
Remnant mass, spin, and recoil from spin aligned black-hole binaries

James Healy, Carlos O. Lousto, and Yosef Zlochower
Center for Computational Relativity and Gravitation, School of Mathematical Sciences,

Rochester Institute of Technology, 78 Lomb Memorial Drive,
Rochester, New York 14623, USA

(Received 27 June 2014; published 6 November 2014)

We perform a set of 36 nonprecessing black-hole binary simulations with spins either aligned or
counteraligned with the orbital angular momentum in order to model the final mass, spin, and recoil of
the merged black hole as a function of the individual black-hole spin magnitudes and the mass ratio of
the progenitors. We find that the maximum recoil for these configurations is Vmax ¼ 526� 23 km s−1,
which occurs when the progenitor spins are maximal, the mass ratio is qmax ¼ m1=m2 ¼ 0.623� 0.038,
the smaller black-hole spin is aligned with the orbital angular momentum, and the larger black-hole spin
is counteraligned (α1 ¼ −α2 ¼ 1). This maximum recoil is about 80 km s−1 larger than previous
estimates, but most importantly, because the maximum occurs for smaller mass ratios, the probability
for a merging binary to recoil faster than 400 km s−1 can be as large as 17%, while the probability for
recoils faster than 250 km s−1 can be as large as 45% when the spins are aligned or counteraligned by
accretion. We provide explicit phenomenological formulas for the final mass, spin, and recoil as a
function of the individual black-hole spins and the mass difference between the two black holes. Here
we include terms up through fourth order in the initial spins and mass difference and find excellent
agreement (within a few percent) with independent results available in the literature. The maximum
radiated energy is Erad=m ≈ 11.3% and final spin αmax

rem ≈ 0.952 for equal-mass, aligned, maximally
spinning binaries.
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I. INTRODUCTION

The fully nonlinear simulations of merging black-hole
binaries (BHBs) that were enabled by the 2005 break-
throughs in numerical relativity [1–3] revealed some
unexpectedly large effects. Perhaps one of the most striking
is that the merger remnant can recoil away from the center
of mass by thousands of km=s for BHBs with spins at least
partially in the orbital plane [4–8]. Such recoils, if common,
would have major implications for structure formation
and the evolution of galaxies, as well as the retention of
BHs in globular clusters and the formation of intermediate
mass BHs. The probability of these large recoils depends
on the distribution of mass ratios and spins of the
progenitor binaries. While the detailed modeling of those
recoil velocities from merging BHBs as a function of the
individual spins (magnitudes and directions) of the BHs
and the mass ratio is well underway [8–12], the major effort
required to simulate BHBs in a realistic astrophysical
environment, including individual and circumbinary
accretion disks, magnetohydrodynamical effects, and radi-
ation transfer, started more recently [13–24]. Analyses of
Newtonian and Post-Newtonian (PN) simulations appear to
indicate that accretion dynamics will skew the spin dis-
tributions away from configurations that favor very large
recoils [25–27] because these effects tend to align (or
counteralign) the spins with the orbital angular momentum
(see, however, the arguments about longer time scales

needed for the alignment mechanism to be effective in
Ref. [28]). On the other hand, recent studies of chaotic [29]
and partially chaotic [30] accretion suggest that misalign-
ment of spins can also be a common evolutionary scenario
for BHBs, possibly allowing for the merger remnant to
escape from large galaxies [31,32]. In addition, during the
late stages of the BHB evolution, post-Newtonian reso-
nance effects [33,34], in the “reverse mass ratio” evolution
pathway scenario, tend to further align the BH spins with
each other and the orbital angular momentum (or counter-
align them azimuthally).
In this paper we simulate the late-inspiral and merger

stages of BHBs in configurations where the spins are
exactly aligned or counteraligned with the orbital angular
momentum. By doing so, we are able to quantify how large
the recoil can be when coherent accretion effects dominate
the distribution of spin directions, thus providing a lower
bound to the recoil of the BH remnant. The aligned-spin
case also provides the optimal configuration for the
radiation of gravitational energy and angular momentum.
Here we provide a unified, higher-order phenomenological
model of the remnant mass, spin, and recoil from the
merger of two BHs with different masses and different spin
magnitudes (either aligned or antialigned spins).
This paper is organized as follows: In Sec. II we review

the current status of the modeling of the remnant recoil.
In Sec. III we review the numerical techniques used for our
evolutions of the BHBs and the subsequent analyses of the
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progenitor and remnant properties. In Sec. IV we present
the explicit form of the new phenomenological formulas for
the final mass, spin, and recoil of the merger remnant. We
apply these formulas to astrophysically motivated distri-
butions of the mass ratios and spins of the progenitor
binaries to obtain probabilities for a given recoil, final
remnant mass, and spin. In Sec. VI we discuss the
consequences of our results. In Appendix A we examine
in detail a particular configuration to see the dependence
of the recoil, final mass, and final spin on the initial
quasicircular orbital separation, resolution, extraction radii,
and maximum l mode used to reconstruct the gravitational
waveform. In Appendix B we compare the use of third-
order versus fourth-order fitting formulas for the remnant
mass, spin, and recoil.

II. MODEL OF RECOILS ON THE
ORBITAL PLANE

Beginning in Ref. [4], we developed a heuristic model
for the gravitational recoil of a merging binary. The model
for the in-plane recoil was based on PN-inspired fitting
formulas combined with the results of [35–37] (a similar
model was developed independently in [38]). Here we use
the PN-inspired variables

m ¼ m1 þm2;

δm ¼ m1 −m2

m
;

~S ¼ ~S1 þ ~S2;

~Δ ¼ mð~S2=m2 − ~S1=m1Þ;

where mi is the mass of BH i ¼ 1; 2 and ~Si is the spin of
BH i. We also use the auxiliary variables

η ¼ m1m2

m2
;

q ¼ m1

m2

;

~αi ¼ ~Si=m2
i ;

where j~αij ≤ 1 is the dimensionless spin of BH i, and we
use the convention that m1 ≤ m2 and hence q ≤ 1.
The in-plane recoil can be split (at least approximately)

into two components: a part due solely to unequal masses
and a part due to the out-of-plane components of the spins
of the two BHs. To lowest order in the spin, the formula is
given by

~Vrecoilðq; ~αiÞ ¼ vmê1 þ v⊥ðcosðξÞê1 þ sinðξÞê2Þ; ð1Þ

where

vm ¼ −Aη2δmð1þ BηÞ; ð2aÞ

v⊥ ¼ Hη2
�
Δ∥

m2
−HSδm

S∥
m2

�
: ð2bÞ

Here the indices⊥ and ∥ refer to components perpendicular
to and parallel to the orbital angular momentum during
the short period around merger when most of the recoil is
generated, while ê1; ê2 are orthogonal unit vectors in the
orbital plane, and ξ measures the angle between the
“unequal mass” and “spin” contributions to the recoil
velocity in the orbital plane (see Fig. 1). This formula
can be extended by adding additional nonlinear terms
(as we will show in this paper). The coefficients are given
by A ¼ 1.2 × 104 km s−1 [35], B ¼ −0.93 [35], and H ¼
ð6.9� 0.5Þ × 103 km s−1 [39]. We will study in detail how
ξ depends on the configurations here (ξwas initially studied
in Ref. [39], where it was found that ξ ∼ 145° for a range of
quasicircular configurations).

