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Light scalar fields can naturally couple disformally to matter fields. Static, nonrelativistic sources do not
generate a classical field profile for a disformally coupled scalar, and so such scalars are free from the
constraints on the existence of fifth forces that are so restrictive for conformally coupled scalars. In this
paper we show that disformally coupled scalars can still be studied and constrained through their
microscopic interactions with fermions and photons, both in terrestrial laboratories and from observations
of stars. The strongest constraint on the coupling scale comes from mono-photon searches at the LHC and
requires M ≳ 102 GeV.
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I. INTRODUCTION

Are we allowed to introduce a new light scalar field [1]
that couples to matter [2]? For conformally coupled scalar
fields, the answer to this question appears to be “yes, but
with difficulty.” If a scalar field has a canonical kinetic
term, and its potential consists only of a mass term, then
experimental searches for fifth forces severely constrain
the existence of a minimal coupling to matter [3]. These
constraints can be alleviated through screening mecha-
nisms that introduce nonlinear, higher-order operators (that
can be radiatively stable) but the cost is a more baroque
scalar sector. Disformal couplings present an interesting
alternative; such a coupling does not (classically) result in a
force between static, nonrelativistic objects and therefore is
not constrained by the fifth force experiments that are so
restrictive for conformal couplings.
Disformal interactions were first discussed by

Bekenstein [4], who showed that the most general metric
that can be constructed from gμν and a scalar field that
respects causality and the weak equivalence principle is

~gμν ¼ Aðϕ; XÞgμν þ Bðϕ; XÞ∂μϕ∂νϕ; ð1:1Þ

where the first term gives rise to conformal couplings
between the scalar field and matter, and the second term is
the disformal coupling. Here X ¼ ð1=2Þgμν∂μϕ∂νϕ. The
disformal interactions give rise to Lagrangian interaction
terms of the form

L ⊃
1

M4
∂μϕ∂νϕTμν: ð1:2Þ

where Tμν is the energy momentum tensor of matter fields.
As is clear from Eq. (1.2) a disformal coupling occurs

through a high mass dimension operator; however, if the
scalar field possesses a shift symmetry then this is the
lowest-order operator we can write down that respects
Lorentz invariance. This direct coupling between deriva-
tives of ϕ and the energy-momentum of matter is such that
the matter density T00 only couples to time derivatives of ϕ.
As a result the scalar field is not sourced by a static
pressureless perfect fluid. However, quantum effects are
still present and a new force mediated by the scalar field
appears at the one-loop level [5,6]; we will examine this
force in detail in Sec. IV. Operators of even higher order
than those in Eq. (1.2) can be generated by quantum
corrections. Those involving additional derivatives of ∂μϕ
give rise to terms in the equation of motion that have more
than two derivatives per field and thus are expected to give
rise to ghost degrees of freedom. Such terms are suppressed
by the cut off of the effective field theory which we expect
to lie above the scale M. Other higher-order operators
contain the same ∂ϕ∂ϕT combination, and remain small
compared to the term in Eq. (1.2) if ð∂ϕÞ < M2.
Various order of magnitude bounds on the strength of the

disformal coupling were discussed in [6] the strongest of
which wasM ≳ 200 GeV from requiring the theory to give
a unitary description of electron positron collisions at the
LEP collider. In Sec. III we will show that the cross section
for two fermions annihilating into two scalars takes a
different form to that considered in [6], and that therefore
unitarity at LEP requires a much weaker bound on M. Our
aim in this paper is to determine the best current constraints
on the scale M. A variety of observational probes of
disformal couplings have also been previously considered:
The disformal interactions of scalars with photons can be
probed in laboratory experiments [7]. In models motivated
by Galileon theories and massive gravity, constraints have
been put on the disformal interactions from studying
gravitational lensing and the velocity dispersion of galaxies
[8,9]. A disformally coupled Galileon has been shown to
fit current cosmological observations and a nonzero
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disformal coupling seems to be marginally preferred [10].
Other cosmological implications of disformal scalars have
been considered in [11–15]. Disformal interactions have
been shown to arise in the four-dimensional effective
theory resulting from various brane world scenarios
[16,17], in branon models [18,19] and in theories of
massive gravity [20,21].
In this paper we determine the constraints imposed on

disformal scalars by considering the microscopic inter-
actions between scalars, fermions and photons. We will
find that constraints on the disformal coupling can be
imposed by a wide ranging array of laboratory experiments
and astrophysical observations. In the first section, we
introduce the disformal coupling and show the absence of
any classical effect in the presence of dense and non-
relativistic matter. In Sec. III we consider the constraints
imposed on the theory by requiring unitary evolution in
particle colliders, and then bound the theory with the null
results of mono-lepton searches for new physics at the
LHC. Then in Sec. IV, we investigate the quantum effects
and rederive the force between two fermions due to a scalar
loop. This force is strongest at short distances therefore in
Sec. V we study the macroscopic effects of the disformal
interaction and consider the disformal Casimir-Polder inter-
action between one fermion and a plate, and the disformal
Casimir effect. In Sec. VI the one-loop force is applied to
atomic transitions in hydrogen-like atoms where the dis-
formal interaction changes the atomic energy levels. We also
calculate the cross section in the scattering between non-
relativistic neutrons and rare gases in Sec. VII. We then
check in Sec. VIII that the disformal interaction does not
lead to a fatal increase in the burning rate of stellar structures.
We conclude and summarize the constraints in Sec. IX.

II. DISFORMALLY COUPLED SCALAR FIELDS

A. Effective action

As discussed in the introduction a disformal coupling
between matter and a scalar field, ϕ, arises because in the
Einstein frame matter fields move on geodesics of a metric
~gμν that depends on the scalar field. We consider a disformal
scalar field defined by the following action:

S ¼
Z

d4x
ffiffiffiffiffiffi
−g

p �
R
2κ24

−
1

2
ð∂ϕÞ2

�
þ Smðψ i; ~gμνÞ; ð2:1Þ

where the metric is

~gμν ¼ gμν þ
2

M4
∂μϕ∂νϕ: ð2:2Þ

This is not the most general scalar metric as given by
Bekenstein in Eq. (1.1); however, it describes all the
leading-order effects of disformal couplings, and is much
simpler to work with. The coupling scaleM is constant and
unknown and should be fixed by observations.

The metric ~gμν is the Jordan frame metric with respect to
which matter is conserved [12] (this follows from diffeo-
morphism invariance of Sm):

~Dμ
~Tμν ¼ 0; ð2:3Þ

where the Jordan frame energy momentum tensor is

~Tμν ¼ 2ffiffiffiffiffiffi
−~g

p δSm
δ~gμν

: ð2:4Þ

The Einstein frame energy-momentum for matter is Tμν ¼
ð2= ffiffiffiffiffiffi−gp ÞðδSm=δgμνÞ. Physical observables will always be
independent of the choice of frame, and in what follows we
will perform our calculations in the Einstein frame for
computational ease. Indeed we will always work in the
regime where ϕ=Λ ≪ 1 and ∂ϕ=M2 ≪ 1, so that dimen-
sionful quantities computed in the Einstein frame agree to
leading order with the value of those quantities when
computed in the Jordan frame.1

B. Absence of tree-level interactions with static
nonrelativistic sources

The disformal coupling induces interactions between the
scalar field and matter at all orders in 1=M4. The first-order
interaction reads

Sð1Þ ¼ 1

M4

Z
d4x

ffiffiffiffiffiffi
−g

p ∂μϕ∂νϕTμν: ð2:5Þ

Higher-order terms are simply obtained by iteration

SðnÞ ¼ 1

M4n

Z
d4x

ffiffiffiffiffiffi
−g

p
Cα1β1…αnβn
ðnÞ ð∂α1ϕ∂β1ϕÞ…ð∂αnϕ∂βnϕÞ;

ð2:6Þ

where we have identified the tensor

Cα1β1…αnβn
ðnÞ ¼ 2nffiffiffiffiffiffi−gp δnSmðψ i; ~gμνÞ

δgα1β1…δgαnβn

����
~gμν¼gμν

; ð2:7Þ

or equivalently

Cα1β1…αnβn
ðnÞ ¼ 2n−1ffiffiffiffiffiffi−gp ∂n−1ð ffiffiffiffiffiffi−gp

Tα1β1Þ
∂gα2β2…∂gαnβn

����
~gμν¼gμν

: ð2:8Þ

For nonrelativistic matter, we have

1Situations with strong field gradients can also give rise to
interesting phenomena including spontaneous violation of
Lorentz invariance [22]. However, for the theories we are
considering in this paper, it is not possible to source such strong
field gradients in the experimental environments we consider.

