metrized by r; (iii) a frame ðl; n;miÞ parallelly transported
along l is employed [so that (6) holds]; (iv) the optical
matrix of l is asymptically nonsingular and expanding [as
defined by (7) and the following comments]; (v) near
infinity (i.e., r → ∞), the frame components of the Weyl
tensor, of the Ricci rotations coefficients, and of the

derivative operators admit a powerlike behavior at the
leading order (in very few cases also at the subleading
order, as explained in the text); (vi) the b.w.þ2 components
of the Weyl tensor fall off as Ωij ¼ Oðr−νÞ, with ν > 2
[Eq. (8)]. More specific possible choices of values (or a
range of values) of ν will determine various falloff patterns
of the remaining Weyl components, as explained in the
following sections and summarized in final Tables I and II.
We further observe that (again depending on ν) in certain
cases it will later be necessary also to specify the falloff of
the b.w. þ1 components Ψijk (see Sec. II C below) and the
b.w. 0 components Φijkl—all possible cases will be
considered, and again we refer to Tables I and II for a
summary of those.

B. Derivative operators and commutators

Taking r as one of the coordinates, we can write

D ¼ ∂r; Δ ¼ U∂r þ XA∂A; δi ¼ ωi∂r þ ξAi ∂A;

ð11Þ

where ∂A ¼ ∂=∂xA and the xA represent any set of (n − 1)
scalar functions such that ðr; xAÞ is a well-behaved coor-
dinate system (at least locally near infinity, which suffices
for our purposes). From the commutators [19]

ΔD −DΔ ¼ L11Dþ Li1δi; ð12Þ

δiD −Dδi ¼ L1iDþ ρjiδj; ð13Þ

we obtain the differential equations (cf. also Ref. [30])

Dωi ¼ −L1i − ρjiωj; ð14Þ

DξAi ¼ −ρjiξAj ; ð15Þ

DU ¼ −L11 − Li1ωi; ð16Þ

DXA ¼ −Li1ξ
A
i : ð17Þ

Using (9), Eq. (15) gives

ξAi ¼ Oðr−1Þ: ð18Þ

Similarly, as mentioned above for ρij, Ωij will affect ξAi at
order Oðr−νþ1Þ.
To fix the full r-dependence of the derivative operators,

we also need to study the behavior of the Ricci rotation
coefficients of b.w. 0 and −1. However, the corresponding
differential equations will in turn involve also Weyl
components of b.w. þ1 and 0, respectively, and thus one
has to consider the set of the “D”-Ricci identities of b.w. b
simultaneously with the “D”-Bianchi identities of b.w.
(bþ 1) (for b ¼ þ1; 0;−1;−2).

4Another solution is ρij ¼ Oðr−νþ1Þ (for ν > 2), which,
however, gives an asymptotically nonexpanding optical matrix
(since Ωij is traceless), contrary to our assumptions.
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C. Ricci rotation coefficients of b.w. 0 and Weyl
components of b.w. þ1

We need to study (11b), (11e), and (11n) of Ref. [20];
(B8) of Ref. [18]); and (14) and (17). One starts by
assuming a generic behavior for large r for each of the
“unknowns” [e.g., L1i ¼ OðrαÞ, where α need not be
specified a priori]. By combining conditions coming from
all the considered equations, one can constraint such
leading terms. For example, from (11b) of Ref. [20], it
is easy to see that one can only have either

L1i ¼ Oðr−1Þ; Ψi ¼ oðr−2Þ ð19Þ

or

L1i ¼ OðrαÞ; Ψi ¼ Oðrα−1Þ ðα ≠ −1Þ: ð20Þ

Working out similar conditions for other quantities from
(11n) of Ref. [20], (B8) of Ref. [18], and (14) and requiring
compatibility of all such conditions, one concludes that

L1i¼Oðr−1Þ; M
i

jk¼Oðr−1Þ; ωi¼Oð1Þ; ð21Þ

where it is understood that for r → ∞ all terms can go to
zero faster than indicated, in special cases. However, we
will consider only the generic case, in which this does not
happen. For the Weyl tensor components of positive b.w.,
there are three possibilities:

(i) Ψijk ¼ Oðr−νÞ, Ωij ¼ Oðr−νÞ (ν > 2): where Ψð−νÞ
ijk

can be expressed in terms of Ωð−νÞ
ij using (B8) of

Ref. [18] (except when ν ¼ 3; n). For ν > 3, this

case sets the boundary condition Ψð3Þ
ijk ¼ 0, and for

ν > n also ΨðnÞ
ijk ¼ 0. It includes the case in which l

is a multiple WAND (in the formal limit ν → þ∞)
and asymptotically flat radiative spacetimes in
higher dimensions (as we will discuss in the follow-
ing; cf. Ref. [15]).

(ii) Ψijk ¼ Oðr−nÞ, Ωij ¼ oðr−nÞ: with

ðn − 3ÞΨðnÞ
ijk ¼ 2ΨðnÞ

½j δk�i. This case corresponds

to the boundary condition Ψð3Þ
ijk ¼ 0, ΨðnÞ

ijk ≠ 0. It is
compatible with the four-dimensional results of
Refs. [3,8,9] (where ν ¼ 5) for n ¼ 4.

(iii) Ψijk ¼ Oðr−3Þ, Ψi ¼ oðr−3Þ, Ωij ¼ Oðr−νÞ
(n > 4; ν > 3): with Ψi ¼ Oðr−νÞ if 3 < ν ≤ 4
and [using (10)] Ψi ¼ Oðr−4Þ if ν > 4 (in both
cases, the leading term of Ψi can be determined
by the trace of (B8) in Ref. [18]. This case
corresponds to the boundary condition Ψð3Þ

ijk ≠ 0. It
is not permitted in four dimensions since Ψi ¼
0⇔Ψijk ¼ 0 there [22] and cannot be asymptoti-
cally flat; cf. Ref. [15].

Only cases ii and iii are permitted if one assumes that
asymptotically Ψijk goes to zero more slowly than Ωij.

Furthermore, from (11e) of Ref. [20], we have

Li1 ¼ Oðr−1Þ; ð22Þ
which with (17) gives

XA ¼ XA0 þOðr−1Þ: ð23Þ
When the falloff condition ν > 3 is assumed, thanks

to (10), we can strengthen the above results and those of
Sec. II B for the derivative operator as follows (assuming
that each quantity has a powerlike behavior also at the
subleading order):

L1i ¼
l1i
r
þOðr−2Þ; Li1 ¼

li1
r
þOðr−2Þ;

M
i

jk ¼
m
i
jk

r
þOðr−2Þ; ð24Þ

ξAi ¼ ξA0i
r

þOðr−2Þ; ωi ¼ −l1i þOðr−1Þ ðν > 3Þ:
ð25Þ

This will be useful in the following since many cases of
interest have indeed ν > 3. Note that, using null rotations
(3), one can always choose a parallelly transported frame
such that, e.g., l1i ¼ 0 or li1 ¼ 0. This may be convenient
for particular computations, but for the sake of generality,
we will keep our frame unspecified.
At this stage, knowing the r-dependence of the derivative

operators at the leading order [Eq. (11) with (18), (21), (23),
and (33) or (34)] of course means also knowing the leading-
order terms of the spacetime metric (however, to explicitly
connect the metric and the Weyl tensor, we would need to
study higher-order terms). In the following, we will analyze
in detail the above case I (Secs. II D, III A, and IVA). For
cases ii and iii, we will only summarize the main results
(Secs. III B, III C, IV B, and IV C) without giving inter-
mediate steps since the method to obtain those is essentially
the same as for case i.

D. Ricci rotation coefficients of b.w. −1 and Weyl
components of b.w. 0: Derivation for case i

The next step consists of the study of (11a), (11j), and
(11m) of Ref. [20]; (B5) and (B12) of Ref. [18]; and (16),
also using the results of Sec. II C above. It is convenient
to start from (11j) from Ref. [20] and (B12) from Ref. [18]

(since these do not contain L11, M
i

j1, and U). Let us first
focus on (11j) of Ref. [20] and consider the leading-order
behavior of the following quantities:

Nij ¼ OðrαÞ; Φij ¼ OðrβÞ: ð26Þ

By inspecting (11j) of Ref. [20], we arrive at the
following possibilities:
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(1) For ~R ≠ 0:
(a) α ¼ 1, β < 0, with Nij ¼ − ~R

2
δijrþ oðrÞ

(b) α < 1, β ¼ 0, with Φij ¼ − ~Rδij þ oð1Þ
(c) α ≥ 1, β ¼ α − 1

(2) For ~R ¼ 0:
(a) α ¼ −1, β < −2, with Nij ¼ Oðr−1Þ
(b) α ≥ 1, β ¼ α − 1
(c) α < 1, α ≠ −1, β ¼ α − 1

Let us also define the leading-order behavior of

Φijkl ¼ OðrβcÞ: ð27Þ

Now, in general, the leading-order term of Eq. (B12) of
Ref. [18] can be of order Oðrβc−1Þ, Oðrβ−1Þ, Oðrα−νÞ, or
Oðr−ν−1Þ, depending on the relative value of the parameters
α, βc, β, and ν (recall that here we are restricting to case i:
Ψijk ¼ Oðr−νÞ, Ωij ¼ Oðr−νÞ). It is easy to see that in the
above cases 1b, 1c, and 2b the leading term is either
Oðrβc−1Þ or Oðrβ−1Þ (with possibly β ¼ βc). However,
studying (B12) of Ref. [18] at the leading order reveals
that such cases 1b, 1c, and 2b are in fact forbidden, since
they all have β ≥ 0. Additionally, it shows that in case 2c
one has a stronger restriction α < −1 (for n ¼ 4, Eq. (B5)
of Ref. [18] is also needed). In the permitted cases, we can
thus in general conclude