A. Post-Newtonian analysis

Here we use the leading-order post-Newtonian expres-
sions for the radiated linear momentum to get a qualitative
understanding of the full numerical results. As seen in
Eq. (3.31) of Ref. [40], the instantaneous radiated linear
momentum due to the asymmetry in the masses of the
binary is given by

_~PN ¼ −
8η2δm
105

�
m
r

�
4

½ð5V2
T − 2V2

r þ 4m=rÞVrn̂

−ð12V2
r þ 50V2

T þ 8m=rÞVT λ̂�; ð3Þ

FIG. 1 (color online). A sketch showing how the angle ξ
between the unequal mass contribution to the recoil and the spin-
dependent contribution to the recoil depends on the sign of S∥
(with similar behavior for the δmΔ∥-dependent term). The two
components essentially add if the net spin is counteraligned with
the orbital angular momentum, and they subtract if the spin is
aligned with the orbital angular momentum.
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and the radiated linear momentum due to the leading-order
spin-orbit coupling is

_~PSO ¼ −
8η2m
15r5

½4VTVrn̂þ 2ðV2
T − V2

rÞλ̂�Δ∥; ð4Þ

where VT and Vr are the tangential and radial velocities,
respectively. The velocity is given by ~V ¼ VT λ̂þ Vrn̂,
where n̂ ¼ ð~r1 − ~r2Þ=j~r1 − ~r2j, n̂ × λ̂ ¼ L̂, and L̂ is the unit
vector in the direction of the orbital angular momentum L̂.
For a quasicircular orbit, the angle between these two

components of the instantaneous radiated linear momentum
is given by

cos ξΔ ¼
�
−1þ 15625

6728

V2
r

V2
T
þ � � �

�
signðδm~Δ · L̂Þ; ð5Þ

and hence, for circular orbits, i.e., Vr ¼ 0,

cos ξΔc ¼ −signðδm~Δ · L̂Þ: ð6Þ

This indicates that (in our case δm < 0) the PN prediction is
opposite to what we actually observe using full numerical
simulations, where the two components are opposite of
each other when ~Δ is aligned with the orbital angular
momentum (corotating orbits for our configurations), and
for our counter-rotating configurations, the two compo-
nents add constructively. This difference may be due to the
fact that the large spin-induced recoil takes place mostly
when the two black holes are merging, a regime far from
the PN region of validity. It has been observed for the
“hangup” [41] and superkick [42] effects that while the
parameter dependence predicted by PN is in agreement
with the full numerical results, the amplitude (and in this
case the sign) is not correct.
For orbits dominated by the radial motion instead (i.e.,

VT ≪ Vr), the angle ξ has the form

cos ξΔ ¼
�
4VT

Vr

ðrV2
r þ 2MÞ

j − rV2
r þ 2Mj þ � � �

�
signðδm~Δ · L̂Þ: ð7Þ

Hence, in the near-headon case (i.e., VT ≈ 0), we have

cos ξΔh ≈ 0; ð8Þ

and the two components of the recoil are perpendicular to
each other, in agreement with full numerical results.
The next leading term in the spin-orbit contribution to

the recoil [see Eqs. (4.7)–(4.9) of Ref. [43]] is proportional
to δmS∥. For circular orbits the angle cos ξSc between the
unequal mass recoil and the terms in the recoil proportional

to δm~S is given by

cos ξSc ¼ −signð~S · L̂Þ; ð9Þ

while for head-on collisions [see Eqs. (3.17) of Ref. [43]]
the two components are perpendicular and

cos ξSh ≈ 0: ð10Þ

In a full numerical simulation, the inspiral of two BHs is
neither circular nor head-on, and hence we expect a value of
ξ that lies between 90° and either 180° (corotating) or 0°
(counter-rotating) (see Fig. 1). In particular, because of the
hangup effect [41] we expect that aligned-spin configura-
tions, which have tighter (i.e., more circular) orbits, have
ξ ≈ 180°, while counteraligned configurations, which inspi-
ral much more quickly, should have ξ≲ 90°.
Based on the above analysis, we expect cos ξ to be a

discontinuous function with a finite jump when ~S · ~L and
δmΔ · ~L change sign. While we can model ξ as a discon-
tinuous function, there is a way around this. Note that the
magnitude of the in-plane recoil is given by

V2 ¼ ðvm þ jv⊥j cos ξÞ2 þ v2⊥sin2ξ; ð11Þ

where jv⊥j is the magnitude of the spin contribution to the
in-plane recoil. The important thing to note is that while
cos ξ is discontinuous, the recoil itself should be continu-
ous. For this to be true, the sign change in cos ξ can only
occur when v⊥ ¼ 0; i.e., we expect that jv⊥j cos ξ is
continuous. We can therefore express the product
jv⊥j cos ξ as a product of two continuous functions v⊥,
which we will allow to be positive or negative, and cos ~ξ,
where cos ~ξ has a fixed sign (for historical reasons, we
chose cos ~ξ to be negative) and j cos ~ξj ¼ j cos ξj. Finally,
the magnitude of the recoil is given by

FIG. 2 (color online). The (counter)aligned spin configura-
tion UU (DD) and its effective counterpart 0U (0D) (dashed
counterorbiting).

FIG. 3. TheDUandUD (dashed counterorbiting) configurations.
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V2 ¼ ðvm þ v⊥ cos ~ξÞ2 þ v2⊥sin2 ~ξ; ð12Þ

where v⊥ can be negative and signðv⊥Þ cos ~ξ is the cosine
of the angle between unequal-mass and spin components of
the recoil.

III. NUMERICAL SIMULATIONS

We use the TwoPunctures thorn [44] to generate initial
puncture data [45] for the BHB simulations. These data are
characterized by mass parameters mp (which are not the

horizon masses), as well as the momentum and spin, of
each BH. We evolve these BHB data sets using the LAZEV
[46] implementation of the moving puncture approach
[2,3] with the conformal function W ¼ ffiffiffi

χ
p ¼ expð−2ϕÞ

suggested by Ref. [47]. For the runs presented here, we
use centered, eighth-order finite differencing in space [48]
and a fourth-order Runge-Kutta time integrator. (Note
that we do not upwind the advection terms.) Our code
uses the CACTUS/EINSTEINTOOLKIT [49–51] infrastructure.
We use the CARPET [52] mesh refinement driver to provide
a “moving boxes” style of mesh refinement.
We locate the apparent horizons using the

AHFINDERDIRECT code [53] and measure the horizon
spin using the isolated horizon (IH) algorithm detailed
in [54].
For the computation of the radiated energy and linear

momentum, we use the formulas in [55] which are expressed
directly in terms of the Weyl scalar ψ4. To extract the
radiation of angular momentum components, we use for-
mulas based on “flux linkages” [56], which are explicitly
written in terms of ψ4 in [55,57].
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FIG. 4 (color online). The recoils for the families UD/DU/0U/
0D and for the equal mass cases given in Table I.

TABLE I. Initial data parameters for the quasicircular configurations with a nonspinning smaller mass black hole (labeled 1) and a
larger mass spinning black hole (labeled 2). The punctures are located at ~r1 ¼ ðx1; 0; 0Þ and ~r2 ¼ ðx2; 0; 0Þ, with momenta

P ¼ �ð0; P; 0Þ, spins ~Si ¼ ð0; 0; SiÞ, mass parameters mp=m, horizon (Christodoulou) masses mH=m, total Arnowitt-Deser-Misner
(ADM) mass MADM, and dimensionless spins a=mH ¼ S=m2

H . The configurations are denoted by QX ̲ Y ̲ Z, where X gives the mass
ratio mH

1 =m
H
2 , Y gives the spin of the smaller BH (a1=m2

H), and Z gives the spin of the larger BH ða2=m2
HÞ.