PHILIPPE BRAX AND CLARE BURRAGE PHYSICAL REVIEW D 90, 104009 (2014)

104009-2



Tμν ¼ ρuμuν; ð2:9Þ
where ρ is the matter density (which is a delta function for
matter particles) and the velocity 4-vector is uμ ¼ dxμ=dτ
where the proper time is dτ ¼ ð−gμνdxμdxνÞ1=2. At second
order we find that

Cα1β1α2β2
ð2Þ ¼ ðgα1β1 þ 2uα1uβ1ÞTα2β2 ; ð2:10Þ

and by iteration, we find that all the higher-order tensors are
proportional to Tμν. As a result, in static situations where
u0 ¼ 1; ui ¼ 0 and _ϕ ¼ 0 we find that all the disformal
terms vanish SðnÞ ¼ 0. This implies that the scalar field
does not mediate any classical interaction between matter
particles. For instance, one does not expect any interaction
between test particles in a static laboratory experiment.
This is not the case at the quantum level, and this is what we
turn to now.

C. Interactions with fermions

In what follows we will restrict ourselves to the leading-
order effects of the disformal coupling between the scalar
field and matter, and so calculate only to leading order in
1=M4. To this order the action can be expanded as

S ¼
Z

d4x
ffiffiffiffiffiffi
−g

p �
R
2κ24

−
1

2
ð∂ϕÞ2 þ 1

M4
∂μϕ∂νϕTμν

�

þ Smðψ i; gμνÞ: ð2:11Þ

where Tμν is now the Einstein frame energy-momentum
tensor for matter.
In this paper we will focus in detail on the microscopic

interactions between the scalar field and fermions, for
which we first need to determine the interaction vertex. A
fermion field in the Jordan frame is characterized by the
action

SF ¼ −
Z

d4x
ffiffiffiffiffiffi
−~g

p
½iψ̄ ~γμ ~Dμψ þmψ ψ̄ψ �; ð2:12Þ

where the Dirac matrices and the covariant derivatives are
those corresponding to ~gμν. The associated Einstein frame
energy momentum tensor is given by

Tμν
ψ ¼ −

i
2
½ψ̄γðμDνÞψ −Dðμψ̄γνÞψ �; ð2:13Þ

where indices have been symmetrised and we have taken
the fermions to be on-shell.2 Therefore the most general
form of the Einstein frame scalar action contains a
disformal interaction with the fermions of the form:

Sϕ ⊃ −
Z

d4x
i

2M4
∂μϕ∂νϕ½ψ̄γðμDνÞψ −Dðμψ̄γνÞψ �:

ð2:14Þ

In static situations where the scalar field profile is non-
trivial, this implies a modification of the fermion dispersion
relation [22] and superluminal effects.3 This interaction is
clearly spin and flavour independent. This is a consequence
of the universal form of the coupling that we have assumed.
It would be possible for additional spin dependent inter-
actions to arise if there is a nontrivial background field
profile for the scalar field, ∂iϕ̄ ≠ 0. Such a field profile
could be sourced, for example, if a conformal coupling
were present in addition to the disformal coupling we
consider here. In this paper we will focus on the spin
independent effects of the disformal coupling, and leave the
intriguing possibility of spin-dependent disformal inter-
actions for future work. Here we are interested in the
quantum properties of this interaction. They can be
deduced from the interaction vertex shown in Fig. 1,

V ¼ −
1

4M4
ūðp2Þ½ðk:p1Þk0 þ ðk0:p1Þkþ ðk:p2Þk0

þ ðk0:p2Þk�uðp1Þ; ð2:15Þ

where p1;2 are the four-momenta of the external fermions.
We now summarize our conventions for the following

calculations: We take external Dirac fermions to be
normalized such that

X
s

ūsðpÞūsðpÞ ¼ −pþ imψ ; ð2:16Þ

where the sum is over the spins �1=2. We chose the γ
matrices to be in the Dirac representation corresponding to
the mostly plus signature ð−þþþÞ

γ0 ¼ i

�
I2 0

0 −I2

�
; γi ¼ i

�
0 −σi
σi 0

�
; ð2:17Þ

where I2 is the two-dimensional identity matrix and the σi’s
are the Pauli matrices. This will be convenient when taking
the nonrelativistic limit of various interactions.
In the nonrelativistic limit, we have

us ¼
ffiffiffiffiffiffiffiffiffi
2mψ

p �
ψ s

~ψ s

�
; ð2:18Þ

where ~ψ ¼ − σ:p
mψ

ψ , the 3-momentum of the fermion is
pi, and ψ s is the nonrelativistic wave function of a spin
1=2 fermion. Notice that in this limit we have

2This general calculation of the energy momentum tensor
for fermions follows the derivation in the book by Birrell and
Davies [23].

3An analogue of Hawking’s chronology protection conjecture
is expected to apply to prevent the formation of closed timelike
curves. For further discussion we refer the reader to [24,25].
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P
sūsðpÞūs ¼ mψTrðiI4 þ γ0Þ ¼ 2imψ , where I4 is the

4-dim identity matrix, where the last equality holds for
the nonrelativistic wave function of the spin 1=2 fermions.

III. COLLIDER CONSTRAINTS

The interaction vertex shown in Fig. 1, and given by the
expression in Eq. (2.15), allows a fermion and an anti-
fermion to annihilate into two scalars, such interactions
typically occur in particle colliders, and the null results of
searches for beyond the standard model physics can be used
to constrain the disformal interaction. On purely dimen-
sional grounds the cross section for this interaction can be
expected to take the form

σ ∼ α1
E6

M8
þ α2

E4m2

M8
þ… ð3:1Þ

where E is the center of mass energy, m is the mass of the
fermions, and αi are dimensionless coefficients. In [6] it
was assumed that the leading term in Eq. (3.1) would be the
dominant contribution to the cross section, and as a result it
was estimated that requiring unitarity for electron-positron
collisions at the LEP collider imposesM ≳ 200 GeV. Here
we show that in fact α1 ¼ 0 and therefore the unitarity
constraints on the disformal coupling scale are weaker than
previously thought.
The scattering amplitude corresponding to Fig. 1 is

jMj2 ¼ 1

16M8
Tr½Xð−p1 þ imÞXð−p2 þ imÞ�; ð3:2Þ

where Xμ¼ðk ·p1Þk0μþðk0 ·p1Þkμþðk ·p2Þk0μþðk0 ·p2Þkμ.
We work in the center of mass frame where the incoming
fermions have four-momenta p1 ¼ ðE;

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
E2 −m2

p
~zÞ and

p2 ¼ ðE;−
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
E2 −m2

p
~zÞ and the corresponding scalar

momenta are k ¼ ðE; ~qÞ and k0 ¼ ðE;−~qÞ, where ~q2 ¼
E2 and ~z is a unit vector. We find that the structure of the
vector Xμ leads to a cancellation amongst the terms that are
independent of the fermion mass and as a result we find

jMj2 ¼ 8m2E6

M8
: ð3:3Þ

The corresponding cross section is

σ ¼ m2E4

πM8

ffiffiffiffiffiffiffiffiffiffiffiffi
1 − m2

E2

q : ð3:4Þ

At energies higher than the fermion mass the square root
can be expanded to put this expression into the form of
Eq. (3.1), and identify α1 ¼ 0 and α2 ¼ 1=4π.

A. Unitarity

Clearly the cross section in Eq. (3.4) diverges as the
energy of the interaction is increased, leading to a violation
of unitarity. If unitarity is not respected the probabilities of
all possible outcomes of an event do not sum to one and the
optical theorem is violated. Additionally the interaction
cross section of an event diverges rapidly as the energy of
the event is increased, violating the Froissart bound;
σtot < ð1=t0Þ½ln s�2, where s and t are the s- and t- channel
momenta in the interaction and t0 is a fixed maximum value
of t for the interaction being considered. This bound is
required to ensure that all cross sections of finite range
interactions are bounded at infinity. Particle interactions
have been observed to be unitary all the way up to the TeV
scale energies probed by the LHC, therefore we require that
M≲ 16π for all observable interactions. With the scatter-
ing amplitude of Eq. (3.3) we can update the unitarity
bounds from LEP; the collider reached energies of
209 GeV when colliding electrons and positrons, for the
disformal contribution to these interactions to be unitary we
must impose:

M ≳ 3 GeV: ð3:5Þ
The LHC now reaches significantly higher energies than

were accessible at LEP. Making the conservative assump-
tions that the most common interactions involve up and
down quarks with energies ∼2 TeV then we find that
unitarity requires

M ≳ 30 GeV: ð3:6Þ

Clearly the bounds on M can be increased if heavier
particles, or higher energy collisions are considered.