Nij ¼ −
~R
2
δijrþ oðrÞ if ~R ≠ 0; ð28Þ

Nij ¼ Oðr−1Þ if ~R ¼ 0: ð29Þ

Note also that in all the permitted cases we have β < 0.
This enables us to use (11a) of Ref. [20] to readily arrive at

L11 ¼ ~Rrþ oðrÞ if ~R ≠ 0; ð30Þ

L11 ¼ l11 þ oð1Þ if ~R ¼ 0; ð31Þ

while (11m) of Ref. [20] gives

M
i

j1 ¼ Oð1Þ; ð32Þ

and (16) leads to

U ¼ −
~R
2
r2 þ oðr2Þ if ~R ≠ 0; ð33Þ

U ¼ −l11rþ oðrÞ if ~R ¼ 0: ð34Þ

Thanks to the above discussion, we can now study the
consequences of (B12) of Ref. [18], as well as those of (B5)
of Ref. [18]), more systematically. Clearly, from now on,
it will be necessary to distinguish case 1 ( ~R ≠ 0) from
case 2 ( ~R ¼ 0).

III. CASE ~R ≠ 0

A. Case i: Ψ ijk ¼ Oðr−νÞ, Ωij ¼ Oðr−νÞ (ν > 2)

1. Weyl components of b.w. 0

At the leading order of (B12) of Ref. [18], we can have
only (some of) the terms Oðrβc−1Þ=Oðrβ−1Þ, Oðr1−νÞ.
(From now on, it will be understood that ΦS

ij and Φ have
the same behavior as Φijkl, i.e., β ¼ βc, except when stated
otherwise.)
(1) If 1 − ν > βc − 1 and 1 − ν > β − 1, Eq. (B12) of

Ref. [18] shows that necessarily n ¼ 4, and (B5) of
Ref. [18] then gives ν ¼ 5. It also turns out that then
βc ¼ β ¼ −4, so that here we can thus have only

Φijkl ¼ Oðr−4Þ; ΦA
ij ¼ Oðr−4Þ;

Ωij ¼ Oðr−5Þ ðn ¼ 4Þ: ð35Þ
(2) In all remaining cases, at least one of the terms

Oðrβc−1Þ, Oðrβ−1Þ must appear at the leading order
in (B12) of Ref. [18]. Combing this with (B5) of
Ref. [18], after some calculations and depending on
the value of ν (and of n), one arrives at the following
possible behaviors:
(a) βc ¼ −2, ν ¼ 4:

Φijkl ¼ Oðr−2Þ; Φ ¼ oðr−2Þ;
ΦA

ij ¼ oðr−2Þ; Ωij ¼ Oðr−4Þ ðn > 4Þ;
ð36Þ

with ΦSð2Þ
ij ¼ ~R

2
Ωð4Þ

ij . Since in four dimensions
ΦS

ij ∝ δij, this case is permitted only for n > 4.
(b) βc ¼ −2, ν > 4: it follows from the last remark

that here ΦS
ij becomes subleading. It turns out

(by comparing (B5) of Ref. [18] with the trace
of (B12) in Ref. [18]) that the ranges 4 < ν < 5
and 4 < ν < 6 are forbidden, and we can iden-
tify three possible subcases, i.e.,

Φijkl ¼ Oðr−2Þ; ΦS
ij ¼ oðr−3Þ;

ΦA
ij ¼ Oðr−3Þ; Ωij ¼ Oðr−5Þ ðn > 5Þ;

ð37Þ
Φijkl ¼ Oðr−2Þ; ΦS

ij ¼ Oðr1−nÞ;
ΦA

ij ¼ oðr1−nÞ; Ωij ¼ Oðr−n−1Þ ðn > 5Þ;
ð38Þ

Φijkl ¼ Oðr−2Þ; ΦS
ij ¼ Oðr2−νÞ;

Φ ¼ oðr2−νÞ; ΦA
ij ¼ oðr2−νÞ;

Ωij ¼ Oðr−νÞ ðn > 5; ν ≥ 6; ν ≠ nþ 1Þ:
ð39Þ
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Here, n > 5 since in four and five dimensions one
has Φijkl ¼ 0⇔ΦS

ij ¼ 0 [31]. In (37), the [(anti)
symmetric parts of the] trace of (B12) of Ref. [18]

[using (10)] give Φð2Þ
ijklbðjlÞ ¼ − ~R

2
ðn − 4ÞΩð5Þ

ik and

ðn − 4ÞΦAð3Þ
ij ¼ Φð2Þ

ikjlb½kl�; moreover, if ν > 5 then
necessarily ν ≥ 6. In (38) and (39), we have instead

Φð2Þ
ijklbðjlÞ ¼ 0 ¼ Φð2Þ

ikjlb½kl�. In (38), one finds

ð2 − nÞΦSðn−1Þ
ij þ Φðn−1Þδij ¼ ~R

2
ðn − 4ÞΩðnþ1Þ

ij , and
Ωij can go to zero faster than indicated. In (39),

one has ð3 − νÞΦSðν−2Þ
ij ¼ ~R

2
ΩðνÞ

ij ðν − 5Þ (as obtained
from (B5) of Ref. [18]).
(c) βc ¼ 1 − n: there is a difference between n > 4

and n ¼ 4, i.e.,

if n > 4∶ Φijkl ¼ Oðr1−nÞ; ΦA
ij ¼ oðr1−nÞ;

Ωij ¼ Oðr−n−1Þ; ð40Þ

if n ¼ 4∶ Φijkl ¼ Oðr−3Þ; ΦA
ij ¼ Oðr−3Þ;

Ωij ¼ Oðr−5Þ; ð41Þ

with Φð3Þ
ijkl ¼ 2Φð3Þδj½kδl�i for n ¼ 4 and ðn − 2Þðn −

3ÞΦðn−1Þ
ijkl ¼ 4Φðn−1Þδj½kδl�i − 2ðn − 3Þ ~RðΩðnþ1Þ

j½k δl�i −

Ωðnþ1Þ
i½k δl�jÞ [which implies ð2 − nÞΦSðn−1Þ

ij þ
Φðn−1Þδij ¼ ~R

2
ðn − 4ÞΩðnþ1Þ

ij ] for n > 4. Note the
different behavior of the “magnetic” term ΦA

ij. In
both cases, it is understood that Ωij can go to zero
faster (or even vanish identically—for n ¼ 4, if
ν > 5, then necessarily ν ≥ 6]. In (41), both Φijkl

and ΦA
ij can go to zero faster than indicated. The

result of (35) can thus be understood as a subcase
of (41)—for this reason, (35) will not be considered
anymore in the following.

We have not given explicitly the behavior of Ψijk in all
the above cases since it always follows from point I of
Sec. II C. Note that not all values of ν are permitted. In
particular, although we started from the weak assumption
ν > 2, in the end, we always have either ν ¼ 4 or ν ≥ 5.
Thanks to (10), this enables us to specialize (28) to

Nij ¼ −
~R
2
δijrþ

~R
2
bij þ oð1Þ: ð42Þ

Additionally, since in all permitted cases we have
Φ ¼ oðr−2Þ and ΦA

ij ¼ oðr−2Þ (or faster), Eqs. (30), (33),
and (32) can be specialized as

L11 ¼ ~Rrþ l11 þOðr−1Þ; ð43Þ

U ¼ −
~R
2
r2 − l11rþOð1Þ; ð44Þ

M
i

j1 ¼ m
i
j1 þOðr−1Þ: ð45Þ

Using (42) in (B5) of Ref. [18], one is now able to refine
all the “o” symbols in Eqs. (36), (38), (39), and (40) [but
not in (38)] by appropriate “O” symbols [e.g., Φ ¼ oðr−2Þ
in (36) can be replaced by Φ ¼ Oðr−3Þ, etc]. This will be
taken into account explicitly in a summary in Sec. III A 4.

2. Ricci rotation coefficients of b.w. −2 and Weyl
components of b.w. −1

Let us analyze (11f) of Ref. [20] and (B6), (B9), and (B1)
of Ref. [18] in all the possible cases listed above, where we
note that always ν ≥ 4 (useful for the next comment). First,
let us observe from (B9) of Ref. [18] that if Ψ0

ijk goes to
zero more slowly than Φij, then necessarily it goes to zero
asOðr−2Þ (or faster). On the other hand, if Ψ0

ijk does not go
to zero more slowly than Φij, we also conclude Ψ0

ijk ¼
Oðr−2Þ (or faster) since Φij ¼ Oðr−2Þ (or faster) in all
permitted cases. Thus, we always have Ψ0

ijk ¼ Oðr−2Þ (or
faster), which enables one to use (11f) of Ref. [20] [together
with the second of (24) and (42)] to arrive at

Ni1 ¼
~R
2
li1rþOð1Þ: ð46Þ

Thanks to this result, we can now employ (B6) together
with (B9) of Ref. [18] and arrive at the following results
(where the various points are “numbered” so as to corre-
spond to those of Sec. III A 1). From now on, it will be
understood that Ψ0

i has the same behavior as Ψ0
ijk, except

when stated otherwise:
(a) Ψ0

ijk ¼ Oðr−2Þ:
with Ψ0ð2Þ

i ¼ − ~R
2
Ψð4Þ

i , and Ψ0ð2Þ
ijk can be expressed in

terms of Ωð4Þ
ij and Φð2Þ

ijkl using (B6) of Ref. [18] (recall

that Ψð4Þ
ijk and its trace Ψð4Þ

i can be expressed in terms

of Ωð4Þ
ij , as observed in Sec. II C).