Configuration x1=m x2=m P=m mp
1 =m mp

2=m S1=m2 S2=m2 mH
1 =m mH

2 =m MADM=m a1=mH
1 a2=mH

2

Q1.000̲ 0.00̲ 0.00 −4.7666 4.7666 0.099322 0.48523 0.48523 0 0 0.5 0.5 0.98931 0 0
Q1.000̲ 0.00̲ 0.40 −4.6378 4.523 0.1004 0.48472 0.45144 0 0.1 0.5 0.5 0.9888 0 0.4
Q1.000̲ 0.00̲ 0.60 −4.5759 4.4035 0.10101 0.48445 0.40145 0 0.15 0.5 0.5 0.9886 0 0.6
Q1.000̲ 0.00̲ 0.80 −4.5152 4.2852 0.10159 0.48418 0.30103 0 0.2 0.5 0.5 0.98842 0 0.8
Q1.000̲ 0.20̲ 0.80 −4.4307 4.3878 0.10071 0.47635 0.30108 0.05 0.2 0.5 0.5 0.98838 0.2 0.8
Q1.000̲ 0.40̲ − 0.40 −5.0346 4.9785 0.095751 0.45266 0.45259 −0.1 0.1 0.5 0.5 0.98971 −0.4 0.4
Q1.000̲ 0.40̲ 0.80 −4.405 4.3766 0.10025 0.45098 0.30107 0.1 0.2 0.5 0.5 0.98829 0.4 0.8
Q1.000̲ − 0.60̲ 0.60 −4.8029 4.7172 0.09907 0.40219 0.4021 −0.15 0.15 0.5 0.5 0.98937 −0.6 0.6
Q1.000̲ − 0.80̲ 0.80 −4.9832 4.5267 0.09905 0.30178 0.30168 −0.2 0.2 0.5 0.5 0.98951 −0.8 0.8
Q0.750̲ 0.00̲ − 0.25 −6.0062 4.5158 0.091564 0.41524 0.54417 0 −0.081633 0.42857 0.57143 0.99034 0 −0.25
Q0.750̲ − 0.80̲ 0.45 −5.7814 4.2576 0.094019 0.25784 0.50845 −0.14694 0.14694 0.42857 0.57143 0.99011 −0.8 0.45
Q0.750̲ 0.80̲ − 0.45 −5.6572 4.308 0.093655 0.25774 0.50848 0.14694 − 0.14694 0.42857 0.57143 0.98998 0.8 −0.45
Q0.750̲ − 0.80̲ − 0.60 −6.2721 4.6997 0.091817 0.25847 0.46326 −0.14694 − 0.19592 0.42857 0.57143 0.99111 −0.8 −0.6
Q0.750̲ 0.80̲ 0.60 −5.05 3.7787 0.097289 0.25676 0.46102 0.14694 0.19592 0.42857 0.57143 0.98858 0.8 0.6
Q0.750̲ 0.80̲ − 0.80 −6.1633 4.7098 0.089327 0.25845 0.34767 0.14694 − 0.26122 0.42857 0.57143 0.99083 0.8 −0.8
Q0.500̲ 0.00̲ − 0.50 −6.9641 3.5416 0.084316 0.32093 0.58184 0 −0.22222 0.33333 0.66667 0.99136 0 −0.5
Q0.500̲ 0.00̲ 0.50 −6.2598 3.1299 0.087209 0.31969 0.58068 0 0.22222 0.33333 0.66667 0.99027 0 0.5
Q0.500̲ − 0.80̲ 0.20 −6.6141 3.2581 0.086691 0.19907 0.64372 −0.088889 0.088889 0.33333 0.66667 0.99096 −0.8 0.2
Q0.500̲ 0.80̲ − 0.20 −6.487 3.2681 0.086176 0.19898 0.64368 0.088889−0.088889 0.33333 0.66667 0.99076 0.8 −0.2
Q0.500̲ − 0.80̲ − 0.40 −6.682 3.3317 0.088305 0.19909 0.60963 −0.088889− 0.17778 0.33333 0.66667 0.9913 −0.8 −0.4
Q0.500̲ 0.80̲ 0.40 −5.9213 2.9452 0.089199 0.19825 0.60838 0.088889 0.17778 0.33333 0.66667 0.9898 0.8 0.4
Q0.500̲ − 0.80̲ − 0.80 −7.3137 3.674 0.083939 0.19978 0.4078 −0.088889− 0.35556 0.33333 0.66667 0.99207 −0.8 − 0.8
Q0.500̲ − 0.80̲ 0.80 −6.0831 2.6801 0.091117 0.19815 0.4061 −0.088889 0.35556 0.33333 0.66667 0.98988 −0.8 0.8
Q0.500̲ 0.80̲ − 0.80 −7.0541 3.8437 0.081882 0.19978 0.40782 0.088889 −0.35556 0.33333 0.66667 0.99179 0.8 −0.8
Q0.500̲ 0.80̲ 0.80 −5.7338 2.8246 0.089267 0.19801 0.40601 0.088889 0.35556 0.33333 0.66667 0.98938 0.8 0.8
Q0.333̲ 0.00̲ − 0.67 −7.8557 2.6696 0.07199 0.23933 0.57549 0 −0.375 0.25 0.75 0.99283 0 −0.66667
Q0.333̲ 0.00̲ 0.67 −6.8651 2.2087 0.074136 0.23799 0.57436 0 0.375 0.25 0.75 0.99145 0 0.66667
Q0.333̲ − 0.80̲ 0.80 −6.545 1.8547 0.078325 0.14731 0.45916 −0.05 0.45 0.25 0.75 0.99112 −0.8 0.8
Q0.333̲ 0.80̲ − 0.80 −7.7455 2.8644 0.071192 0.1488 0.46071 0.05 −0.45 0.25 0.75 0.99301 0.8 −0.8
Q0.250̲ 0.00̲ − 0.75 −8.7925 2.2393 0.059859 0.19121 0.54795 0 −0.48 0.2 0.8 0.99415 0 −0.75
Q0.250̲ 0.00̲ 0.75 −7.0934 1.7028 0.064078 0.18938 0.54664 0 0.48 0.2 0.8 0.9925 0 0.75
Q0.250̲ 0.80̲ − 0.80 −8.4636 2.1489 0.061171 0.11861 0.49276 0.032 −0.512 0.2 0.8 0.99409 0.8 −0.8
Q0.200̲ 0.00̲ − 0.80 −9.4341 1.9209 0.051156 0.15919 0.51448 0 −0.55556 0.16667 0.83333 0.99506 0 −0.8
Q0.200̲ 0.00̲ 0.80 −7.2578 1.3894 0.055956 0.15726 0.51325 0 0.55556 0.16667 0.83333 0.99338 0 0.8
Q0.167̲ 0.00̲ − 0.83 −9.0003 1.5299 0.04788 0.1357 0.47918 0 −0.61224 0.14286 0.85714 0.99542 0 −0.83333
Q0.167̲ 0.00̲ 0.83 −7.2953 1.2159 0.049656 0.13442 0.4784 0 0.61224 0.14286 0.85714 0.99408 0 0.83333
Q0.100̲ 0.00̲ 0.00a 7.6331−0.7532 0.036699 0.08524 0.90740 0 0 0.09129 0.91255 1.0000 0 0

aNote that the q ¼ 1=10 binary also had an initial radial momentum of Pr=m ¼ −0.0001685.
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To generate the initial data parameters, we use 3PN
quasicircular orbital parameters with a given initial orbital
frequency ωi. In practice, this leads to an initial eccentricity
of the order of ei ∼ 10−2 that radiates after a few orbits to
about ef ∼ 5 × 10−3, which is small enough for modeling
the remnant in astrophysical applications [58]. Tables I–III
provides explicit values for all the initial data parameters
used in each of the runs presented in this paper. We also
provide the initial and final eccentricity and total number of
orbits in the table.
We evolve these data sets using the grid refinement

structure and global resolution discussed in Appendix A. In
this appendix, we also describe in detail the errors in our
results due to finite extraction radii and finite truncation
errors, as well as how we extrapolate from finite radii to
null infinity.
In order to cover the three-dimensional parameter space

of the aligned-spin BHBs, we consider several families of

physically motivated configurations. We denote our con-
figurations by XY, where X ¼ U;D, or 0 denotes the spin
of the smaller BH (i.e., aligned, counteraligned, or zero)
and Y denotes the spin of the larger BH. If accretion tends
to align the spins, then the UD, DU, UU, and DD
configurations should be among the most probable. The
0U and 0D configurations, depicted in Fig. 2, are interest-
ing in that if the recoil as given in Eq. (2b) is dominated
by the leading Δ∥ dependence, then a 0U or 0D configu-
ration is an effective counterpart to a UU or DD configu-
ration where both BHs are spinning with the same
dimensionless spin α and αEffective ¼ �ð1 − qÞα0 (i.e., a
0U with spin αEffective should give the same recoil as a
UU=DD configuration with α2 ¼ α1 ¼ α0). Since αEffective
is smaller than α0, we can apparently simulate maximal
UU and DD configurations with nonmaximal 0U and 0D
configurations. We thus study BHBs with the smaller
BH nonspinning and the larger BH spinning with spin

TABLE II. The mass and spin of the BHBs in Table I after the BHs had time to equilibrate (t=M ¼ 150).