B. Constraints from Searches for Beyond
the Standard Model Physics

The annihilation of two fermions into two scalars is
difficult to detect in a particle collider. The scalars do not
decay inside the detector, and therefore we must search for
a missing energy signal. This is particularly difficult to
extract from a hadron collider such as the LHC where

FIG. 1. The disformal interaction vertex connecting two
fermions (solid lines) and two scalars (dashed lines).
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searches rely on an observable trigger to identify an event.
In searches at the ATLAS and CMS detectors fermion
annihilation into undetectable particles is searched for in
events where one of the incoming fermions radiates a
gluon, or a jet, referred to as mono-jet searches, or a W
boson prior to the collision. The W boson is assumed to
decay into a lepton and it associated neutrino, and therefore
these are known as mono-lepton searches. The limit from
mono-jet searches are very sensitive to the analysis cuts
made by ATLAS and CMS, and as these cuts are done with
the aim of constraining the production of WIMP dark
matter particles in fermion annihilation it is unclear how to
translate these bounds into constraints on disformal scalars.
Mono-lepton searches are more easily applied to dis-

formal scalars. The results of searches for new physics in
the final states with an electron or a muon was reported by
the CMS collaboration in Ref. [26] following the strategy
of Ref. [27]. The cross section for such a process, when the
interaction is spin and flavour independent, is constrained
to be

σ < 0.3 pb; ð3:7Þ

for light scalars. The most common interactions involve up
and down quarks, and assuming that the energy carried by
these quarks can reach 2 TeV we find that this results in a
constraint on the disformal interaction of

M ≳ 120 GeV: ð3:8Þ

A stronger constraint has been recently obtained using
data from the ATLAS collaboration [28] and by the CMS
experiment [29] in the single photon channel with a
resulting bound on the disformal coupling

M ≳ 490 GeV: ð3:9Þ

This analysis was carried out in order to place constraints on
the “branon.” This is a scalar field which arises in many
brane world scenarios describing the position of the brane in
an extra dimension. Standard model matter lives on the brane
and moves on an induced metric that is a function of both the
full metric of the extended space time, and the scalar branon
field describing how the brane is embedded in that space.
This induced metric typically has both conformal and
disformal terms which depend on the branon scalar. To
interpret these results in terms of the more general disformal
field discussed in this paper we have to take the massless
limit of the CMS analysis and identify our coupling scaleM
with the brane tension f, the parameter which controls how
easily the brane can curve as M4 ¼ 2f4.

IV. THE ONE-LOOP FIFTH FORCE

When a source is static and nonrelativistic no field
profile is generated classically for a disformal scalar field at

any order in 1=M. The absence of a force was also
explicitly shown at the level of the classical equations of
motion in Ref. [7]. In Refs. [5,6], it was shown that the
lowest-order one-loop diagram would correspond to a force
between the fermions of the form

F ∼
m1m2

M8r8
; ð4:1Þ

where m1 and m2 are the masses of the particles being
scattered. Contributions at higher loop order are suppressed
when Mr > 1. An estimate of the constraints from fifth
force experiments in Ref. [7] gave M > MeV. In this
section we rederive these results, and then proceed to
constrain the existence of this force with torsion balance
measurements. Our derivation of the force will follow the
calculation of the Casimir-Polder force presented in the
textbook by Itzykson and Zuber [30], and we will quote
the main results that are derived there.
We consider the four-fermion interaction mediated by a

loop of two scalar fields, as shown in Fig. 2. At large
distances and in the nonrelativistic limit, the Feynman
amplitude becomes a function of the momentum transfer

q ¼ p1 − p2; ð4:2Þ

where momentum conservation implies that p1 þ p3 ¼
p2 þ p4. In this limit we can define the interaction potential
between the two fermions as

VϕðrÞ ¼
Z

d3qVðqÞeiq:r; ð4:3Þ

where we use the standard notation d3q ¼ d3q
ð2πÞ3. This is

related to the forward scattering amplitude F ðq2Þ as

VðqÞ ¼ i
F ðq2Þ
4m1m2

; ð4:4Þ

where the masses of the two interacting fermions are m1;2.

FIG. 2. Two fermion scattering mediated by a loop of the
disformal scalar field.
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A convenient way of extracting the small q (and there-
fore long range) behaviour of VðqÞ is to notice that, for a
fixed Mandelstam variable s ¼ −ðp1 þ p3Þ2 ≈ ðm1 þm2Þ2
in the nonrelativistic limit, the forward amplitude F is an
analytic function of −q2 with a cut along the positive axis.4

A dispersion relation then relates FR, the real part of F , on
the positive axis to the forward amplitude

F ðq2Þ ¼ 1

iπ

Z
∞

0

dm2
FRð−m2Þ

m2 þ q2 − iϵ
; ð4:5Þ

where the Cutkosky rules give

FRðq2Þ ¼
1

2

Z
d3k
2k0

d3k0

2k00
δ4ðkþ k0 − qÞdðk; k0Þjk2¼k02¼0;

ð4:6Þ

where δ4ðkþ k0 − qÞ ¼ ð2πÞ4δðkþ k0 − qÞ and d encodes
the effects of the two interaction vertices in the Feynman
diagram:

dðk; k0Þ ¼ 1

16M8
ūðp2Þ½ðk:p1Þk0 þ ðk0:p1Þkþ ðk:p2Þk0

þ ðk0:p2Þk�uðp1Þūðp3Þ½ðk:p4Þk0 þ ðk0:p4Þk
þ ðk:p3Þk0 þ ðk0:p3Þk�uðp3Þ: ð4:7Þ

Transforming back to real space we find that the non-
relativistic scattering potential is then

VðrÞ ¼ −
1

16π2m1m2r

Z
∞

0

dm2FRð−m2Þe−mr; ð4:8Þ

where the leading order is given by the behaviour of
FRðq2Þ around the origin and we have q2 ¼ ð~qÞ2.
To perform this calculation for the disformal force it is

convenient to define the average

hXi ¼
R

d3k
2k0

d3k0
2k00 δ

4ðq − k − k0ÞXðk; k0ÞR
d3k
2k0

d3k0
2k00 δ

4ðq − k − k0Þ ; ð4:9Þ

where the denominator is a step function 1
8π θð−q2Þ. As a

result we have that

FRðq2Þ ¼
1

16π
θð−q2Þhdi: ð4:10Þ

The scattering amplitude corresponding to Fig. 2 reads

F ðq2Þ ¼
Z

d4kd4k0
δ4ðkþ k0 − qÞ

ðk2 − iϵÞðk02 − iϵÞ dðk; k
0Þ: ð4:11Þ

The average of d is

hdi ¼ ðq2Þ2
30 × 16 ×M8

½2ðp1:p3 þ p2:p4 þ p1:p4 þ p2:p3Þ
× ūðp2Þuðp1Þūðp3Þuðp4Þ þ ūðp2Þðp3 þ p4Þ
× uðp1Þūðp3Þðp1 þ p2Þuðp4Þ�; ð4:12Þ

where we have used the result that, to leading order in q2,

hkμkνk0ρk0σi ¼ ðq2Þ2
15 × 16

ðgμνgρσ þ gμρgνσ þ gνρgμσÞ: ð4:13Þ

In the nonrelativistic limit

ūðp2Þuðp1Þūðp3Þuðp4Þ ¼ −4m1m2; ð4:14Þ

and

ūðp2Þðp3 þ p4Þuðp1Þūðp3Þðp1 þ p2Þuðp4Þ ¼ 16m2
1m

2
2:

ð4:15Þ

Combining all of the above we find that, in the non-
relativistic limit,

FRðq2Þ ¼
1

10π
θð−q2Þm

2
1m

2
2ðq2Þ2

16M8
: ð4:16Þ

From which we deduce that the scalar induced interaction
between two fermions is

VðrÞ ¼ −
3

32π3r7
m1m2

M8
: ð4:17Þ

This is an attractive interaction which is proportional to the
particle masses.
We stress that although we have performed a one-loop

calculation, this is the leading-order potential mediated by a
disformally coupled scalar between static nonrelativistic
objects, because for such objects the tree-level interaction
vanishes at all orders in 1=M4.