(b) For the three subcases we find, respectively,

Ψ0
ijk ¼ Oðr−2Þ; Ψ0

i ¼ Oðr−3Þ; ð47Þ

Ψ0
ijk ¼ Oðr−2Þ; Ψ0

i ¼ Oðr1−nÞ; ð48Þ

Ψ0
ijk ¼ Oðr−2Þ; Ψ0

i ¼ Oðr2−νÞ; ð49Þ

with Ψ0ð2Þ
ijk ¼ −Φð2Þ

isjkls1 and where the behavior of Ψ0
i

has been obtained using (B1) of Ref. [18].
(c)

if n > 4∶ Ψ0
ijk ¼ Oðr1−nÞ; ð50Þ

if n ¼ 4∶ Ψ0
ijk ¼ Oðr−2Þ: ð51Þ
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3. Weyl components of b.w. −2
To conclude, let us study (B4) of Ref. [18]. It will be also

useful to use (B13) of Ref. [18], for which the trace
immediately tells us that the terms containingΩ0

ij cannot be
leading over all the remaining terms in that equation (when
n > 4). Bearing this in mind, in the various cases listed
above, (B4) of Ref. [18] leads to:
(a) Ω0

ij ¼ Oð1Þ,
with Ω0ð0Þ

ij ¼ ð ~R
2
Þ2Ωð4Þ

ij . (One can arrive at the same
result also using (B13) of Ref. [18].)

(b) In the first case [Eq. (37)], we find

Ω0
ij ¼ Oðr−1Þ ðcase ð37ÞÞ; ð52Þ

with Ω0ð1Þ
ij ¼ −ð ~R

2
Þ2Ωð5Þ

ij , and for the second and third
cases [Eqs. (38) and (39)]

Ω0
ij ¼ Oðr−2Þ ½cases ð38Þ and ð39Þ�: ð53Þ

The different behavior in case (37) stems from (B13)

of Ref. [18] using the fact that Φð2Þ
ijklbðjlÞ ≠ 0 when

ν ¼ 5. In case (39), one has Ω0ð2Þ
ij ¼ Φð2Þ

isjkls1lk1 þ
ð ~R
2
Þ2Ωð6Þ

ij (recall that ν ≥ 6; cf. Sec. III A 1). For

case (38), one has simply Ω0ð2Þ
ij ¼ Φð2Þ

isjkls1lk1.
(c)

if n > 4∶ Ω0
ij ¼ Oðr3−nÞ; ð54Þ

if n ¼ 4∶ Ω0
ij ¼ Oðr−1Þ; ð55Þ

where Ω0ðn−3Þ
ij ¼ ð ~R

2
Þ2Ωðnþ1Þ

ij for n > 4. (One can arrive
at the same result also using (B13) of Ref. [18].)

It is clear that if n > 4 and l is a WAND (possible in
cases c and b above) the falloff of Ω0

ij will be faster since
Ωij ¼ 0 (in agreement with the results of Ref. [30] for
multiple WANDs).

4. Summary of case i

In all cases given here, we have

Ωij ¼ Oðr−νÞ ðν ≥ 4Þ;
Ψijk ¼ Oðr−νÞ: ð56Þ

These two equations will not be repeated every time below,
where we will give only possible further restrictions on ν.
See also Secs. III A 1–III A 3 for relations among the
leading-order terms of various boost weight.

(a) Here, n > 4, and

Φijkl ¼ Oðr−2Þ; Φ ¼ Oðr−3Þ;
ΦA

ij ¼ Oðr−3Þ ðn > 4; ν ¼ 4Þ;
Ψ0

ijk ¼ Oðr−2Þ; Ω0
ij ¼ Oð1Þ: ð57Þ

The leading term at infinity is of order r0, and it is
of type N. At order 1=r2, the type becomes II(ad).
This case does not seem of great physical interest
since the frame components Ω0

ij do not decay near
infinity. In particular, it cannot describe asymptoti-
cally anti-de Sitter spacetimes according to the
definition of Ref. [32] [this applies also to cases
below and in Secs. III B and III C having Φijkl ¼
Oðr−2Þ and/or Ψijk ¼ Oðr−3Þ]. Here, l cannot be
a WAND.

(b) Here, n > 5, and we have three subcases. Generically
[case (37)], we have

Φijkl ¼ Oðr−2Þ; ΦS
ij ¼ oðr−3Þ;

ΦA
ij ¼ Oðr−3Þ ðn > 5; ν ¼ 5 or ν ≥ 6Þ;

Ψ0
ijk ¼ Oðr−2Þ; Ψ0

i ¼ Oðr−3Þ;
Ω0

ij ¼ Oðr−1Þ; ð58Þ
where, however, if ν ≥ 6, then ΦS

ij ¼ Oðr−4Þ and
Ω0

ij ¼ Oðr−2Þ. The leading term is thus of type N
for ν ¼ 5 and of type II(abd) for ν ≥ 6. As a special
subcase, here l can be a multiple WAND; cf. the
results of Ref. [30].

If Φð2Þ
ijklb½jl� ¼ 0, this becomes either

Φijkl ¼ Oðr−2Þ; ΦS
ij ¼ Oðr1−nÞ;

ΦA
ij ¼ Oðr−nÞ ðn > 5; ν ≥ nþ 1Þ;

Ψ0
ijk ¼ Oðr−2Þ; Ψ0

i ¼ Oðr1−nÞ;
Ω0

ij ¼ Oðr−2Þ; ð59Þ
which describes, in particular, the falloff along a
multiple WAND in Robinson–Trautman Einstein
spacetimes [24] (such as static Einstein black holes)
or (if 6 ≤ ν < nþ 1, or ν > nþ 1 but with
ΦSðn−1Þ

ij ¼ 0)

Φijkl ¼ Oðr−2Þ; ΦS
ij ¼ Oðr2−νÞ;

Φ ¼ Oðr1−νÞ; ΦA
ij ¼ Oðr1−νÞ

ðn > 5; ν ≥ 6; ν ≠ nþ 1Þ;
Ψ0

ijk ¼ Oðr−2Þ; Ψ0
i ¼ Oðr2−νÞ;

Ω0
ij ¼ Oðr−2Þ: ð60Þ

The leading term is of type II(abd) in both of the
above two cases.
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(c) This possibility arises when Φð2Þ
ijkl ¼ 0 and includes the

four-dimensional case. For n > 4, we have

Φijkl ¼ Oðr1−nÞ; ΦA
ij ¼ Oðr−nÞ

ðn > 4; ν ≥ nþ 1Þ;
Ψ0

ijk ¼ Oðr1−nÞ; Ω0
ij ¼ Oðr3−nÞ: ð61Þ

The leading term at infinity is of order 1=rn−3

(provided Ωðnþ1Þ
ij ≠ 0) and it is of type N. At order

1=rn−1, the type becomes II(cd) [II(bcd) if

Ωðnþ1Þ
ij ¼ 0]. In special cases, l can be a multiple

WAND. This case thus includes the behavior of
algebraically special spacetimes along a nondegen-
erate geodesic multiple WAND under the assumption

Φð2Þ
ijkl ¼ 0, for which, however, Ω0

ij ¼ Oðr1−nÞ [30]
[the r-dependence at the leading order has been
worked out explicitly also for concrete examples
such as Kerr–Schild–(A)dS geometries (with a non-
degenerate Kerr–Schild vector) [29], including rotat-
ing (A)dS black holes, and for Robinson–Trautman
spacetimes with (A)dS asymptotics [24], such as the
Schwarzschild–Tangherlini (A)dS black hole].
For n ¼ 4, one has instead [recall that (35) is a

subcase of (41)]

Φijkl ¼ Oðr−3Þ; ΦA
ij ¼ Oðr−3Þ ðn ¼ 4; ν ≥ 5Þ;

Ψ0
ijk ¼ Oðr−2Þ; Ω0

ij ¼ Oðr−1Þ: ð62Þ
This is a special subcaseof the standardfour-dimensional
peeling (69).

B. Case ii: Ψ ijk ¼ Oðr−nÞ, Ωij ¼ oðr−nÞ
The behavior of the Ricci rotation coefficients and

derivative operators is the same as in case i, and it will
not be repeated here [in particular, (28), (30), (32), (33),
and (46) still apply].