Configuration mr
1=m mr

2=m αr1 αr2 δmr Sr=m2
r Δr=m2

r

Q1.000 ̲ 0.00 ̲ 0.00 0.500001 0.500001 −0.000002 −0.000002 0.000000 −0.000001 0.000000
Q1.000 ̲ 0.00 ̲ 0.40 0.499998 0.500005 −0.000002 0.399919 −0.000007 0.099981 0.199962
Q1.000 ̲ 0.00 ̲ 0.60 0.499998 0.499975 −0.000002 0.600030 0.000023 0.150000 0.300009
Q1.000 ̲ 0.00 ̲ 0.80 0.499999 0.499804 −0.000001 0.800605 0.000195 0.200073 0.400225
Q1.000 ̲ 0.20 ̲ 0.80 0.500006 0.499804 0.199991 0.800585 0.000202 0.250083 0.300196
Q1.0000.40 ̲ − 0.40 0.500006 0.500007 −0.400013 0.399986 −0.000001 −0.000006 0.399999
Q1.000 ̲ 0.40 ̲ 0.80 0.500009 0.499803 0.399974 0.800587 0.000206 0.300099 0.200183
Q1.000 ̲ − 0.60̲ 0.60 0.499976 0.499980 −0.600096 0.600029 −0.000004 −0.000014 0.600063
Q1.000 ̲ − 0.80̲ 0.80 0.499801 0.499808 −0.800702 0.800576 −0.000007 −0.000026 0.800639
Q0.750 ̲ 0.00 ̲ − 0.25 0.428573 0.571432 −0.000002 −0.250015 −0.142858 −0.081638 −0.142865
Q0.750 ̲ − 0.80̲ 0.45 0.428415 0.571439 −0.800654 0.449990 −0.143045 −0.000011 0.600241
Q0.750 ̲ 0.80 ̲ − 0.45 0.428417 0.571428 0.800563 −0.450042 −0.143033 −0.000016 −0.600235
Q0.750 ̲ − 0.80̲ − 0.60 0.428413 0.571397 −0.800656 −0.600070 −0.143011 −0.343001 0.000133
Q0.750 ̲ 0.80 ̲ 0.60 0.428422 0.571391 0.800523 0.600059 −0.142995 0.342972 −0.000093
Q0.750 ̲ 0.80 ̲ − 0.80 0.428412 0.571165 0.800579 −0.800777 −0.142813 −0.114398 −0.800692
Q0.500 ̲ 0.00 ̲ − 0.50 0.333333 0.666646 −0.000003 −0.500057 −0.333320 −0.222243 −0.333367
Q0.500 ̲ 0.00 ̲ 0.50 0.333333 0.666647 −0.000003 0.500073 −0.333321 0.222250 0.333380
Q0.500 ̲ − 0.80̲ 0.20 0.333239 0.666684 −0.800560 0.199993 −0.333471 −0.000010 0.400141
Q0.500 ̲ 0.80 ̲ − 0.20 0.333239 0.666670 0.800469 −0.200003 −0.333462 −0.000001 −0.400120
Q0.500 ̲ − 0.80̲ − 0.40 0.333243 0.666681 −0.800542 −0.399969 −0.333463 −0.266713 0.000124
Q0.500 ̲ 0.80 ̲ 0.40 0.333244 0.666666 0.800412 0.400002 −0.333452 0.266713 −0.000065
Q0.500 ̲ − 0.80̲ − 0.80 0.333233 0.666348 −0.800574 −0.800723 −0.333254 −0.444809 −0.266894
Q0.500 ̲ − 0.80̲ 0.80 0.333246 0.666358 −0.800499 0.800638 −0.333244 0.266823 0.800592
Q0.500 ̲ 0.80 ̲ − 0.80 0.333232 0.666330 0.800530 −0.800798 −0.333244 −0.266891 −0.800708
Q0.500 ̲ 0.80 ̲ 0.80 0.333245 0.666344 0.800398 0.800701 −0.333237 0.444774 0.266924
Q0.333 ̲ 0.00 ̲ − 0.67 0.249994 0.749857 −0.000002 −0.666947 −0.499938 −0.375127 −0.500189
Q0.333 ̲ 0.00 ̲ 0.67 0.249997 0.749855 −0.000004 0.666920 −0.499931 0.375108 0.500168
Q0.333 ̲ − 0.80̲ 0.80 0.249953 0.749624 −0.800179 0.800758 −0.499883 0.400322 0.800613
Q0.333 ̲ 0.80 ̲ − 0.80 0.249944 0.749607 0.800395 −0.800865 −0.499888 −0.400372 −0.800748
Q0.250 ̲ 0.00 ̲ − 0.75 0.200004 0.799697 −0.000002 −0.750583 −0.599873 −0.480297 −0.600419
Q0.250 ̲ 0.00 ̲ 0.75 0.199998 0.799695 −0.000003 0.750566 −0.599881 0.480291 0.600408
Q0.250 ̲ 0.80 ̲ − 0.80 0.199967 0.799568 0.800375 −0.800890 −0.599880 −0.480459 −0.800787
Q0.200 ̲ 0.00 ̲ − 0.80 0.166673 0.832872 0.000001 −0.800897 −0.666502 −0.556069 −0.667348
Q0.200 ̲ 0.00 ̲ 0.80 0.166665 0.832869 0.000004 0.800884 −0.666515 0.556068 0.667342
Q0.167 ̲ 0.00 ̲ − 0.83 0.142855 0.856538 −0.000002 −0.834514 −0.714117 −0.612992 −0.715227
Q0.167 ̲ 0.00 ̲ 0.83 0.142855 0.856533 −0.000001 0.834513 −0.714115 0.612989 0.715226
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αEffective ¼ �ð1 − qÞ for q ¼ 1=2; 1=3; 1=4; 1=5; 1=6. A
first analysis of those simulations suggested that although
leading, the Δ∥ dependence in Eq. (2b) is not sufficient to
model the recoils with high accuracy. We thus consider
additional families (see Fig. 3) of BHBs, with specific spins
α ≤ 0.8 in a UD or DU configuration. In addition to
showing the importance of the total spin S∥ to the recoil,
we also found from these configurations that the maximum
recoil occurs for qmax ∼ 0.62, as shown in Fig. 4.
We chose other configurations to selectively activate or

deactivate blocks of terms in the expansion formulas for the
recoil and radiated energy momentum. Thus, some simu-
lations have only one of the variables δm, S∥, and Δ∥
nonvanishing and others have all of them nonvanishing.
This provides a means of fitting all terms and then verifying
the fit for more general cases. The complete set of initial
data parameters are given in Table I. In the table, the runs
are labeled by the mass ratio, spin magnitude of black hole
1 (the smaller BH), and spin magnitude of black hole 2 (the
larger BH).
Since the initial data assume conformal flatness and

pure longitudinal extrinsic curvature, they contain initial
distortions that are either radiated away or absorbed by
the BHs during the first orbital period. After this initial
transient period, the BH masses and spins settle to their
equilibrium values. In Table II we give the values for
the horizon mass and spin after this transient period
has ended.
After the BHs in the progenitor BHB merge, we

measure the remnants mass, spin, and recoil velocity.
We measure the recoil velocity from the radiation of
linear momentum at infinity, as this is the most reliable
and gauge invariant way of computing recoils. The
resulting recoil velocities are given in Table IV. In order
to produce accurate results, we extracted the waveform
at different finite radii and extrapolated to infinity.
Here we chose observer locations equidistant in 1=r,
where the largest extraction radius was 102.6m. We fit
the finite-radius results for the recoil, energy radiated,
and angular momentum radiated to linear and quadratic
functions in 1=r, and we use the difference between
these two fits as an estimate for the error due to finite
radius, which we report in the table. As we discuss in
Appendix A, other sources of error come from the finite
numerical resolution and the maximum l mode used in
the extraction. Based on our assessment of those errors
(see Appendix A), we compute the recoil using the l ¼
2 through l ¼ 6 modes. Also based on the results in
Appendix A, we estimate the truncation error in the
recoil to be ∼10 km s−1.
In Table V we give the horizon mass and spin magnitude

of the remnant BH for each configuration studied here. We
measure these using the isolated horizon formalism and
based on the measured radiated mass and angular momen-
tum. However, the isolated horizon measurements are

expected to be more accurate, and the differences between
the isolated horizon and radiation quantities are largely due
to truncation errors in the radiation zone that do not affect
the accuracy near the horizons themselves (see Ref. [59]).
As shown in Appendix A, the truncation errors in the
isolated horizon measurements are quite small. Note that
the errors reported in the table do not include truncation
errors. From the results in Appendix A, we estimate that the
truncation error in the isolated horizon measure of δM is
∼10−5, while the error in αrem is ∼10−4.

IV. NEW MODELS OF REMNANT MASS,
SPIN, AND RECOIL

In Refs. [8] and [59] we developed a series expansion for
the mass, spin, and recoil velocity of the remnant BH

TABLE III. Table of the initial orbital frequency mωi, number
of orbits to merger, N, and the initial and final eccentricities, ei
and ef.