A. Constraints from fifth force experiments

Constraints on deviations from a 1=r Newtonian gravi-
tational potential are most commonly formulated in terms
of Yukawa corrections and laboratory experiments aiming
to probe such corrections have been performed over a
wide range of distance scales from centimeters to tens of
nanometers, for a review see [31]. Experiments probing
millimeter distance scales give the tightest constraint on the
magnitude of the correction to Newtonian gravity, and the
constraints weaken dramatically over shorter distance scales.
The best constraints from torsion balance experiments

[31] find that the inverse square law holds down to a length
scale of 56 μm. This requires that the ratio of the disformal

4We use the ð−þþþÞ signature for the metric implying that
our q2 corresponds to −q2 in Itzykson and Zuber.
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potential to the Newtonian potential be less than unity at
this distance scale. Such a constraint requires:

0.07 MeV < M: ð4:18Þ

This is a weak bound which will be superseded by other
laboratory and astrophysical constraints.

V. THE SCALAR CASIMIR AND
CASIMIR-POLDER EFFECTS

As the disformal one-loop force scales as ∼1=M8r8 we
still expect the tightest constraints on M to come from
experiments performed at the shortest possible distance
scales. These short distance experiments are for instance
measurements of the Casimir force. The Casimir force is
usually discussed as the pressure exerted on the bounding
surfaces of a region due to the zero-point fluctuations of
quantized fields in the interior. An alternative formulation
due to Jaffe [32] describes the Casimir force as the
(relativistic, retarded) Van der Waals force exerted between
the boundaries of a region. In this formulation, the standard
result for the Casimir force is recovered in the α → ∞ limit
(a limit that can be shown to be appropriate on the short
distance scales used to measure the Casimir effect). The
Casimir-Polder effect, closely related to the Casimir force,
is the force exerted on a test particle due to a nearby surface.
The Casimir force per unit area for two idealized, perfectly
conducting plates with vacuum in between then scales
inversely with the fourth power of the distance between the
plates F ∼ 1=a4. Therefore experiments searching for the
Casimir force focus on probing physics at extremely short
distance scales, making them ideal experiments to constrain
the existence of a disformal force.
The presence of the plates does not impede the propa-

gation of fluctuations of the scalar field, and so there is no
analogue of the quantum Casimir effect for disformal
scalars. However, the one-loop force calculated in Sec. IV
creates an attractive force that can be constrained by
searches for the Casimir and Casimir-Polder force. These
experiments are typically performed either by studying the
force between two parallel plates or between a plate and a
sphere. The first case is easiest to calculate but difficult to
realize experimentally. Therefore the current best measure-
ments of the Casimir effect come from experiments using
the sphere-plate geometry.

A. The disformal force in a plate-sphere
Casimir experiment

The most sensitive measurement of the Casimir force are
those that probe the interactions between a plate and a
sphere. Disformal effects arise in these experiments due to
the one-loop force computed in Sec. IV, the full form of the
induced scalar interaction in Eq. (4.17). To derive the
constraints on disformal couplings from these Casimir

experiments we have to integrate the interaction over the
volume of the sphere and plate. We take the plate to be of
density ρ1 and width a with infinite extent in the ðx; yÞ
directions. The shortest distance between the plate and the
sphere is d and the sphere has density ρ2 and radius R. All
experiments are performed with d ≪ R. Points on the
surface of the plate are described by ~r1 ¼ ðr1 cos θ1;
r1 sin θ1; 0Þ and points within the sphere have ~r2 ¼
ðr2 cos θ2 sinϕ; r2 sin θ2 sinϕ; dþ R − r2 cosϕÞ, with 0 ≤
r2 ≤ R. The disformal potential is then found to be

Φ ¼ −
3ρ1ρ2a
32π3M8

Z
∞

0

dr1

Z
R

0

dr2

Z
2π

0

dθ1

Z
2π

0

dθ2

×
Z

π

0

dϕ
r1r22

j~r1 − ~r2j7=2
; ð5:1Þ

whilst the full integral is difficult to compute it is clear that
it is dominated by the contribution of the points of closest
approach between the sphere and the cylinder. With this
assumption, and d ≪ R, we can approximate the disformal
potential as

Φ ¼ −
3ρ1ρ2aR5

64πM8d7
: ð5:2Þ

The Casimir force between a sphere and a flat surface is

FC ¼ π3R
360d3

; ð5:3Þ

and therefore the ratio of the disformal force, FC ¼ ∂Φ=∂d,
to Casimir force is

F
FC

¼ 945

8π4
ρ1ρ2aR4

M8d5
: ð5:4Þ

The best constraints on the existence of a disformal force
from a Casimir type experiment comes from the measure-
ment performed by Lamoreaux [33], where a ¼ 0.5 cm,
R ¼ 11.3 cm and ρ1 ¼ ρ2 ¼ 2.6 gcm−3. No deviation from
the theoretical prediction of the Casimir force is seen at the
5% level when the plate and sphere are separated by a
distances down to d ¼ 0.5 μm. This requires

0.1 GeV < M: ð5:5Þ

B. The disformal force in a Casimir-Polder experiment

In Sec. IV we proved that two point sources are attracted
by a disformal potential that scales as the inverse of the
seventh power of the distance between the sources. To
compute the effect of this disformal interaction in a
Casimir-Polder experiment we integrate over a uniform
plate. We approximate the experimental environment by
assuming that the plate has infinite extent in the ðx; yÞ
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directions, and that a test particle lies a distance z from the
surface. We assume that the plate has thickness a and
density ρ. The disformal potential experienced by the test
particle due to the plate is:

Φ ¼ −
3

32π3
1

M8

Z
ρ

r7
dV; ð5:6Þ

where R2 ¼ x2 þ y2 þ z2 ¼ r2 þ z2 and the integral is
performed over the plate. Therefore

Φ ¼ −
3

32π3
ρa
M8

Z
2π

0

Z
∞

0

rdrdθ

ðz2 þ r2Þ7=2 ð5:7Þ

¼ −
3ρa

80π2M8z5
: ð5:8Þ

Neutrons in empty space over a thin mirror have
quantized energy levels in the terrestrial gravitational field.
The disformal Casimir-Polder interaction between the
neutron and the mirror changes the energy levels and the
interaction potential

VðzÞ ¼ m

�
gz −

3ρa
80π2M8z5

�
; ð5:9Þ

where m is the neutron mass. The second term must be a
perturbation to the gravitational interaction as the first four
energy levels of the unperturbed system have been observed
to a precision of 10−14 eV [34]. The neutron energy levels in
the absence of a disformal coupling are determined by the
zeros of the wave functions ψnðzÞ ¼ cnAið zz0 − ϵnÞ, where
Ai is the Airy function, z0 ¼ ð 1

2m2gÞ1=3 and Aið−ϵnÞ ¼ 0,

resulting in the energy levels [35]

En ¼ mgz0ϵn: ð5:10Þ

The disformal coupling implies that the Casimir-Polder
interaction diverges as z → 0, which is not physical and
corresponds to extending the validity of the effective
interaction between the neutron and the mirror to a regime
where the plate cannot be considered as a dense object
anymore. Indeed, the continuous plate approximation that
we have used is valid only where z≳ zatom where
zatom ∼ 10−10 m. Below this scale, the interaction becomes
an interaction between individual particles and not a
continuum. The approximation is valid all the way down
to the atomic scale provided we have

M ≳
�

3σ

80π2gz6atom

�
1=8

≈ 0.1 GeV; ð5:11Þ

where σ ¼ ρa ∼ 17 g × cm−2 is the surface density of the
mirror. This bound is consistent with that previously
obtained from Casimir experiments.

The shift in the energy levels induced by the disformal
interaction becomes

δEn ¼
Z

∞

zatom

dxjψnðxÞj2
3mσ

80π2M8z5
: ð5:12Þ

Using c2n ¼ 1
Anz0

where An ¼
R
∞
−ϵn Ai

2ðxÞdx and an ¼
dAi
dx jx¼−ϵn we find that

δEn ∼ −
3a2nmσ

160π2Anz2atomz30M
8
; ð5:13Þ

which must be less that 10−14 eV for n ¼ 1…4. This results
in the bound

M ≳ 0.8 MeV; ð5:14Þ

which is weaker than the requirement for validity of our
approximations and therefore no constraint on disformal
scalars can currently be applied.