1. Case βc ¼ −2, n > 5

All the following cases can occur only for n > 5. In
general, one has

Ωij ¼ oðr−nÞ;
Ψijk ¼ Oðr−nÞ;
Φijkl ¼ Oðr−2Þ; ΦS

ij ¼ Oðr−4Þ; ΦA
ij ¼ Oðr−3Þ;

Ψ0
ijk ¼ Oðr−2Þ; Ψ0

i ¼ Oðr−3Þ;
Ω0

ij ¼ Oðr−2Þ; ð63Þ

with Φð2Þ
ijklbðjlÞ ¼0, ðn−4ÞΦAð3Þ

ij ¼Φð2Þ
ikjlb½kl�, and Ψ0ð2Þ

ijk ¼
−Φð2Þ

isjkls1. Here, l can be a single WAND, in special cases.

For ΨðnÞ
ijk ¼ 0, this reduces to (58) (with ν > n).

If Φð2Þ
ikjlb½kl� ¼ 0 (but Φð2Þ

ikjl ≠ 0), we have the subcase

Ωij ¼ Oðr−1−nÞ;
Ψijk ¼ Oðr−nÞ;
Φijkl ¼ Oðr−2Þ; ΦS

ij ¼ Oðr1−nÞ; ΦA
ij ¼ Oðr−nÞ;

Ψ0
ijk ¼ Oðr−2Þ; Ψ0

i ¼ Oðr2−nÞ;
Ω0

ij ¼ Oðr−2Þ; ð64Þ

with Ψ0ðn−2Þ
i ¼ ~R

2
ΨðnÞ

i . Ωij can go to zero faster than
indicated.
If, additionally, ΦSðn−1Þ

ij ¼ 0, we have, depending on the
range of ν, either

Ωij ¼ Oðr−νÞ ðn < ν < 2þ n; ν ≠ nþ 1Þ;
Ψijk ¼ Oðr−nÞ;
Φijkl ¼ Oðr−2Þ; ΦS

ij ¼ Oðr2−νÞ;
Φ ¼ oðr2−νÞ; ΦA

ij ¼ oðr2−νÞ;
Ψ0

ijk ¼ Oðr−2Þ; Ψ0
i ¼ Oðr2−nÞ;

Ω0
ij ¼ Oðr−2Þ; ð65Þ

where the precise power of r for both Φ and ΦA
ij is given by

maxf1 − ν;−ng, or

Ωij ¼ Oðr−2−nÞ;
Ψijk ¼ Oðr−nÞ;
Φijkl ¼ Oðr−2Þ; ΦS

ij ¼ Oðr−nÞ; ΦA
ij ¼ Oðr−nÞ;

Ψ0
ijk ¼ Oðr−2Þ; Ψi

0 ¼ Oðr2−nÞ;
Ω0

ij ¼ Oðr−2Þ; ð66Þ

where Ωij can go to zero faster than indicated.
In all of the above cases, the leading term is of

type II(abd).

2. Case βc < −2, n > 4

If Φð2Þ
ijkl ¼ 0, then (64) reduces to

Ωij ¼ Oðr−1−nÞ;
Ψijk ¼ Oðr−nÞ;
Φijkl ¼ Oðr1−nÞ; ΦA

ij ¼ Oðr−nÞ;
Ψ0

ijk ¼ Oðr2−nÞ;
Ω0

ij ¼ Oðr3−nÞ; ð67Þ

with Ω0ðn−3Þ
ij ¼ ð ~R

2
Þ2Ωðnþ1Þ

ij and ðn − 2Þðn − 3ÞΦðn−1Þ
ijkl ¼

4Φðn−1Þδj½kδm�i − 2ðn − 3Þ ~RðΩðnþ1Þ
j½k δm�i − Ωðnþ1Þ

i½k δm�jÞ. The

leading term is type N. IfΨðnÞ
ijk ¼ 0, this reduces to (61) with
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ν ¼ nþ 1. Although the above falloff looks very similar to
the standard 4D peeling (69), an important difference for

n > 4 is that Ω0ðn−3Þ
ij ≠ 0 implies that l is not a WAND.

If Φðn−1Þ ¼ 0 ¼ Ωðnþ1Þ
ij , this becomes

Ωij ¼ Oðr−2−nÞ;
Ψijk ¼ Oðr−nÞ;
Φijkl ¼ Oðr−nÞ; ΦA

ij ¼ Oðr−nÞ;
Ψ0

ijk ¼ Oðr2−nÞ;
Ω0

ij ¼ Oðr2−nÞ: ð68Þ

Here, the leading term is of type III. Ωij can go to zero
faster than indicated.

In both of the above cases, we have ðn − 3ÞΨ0ðn−2Þ
ijk ¼

~RΨðnÞ
½j δk�i.

3. Case n ¼ 4

In four dimensions, we recover the standard asymptotic
behavior [9,10], i.e.,

Ωij ¼ Oðr−νÞ ðν ≥ 5Þ;
Ψijk ¼ Oðr−4Þ;
Φijkl ¼ Oðr−3Þ; ΦA

ij ¼ Oðr−3Þ;
Ψ0

ijk ¼ Oðr−2Þ;
Ω0

ij ¼ Oðr−1Þ: ð69Þ

In our study, the condition ν ≥ 5 followed by analyzing
the Ricci and Bianchi equations (where we initially only
assumed ν > 2), thanks to ~R ≠ 0. Additionally, we observe

that if ν > 5 then necessarily ν ≥ 6. For Ψð4Þ
ijk ¼ 0, this case

reduces to (62).

C. Case iii: Ψ ijk ¼ Oðr−3Þ, Ωij ¼ oðr−3Þ (n > 4)

Again the behavior of the Ricci rotation coefficients and
derivative operators is the same as in case i.5

1. Case βc ¼ −2
Here, in general, one has (n ≥ 5)

Ωij ¼ Oðr−4Þ;
Ψijk ¼ Oðr−3Þ; Ψi ¼ Oðr−4Þ;
Φijkl ¼ Oðr−2Þ; Φ ¼ Oðr−3Þ; ΦA

ij ¼ Oðr−3Þ;
Ψ0

ijk ¼ Oðr−1Þ; Ψ0
i ¼ Oðr−2Þ;

Ω0
ij ¼ Oð1Þ; ð70Þ

with ΦSð2Þ
ij ¼ ~R

2
Ωð4Þ

ij , Ψ
0ð1Þ
ijk ¼ ~R

2
Ψð3Þ

ijk , Ψ
0ð2Þ
i can be expressed

in terms of Ωð4Þ
ij and Ψð3Þ

ijk thanks to (B6) of Ref. [18],

Ω0ð0Þ
ij ¼ ð ~R

2
Þ2Ωð4Þ

ij , and

ðn − 4ÞΦAð3Þ
ki ¼ Φð2Þ

klijb½lj� þ ξA0j Ψð3Þ
½ki�j;A þ 2l1jΨ

ð3Þ
½ki�j

þΨð3Þ
½ki�lm

l
jj þΨð3Þ

jl½km
l
i�j þ ~RΩð4Þ

j½kbi�j:

The leading term is type N. In the limit Ψð3Þ
ijk ¼ 0, this

reduces to case (57).
If Ωij has a faster falloff, one finds for n > 5 (as in

Sec. III A the range 4 < ν < 5 is forbidden by imposing
(B5) and (B12) of Ref. [18]; see Sec. III C 2 for the case
n ¼ 5)

Ωij ¼ Oðr−νÞ ðν ≥ 5Þ;
Ψijk ¼ Oðr−3Þ; Ψi ¼ Oðr−4Þ;
Φijkl ¼ Oðr−2Þ; ΦS

ij ¼ Oðr−3Þ;
Φ ¼ Oðr−4Þ; ΦA

ij ¼ Oðr−3Þ; ðn > 5Þ
Ψ0

ijk ¼ Oðr−1Þ; Ψ0
i ¼ Oðr−2Þ;

Ω0
ij ¼ Oðr−1Þ; ð71Þ

where from (B5) of Ref. [18] ΦSð3Þ
ij ¼ −Ψð3Þ

ðijÞlll1, from
(B12) of Ref. [18]

ðn − 4ÞΦAð3Þ
ki ¼ Φð2Þ

klijb½lj� þ ξA0j Ψð3Þ
½ki�j;A þ 2l1jΨ

ð3Þ
½ki�j

þΨð3Þ
½ki�lm

l
jj þΨð3Þ

jl½km
l
i�j;

−Φð2Þ
klijbðljÞ ¼ ξA0j Ψð3Þ

ðkiÞj;A þ ½ðn − 6Þlj1 þ 2l1j�Ψð3Þ
ðkiÞj

þΨð3Þ
ðkiÞlm

l
jj þ ð2Ψð3Þ

lðkjj þΨð3Þ
jlðkjÞm

l
jiÞj

þ
~R
2
ðn − 4ÞΩð5Þ

ik ;

and Ω0ð1Þ
ij can be expressed (using the trace of (B13) of

Ref. [18]) in terms of Ωð5Þ
ik and Ψð3Þ

ijk .

5To arrive at (46) in the present case, one needs to use also (10)
and (42) and thus to observe that, although (B9) of Ref. [18] gives
Ψ0

ijk ¼ Oðr−1Þ, from its trace one gets Ψi
0 ¼ Oðr−2Þ [see also

(70)–(72) below].
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The leading term is of type III(a), and l can be a single

WAND. If Ψð3Þ
ijk ¼ 0, this reduces to (58) for 5 ≤ ν ≤ n and

to (63) for ν > n.