Configuration mωi N ei ef

Q1.000 ̲ 0.00 ̲ 0.00 0.0300 5.3 0.028 0.005
Q1.000 ̲ 0.00 ̲ 0.40 0.0313 5.4 0.021 0.006
Q1.000 ̲ 0.00 ̲ 0.60 0.0320 5.6 0.021 0.005
Q1.000 ̲ 0.00 ̲ 0.80 0.0327 5.7 0.020 0.004
Q1.000 ̲ 0.20 ̲ 0.80 0.0324 6.2 0.020 0.002
Q1.000 ̲ 0.40 ̲ − 0.40 0.0280 5.9 0.023 0.002
Q1.000 ̲ 0.40 ̲ 0.80 0.0324 6.6 0.020 0.002
Q1.000 ̲ − 0.60̲ 0.60 0.0300 5.1 0.022 0.005
Q1.000 ̲ − 0.80̲ 0.80 0.0300 5.1 0.022 0.005
Q0.750 ̲ 0.00 ̲ − 0.25 0.0263 6.2 0.024 0.005
Q0.750 ̲ − 0.80̲ 0.45 0.0280 5.7 0.022 0.003
Q0.750 ̲ 0.80 ̲ − 0.45 0.0280 6.1 0.023 0.006
Q0.750 ̲ − 0.80̲ − 0.60 0.0254 4.6 0.024 0.005
Q0.750 ̲ 0.80 ̲ 0.60 0.0320 7.1 0.020 0.004
Q0.750 ̲ 0.80 ̲ − 0.80 0.0250 6.6 0.025 0.005
Q0.500 ̲ 0.00 ̲ − 0.50 0.0265 5.4 0.020 0.005
Q0.500 ̲ 0.00 ̲ 0.50 0.0300 7.2 0.024 0.003
Q0.500 ̲ − 0.80̲ 0.20 0.0287 5.6 0.019 0.003
Q0.500 ̲ 0.80 ̲ − 0.20 0.0287 6.2 0.019 0.005
Q0.500 ̲ − 0.80̲ − 0.40 0.0287 4.0 0.018 0.004
Q0.500 ̲ 0.80 ̲ 0.40 0.0320 6.8 0.018 0.004
Q0.500 ̲ − 0.80̲ − 0.80 0.0254 4.1 0.019 0.008
Q0.500 ̲ − 0.80̲ 0.80 0.0330 6.1 0.017 0.002
Q0.500 ̲ 0.80 ̲ − 0.80 0.0250 6.1 0.021 0.005
Q0.500 ̲ 0.80 ̲ 0.80 0.0330 7.8 0.017 0.002
Q0.333 ̲ 0.00 ̲ − 0.67 0.0265 5.0 0.013 0.008
Q0.333 ̲ 0.00 ̲ 0.67 0.0310 8.6 0.014 0.003
Q0.333 ̲ − 0.80̲ 0.80 0.0345 7.1 0.012 0.003
Q0.333 ̲ 0.80 ̲ − 0.80 0.0260 5.3 0.014 0.006
Q0.250 ̲ 0.00 ̲ − 0.75 0.0248 5.7 0.014 0.005
Q0.250 ̲ 0.00 ̲ 0.75 0.0320 10.1 0.011 0.003
Q0.250 ̲ 0.80 ̲ − 0.80 0.0260 5.2 0.009 0.008
Q0.200 ̲ 0.00 ̲ − 0.80 0.0238 6.4 0.015 0.006
Q0.200 ̲ 0.00 ̲ 0.80 0.0325 11.3 0.011 0.002
Q0.167 ̲ 0.00 ̲ − 0.83 0.0265 4.4 0.014 0.008
Q0.167 ̲ 0.00 ̲ 0.83 0.0330 12.8 0.010 0.002
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produced by the merger of a progenitor BHB with arbitrary
BH spinmagnitudes and orientations and arbitrarymass ratio
in terms of the variables ~Δ, ~S, and δm. For the runs presented
here, only terms proportional to S∥,Δ∥, and δm contribute. In
addition, only certain combinations are allowed by symmetry
considerations. For more details see Table IVof Ref. [8] and
Table VI of Ref. [59]. Here we include all allowed terms up

through fourthorder.We includepowers ofδmwhencounting
orders. This differs from our previous conventions [8,59],
where we only counted powers in the spin variables and
allowed the coefficients of those terms to be arbitrary
functions of δm (consistent with the symmetries).
The formula for the mass of the remnant Mrem is then

given by

Mrem

m
¼ fM0 þ K1

~S∥ þ K2a
~Δ∥δmþ K2b

~S2∥ þ K2c
~Δ2
∥ þ K2dδm2 þ K3a

~Δ∥ ~S∥δmþ K3b
~S∥ ~Δ2

∥

þ K3c
~S3∥ þ K3d

~S∥δm2 þ K4a
~Δ∥ ~S

2
∥δmþ K4b

~Δ3
∥δmþ K4c

~Δ4
∥ þ K4d

~S4∥ þ K4e
~Δ2
∥ ~S

2
∥

þ K4fδm4 þ K4g
~Δ∥δm3 þ K4h

~Δ2
∥δm2 þ K4i

~S2∥δm2g þOðϵ5Þ; ð13Þ

TABLE IV. The recoil velocity as calculated using lmax ¼ 6 and rmax ¼ 102.6m. The error estimates are due to
radial extrapolation errors. We estimate that the finite difference errors are of order 10 km s−1 (see Appendix A for
more details)

Run Configuration Vx Vy V

1 Q1.000̲ 0.00 ̲ 0.00 0.0� 0.0 0.0� 0.0 0.0� 0.0
2 Q1.000̲ 0.00 ̲ 0.40 −24.36� 1.16 −80.37� 0.23 83.97� 0.40
3 Q1.000̲ 0.00 ̲ 0.60 54.72� 1.65 −104.99� 1.92 118.40� 1.87
4 Q1.000̲ 0.00 ̲ 0.80 141.16� 0.52 −39.33� 4.57 146.53� 1.32
5 Q1.000̲ 0.20 ̲ 0.80 −76.92� 2.28 60.74� 0.52 98.01� 1.82
6 Q1.000̲ 0.40 ̲ − 0.40 82.56� 2.39 164.52� 1.12 184.07� 1.47
7 Q1.000̲ 0.40 ̲ 0.80 4.99� 0.84 −53.98� 0.69 54.22� 0.69
8 Q1.000̲ − 0.60 ̲ 0.60 −209.74� 2.12 177.56� 2.07 274.80� 2.10
9 Q1.000̲ − 0.80 ̲ 0.80 −167.03� 3.96 327.50� 1.27 367.63� 2.13
10 Q0.750̲ 0.00 ̲ − 0.25 105.53� 0.49 −86.34� 0.67 136.35� 0.57
11 Q0.750̲ − 0.80 ̲ 0.45 208.49� 0.25 60.82� 6.60 217.18� 1.86
12 Q0.750̲ 0.80 ̲ − 0.45 166.34� 1.33 −271.75� 0.25 318.61� 0.73
13 Q0.750̲ − 0.80 ̲ − 0.60 15.40� 1.42 94.31� 0.79 95.57� 0.81
14 Q0.750̲ 0.80 ̲ 0.60 3.89� 1.57 −27.08� 0.27 27.36� 0.35
15 Q0.750̲ 0.80 ̲ − 0.80 −333.94� 1.70 258.31� 4.36 422.19� 2.99
16 Q0.500̲ 0.00 ̲ − 0.50 155.44� 1.36 222.33� 1.06 271.28� 1.17
17 Q0.500̲ 0.00 ̲ 0.50 −18.50� 1.66 −34.08� 5.12 38.77� 4.56
18 Q0.500̲ − 0.80 ̲ 0.20 62.47� 2.45 66.40� 6.26 91.16� 4.86
19 Q0.500̲ 0.80 ̲ − 0.20 254.30� 0.10 −68.79� 2.32 263.43� 0.61
20 Q0.500̲ − 0.80 ̲ − 0.40 −120.44� 2.83 −128.91� 0.01 176.42� 1.93
21 Q0.500̲ 0.80 ̲ 0.40 −80.19� 0.19 −8.70� 1.76 80.67� 0.26
22 Q0.500̲ − 0.80 ̲ − 0.80 126.69� 1.08 −235.55� 1.65 267.46� 1.54
23 Q0.500̲ − 0.80 ̲ 0.80 59.84� 6.28 142.31� 11.19 154.38� 10.60
24 Q0.500̲ 0.80 ̲ − 0.80 231.96� 0.78 −350.71� 2.17 420.48� 1.86
25 Q0.500̲ 0.80 ̲ 0.80 2.12� 4.77 −0.39� 2.11 2.15� 4.71
26 Q0.333̲ 0.00 ̲ − 0.67 −127.75� 2.03 −257.15� 0.57 287.15� 1.04
27 Q0.333̲ 0.00 ̲ 0.67 23.02� 2.89 −9.61� 1.69 24.94� 2.74
28 Q0.333̲ − 0.80 ̲ 0.80 20.09� 4.71 69.37� 8.74 72.22� 8.50
29 Q0.333̲ 0.80 ̲ − 0.80 346.95� 1.00 21.11� 1.57 347.60� 1.01
30 Q0.250̲ 0.00 ̲ − 0.75 −200.80� 0.04 143.20� 1.07 246.63� 0.62
31 Q0.250̲ 0.00 ̲ 0.75 3.53� 2.91 11.09� 5.46 11.64� 5.27
32 Q0.250̲ 0.80 ̲ − 0.80 254.96� 0.06 −95.67� 1.83 272.32� 0.65
33 Q0.200̲ 0.00 ̲ − 0.80 199.51� 0.62 46.95� 1.27 204.97� 0.67
34 Q0.200̲ 0.00 ̲ 0.80 −1.18� 5.14 −3.20� 1.49 3.41� 2.27
35 Q0.167̲ 0.00 ̲ − 0.83 171.27� 0.72 9.26� 1.27 171.52� 0.73
36 Q0.167̲ 0.00 ̲ 0.83 3.33� 3.27 0.51� 0.29 3.37� 3.23
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where Oðϵ5Þ denotes terms of fifth and higher order in the
expansion variables and where variables with tildes are
dimensionless, that is, ~S∥ ¼ S∥=m2 and ~Δ∥ ¼ Δ∥=m2. As
written, Eq. (13) does not reproduce exactly the particle limit
since δm → �1 as η → 0. However, we can add terms of
order Oðϵ6Þ and higher to obtain the correct particle limit
behavior while simultaneously producing an expansion
equivalent to Eq. (13). First, we note that in the particle
limit,Mrem is given byMrem=m ¼ 1þ ηð ~Eisco − 1Þ þOðηÞ2