VI. CONSTRAINTS FROM PRECISION
ATOMIC MEASUREMENTS

Precision atomic measurements are not commonly con-
sidered tests of modifications of gravity. However, because
the disformal force derived in Sec. IV varies as 1=r8,
precision measurements over short distance scales can
be extremely constraining, and the Bohr radius describing
the size of an atom is a0 ¼ ðℏ=mecÞ=α ¼ 5.3 × 10−11 m,
making atomic measurements potentially a very sensitive
probe. Constraints from atomic measurements were placed
on chameleon theories in [36], and the results of this section
are derived in a similar way.
The scalar interaction acts as a perturbation of the

Coulombic interaction in hydrogen-like atoms

VðrÞ ¼ −
e2

r
−
m1m2

M8

3

32π3r7
: ð6:1Þ

The second, disformal, term in this expression is strongly
divergent at the origin. As atomic precision measurements
agree well with theoretical expectations (with the exception
of measurements of the proton charge radius [37]), the
effects of the disformal force on atomic structure must be
small. In order to ensure that no modification of the electron
wave functions is required we impose that the disformal
perturbation must be subdominant in Eq. (6.1) down to the
size of the nucleon rN . This requires

M8 ≳ 3mfmN

128π4αr6N
: ð6:2Þ

where mf is the mass of the fermion in the orbitals, mN is
the mass of the nucleus and α is the fine structure constant.
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For a hydrogen atom this requires M > 0.07 GeV. In
addition we will also cut off all spatial integrals at rN ,
and assume that any divergences as r → 0 are resolved by
the extended size of the nucleus and its structure.
To first order in perturbation theory, the atomic levels are

perturbed by

δE ¼ −
3mfmN

32π3M8
hEj 1

r7
jEi; ð6:3Þ

where jEi is the unperturbed wave function of the energy
level. Let us focus on hydrogen-like atoms and consider the
1s, 2s and 2p levels. In each case the disformal perturbation
to the energy levels is most sensitive to the small r parts of
the wave function. When r ≪ a0 we have

ψ1sðrÞ ≈
1ffiffiffi
π

p
�
Z
a0

�
3=2

;

ψ2sðrÞ ≈
1

2
ffiffiffiffiffiffi
2π

p
�
Z
a0

�
3=2

;

ψ2pðrÞ ≈
1ffiffiffi
π

p
�

Z
2a0

�
5=2

r cos θ;

where the Bohr radius is a0 ¼ 1
mfα

and Z is the atomic
number of the nucleus.
The disformal interaction produces the following shifts

in the energy levels:

δE1s ¼ −
3

25π3

�
Z
a0

�
3 mNmf

M8r4N
; ð6:4Þ

δE2s ¼ −
3

28π3

�
Z
a0

�
3 mNmf

M8r4N
; ð6:5Þ

δE2p ¼ −
1

29 × π3

�
Z
a0

�
5mNmf

M8r2N
: ð6:6Þ

This leads to a disformal contribution to the lowest atomic
transition δE1s−2s :

δE1s−2s ¼
21

28π3

�
Z
a0

�
3mNmf

M8r4N
: ð6:7Þ

Similarly the Lamb shift δE2s−2p ¼ δE2p − δE2s is
modified

δE2s−2p ¼ 3

28π3

�
Z
a0

�
3mNmf

M8r4N

�
1 −

1

6

�
Z
a0

�
2

r2N

�
; ð6:8Þ

where the second contribution in the bracket is negligible.
The most precisely measured atomic transition is the

lowest, 1s–2s, transition in hydrogen [38]. The measure-
ment accuracy constrains δE1s−2s ≲ 10−9 eV with Z ¼ 1
and mf ¼ me [39]. The choice of what distance scale to

take for rN is more subtle. Measurements of the Lamb shift
can be interpreted as a measurement of the proton charge
radius, and therefore the nuclear size for a hydrogen atom.
There is currently a significant discrepancy between
measurements of this radius performed with electronic
hydrogen, and those performed with muonic hydrogen
[37]. In this paper we take the current CODATA value [40]
that does not include the muonic hydrogen measurements
rP ¼ 0.88 × 10−15 m. We discuss the charge radius mea-
surements and their implications for disformally coupled
scalars separately in more detail in [41]. The measurement
of the 1s–2s transition in hydrogen therefore constrains

0.2 GeV < M: ð6:9Þ

VII. NEUTRON SCATTERING EXPERIMENTS

The presence of a new force, particularly one such as the
disformal force derived in Sec. IV that is strong over short
distance scales, can affect the way that atoms interact with
one another. Precise constraints on the presence of such a
new force come from studying the interaction between slow
neutrons and a gas, in which the scalar field could mediate a
new force between the nuclei of the gas atoms and an
incoming neutron. Such experiments are performed using
thermal neutrons that scatter off noble gases such as Ne, Ar,
Kr and Xe [42,43]. In our analysis we will assume that the
gases are dilute enough to neglect multiple scattering, so
that the problem reduces to a two-body scattering.
The total cross section for a neutron scattering off a gas

has the form

dσ
dΩ

ðθÞ ¼ jbþ fϕðθÞj2; ð7:1Þ

where b is the nuclear scattering length and, in the Born
approximation, the scattering amplitude due to the scalar
interaction is given by

fϕðθÞ ¼ −2mN

Z
∞

RA

drr2
sin qr
qr

VϕðrÞ; ð7:2Þ

where RA is the nuclear radius of atoms in the gas which
have mass mA. In this expression q ¼ k sinðθ=2Þ and
E ¼ k2=2m. Observations constrain the asymmetry
between the forward and backward scattering cross sec-
tions. For θ ¼ π=4 and θ ¼ 3π=4 this can be expressed as

1þ δR ¼
dσ
dΩ ðπ=4Þ
dσ
dΩ ð3π=4Þ

; ð7:3Þ

In argon with a pressure of 1.64 atm, using b ¼ 1.909 fm,
RA ∼ 3 fm2, the constraint is δR ≤ 4 × 10−3 for energies
around 1 eV [42].
The corrections due to a disformal scalar are dominated

by the short distance behaviour of the disformal scalar
potential, Eq. (4.17), and we find
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fϕðθÞ ≈
3m2

NmA

64π2M8

Z
∞

RA

dr
r5

�
1 −

q2r2

6

�
; ð7:4Þ

≈
3m2

NmA

256π2R4
AM

8

�
1 −

q2R2
A

3

�
; ð7:5Þ

where the first term renormalizes the nuclear scattering
length b. To leading order the resulting cross section is

dσ
dΩ

ðθÞ ¼ b2
�
1 −

m2
NmA

128π2R4
AM

8

q2R2
A

b

�
; ð7:6Þ

and the correction to the forward-backward asymmetry is

δR ¼ −
m3

NmA

128π2R4
AM

8

ffiffiffi
2

p
ER2

A

b
: ð7:7Þ

Therefore, measurements of neutrons passing through a gas
of argon constrain

0.03 GeV < M: ð7:8Þ

VIII. CONSTRAINTS FROM STELLAR BURNING

The emission of scalar fields from stars carries away
additional energy, this changes the rate, ϵ, at which the star
burns and impacts on its lifetime and structure. These
constraints are particularly important in constraining the
properties of axions and axion-like particles. We refer the
reader interested in exploring how stars can be used to
constrain beyond the standard model physics in more detail
to the book by Raffelt [44]. The constraints we will use in
what follows, taken from [44], are as follows: the life time
of the Sun, which requires anomalous emission rates to be
ϵ⊙ ≲ 0.1 erg=s:g. so that the Sun does not burn up in less
than its observed lifetime, the observed helium burning life
time of horizontal branch stars and the nondelay of helium
ignition in low-mass red giants, which combine to require
ϵHB ≲ 10 erg=s:g., the duration of the observed neutrino
pulse from supernova 1987a, these neutrinos are liberated
after the core collapse of the supernova and the duration of
the pulse is sensitive to any additional energy loss mech-
anisms, this requires ϵSN ≲ 1019 erg=s:g:.
We expect disformal scalars to be produced in the

interior of stars through the particle interactions shown
in Figs. 4–9, which contain the disformal interaction vertex
given in Eq. (2.15), and therefore observations of the life
times of the Sun, supernovae and horizontal branch stars all
place constraints on the strength of the disformal coupling.
An order of magnitude estimate of the constraints in [6]
required M ≳ 30 GeV. In this section we consider the
different production processes in turn in the following
subsections, but begin with a calculation of the mean free
path of a scalar in the stellar interior.

In what follows we will make a number of approxima-
tions in order to enable us to compute the energy loss rates
analytically. Numerical simulations of the interior of stars
would allow more precise bounds to be placed on the
disformal scalar; this work is currently in progress [45].