2. Case βc < −2
For n ¼ 5, or for n > 5 with Φð2Þ

ijkl ¼ 0, instead of (71),
one has
Ωij ¼ Oðr−νÞ ðν ≥ 5Þ;
Ψijk ¼ Oðr−3Þ; Ψi ¼ Oðr−4Þ;
Φijkl ¼ Oðr−3Þ; Φ ¼ Oðr−3Þ;
ΦA

ij ¼ Oðr−3Þ; ðn ≥ 5ÞΨ0
ijk ¼ Oðr−1Þ;

Ψ0
i ¼ Oðr−2Þ; Ω0

ij ¼ Oðr−1Þ; ð72Þ
where Φð3Þ

ijkl can be expressed in terms of Ωð5Þ
ij and Ψð3Þ

ijk

using (B12) of Ref. [18] (or (B13) of Ref. [18]). The

leading term is of type III(a). Again, Ψijk
0ð1Þ ¼ ~R

2
Ψð3Þ

ijk .
All of the above results for the case ~R ≠ 0 are summa-

rized in Table I.

IV. Case ~R ¼ 0

A. Case i: Ψ ijk ¼ Oðr−νÞ, Ωij ¼ Oðr−νÞ (ν > 2)

1. Weyl components of b.w. 0

In this case, at the leading order of (B12) of Ref. [18]
we can have only (some of) the terms Oðrβc−1Þ, Oðrβ−1Þ,

Oðr−1−νÞ. The same is true for the antisymmetric part of
(B5) of Ref. [18], while the leading-order terms of the
symmetric part of (B5) of Ref. [18] can only be Oðrβc−1Þ,
Oðrβ−1Þ, and Oðr−νÞ. Here, we are mainly interested in
studying the case when the leading terms of (B12) of
Ref. [18] are Oðrβc−1Þ or Oðrβ−1Þ, i.e., βc > −ν or β > −ν.
(In all the remaining cases, the asymptotic behavior of
b.w. zero components can be represented by
Φijkl ¼ Oðr−νÞ, ΦA

ij ¼ Oðr−νÞ, and Ωij ¼ Oðr−νÞ, with
ν > 2. The behavior of higher b.w. components is given
in Sec. IVA 5 below.)
By combining (B12) and (B5) of Ref. [18], we arrive at

the following possibilities, also depending on the value of ν
and of n:
(A) βc ¼ −2: there are several possibilities, i.e.,

A1:

Φijkl ¼ Oðr−2Þ; ΦS
ij ¼ oðr−2Þ;

ΦA
ij ¼ oðr−2Þ;

Ωij ¼ Oðr−νÞ ðn > 5; 2 < ν ≤ 3Þ: ð73Þ

A2:

Φijkl ¼ Oðr−2Þ; ΦS
ij ¼ Oðr−3Þ;

Φ ¼ Oðr−νÞ; ΦA
ij ¼ Oðr−3Þ;

Ωij ¼ Oðr−νÞ ðn > 5; 3 < ν < 4Þ: ð74Þ

TABLE I. Falloff behavior of the Weyl tensor in the presence of a cosmological constant ( ~R ≠ 0). We list here in a compact way the
cases summarized in Secs. III A 4, III B, III C. Recall that the cases i, ii and iii differ by the falloff of the componentΨijk. Whenever there
is just one power of r in the column for ΦS

ij and Φ (the 5th column), it means that these two quantities have the same falloff (the same
holds for Ψijk, Ψi and Ψ0

ijk, Ψ
0
i–the 3rd and the 7th column, respectively), while when the column is empty it means that both ΦS

ij and Φ
have same falloff as Φijkl. It is always understood that n > 4 except when we explicitly indicate n ¼ 4 (last but one column). The
shortcuts RT and KS stands for Robinson–Trautman and Kerr–Schild spacetimes, respectively (last column).

Case Ωij Ψijk, Ψi Φijkl ΦS
ij, Φ ΦA

ij Ψ0
ijk, Ψ

0
i Ω0

ij Restrictions Comments

i a r−4 r−4 r−2 r−2, r−3 r−3 r−2 Oð1Þ ν ¼ 4 l not a WAND

i b r−5 r−5 r−2 oðr−3Þ r−3 r−2, r−3 r−1 n > 5, ν ¼ 5 l not a WAND
r−ν r−ν r−2 r−4 r−3 r−2, r−3 r−2 n > 5, ν ≥ 6
r−ν r−ν r−2 r1−n r−n r−2, r1−n r−2 n > 5, ν ≥ nþ 1 includes RT
r−ν r−ν r−2 r2−ν, r1−ν r1−ν r−2, r2−ν r−2 n > 5, ν ≥ 6, ν ≠ nþ 1

i c r−n−1 r−n−1 r1−n r−n r1−n r3−n ν ¼ nþ 1 l not a WAND
r−ν r−ν r1−n r−n r1−n oðr3−nÞ ν > nþ 1 includes KS (A)dS
r−ν r−ν r−3 r−3 r−2 r−1 n ¼ 4, ν ≥ 5

ii oðr−nÞ r−n r−2 r−4 r−3 r−2, r−3 r−2 n > 5
r−n−1 r−n r−2 r1−n r−n r−2, r2−n r−2 n > 5, ν ≥ nþ 1
r−ν r−n r−2 r2−ν, oðr2−νÞ oðr2−νÞ r−2, r2−n r−2 5 < n < ν < nþ 2, ν ≠ nþ 1 l not a WAND
r−n−2 r−n r−2 r−n r−n r−2, r2−n r−2 n > 5, ν ≥ nþ 2

r−n−1 r−n r1−n r1−n r−n r2−n r3−n ν ¼ nþ 1 l not a WAND
r−n−2 r−n r−n r−n r−n r2−n r2−n ν ≥ nþ 2
r−ν r−4 r−3 r−3 r−3 r−2 r−1 n ¼ 4, ν ≥ 5

iii r−4 r−3, r−4 r−2 r−2, r−3 r−3 r−1, r−2 Oð1Þ ν ¼ 4 l not a WAND
r−ν r−3, r−4 r−2 r−3, r−4 r−3 r−1, r−2 r−1 n > 5, ν ≥ 5
r−ν r−3, r−4 r−3 r−3 r−3 r−1, r−2 r−1 n ≥ 5, ν ≥ 5

ASYMPTOTIC BEHAVIOR OF THE WEYL TENSOR IN … PHYSICAL REVIEW D 90, 104011 (2014)

104011-11



The (anti)symmetric parts of the trace of (B12) of

Ref. [18] [using (10)] give ðn − 4ÞΦAð3Þ
ij ¼ Φð2Þ

ikjlb½kl�
and ðn − 6ÞΦSð3Þ

ki ¼ Φð2Þ
klijbðljÞ. In the special case,

Φð2Þ
ikjlb½kl� ¼ 0, and thus ΦA

ij goes to zero faster, namely,
ΦA

ij ¼ Oðr−νÞ.
A3:

Φijkl ¼ Oðr−2Þ; ΦS
ij ¼ Oðr−3Þ; Φ ¼ Oðr−4Þ;

ΦA
ij ¼ Oðr−3Þ; Ωij ¼ Oðr−4Þ ðn > 5Þ:

ð75Þ
As above, ðn−4ÞΦAð3Þ

ij ¼Φð2Þ
ikjlb½kl�, and ðn − 6ÞΦSð3Þ

ki ¼
Φð2Þ

klijbðljÞ, but here with the latter, (B5) of Ref. [18]

further gives Φð2Þ
klijbðljÞ ¼ −ðn − 6Þðl11Ωð4Þ

ki þ
1
2
XA0Ωð4Þ

ki;A þΩð4Þ
sðkm

s
iÞ1Þ. Here, Ωij can go to zero faster

than indicated, i.e.,Ωij ¼ Oðr−νÞwith ν > 4, but in that
case, clearly also ΦS

ij does [namely, ΦS
ij ¼ Oðr1−νÞ for

4 < ν < 5, and ΦS
ij ¼ Oðr−4Þ for ν ≥ 5—in particular,

for ν > 5, the symmetric part of (B5) of Ref. [18] gives

ΦSð4Þ
ij in terms of ΦAð3Þ

ij ].