(where mη ~Eisco is the energy of a particle at the inner-most
stable circular orbit (ISCO). To enforce the particle limit for
zero spin, we add two terms, K6δm6 þ K8δm8, and then fix
the value of these constants by demanding that a reexpansion
in terms of η gives 1þ ηð ~Esch

isco − 1Þ þOðηÞ2 ( ~Esch
isco is the

Schwarzschild ISCO energy).We follow a similar procedure
for the spin-dependent terms. For most terms in Eq. (13), the
net effect is to simply multiply the given term by ð4ηÞ2. The
resulting formula for Mrem is given by

Mrem

m
¼ ð4ηÞ2fM0 þ K1

~S∥ þ K2a
~Δ∥δmþ K2b

~S2∥ þ K2c
~Δ2
∥ þ K2dδm2 þ K3a

~Δ∥ ~S∥δmþ K3b
~S∥ ~Δ2

∥ þ K3c
~S3∥

þ K3d
~S∥δm2 þ K4a

~Δ∥ ~S
2
∥δmþ K4b

~Δ3
∥δmþ K4c

~Δ4
∥ þ K4d

~S4∥ þ K4e
~Δ2
∥ ~S

2
∥ þ K4fδm4 þ K4g

~Δ∥δm3

þ K4h
~Δ2
∥δm2 þ K4i

~S2∥δm2g þ ½1þ ηð ~EISCO þ 11Þ�δm6: ð14Þ

Here we take ~EISCO from Eq. (2.7) of Ref. [60] (we replace the variable a in Ref. [60] with αrem, but similar results are
obtained when using S∥=m2 instead).
We then verified that the correct leading power of 4η in Eq. (14) is indeed 2 by replacing ð4ηÞ2 with ð4ηÞp and fitting all

coefficients, and we found that p ¼ 2.0006 gives the best fit. In Table VI the power p is set to 2 exactly when performing
the fits.
To obtain a phenomenological formula for the remnant spin, we follow a similar procedure. Prior to enforcing the particle

limit we have

αrem ¼ Srem
M2

rem
¼ fL0 þ L1

~S∥ þ L2a
~Δ∥δmþ L2b

~S2∥ þ L2c
~Δ2
∥ þ L2dδm2 þ L3a

~Δ∥ ~S∥δmþ L3b
~S∥ ~Δ2

∥ þ L3c
~S3∥

þ L3d
~S∥δm2 þ L4a

~Δ∥ ~S
2
∥δmþ L4b

~Δ3
∥δmþ L4c

~Δ4
∥ þ L4d

~S4∥ þ L4e
~Δ2
∥ ~S

2
∥ þ L4fδm4 þ L4g

~Δ∥δm3

þ L4h
~Δ2
∥δm2 þ L4i

~S2∥δm2g þOðϵ5Þ: ð15Þ

Once again, we add higher-order terms in order to enforce the correct particle limit behavior. Here the new terms are
generated by multiplying the existing terms in Eq. (15) by the next even powers of δm that correspond to Oðϵ5Þ or higher.
For instance, for the spin-independent terms we add L6δm6 þ L8δm8, and for the linear in the spin terms,
L5S∥δm4 þ L7S∥δm6. We then impose the particle limit, which is given by αrem ¼ ~S∥ þ η ~JISCO þOðη2Þ. Again, we
use Eq. (2.8) of Ref. [60] to calculate the ISCO angular momentum, replacing the variable a there with αrem.
After enforcing the particle limit, we get

αrem ¼ Srem
M2

rem
¼ ð4ηÞ2fL0 þ L1

~S∥ þ L2a
~Δ∥δmþ L2b

~S2∥ þ L2c
~Δ2
∥ þ L2dδm2 þ L3a

~Δ∥ ~S∥δmþ L3b
~S∥ ~Δ2

∥ þ L3c
~S3∥

þ L3d
~S∥δm2 þ L4a

~Δ∥ ~S
2
∥δmþ L4b

~Δ3
∥δmþ L4c

~Δ4
∥ þ L4d

~S4∥ þ L4e
~Δ2
∥ ~S

2
∥ þ L4fδm4 þ L4g

~Δ∥δm3

þ L4h
~Δ2
∥δm2 þ L4i

~S2∥δm2g þ ~S∥ð1þ 8ηÞδm4 þ η ~JISCOδm6: ð16Þ

In order to verify our hypothesis, we first replace ð4ηÞ2 with
ð4ηÞp and fit for all coefficients in Eq. (16). We find
p ¼ 2.015, which is reasonably close to the expected
power of 2. We then fit again using p ¼ 2 exactly and
report these fitting parameters in Table VI.
By using a ¼ αrem to evaluate the ISCO quantities, the

fitting formula for the spin becomes implicit, and the

formula for the mass depends directly on the formula for

the spin. Therefore, to evaluate the fitting formulas for any

given initial binary, we use a rapidly converging iterative
process where the initial a is set to S∥=m2.
Finally, we fit the recoil to the formula

v⊥ ¼ Hη2ð ~Δ∥ þH2a
~S∥δmþH2b

~Δ∥ ~S∥ þH3a
~Δ2
∥δm

þH3b
~S2∥δmþH3c

~Δ∥ ~S
2
∥ þH3d

~Δ3
∥ þH3e

~Δ∥δm2

þH4a
~S∥ ~Δ2

∥δmþH4b
~S3∥δmþH4c

~S∥δm3

þH4d
~Δ∥ ~S∥δm2 þH4e

~Δ∥ ~S
3
∥ þH4f

~S∥ ~Δ3
∥Þ; ð17Þ
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~ξ ¼ aþ b ~S∥ þ cδm ~Δ∥; ð18Þ

where we have added a leading power of η2 to the
expansion. The issue of the leading power of η for the
recoil was discussed in the context of the off-plane recoils
in Refs. [12,38], where the possibility of a leading η3 versus
η2 was studied with full numerical simulations. Further
study of recoils in the small mass ratio perturbative regime
[61] led to the conclusion that the terms of the recoil linear
in the spin should scale as η2, and post-Newtonian
expansions including quadratic terms in the spin also show
a leading η2 behavior [43] (again, for low eccentricity,
in-plane orbits).