A. The scalar mean free path

It is simplest to calculate the effects of scalar emission
from stars if, once produced, the scalars escape from the
star without further interaction. This happens provided the
mean free path of the scalar due to the disformal interaction
with fermions, shown in Fig. 3, is larger than the size of
the star.
The mean free path is related to the reaction rate between

disformal scalars and nucleons in the stellar interior as

l ¼ 1

Γ
; ð8:1Þ

where

Γ ¼
Z

d3pfpσ; ð8:2Þ

σ ¼ 1

2Ep2Ekj~vk − ~vpj

×
Z

d3k0

2Ek
0
d3p2

2E2

δð4Þðk0 þ p2 − k − pÞjMj2; ð8:3Þ

and the difference of velocities is close to unity as the
scalars are massless and the fermions are nonrelativistic.
The matrix element is simply

M ¼ ūðp2ÞVuðpÞ; ð8:4Þ

where V is the four-point vertex from the disformal
coupling given in Eq. (2.15). In the nonrelativistic approxi-
mation where E2 ∼ Ep ∼mψ , the cross section is

FIG. 3. The disformal scalar scattering off a nucleon in the
stellar medium.
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σ ¼ m2
ψE4

k

8πM8
; ð8:5Þ

and this gives rise to a reaction rate

Γ ¼ nψ
m2

ψE4
k

16πM8
; ð8:6Þ

where nψ is the number density of the fermion ψ . Finally
the mean free path is found to be:

l ¼ 16πðZ þ NÞ
Z

M8

ρT4mp
; ð8:7Þ

where Z is the atomic number of the dominant atoms in the
star and N is the number of neutrons. In the Sun, where
hydrogen burns predominantly we have Z ¼ 1; N ¼ 0
while on the horizontal branch (HB) where helium burns
we have Z ¼ 2; N ¼ 2. The mass of the proton is mp and
we have assumed that the highest energy available to the
scalars is of the order of the stellar temperature T.
To estimate the mean free path for the different stars we

will consider in the following, we take the most stringent
lower bounds on M obtained in the previous section from
considerations of particle physics M > 120 GeV. We then
find that in the Sun (ρ ∼ 150 g cm−3 and T ∼ 1.5 × 107 K)

l⊙ ≳ 2 × 1038 km; ð8:8Þ

where the solar radius is R⊙ ∼ 7 × 105 km. For stars on the
horizontal branch (ρ ∼ 104g cm−3 and T ∼ 1 × 108 K)

lHB ≳ 4 × 1033 km; ð8:9Þ

where a typical radius is R ∼ 3 × 107 km. Finally for
supernovae

lSN ≳ 109 km; ð8:10Þ

larger than the progenitor solar radius. Hence the stars are
transparent to scalars interacting with matter via the
disformal coupling.

B. Unitarity constraints

All of the calculations that we will study in this section
are perturbative and must preserve the unitarity of the
underlying field theory. In the nonrelativistic approxima-
tion which is valid in all the environments from main
sequence stars to supernovae, the matrix elements for the
scattering a scalar off a fermion fϕ → fϕ involving the
disformal coupling are given by

M ∼
m2

fE
2

M4
; ð8:11Þ

where E is the energy of the incoming scalar. Unitarity
imposes thatM≲ 16π, where the typical energy of scalars
created in the stellar medium is E ∼ T, the temperature of
the star. We must therefore require that

M ≳
�
mfT

4
ffiffiffi
π

p
�

1=2
ð8:12Þ

for perturbative unitarity to stand. This constraint is easily
satisfied in main sequence stars such as the sun where T⊙ ∼
1.3 keV and mf ¼ mp, we find

M ≳ 31 keV: ð8:13Þ

For stars on the horizontal branch where THB ∼ 8.6 keV,
we find

M ≳ 1 MeV: ð8:14Þ

Finally in supernovae where T ∼ 30 MeV we have

M ≳ 63 MeV: ð8:15Þ

All these bounds are much weaker than the ones we will
now derive from stellar burning rates.

C. Bremsstrahlung

The bremsstrahlung process of scalar production is
shown in Figs. 4 and 5. We consider the emission of
two scalars from the initial or final electrons interacting
with the nucleus of an atom with Z protons. The matrix
element corresponding to this process can be written as

MT ¼ Mþ ~M; ð8:16Þ

where M describes scalar radiation from the final state
electron, and ~M from the initial state electron. We have

FIG. 4. Bremsstrahlung of disformal scalars by an electron
scattering off a nucleus.
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M ¼ Ze2

j ~p1 − ~pj2 þm2
D

1

p2
1 þm2

e
ūðp2ÞVðip1 þmeÞγ0uðpÞ;

ð8:17Þ

where the disformal vertex, V, is given in Eq. (2.15).
In the plasma where the electrons evolve, the photons are

not massless and have a mass given by the Debye mass

mD ¼
�P

iq
2
i ni

T

�
1=2

¼
�
4πð1þ Z2

NþZÞαρ
mpT

�
1=2

; ð8:18Þ

where the charged particles are the electrons with charge
−e and the nuclei with charge Ze. The densities are ne ¼
Znnuclei and ðN þ ZÞne ¼ ρ

mp
where ρ is the plasma density,

mp the proton mass, and N the number of neutrons in the
nuclei. Numerically, we find that in the Sun we have
mD ≈ 9.5 keV and in horizontal branch stars we have
mD ≈ 0.03 MeV. This is larger than the energy scale
associated with the temperatures of the stars, respectively
T⊙ ≈ 1.3 keV and THB ≈ 8 × 10−3 MeV.
We define ~V where we exchange p1 → ~p1 in Eq. (2.15)

and ~M where p1 → ~p1 and V → ~V in Eq. (8.17). This
gives

~M ¼ Ze2

j ~~p1 − ~p2j2 þm2
D

1

~p2
1 þm2

e

× ūðp2Þγ0ði ~p1 þmNÞ ~VuðpÞ: ð8:19Þ

The emission rate of disformal scalars from a star, Γ, is
given by the integral

Γ ¼ 1

2EvE

Z
d3k
2Ek

d3k0

2Ek
0
d3p2

2E2

× δðE − E2 − Ek − E0
kÞðEk þ E0

kÞjMT j2; ð8:20Þ

where the velocity is vE ¼ j~pj
me
, and jMT j2 is the squared

matrix element averaged over spins. The averaged energy
loss rate per unit mass is given by

ϵ ¼ nnuclei
ρ

Z
d3pfpΓ; ð8:21Þ

where fp is the thermal distribution of the initial electron
which is nonrelativistic

fp ¼ ρ

2mp

�
2π

meT

�
3=2

e−
~p2

2meT: ð8:22Þ

In the nonrelativistic limit, the squared matrix element
becomes

jMT j2 ¼
64Z2e4m6

e

M8

E2
kE

02
k

ðp2
1 þm2

eÞ2ðj ~p1 − ~pj2 þm2
DÞ2

:

ð8:23Þ

Inserting 1 ¼ R
d4p1δðp1 − p2 − k − k0Þ we find that

Γ ¼ 1

2EvE

Z
d3p1

d3p2

2E2

θð−ðp1 − p2Þ2Þ
8π

hjMT j2i ð8:24Þ

¼ 1

2EvE

Z
d3p1

d3p2

2E2

θð−q2Þ
10π

ðE−E2ÞPðq0; ~qÞ
ðp2

1þm2
eÞ2ðj ~p1− ~pj2þm2

DÞ2
;

ð8:25Þ
where q ¼ p1 − p2 and the polynominal P is given by

Pðq0; ~qÞ ¼ a
3d

q20 −
2bþ 4c

3d
q20q

2 þ q4; ð8:26Þ

where q2 ¼ −q20 þ ~q2 and we have defined the coefficients
a ¼ 1

30
, b ¼ − 1

60
, c ¼ 1

60
, d ¼ 1

15×16 following the notation
of Itzykson and Zuber [30]. Performing the ~p2, integral first
we find that the constraint ðp1 − p2Þ2 ≤ 0 reduces to

j~qj ≤ j~p2 − ~p1
2j

2me
; ð8:27Þ

and therefore

Γ ¼ 1

2EvE

Z2e4m5
e

35π3

Z
d3p1

ðj~p2− ~p1
2j

2me
Þ8

ðp2
1 þm2

eÞ2ðj ~p1 − ~pj2 þm2
DÞ2

:

ð8:28Þ

The domain of the ~p1 integration is j ~p1j ≤ j~p2− ~p1
2j

2me
implying

that j ~p1j ≤ ~p2

2me
, therefore we find that

Γ ¼ 4Z2α2me

105πM8j~pj
�

~p2

2me

�
9 m2

e

ð~p2 þm2
DÞ2

: ð8:29Þ

The rate per unit mass is now given by explicit
integration

FIG. 5. Bremsstrahlung of disformal scalars by an electron
scattering off a nucleus.
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ϵ ¼ Z2α2me