If Φð2Þ
ikjlb½kl� ¼ 0, we obtain the following two sub-

cases, depending on whether ν ≠ n or ν ¼ n.
A4:

Φijkl ¼ Oðr−2Þ; ΦS
ij ¼ Oðr1−νÞ; Φ ¼ Oðr−νÞ;

ΦA
ij ¼ Oðr−νÞ; Ωij ¼ Oðr−νÞ

ðn > 5; ν ≥ 4; ν ≠ nÞ; ð76Þ
with Φð2Þ

ikjlb½kl� ¼ 0 and ðn − 6ÞΦSð3Þ
ki ¼ Φð2Þ

klijbðljÞ (if

ν ¼ 4) or Φð2Þ
klijbðljÞ ¼ 0 (if ν > 4). For ν > n, this

can be seen as a subcase of (77) with Φðn−1Þ ¼ 0.
A5:

Φijkl ¼ Oðr−2Þ; ΦS
ij ¼ Oðr1−nÞ;

ΦA
ij ¼ Oðr−nÞ; Ωij ¼ Oðr−nÞ ðn > 5Þ; ð77Þ

with Φð2Þ
ikjlb½kl� ¼ 0 and Φð2Þ

klijbðljÞ ¼ 0. Ωij can go to
zero faster than indicated, with no effect on the falloff

of ΦS
ij. If ν > n, then ð2 − nÞΦSðn−1Þ

ij þ Φðn−1Þδij ¼ 0.
(B) βc ¼ −n=2:

Φijkl ¼Oðr−n=2Þ; Φ¼Oðr−νÞ; ΦA
ij ¼Oðr−νÞ;

Ωij ¼Oðr−νÞ
�
n > 4;

n
2
< ν ≤ 1þ n

2

�
; ð78Þ

with ðn−4ÞΦðn=2Þ
ijkl ¼4ðΦSðn=2Þ

i½l δk�j−ΦSðn=2Þ
j½l δk�iÞ. Note

that here Ωij cannot become oðr−n=2−1Þ as long as
Φijkl ¼ Oðr−n=2Þ. In the special case ν ¼ 1þ n=2,

from (B5) of Ref. [18], we obtain ðn − 2ÞΦSðn=2Þ
ij ¼

−2XA0Ωðn=2þ1Þ
ij;A − ðn − 2Þl11Ωðn=2þ1Þ

ij − 4Ωðn=2þ1Þ
sðj m

s
iÞ1,

while for n
2
< ν < 1þ n

2
we have XA0ΩðνÞ

ij;Aþ
ðν − 2Þl11ΩðνÞ

ij þ 2ΩðνÞ
sðjm

s
iÞ1 ¼ 0.

(C) βc ¼ 1 − n: similarly as in Sec. III A, one has to
distinguish between the cases n > 4 and n ¼ 4, i.e.,

if n > 4∶ Φijkl ¼ Oðr1−nÞ; ΦA
ij ¼ oðr1−nÞ;

Ωij ¼ Oðr−νÞ ðν > n − 1Þ; ð79Þ

if n ¼ 4∶ Φijkl ¼ Oðr−3Þ; ΦA
ij ¼ Oðr−3Þ;

Ωij ¼ Oðr−νÞ ðν > 3Þ; ð80Þ

with (for n≥4) ðn−2Þðn−3ÞΦðn−1Þ
ijkl ¼4Φðn−1Þδj½kδl�i

and ð2 − nÞΦSðn−1Þ
ij þ Φðn−1Þδij ¼ 0. In (79), we have

ΦA
ij ¼ Oðr−νÞ for n − 1 < ν < n and ΦA

ij ¼ Oðr−nÞ
for ν ≥ n.

Again, see point I of Sec. II C for the behavior of Ψijk in
all the above cases. As shown above, in all cases except
(73), we have ν > 3, which enables us [thanks to (10)] to
specialize (29) to

Nij ¼
nij
r
þOðr−2Þ ½except for ð73Þ�: ð81Þ

Similarly as for ~R ≠ 0 (cf. Sec. III A 1), since in all
permitted cases one has Φ ¼ oðr−2Þ and ΦA

ij ¼ oðr−2Þ, for
L11, U, and M

i

j1, one obtains the refined equations that
follow by setting ~R ¼ 0 in (43), (44), and (45) [in contrast
to (81), this applies also when 2 < ν ≤ 3].

2. Ricci rotation coefficients of b.w. −2 and Weyl
components of b.w. −1

Let us analyze (11f) of Ref. [20] and (B6), (B9), and (B1)
of Ref. [18] in all of the possible cases listed above.
Similarly as in Sec. III A 2, it is easy to conclude from (B9)
of Ref. [18] that we always have Ψ0

ijk ¼ Oðr−2Þ (or faster;
see more details below), which enables one to use (11f) of
Ref. [20] to obtain

Ni1 ¼ Oð1Þ: ð82Þ

Using (B9), (B6), and (B1) of Ref. [18], one arrives at the
following results (the numbering corresponds to that of
Sec. IVA 1):
(A) For the five subcases, we find, respectively,

A1: Ψ0
ijk ¼ Oðr−2Þ,

A2: Ψ0
ijk ¼ Oðr−2Þ, Ψi

0 ¼ Oðr−3Þ,
A3: Ψ0

ijk ¼ Oðr−2Þ, Ψi
0 ¼ Oðr−3Þ,

A4: Ψ0
ijk ¼ Oðr−2Þ, Ψi

0 ¼ Oðr1−νÞ,
A5: Ψ0

ijk ¼ Oðr−2Þ, Ψi
0 ¼ Oðr1−nÞ.
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In all cases except A1, we haveΨ0ð2Þ
ijk ¼ −Φð2Þ

isjkls1 (in case

A1, if ν ¼ 3, then (B6) of Ref. [18] gives Ψ0ð2Þ
ijk in terms of

Ωð3Þ
ij , Ψð3Þ

ijk , and Φð2Þ
isjk).

(B) We have Ψ0
ijk ¼ Oðr−n=2Þ for any n ≥ 6 and for

n ¼ 5 provided 3 < ν ≤ 7
2
[in both cases, (B9) of

Ref. [18] enables one to express Ψ0ðn=2Þ
ijk in terms of

ΦSðn=2Þ
ij ]. If, instead, n ¼ 5 and 5

2
< ν ≤ 3, we

have Ψ0
ijk ¼ Oðr−2Þ.

(C)
if n > 4∶ Ψ0

ijk ¼ Oðr1−nÞ; ð83Þ

if n ¼ 4∶ Ψ0
ijk ¼ Oðr−2Þ: ð84Þ

For n>4, (B9) of Ref. [18] gives ðn−3ÞΨ0ðn−1Þ
ijk ¼

2Ψ0ðn−1Þ
½j δk�i, with ðn−2ÞΨi

0ðn−1Þ ¼−ðn−1ÞΦðn−1Þl1i
−ξA0i Φðn−1Þ

;A .

3. Weyl components of b.w. −2

Using (B4) and (B14) of Ref. [18], we arrive at
(A) For the five subcases, we find, respectively,

A1: Ω0
ij ¼ OðrσÞ, with −2 ≤ σ < −1 [the precise

value of σ depends on the values taken by ν and
β—recall (26)].
A1–A5:Ω0

ij ¼ Oðr−2Þ, withΩ0ð2Þ
ij ¼ −3l11Φ

Sð3Þ
ij −

XA0ΦSð3Þ
ij;A − 2ΦSð3Þ

sðj m
s
iÞ1 −Ψ0ð2Þ

ðijÞklk1 (note that in some

of these cases ΦSð3Þ
ij ¼ 0).

(B) In all cases (n ≥ 5), we have

Ω0
ij ¼ Oðr1−n=2Þ; ð85Þ

with ðn − 4ÞΩ0ðn=2−1Þ
ij ¼ −nl11Φ

Sðn=2Þ
ij − 2XA0ΦSðn=2Þ

ij;A −
4ΦSðn=2Þ

sðj m
s
iÞ1. In the special case ν ¼ 1þ n=2, this can

be written in terms of Ωðn=2þ1Þ
ij using the form of

ΦSðn=2Þ
ij given in the above Sec. IVA 1.

(C)
if n > 4∶ Ω0

ij ¼ oðr2−nÞ; ð86Þ

if n ¼ 4∶ Ω0
ij ¼ Oðr−1Þ: ð87Þ

To obtain the above behavior, in the n > 4 case, it
is also necessary to recall that at the leading order
ΦS

ij ∝ δij (cf. Sec. IVA 1).

4. Summary of case i

In all cases given here, we have

Ωij ¼ Oðr−νÞ ðν > 2Þ;
Ψijk ¼ Oðr−νÞ: ð88Þ

This will not be repeated every time below, where we
will give only possible further restrictions on ν. See also

Secs. IVA 1–IVA 3 for relations among the leading-order
terms of various boost weight.
(A) Here, we have n > 5 and the following possible

behaviors (cf. Sec. IVA 1 for a few further special
subcases):
A1:

Φijkl ¼ Oðr−2Þ; ΦS
ij ¼ oðr−2Þ;

ΦA
ij ¼ oðr−2Þ ðn > 5; 2 < ν ≤ 3Þ;

Ψ0
ijk ¼ Oðr−2Þ;
Ω0

ij ¼ OðrσÞ ð−2 ≤ σ < −1Þ: ð89Þ

A2:

Φijkl ¼ Oðr−2Þ; ΦS
ij ¼ Oðr−3Þ;

Φ ¼ Oðr−νÞ; ΦA
ij ¼ Oðr−3Þ

ðn > 5; 3 < ν < 4Þ;
Ψ0

ijk ¼ Oðr−2Þ; Ψ0
i ¼ Oðr−3Þ;

Ω0
ij ¼ Oðr−2Þ: ð90Þ

A3:

Φijkl ¼ Oðr−2Þ; ΦS
ij ¼ Oðr−3Þ;

Φ ¼ Oðr−4Þ; ΦA
ij ¼ Oðr−3Þ ðn > 5; ν ≥ 4Þ;

Ψ0
ijk ¼ Oðr−2Þ; Ψ0

i ¼ Oðr−3Þ;
Ω0

ij ¼ Oðr−2Þ; ð91Þ
with the further restrictions ΦS

ij ¼ Oðr1−νÞ for
4 ≤ ν < 5 and ΦS

ij ¼ Oðr−4Þ for ν ≥ 5.
A4:

Φijkl ¼ Oðr−2Þ; ΦS
ij ¼ Oðr1−νÞ;

Φ ¼ Oðr−νÞ; ΦA
ij ¼ Oðr−νÞ

ðn > 5; ν ≥ 4; ν ≠ nÞ;
Ψ0

ijk ¼ Oðr−2Þ; Ψ0
i ¼ Oðr1−νÞ;

Ω0
ij ¼ Oðr−2Þ: ð92Þ

A5:

Φijkl ¼ Oðr−2Þ; ΦS
ij ¼ Oðr1−nÞ;

ΦA
ij ¼ Oðr−nÞ ðn > 5; ν ≥ nÞ;

Ψ0
ijk ¼ Oðr−2Þ; Ψ0

i ¼ Oðr1−nÞ;
Ω0

ij ¼ Oðr−2Þ: ð93Þ

None of the above five cases can describe asymp-
totically flat spacetimes; cf. Ref. [15]. In cases
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A2–A5, the leading term at infinity falls off as 1=r2,
and it is of type II(abd). In cases A3–A5, l can be a
multiple WAND; cf. also the results of Ref. [30].
Examples in case A5 are Robinson–Trautman Ricci-
flat spacetimes [24].