Finally, we tested the leading η2 dependence in Eq. (17)
by allowing the power of η to be free. Interestingly, we do
not find p ¼ 2, but rather we find that the minimum in the
fit is quite shallow, with similar results for the interval 1.5 ≤
p ≤ 2.5 (the minimum is at p ∼ 2.29). Since p ¼ 2 gives
the correct particle limit behavior for quasicircular orbits (at
least at moderate mass ratios; however, see Refs. [62,63] for
a discussion on resonance recoil which scales as η1.5), we
enforce p ¼ 2 for the fits presented in Table VI.
We note that a factor of ηp in the coefficients is not

independent of the expansion proposed in Refs. [8] and
[59] since 4η ¼ 1 − δm2 and this allows us to recast all
powers of η into the original form of the expansion.

TABLE V. The final remnant mass and spin as measured using the IH formalism and as measured from the radiation of energy and
angular momentum. The error bars in the radiative quantities are due to radial extrapolation errors, while the error bars in the IH
quantities are due to variations in the measured mass and spin with time. See Appendix A for estimates of the truncation error. The
expected truncation error in δMIH is 10−5, and the error in αIH is 10−4.

Run Configuration δMIH δMrad αIHrem αradrem

1 Q1.000̲ 0.00 ̲ 0.00 0.048379� 0.000001 0.047937� 0.000177 0.686419� 0.000007 0.685034� 0.004747
2 Q1.000̲ 0.00 ̲ 0.40 0.054557� 0.000002 0.053888� 0.000190 0.745985� 0.000058 0.745180� 0.004325
3 Q1.000̲ 0.00 ̲ 0.60 0.058316� 0.000004 0.057438� 0.000250 0.774671� 0.000195 0.774270� 0.004519
4 Q1.000̲ 0.00 ̲ 0.80 0.062821� 0.000007 0.061610� 0.000362 0.802619� 0.000086 0.802453� 0.004977
5 Q1.000̲ 0.20 ̲ 0.80 0.067692� 0.000001 0.066171� 0.000443 0.830671� 0.000015 0.830647� 0.005519
6 Q1.000̲ 0.40̲ − 0.40 0.048437� 0.000000 0.047998� 0.000163 0.685844� 0.000001 0.683873� 0.005278
7 Q1.000̲ 0.40 ̲ 0.80 0.073515� 0.000003 0.071532� 0.000572 0.857465� 0.000046 0.857999� 0.006244
8 Q1.000̲ − 0.60 ̲ 0.60 0.048780� 0.000000 0.048268� 0.000202 0.685258� 0.000000 0.683850� 0.004611
9 Q1.000̲ − 0.80 ̲ 0.80 0.049353� 0.000000 0.048593� 0.000304 0.684235� 0.000020 0.682995� 0.005103
10 Q0.750̲ 0.00̲ − 0.25 0.042681� 0.000009 0.042368� 0.000179 0.621171� 0.000025 0.618973� 0.006118
11 Q0.750̲ − 0.80 ̲ 0.45 0.046525� 0.000001 0.045794� 0.000280 0.685173� 0.000021 0.684202� 0.005942
12 Q0.750̲ 0.80̲ − 0.45 0.047283� 0.000001 0.046683� 0.000270 0.662124� 0.000027 0.660424� 0.006072
13 Q0.750 ̲ − 0.80 ̲ − 0.60 0.033808� 0.000000 0.033435� 0.000204 0.451036� 0.000001 0.449575� 0.005390
14 Q0.750̲ 0.80 ̲ 0.60 0.075774� 0.000000 0.073304� 0.000761 0.871698� 0.000003 0.872990� 0.007658
15 Q0.750̲ 0.80̲ − 0.80 0.042577� 0.000000 0.042037� 0.000329 0.586122� 0.000000 0.584030� 0.007777
16 Q0.500̲ 0.00̲ − 0.50 0.031757� 0.000001 0.031607� 0.000107 0.460169� 0.000001 0.458375� 0.004236
17 Q0.500̲ 0.00 ̲ 0.50 0.050577� 0.000012 0.049510� 0.000268 0.778577� 0.000018 0.778307� 0.004860
18 Q0.500̲ − 0.80 ̲ 0.20 0.038377� 0.000001 0.037656� 0.000195 0.638918� 0.000018 0.638885� 0.004488
19 Q0.500̲ 0.80̲ − 0.20 0.039610� 0.000013 0.039003� 0.000172 0.606313� 0.000022 0.605347� 0.004643
20 Q0.500 ̲ − 0.80 ̲ − 0.40 0.030257� 0.000001 0.029824� 0.000142 0.441854� 0.000004 0.441744� 0.003427
21 Q0.500̲ 0.80 ̲ 0.40 0.054693� 0.000002 0.053274� 0.000363 0.790499� 0.000012 0.791070� 0.005010
22 Q0.500 ̲ − 0.80 ̲ − 0.80 0.026965� 0.000001 0.026574� 0.000175 0.305299� 0.000000 0.304648� 0.004239
23 Q0.500̲ − 0.80 ̲ 0.80 0.054259� 0.000001 0.052322� 0.000535 0.823813� 0.000016 0.825549� 0.005449
24 Q0.500̲ 0.80̲ − 0.80 0.031687� 0.000001 0.031281� 0.000219 0.410368� 0.000001 0.408069� 0.005900
25 Q0.500̲ 0.80 ̲ 0.80 0.075669� 0.000021 0.071617� 0.001144 0.902719� 0.000354 0.906457� 0.008499
26 Q0.333̲ 0.00̲ − 0.67 0.021506� 0.000006 0.021379� 0.000114 0.240088� 0.000006 0.239368� 0.003257
27 Q0.333̲ 0.00 ̲ 0.67 0.045862� 0.000010 0.044039� 0.000455 0.823471� 0.000025 0.825458� 0.005127
28 Q0.333̲ − 0.80 ̲ 0.80 0.047937� 0.000014 0.046294� 0.000398 0.855825� 0.000188 0.857221� 0.004083
29 Q0.333̲ 0.80̲ − 0.80 0.022026� 0.000004 0.021768� 0.000115 0.206316� 0.000002 0.205397� 0.003613
30 Q0.250̲ 0.00̲ − 0.75 0.016007� 0.000001 0.015923� 0.000101 0.067207� 0.000000 0.066201� 0.002989
31 Q0.250̲ 0.00 ̲ 0.75 0.041023� 0.000005 0.038639� 0.000449 0.852368� 0.000083 0.855422� 0.004317
32 Q0.250̲ 0.80̲ − 0.80 0.016470� 0.000000 0.016191� 0.000100 0.057516� 0.000001 0.057117� 0.002698
33 Q0.200̲ 0.00̲ − 0.80 0.012631� 0.000007 0.012556� 0.000091 −0.067330� 0.000001 −0.067585� 0.002660
34 Q0.200̲ 0.00 ̲ 0.80 0.036968� 0.000044 0.034071� 0.000500 0.872432� 0.000480 0.876983� 0.004144
35 Q0.167̲ 0.00̲ − 0.83 0.010495� 0.000004 0.010396� 0.000067 −0.172301� 0.000003 −0.172286� 0.001438
36 Q0.167̲ 0.00 ̲ 0.83 0.033350� 0.000003 0.030324� 0.000367 0.888377� 0.000166 0.893634� 0.003402
37 Q0.100̲ 0.00 ̲ 0.00 0.0044� 0.0001 0.261� 0.002
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The 17 constants in Eqs. (17) and (18), 19 constants in
Eq. (14), and 19 constants in Eq. (16) were obtained by a
least-squares fit to the results of our 36 simulations and, in
the case of the fits of the final mass and spin, an additional
38 SXS runs [64] and a q ¼ 1∶10 simulation. Note that, as
explained above, we allow v⊥ to be positive and negative
and thereby allow ~ξ to be continuous (see Fig. 7).
The results of the recoil velocity fit and residuals to the

entire set of 36 runs is shown in Fig. 5. We observe that the
residuals are below 7 km s−1.
In order to assess the accuracy of our formula, we

compare its predictions for 8 independent runs from the
group at AEI reported in Ref. [65] and 16 from the SXS
Collaboration in Ref. [64]. The results are shown in Fig. 6.
We observe that while the residuals of our runs and those of
AEI are similar and relatively small (i.e., within 10 km s−1),

the residuals with respect to the SXS runs are roughly 3
times larger. We note that while in this paper (and Ref. [65])
recoils are computed using the radiated linear momentum,
the SXS catalog reports coordinate velocities. Coordinate
velocities are gauge dependent and therefore only an
approximation to the true recoil.
Note that while we use the recoils of Ref. [65] as an

independent test of our fitting formula, the recoil formula
proposed in [65] [Eq. (42) there] does not respect the
symmetry of exchange of black-hole labels 1↔2; hence,
we would expect it to be less accurate outside of the region
of parameter space used to generate that fit.
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FIG. 5 (color online). Fit and residuals to 36 RIT data (see
Table IV) with a root mean square deviation, RMS ¼ 2.5 km s−1.