210π3Amp
ρ

�
T
M

�
8 1

ð2πmeTÞ3=2
g

�
m2

D

2meT

�
; ð8:30Þ

where A ¼ N þ Z and

gðxÞ ¼
Z

∞

0

du
u9e−u

ðuþ xÞ2 : ð8:31Þ

For the Sun, the energy loss rate per unit mass must be
ϵ⊙ ≲ 0.1 erg=s:g [44]. Taking, as before, the temperature of
the Sun to be T ∼ 1.5107 K and the density ρ ∼ 150 g=cm3,
we find that this implies

M ≳ 39 MeV: ð8:32Þ

For stars on the horizontal branch, we have T ∼ 108 K,
ρ ∼ 104 g=cm3 and the energy loss rate due to scalars is
constrained to be ϵHB ≲ 10 erg=s:g. We find that this
requires

MHB ≳ 173 MeV: ð8:33Þ

D. Compton scattering

A pair of scalars can also be produced by Compton
scattering between one fermion and one photon (see Fig. 6).
The emission rate is given by

Γ ¼ 1

2Ep2EKj~vE − ~vKj
Z

d3k
2Ek

d3k0

2Ek
0
d3p2

2E2

δð4Þ

× ðkþ k0 þ p2 − K − pÞðEk þ Ek
0ÞjMT j2; ð8:34Þ

where again the velocity difference is j~vE − ~vKj ∼ 1 as the
photons are relativistic and the fermions nonrelativistic, and
jMT j2 is the squared matrix element averaged over spins
and polarizations. The averaged energy loss rate per unit
mass is given by

ϵ ¼ 1

ρ

Z
d3pd3KfpfKΓ; ð8:35Þ

where fp is the thermal distribution of the initial fermion
which is nonrelativistic, and fK the photon distribution
function. The matrix element is given by

M ¼ e
p2
1 þm2

ψ
ūðp2ÞVðip1 þmψÞγμϵμuðpÞ; ð8:36Þ

where ϵμ is the photon polarization vector normalized
such that

X
ϵμϵν ¼ ημν; ð8:37Þ

and the sum is over the two polarizations. We have that

jMT j2 ¼ −
e2

2ðp2
1 þm2

ψÞ2
Trððp2 − imψÞVðip1 þmψÞ

× ðpþ 2imψ Þðip1 þmeÞVÞ: ð8:38Þ

The initial and final fermions are nonrelativistic while the
photon spectrum is peaked around a temperature T that is
less than the fermion mass. In this approximation we find
that

jMT j2 ¼
2e2m6

ψ

ðp2
1 þm2

ψ Þ2
E2
kE

02
k

M8
; ð8:39Þ

and the emission rate becomes

Γ ¼
Z

d3qθð−q2Þ e2m4
ψ

32πðp2
1 þm2

ψ Þ2
hE2

kE
02
k i

M8
; ð8:40Þ

where q ¼ p1 − p2. We have used the approximation
Ek þ E0

k ∼ EK . The condition q2 ≤ 0 implies that

ðq0Þ2 ≥ ~q2 ¼ ð ~p1 − ~p2Þ2; ð8:41Þ

where p1 ¼ pþ K ¼ p2 þ kþ k0. Using hE2
kE

02
k i ¼ aq40−

ð2bþ 4cÞq20~q2 þ 3dð~qÞ2, and X ¼ j~qj, we have

Z
d3qθð−q2ÞhE2

kEk
02i ¼ 24dq70

7
; ð8:42Þ

where d ¼ 1=15 × 16 and with q0 ∼ EK . Now using

p2
1 þm2

ψ ∼ −2mψEK; ð8:43Þ

we find that

Γ ¼ 3d
28ð2πÞ3

e2m2
ψE5

K

M8
: ð8:44Þ

The emission rate is maximal for protons, hence we deduce
the energy loss rate due to scalars produced by Compton
scattering to be

ϵ ¼ 3dh
8πð2πÞ3

αZmp

ðZ þ NÞ
�
T
M

�
8

; ð8:45Þ
FIG. 6. Compton process for production of disformal scalars.
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where

h ¼
Z

∞

0

u7du
eu − 1

: ð8:46Þ

We find that the emission rate is smaller than that allowed
for stars on the horizontal branch when

M ≳ 811 MeV; ð8:47Þ
and for the Sun when

M ≳ 236 MeV: ð8:48Þ

E. Primakov process

We now consider the coupling between photons and the
scalar field due to the disformal term

1

M4
∂μϕ∂νϕ

�
FνaFν

a −
ημν

4
F2

�
; ð8:49Þ

which can lead to productions of scalars in the interior of
a star due to the Primakov process shown in Fig. 7.
The coupling in Eq. (8.49) leads to a four-particle inter-
action vertex in the Feynman diagram expansion of
perturbation theory:

Vγ ¼
1

M4
ððp:kÞðp0:k0Þðϵ:ϵ0Þ − ðp:kÞðk0:ϵ0Þðp0:ϵÞ

− ðp:ϵ0Þðk:ϵÞðp0:ϵ0Þþðp:p0Þðk:ϵÞðk0:ϵ0Þ

−
ðk:k0Þ
2

½ðϵ:ϵ0Þðp:p0Þ − ðp0:ϵÞðp:ϵ0Þ�Þ; ð8:50Þ

where ϵ and ϵ0 are the polarization vectors of the incoming
photons of momenta ðp; p0Þ and the scalars have
momenta ðk; k0Þ.
The Primakov effect occurs when an incoming photon

interacts with the electric field of a nucleus:

Ze
~p02 þm2

D

ϵ0μ; ð8:51Þ

where ϵ0μ ¼ ð1; 0; 0; 0Þ. To simplify the calculations, we
take the real and external photons to have transverse
polarizations where ϵ0 ¼ 0. As a result the vertex becomes

Vγ ¼
1

M4

�
E0
kððp:p0Þðk:ϵÞ − ðp:kÞðp0:ϵÞÞ

þ Ep

�ðk:k0Þ
2

ðp0:ϵÞ − ðk:ϵÞðp0:k0Þ
��

: ð8:52Þ

The matrix element is simply

M ¼ Ze
~p02 þm2

D

Vγ: ð8:53Þ

The emission rate is given by

Γ ¼ 1

2Ep

Z
d3k
2Ek

d3k0

2Ek
0 δðEk þ E0

k − EpÞðEk þ E0
kÞjMT j2;

ð8:54Þ

where jMT j2 is the square of the matrix element averaged
over the polarizations of the incoming photon. The energy
loss rate is given by

ϵγ ¼
nnuclei
ρ

Z
d3pfpΓ: ð8:55Þ

The calculation can be simplified by introducing the four-

vector p0 ¼ ð0; ~p0Þ and inserting 1 ¼ R
d3p0δð3Þð ~p0 þ ~p −

~k − ~k0Þ in Γ so that it becomes

Γ ¼ 1

32π

Z
d3p0θð−q2Þ Z2e2

ð ~p02 þm2
DÞ2

hTrðV2
γÞi; ð8:56Þ

where the expectation value h:i was defined in Eq. (4.9),
and q ¼ pþ p0. We find that

TrðV2
γÞ ¼

1

M8

�
E02
k ðp02ðp:kÞ2 − 2ðp:kÞðp:p0Þk:p0Þ

þ E2
p

�ðk:k0Þ2
4

p02 − ðk:k0Þðp0:k0Þðp0:kÞ
�

þ 2EpE0
k

�
k:k0

2
ððp:p0Þðk:p0Þ − p02ðp:kÞÞ

þ ðp:kÞðp0:k0Þðp0:kÞ
��

: ð8:57Þ

The domain of integration is defined by q2 ≤ 0, or

equivalently ~p02 þ 2~p: ~p0 ≤ 0. Defining the angle θ ¼
ð~p; ~p0Þ between ~p and ~p0, and X ¼ cos θ, the integration
can be performed over p0 ¼

ffiffiffiffiffi
~p2

p
such that p0 ≤ −2XEp

and then over X where −1 ≤ X ≤ 0. In addition weFIG. 7. The Primakov process for producing disformal scalars.
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approximate ~p02 þm2
D ∼m2

D which is justified as long as
T ≲mD valid for the Sun and horizontal branch stars. After
an extremely lengthy calculation to obtain hTrðV2