(B) For any n > 5, we have

Φijkl ¼ Oðr−n=2Þ; Φ ¼ Oðr−νÞ;

ΦA
ij ¼ Oðr−νÞ

�
n > 5;

n
2
< ν ≤ 1þ n

2

�
;

Ψ0
ijk ¼ Oðr−n=2Þ; Ω0

ij ¼ Oðr1−n=2Þ: ð94Þ

Note that here l cannot be a WAND. The leading
term at infinity falls off as 1=rn=2−1, and it is of typeN.
At order 1=rn=2, the type becomes II(acd) (as follows
from Sec. IVA 1).
For n ¼ 5, the same behavior applies if 3 < ν ≤ 7

2
,

while Ψ0
ijk ¼ Oðr−2Þ if 5

2
< ν ≤ 3 (the other terms

being unchanged).
If we take for b.w. þ2 components ν ¼ 1þ n

2
and

additionally assume that

Ωij ¼
Ωðn=2þ1Þ

ij

rn=2þ1
þΩðn=2þ2Þ

ij

rn=2þ2
þ oðr−n=2−2Þ; ð95Þ

then (B4) with (B5) of Ref. [18] show that the
subleading term of Ω0

ij is of order Oðr−n=2Þ, which
with (94) implies the following peeling-off behavior:

Cabcd ¼
Nabcd

rn=2−1
þ IIabcd

rn=2
þ oðr−n=2Þ ðn ≥ 5Þ: ð96Þ

This result is in agreement with the conclusions of
Ref. [15] for asymptotically flat spacetimes (and
extends it to asymptotics along twisting null geo-
desics). However, to obtain higher-order terms, one
would need to make further assumptions on how Ωij
can be expanded, which goes beyond the analysis of
the present paper (however, recall that it is precisely
at a higher order in (96) that Ref. [15] found a
qualitative difference between five and higher di-
mensions). In five dimensions, a permitted behavior
more general than (96) is described in Sec. IV C 2
below (it does not appear here because it belongs to
case iii).

In view of Ref. [15], we conclude that the above
behavior (94) includes radiative spacetimes that are
asymptotically flat in the Bondi definition [16,17]
(which is equivalent [15] to the conformal definition
[11,12] in even dimensions).

If one takes ν > 1þ n
2
in (94), this reduces to (99)

if 1þn
2
<ν≤n−1, to (97) if n − 1 < ν ≤ n, and to

(105) if ν > n.
(C) For n > 4, the falloff is

Φijkl ¼ Oðr1−nÞ; ΦA
ij ¼ oðr1−nÞ

ðn > 4; ν > n − 1Þ;
Ψ0

ijk ¼ Oðr1−nÞ; Ω0
ij ¼ oðr2−nÞ; ð97Þ

with ΦA
ij ¼ Oðr−νÞ for n − 1 < ν < n and ΦA

ij ¼
Oðr−nÞ for ν ≥ n. Here, l can become a multiple
WAND; cf. Refs. [27,30]. This behavior is compatible
with the results of Ref. [15] for asymptotically flat
spacetimes, in the case of vanishing radiation. In
particular, it includes asymptotically flat spacetimes
for which l is a multiple WAND [27,30], such as
Ricci-flat Robinson–Trautman spacetimes [24]
(e.g., Schwarzschild–Tangherlini black holes) and
Kerr–Schild spacetimes [26] with a nondegenerate
Kerr–Schild vector6 (e.g., Myers–Perry black holes).

For n ¼ 4, we have instead

Φijkl ¼ Oðr−3Þ; ΦA
ij ¼ Oðr−3Þ ðn ¼ 4; ν > 3Þ;

Ψ0
ijk ¼ Oðr−2Þ; Ω0

ij ¼ Oðr−1Þ; ð98Þ

where the leading 1=r term is of type N. However, this
is not the “standard” four-dimensional peeling behav-
ior, which would require the stronger condition ν ¼ 5
[3]. Generalized peeling properties under asymptotic
conditions weaker than those of Ref. [3] have
been already studied in four dimensions, e.g., in
Refs. [34–37]. We note that the assumption made in
this paper that leading-order terms of Weyl compo-
nents are powerlike is in fact generically too restrictive
in those cases (for example, for ν ¼ 4, the natural
framework to consider is that of polyhomogenous
expansions [37]). Similar comments will apply to
(100) below.

5. Special subcase βc ¼ β ¼ −ν
In addition, there is the case βc ¼ β ¼ −ν (briefly

mentioned in Sec. IVA 1 above but not explicitly studied
in Secs. IVA 2 and IVA 3), for which one easily arrives for
n > 4 at [note that (82) still applies here]

6For these, one finds Ω0
ij ¼ Oðr1−nÞ. Note that in order to

explicitly verify this using the general expressions given in
Ref. [26] one should recall to enforce the vacuum equation
R11 ¼ 0; cf. Ref. [33]. The same comment applies to the (A)dS
Kerr–Schild spacetimes [29] mentioned in Sec. III A 4.
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Φijkl ¼ Oðr−νÞ; ΦA
ij ¼ Oðr−νÞ; ðn > 4Þ

Ψ0
ijk ¼ Oðr−2Þ if 2 < ν ≤ 3;

Ψ0
ijk ¼ Oðr−νÞ if ν > 3;

Ω0
ij ¼ oðr1−νÞ if ν ≠

n
2
;

Ω0
ij ¼ Oðr1−n=2Þ if ν ¼ n

2
; ð99Þ

with XA0ΩðνÞ
ij;A þ ðν − 2Þl11ΩðνÞ

ij þ 2ΩðνÞ
sðjm

s
iÞ1 ¼ 0. l cannot

be a WAND. The above conditions on Ω0
ij have been

obtained by using (B4) and the trace of (B13) of Ref. [18].
For n ¼ 4, one finds instead

Φijkl ¼ Oðr−νÞ; ΦA
ij ¼ Oðr−νÞ; ðn ¼ 4; ν > 2Þ

Ψ0
ijk ¼ Oðr−2Þ; Ω0

ij ¼ Oðr−1Þ; ð100Þ

which is asymptotically of type N. For ν > 4, this is a

subcase of (107) having Φð3Þ
ijkl ¼ 0, ΦAð3Þ

ij ¼ 0 andΨð4Þ
ijk ¼ 0.

B. Case ii: Ψ ijk ¼ Oðr−nÞ, Ωij ¼ oðr−nÞ
The behavior of the Ricci rotation coefficients and

derivative operators is the same as in case (i) [in particular,
)29(,)31(,)32(,)34 ), and (82) still apply].

1. Case βc ¼ −2, n > 5

All the following cases can occur only for n > 5:

Ωij ¼ oðr−nÞ;
Ψijk ¼ Oðr−nÞ;
Φijkl ¼ Oðr−2Þ; ΦS

ij ¼ Oðr−4Þ; ΦA
ij ¼ Oðr−3Þ;

Ψ0
ijk ¼ Oðr−2Þ; Ψ0

i ¼ Oðr−3Þ; Ω0
ij ¼ Oðr−2Þ;

ð101Þ

with ðn − 4ÞΦAð3Þ
ij ¼ Φð2Þ

ikjlb½kl� and Φð2Þ
ikjlbðklÞ ¼ 0. Here, l

can be a single WAND. For ΨðnÞ
ijk ¼ 0, this case reduces

to (91) (with ν > n).

If Φð2Þ
ikjlb½kl� ¼ 0 (in particular, if l is twistfree), the

following subcase arises:

Ωij ¼ oðr−nÞ;
Ψijk ¼ Oðr−nÞ;
Φijkl ¼ Oðr−2Þ; ΦS

ij ¼ Oðr1−nÞ; ΦA
ij ¼ Oðr−nÞ;

Ψ0
ijk ¼ Oðr−2Þ; Ψi

0 ¼ Oðr1−nÞ;
Ω0

ij ¼ Oðr−2Þ; ð102Þ

with ð2 − nÞΦSðn−1Þ
ij þ Φðn−1Þδij ¼ 0.