γÞi and the
phase space integral over ~p0, we find that

Γ ¼ UZ2e2

16ð2πÞ3
E11
p

m4
DM

8
; ð8:58Þ

where U ¼ 99133
14175

. The loss rate becomes

ϵγ ¼
UhZ2α

4πð2πÞ3
T14

mpm4
DM

8
; ð8:59Þ

where h ¼ R
∞
0 dx x13

ex−1.
Bounding the energy loss rate due to Primakov produc-

tion of disformal scalars in horizontal branch stars yields

M ≳ 346 MeV; ð8:60Þ

and the corresponding bound from the Sun is

M ≳ 40 MeV: ð8:61Þ

F. Pion exchange

The interiors of supernovae differ substantially from the
interiors of main sequence and horizontal branch stars. The
dominant process for producing disformal scalars becomes
the creation of two scalars with the exchange of one pion
between two nuclei. The diagrams are depicted in Figs. 8
and 9, which show disformal scalars radiated from initial
and final state nuclei respectively. As before we define the
emission rate

Γ ¼ 1

2Ep2EKvp

Z
d3k
2Ek

d3k0

2Ek
0
d3p2

2E2

d3K2

2EK2
δ4

× ðp2 þ K2 þ kþ k0 − p − KÞðEk þ Ek
0ÞjN T j2;

ð8:62Þ

and the rate per unit mass

ϵ ¼ 1

ρ

Z
d3pd3KfpfKΓ: ð8:63Þ

Fortunately, in the nonrelativistic limit, the rate per unit
mass from the pion exchange can be related to the previous
bremsstrahlung calculation. Indeed the pion propagators
reduce to 1

ð~kþ ~k0Þ2þm2
π

and the nucleon propagator is simply
1

ð~kþ ~k0Þ2 implying that one can factorize the propagators and

write

N T ¼ A2g2πNN

ððp1 − pÞ2 þm2
πÞðp2

1 þm2
NÞ

× ½N 1 þN 2 þN 3 þN 4�; ð8:64Þ

where the number of nucleons per nucleus is A ¼ Z þ N.
We consider that the nucleons interact coherently, and we
have defined

N 1 ¼ ðūðp2ÞVðip1 þmNÞγ0uðpÞÞūðK2ÞuðKÞ;
N 2 ¼ ðūðp2Þði ~p1 þmNÞ ~Vγ0uðpÞÞūðK2ÞuðKÞ;
N 3 ¼ ðūðK2ÞWðiK1 þmNÞγ0uðKÞÞūðp2ÞuðpÞ;
N 4 ¼ ðūðK2Þði ~K1 þmNÞ ~Wγ0uðKÞÞūðp2ÞuðpÞ: ð8:65Þ

The scalar-pion vertices that we label W and ~W follow the
same pattern as V and ~V in Sec. VIII H 3 with the p
momenta replaced by K’s. We find that

jN T j2 ¼
29A4g4πNNm

8
N

M8

E2
kE

02
k

ðp2
1 þm2

NÞ2ðj ~p1 − ~pj2 þm2
πÞ2

;

ð8:66Þ

from which we can directly obtain that
FIG. 8. Production of disformal scalars from a final state
nucleus by pion exchange.

FIG. 9. Production of disformal scalars from an initial state
nucleus by pion exchange.

CONSTRAINING DISFORMALLY COUPLED SCALAR FIELDS PHYSICAL REVIEW D 90, 104009 (2014)

104009-15



Γ ¼ 4A4α2πmN

210πM8j~pj
�

~p2

2mN

�
9 m2

N

ð~p2 þm2
πÞ2

; ð8:67Þ

where απ ¼ g2πNN
4π ∼ 13.5. Using

R
d3KfK ¼ nN

2
¼ ρ

2mp
the

total number of nucleons divided by 2 (where we take
all the nucleons to have the proton mass), we find that

ϵ ¼ A4α2π
105π3

ρ

�
T
M

�
8 1

ð2πmNTÞ3=2
g

�
m2

π

2mNT

�
: ð8:68Þ

Observations of supernova SN1987A, constrain the
energy loss due to any new physics to be ϵSN≲
1019 erg=s:g. Taking the supernova to have a temperature
of T ¼ 30 MeV and a density ρ ∼ 3 × 1014 g=cm3, we
find that

M ≳ 92 GeV: ð8:69Þ

However, this should be considered an order of magnitude
estimate only as the nuclear forces are strongly coupled
with a large coupling constant απNN , and so higher-order
effects not computed here may become important.
Moreover, the emission rate ϵ is also only an estimate as
it involves a certain number of astrophysical uncertainties.

IX. SUMMARY AND CONCLUSIONS

A. Summary of constraints

In Table I we summarize the constraints on disformal
couplings derived in this paper, and give a reference to the
section in which each constraint is derived. The most
constraining observations are the null results of mono-
photon searches for beyond the Standard Model physics
performed by the CMS collaboration. We present each

constraint with a comment on the environment it is derived
in, as in some theories with disformal couplings, such as the
Galileon [46], the coupling scale can be renormalized by an
environmentally dependent factor. We hope this will allow
the reader to apply these results to their preferred theory
with a disformal coupling.

B. Conclusion

Nearly massless scalar fields can play a role in either
generating the right amount of energy to trigger the late
time acceleration of the Universe or in modifying gravity
on very large scales. In this paper, we have considered the
possible coupling between such a scalar and matter which
preserves a shift symmetry. This symmetry is instrumental
in building models such as Galileons or K-mouflage [47]
and guarantees the absence of potential for the scalar field,
i.e. that the field is massless. The classical disformal
coupling of a scalar field to matter cannot be tested in
static situations as no tree-level force between static objects
is generated. Nevertheless the theory can still be con-
strained. We have shown that collider searches for new
physics give the most stringent bounds on the disformal
coupling. We have shown that quantum mechanical effects
at the one-loop level lead to a disformal force that could
have consequences in atomic physics. The disformal
interaction also plays a role in the heart of stellar objects
where the disformal coupling opens up new channels for
their burning rates. We have calculated the energy emission
rates due to the disformal interaction in stars on the main
sequence and the horizontal branch, and found stringent
bounds on the disformal coupling strength.
The astrophysical effects following our new calculation

on the disformal burning rates of stars can be applied to
study the disformal effects on the Hertzsprung-Russell
diagram of stellar structures; this is under study. In another

TABLE I. Summary of the constraints on the disformal coupling scale M. Lab. vac. means the constraint derives
from a laboratory vacuum on Earth. Horizontal branch means the constraint derives from observations of horizontal
branch stars, and similarly for constraints labelled Sun.

Source of bound Lower bound on M in GeV Environment Discussed in Section

Unitarity at the LHC 30 Lab. vac. III
CMS mono-lepton 120 Lab. vac. III
CMS mono-photon 490 Lab. vac. III
Torsion balance 7 × 10−5 Lab. vac. IVA
Casimir effect 0.1 Lab. vac. VA
Hydrogen spectroscopy 0.2 Lab. vac. VI
Neutron scattering 0.03 Lab. vac. VII
Bremsstrahlung 4 × 10−2 Sun VIII C

0.18 Horizontal branch VIII C
Compton scattering 0.24 Sun VIII D

0.81 Horizontal branch VIII D
Primakov 4 × 10−2 Sun VIII E

0.35 Horizontal branch VIII E
Pion exchange ∼92 SN1987a VIII F
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publication, we also explore in further detail the applica-
tions of the disformal coupling to atomic physics.
The constraints derived in this paper are so strong that it

is impossible to make any connection between an allowed
disformal coupling scale and current cosmologically rel-
evant scales, for example the dark energy scale Λ ∼
10−3 eV and the current Hubble scale H0 ∼ 10−33 eV.
However, we have only studied the strength of the coupling
between the disformal scalar and baryons and photons; a
cosmological strength coupling to dark matter particles is
still permissible, although it would then be necessary to
explain why this coupling is not communicated to the
visible sector. Disformal theories, such as the Galileon, that
also possess a mechanism that allows the strength of the
coupling to vary with environment may also be acceptable
if the bare values of the parameters are cosmologically
relevant. However, we have shown that these parameters
must run significantly from the cosmological vacuum to
achieve values compatible with the constraints derived in
this paper; whether this is possible must be studied on a

model by model basis. The constraints we have derived on
disformal couplings are still weak when compared with the
current constraints on the energy scales of conformal
couplings. Tracking of the Cassini satellite constrains the
energy scale controlling a conformal coupling to be M ≳
105MP [48]. It remains to be seen whether an experiment
can be devised to constrain the presence of a disformal
coupling to this level of precision.
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