As a further “subcase”, if ΦSðn−1Þ
ij ¼ 0, we obtain,

depending on the value of ν,

Ωij ¼ Oðr−νÞ ðn < ν ≤ nþ 1Þ;
Ψijk ¼ Oðr−nÞ;
Φijkl ¼ Oðr−2Þ; ΦS

ij ¼ Oðr1−νÞ;
Φ ¼ Oðr−nÞ; ΦA

ij ¼ Oðr−nÞ;
Ψ0

ijk ¼ Oðr−2Þ; Ψi
0 ¼ Oðr1−νÞ;

Ω0
ij ¼ Oðr−2Þ ð103Þ

or

Ωij ¼ Oðr−νÞ ðν > nþ 1Þ;
Ψijk ¼ Oðr−nÞ;
Φijkl ¼ Oðr−2Þ; ΦS

ij ¼ Oðr−nÞ; ΦA
ij ¼ Oðr−nÞ;

Ψ0
ijk ¼ Oðr−2Þ; Ψ0

i ¼ Oðr1−nÞ;
Ω0

ij ¼ Oðr−2Þ: ð104Þ

In all the above cases, Ψ0ð2Þ
ijk ¼ −Φð2Þ

isjkls1 and

Ω0ð2Þ
ij ¼ −Ψ0ð2Þ

ðijÞklk1 ¼ Φð2Þ
isjkls1lk1. The asymptotically lead-

ing term is of type II(abd), but it reduces to type D(abd) if a
particular frame with li1 ¼ 0 is employed; cf. the comments
at the end of Sec. II C. The termsΦijkl ¼ Oðr−2Þ violate the
asymptotically flat conditions [15].

2. Case βc < −2, n > 4

If Φð2Þ
ijkl ¼ 0, one is left with

Ωij ¼ oðr−nÞ;
Ψijk ¼ Oðr−nÞ;
Φijkl ¼ Oðr1−nÞ; ΦA

ij ¼ Oðr−nÞ;
Ψ0

ijk ¼ Oðr1−nÞ; Ψi
0 ¼ Oðr1−nÞ;

Ω0
ij ¼ oðr2−nÞ; ð105Þ

with ðn−2Þðn−3ÞΦðn−1Þ
ijkl ¼4Φðn−1Þδj½kδm�i, ðn−3ÞΨðn−1Þ

ijk ¼
2Ψðn−1Þ

½j δk�i, ðn − 2ÞΨðn−1Þ
i ¼ −ðn − 1ÞΦðn−1Þli1, and where

l can be a single WAND. This behavior is compatible with
the results of Ref. [15] for asymptotically flat spacetimes, in

the case of vanishing radiation. For ΨðnÞ
ijk ¼ 0, this case

reduces to (97) (with ν > n).
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If Φðn−1Þ ¼ 0, this reduces to

Ωij ¼ oðr−nÞ;
Ψijk ¼ Oðr−nÞ;
Φijkl ¼ Oðr−nÞ; ΦA

ij ¼ Oðr−1−nÞ;
Ψ0

ijk ¼ Oðr−nÞ;
Ω0

ij ¼ Oðr1−nÞ: ð106Þ

The asymptotically leading term is of type N.

3. Case n ¼ 4

Ωij ¼ Oðr−νÞ ðν > 4Þ;
Ψijk ¼ Oðr−4Þ;
Φijkl ¼ Oðr−3Þ; ΦA

ij ¼ Oðr−3Þ;
Ψ0

ijk ¼ Oðr−2Þ;
Ω0

ij ¼ Oðr−1Þ: ð107Þ

The above behavior agrees with the well-known results
of Ref. [3] (where it was assumed ν ¼ 5). ForΨð4Þ

ijk ¼ 0, this

case reduces to (98) (with ν > 4). See Ref. [4] for results
also at the subleading order.

C. Case iii: Ψ ijk ¼ Oðr−3Þ, Ωij ¼ oðr−3Þ (n > 4)

Again, the behavior of the Ricci rotation coefficients and
derivative operators is the same as in case i.

1. Case n > 5

In more than five dimensions, we generically have
βc ¼ −2, giving rise to

Ωij ¼ Oðr−νÞ ðν > 3Þ;
Ψijk ¼ Oðr−3Þ; Ψi ¼ oðr−3Þ;
Φijkl ¼ Oðr−2Þ; ΦS

ij ¼ Oðr−3Þ;
Φ ¼ oðr−3Þ; ΦA

ij ¼ Oðr−3Þ;
Ψ0

ijk ¼ Oðr−2Þ; Ψ0
i ¼ Oðr−3Þ;

Ω0
ij ¼ Oðr−2Þ; ð108Þ

where Ψi ¼ Oðr−νÞ, Φ ¼ Oðr−νÞ for 3 < ν ≤ 4, while
Ψi ¼ Oðr−4Þ, Φ ¼ Oðr−4Þ for ν > 4 and

ðn − 4ÞΦAð3Þ
ki ¼ Φð2Þ

klijb½lj� þ ξA0j Ψð3Þ
½ki�j;A þ 2l1jΨ

ð3Þ
½ki�j þΨð3Þ

½ki�lm
l
jj þΨð3Þ

jl½km
l
i�j;

ðn − 6ÞΦSð3Þ
ki ¼ Φð2Þ

klijbðljÞ þ ξA0j Ψð3Þ
ðkiÞj;A þ 2l1jΨ

ð3Þ
ðkiÞj þΨð3Þ

ðkiÞlm
l
jj þ ð2Ψð3Þ

lðkjj þΨð3Þ
jlðkjÞm

l
jiÞj:

Here, l can be a single WAND, and the asymptotically

leading term is of type II(abd). For Ψð3Þ
ijk ¼ 0, this case

reduces for 3 < ν < 4 to (90) (with ν > n), for 4 ≤ ν ≤ n to
(91), and for ν > n to (101).
A subcase with Φð2Þ

ijkl ¼ 0 is also possible, giving

Ωij ¼ Oðr−νÞ ðν > 3Þ;
Ψijk ¼ Oðr−3Þ; Ψi ¼ oðr−3Þ;
Φijkl ¼ Oðr−3Þ; Φ ¼ oðr−3Þ; ΦA

ij ¼ Oðr−3Þ;
Ψ0

ijk ¼ Oðr−2Þ; Ψ0
i ¼ Oðr−3Þ;

Ω0
ij ¼ Oðr−2Þ; ð109Þ

with the same behavior as above for Ψi and Φ. In this case,
the leading term at infinity is of type III(a).
Neither of the above behaviors can represent asymptoti-

cally flat spacetimes since the falloff of the Weyl tensor is
too slow [15].

2. Case n ¼ 5

In five dimensions, we generically have

Ωij ¼ Oðr−νÞ
�
3 < ν ≤

7

2

�
;

Ψijk ¼ Oðr−3Þ; Ψi ¼ Oðr−νÞ;
Φijkl ¼ Oðr−5=2Þ; Φ ¼ Oðr−νÞ; ΦA

ij ¼ Oðr−3Þ;
Ψ0

ijk ¼ Oðr−2Þ; Ψ0
i ¼ Oðr−3Þ;

Ω0
ij ¼ Oðr−3=2Þ; ð110Þ

with ΦAð3Þ
ki ¼ ξA0j Ψð3Þ

½ki�j;Aþ2l1jΨ
ð3Þ
½ki�jþΨð3Þ

½ki�lm
l
jjþΨð3Þ

jl½km
l
i�j,

Ψ0ð2Þ
ijk can be expressed in terms of Ψð3Þ

ijk using (B6) of

Ref. [18], and Ω0ð3=2Þ
ij ¼ −5l11Φ

Sð5=2Þ
ij − 2XA0ΦSð5=2Þ

ij;A −
4ΦSð5=2Þ

sðj m
s
iÞ1. If ν ¼ 7=2, this can be rewritten using

3ΦSð5=2Þ
ij ¼−2XA0Ωð7=2Þ

ij;A −3l11Ω
ð7=2Þ
ij −4Ωð7=2Þ

sðj m
s
iÞ1. Recall-

ing the comments following (94), one finds that the same
behavior (110) holds in fact for the full range 5

2
< ν ≤ 7

2
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(unless Ψð3Þ
ijk ¼ 0). In all cases here, l cannot be a WAND,

and the asymptotically leading term is of type N.
Note an important difference with the behavior (94) with

n ¼ 5: after the leading type N term, the subleading term
in (110) is of type III(a) [it was of type II(acd) in (94)]. If we
assume for Ωij a falloff as in (95), this shows that the
subleading term of Ω0

ij is of order Oðr−2Þ, thus leading to
the qualitatively different peeling-off behavior

Cabcd ¼
Nabcd

r3=2
þ IIIabcd

r2
þ oðr−2Þ ðn ¼ 5Þ: ð111Þ

However, according to Ref. [15], this behavior is not
permitted in asymptotically flat spacetimes. For the latter,

one thus concludes that Ψð3Þ
ijk ¼ 0 [in which case (110)

reduces to (94) with n ¼ 5] is a necessary boundary
condition in five dimensions. This is perhaps not surprising

since Ψð3Þ
ijk ¼ 0 already in four dimensions [where Ψijk ¼

Oðr−4Þ [3]; cf. also (107) above].
If ν > 7=2, the asymptotic behavior is described by (109)

(in which cases l can be a single WAND).
All the above results for the case ~R ¼ 0 are summarized

in Table II.
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