TABLE VI. Table of fitting parameters for recoil, mass, and spin formulas.

H 7367.250029� 66.122336 M0 0.951507� 0.000030 L0 0.686710� 0.000039
H2a −1.626094� 0.053888 K1 −0.051379� 0.000193 L1 0.613247� 0.000168
H2b −0.578177� 0.055790 K2a −0.004804� 0.000514 L2a −0.145427� 0.000473
H3a −0.717370� 0.077605 K2b −0.054522� 0.000690 L2b −0.115689� 0.000761
H3b −2.244229� 0.137982 K2c −0.000022� 0.000010 L2c −0.005254� 0.000332
H3c −1.221517� 0.176699 K2d 1.995246� 0.000497 L2d 0.801838� 0.000514
H3d −0.002325� 0.021612 K3a 0.007064� 0.002680 L3a −0.073839� 0.002986
H3e −1.064708� 0.133021 K3b −0.017599� 0.001678 L3b 0.004759� 0.001374
H4a −0.579599� 0.297351 K3c −0.119175� 0.001054 L3c −0.078377� 0.000911
H4b −0.455986� 0.302432 K3d 0.025000� 0.001951 L3d 1.585809� 0.001777
H4c 0.010963� 0.174289 K4a −0.068981� 0.004251 L4a −0.003050� 0.001910
H4d 1.542924� 0.274459 K4b −0.011383� 0.001709 L4b −0.002968� 0.001431
H4e −4.735367� 0.430869 K4c −0.002284� 0.000192 L4c 0.004364� 0.000532
H4f −0.284062� 0.174087 K4d −0.165658� 0.003100 L4d −0.047204� 0.003250
a 2.611988� 0.028327 K4e 0.019403� 0.003220 L4e −0.053099� 0.003682
b 1.383778� 0.092915 K4f 2.980990� 0.001197 L4f 0.953458� 0.001210
c 0.549758� 0.113300 K4g 0.020250� 0.002524 L4g −0.067998� 0.002369

K4h −0.004091� 0.002057 L4h 0.001629� 0.000980
K4i 0.078441� 0.003263 L4i −0.066693� 0.003289
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FIG. 6 (color online). Recoil fit, fit residuals (diamonds), and
variation in the fit prediction (cross) for the 8 AEI (RMS ¼
6.8 km s−1) simulations and 16 SXS (RMS ¼ 20 km s−1) simu-
lations. The variations in the fit prediction have been adjusted to
take into account the truncation error as given in Appendix B.
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Interestingly, by allowing v⊥ in Eq. (12) to take on
positive and negative values, the angle ~ξ can be restricted to
the interval 90° ≤ ~ξ ≤ 180°, and its average value, as shown
in Fig. 7, is ~ξ ∼ 148°, which is very close to the estimate
~ξ ∼ 145° in Ref. [39]. Note that the dispersion is quite large
though. As part of our fitting of the recoil, we must
simultaneously fit ~ξ to Eq. (18). Interestingly, the choice
of coefficients in Eq. (18) that optimizes the fit is close to
c=b ¼ 3=7. This ratio is significant because the effective
spin defined in Ref. [66] is given by ~Seffective ¼ ~Sþ 3

7
~Δδm.

Thus, it appears that the functional form of ~ξ that mini-
mizes the residuals is essentially a linear function in the
effective spin.

The fitted values of all coefficients in Eqs. (17) and (18),
as well as the uncertainties in these values, are given in
Table VI. We estimate the errors in the fitting parameters by
adding Gaussian distributed random noise to the fitting
function. Each data point is given a different random
number, and the width of the Gaussian is determined by
the estimated error in that data, as given in Table IV. By
performing the fit 50,000 times, each with a different set of
noise, a distribution in the fitting parameters is found. The
standard deviation of these distributions is recorded as the
error in the fitting parameter in Table VI. The truncation
error is not included in the determination of the errors in the
parameters because we only have this error for the
simulations given in Appendix B. If we assume that all
the simulations have roughly the same level of truncation
error as the simulations in Appendix B, the errors in the
fitting parameters will increase by a factor of between 2
and 3.
We use a similar procedure to fit the final remnant mass

and spin to Eqs. (14) and (16). Here, however, we add the
data from the SXS catalog [64] (which include results
from highly spinning BHBs) into our fits, as well as results
from a nonspinning binary with mass ratio q ¼ 1=10 from
Refs. [67,68]. The resulting fitting parameters are given in
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FIG. 8 (color online). Fit to the remnant spin using RITþ SXS
data and residuals of RIT runs as labeled by run number (see
Table V). RMS ¼ 7.16 × 10−4.
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FIG. 9 (color online). Fit to the remnant spin using RITþ SXS
data residuals for the SXS data. RMS ¼ 4.73 × 10−4.
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FIG. 7 (color online). The angle ~ξ as defined in Eq. (18),
computed from the measured magnitude of the recoil (circles),
compared to the fitted formula (squares). The angle is not defined
for the (first) 9 equal mass runs in Table IV. The average of
~ξ ∼ 148° (gray line) is near the previously measured value of
~ξ ∼ 145°, but the new spin-dependent formula for ~ξ significantly
reduces the residuals.
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FIG. 10 (color online). A comparison of the residuals from our
spin fit and the AEI fit for the RIT data (left panel) and SXS data
(right panel). Residuals from our formula are denoted by (blue)
circles, and residuals from the AEI formula are denoted by (red)
squares.
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Table VI. The data, fit, and residuals for the remnant spins
are shown in Figs. 8 and 9. The residuals are
below 6 × 10−4.
We can compare the residuals of our fit with other fitting

formulas in the literature, for instance, for the final spin of
the merged black hole given in Ref. [69] (we denote this fit
by AEI). The results are shown in Fig. 10 for the current
data (RIT) and the SXS data. We observe a clear improve-
ment of our fitting formula (16), with over an order of
magnitude reduction in the residuals. Note that here we are
comparing the error in the predictions of the AEI formula
with our fit residuals rather than errors in predictions of the
AEI and RIT fits to independent data.
We see that our fitting formula for the final remnant spin

is remarkably accurate over a wide range of mass ratios. In
addition, we constructed the formula such that it gives the
correct small-mass limit behavior. We thus expect that our
formula will be reasonably accurate for all mass ratios, at
least for moderate spins (α ≤ 0.9).
A similar analysis for the final remnant mass is shown in

Figs. 11, 12, and 13. Once again, we used the SXS data in

generating our fits. Here we see residuals of order 3 × 10−4

for our new formula and residuals several times larger for
the AEI formula [70].
An interesting consequence of the form of the recoil

velocity (17) is that, for certain combinations of the spins
and the mass ratio, the total magnitude can be very small. In
Fig. 14 we plot the values of α2 and q that lead to small
recoils for a given α1. Apart from the zero recoil imposed
by symmetry, i.e., q → 0 and q ¼ 1; α1 ¼ α2, there appear
to be two branches that lead to vanishing recoils. One
branch spans all mass ratios with 0.6≲ α2 ≲ 0.75, and
the other branch only spans the smaller mass ratio regime
q≲ 0.4 and larger spins 0.74≲ α2 ≤ 1.
Interestingly, the vanishing of the recoil velocity does not

arise from any symmetry, but rather from a cancellation of
processes that involve a wobbling of the center of mass as the
BHB slowly inspirals, the recoil generated during the rapid
plunge, and the post-merger antikick [71], which is gen-
erated during the ringdown phase. All of these three stages
combine to produce a nonmoving final BH, but in the
process, the BH is displaced from the original center of mass
of the binary. In Fig. 15 we provide an explicit example for
run #25 Q0.500̲ 0.80 ̲ 0.80 of a near-zero final recoil.
It is interesting to recall here the zero-recoil superkicks

seen in [6,42]. In that case the bobbing of the BHs up and
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FIG. 11 (color online). Predicted and measured remnant mass
for RIT data versus run number. RMS ¼ 2.07 × 10−4.
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FIG. 12 (color online). Predicted and measured remnant mass
for the SXS data. RMS ¼ 3.56 × 10−4.
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down can be tuned by choosing the azimuthal orientation of
the spin such that the merger occurs when the bobbing
velocity is instantaneously zero, which leads to a vanishing
recoil.
In Fig. 15 we show the velocity of the center of mass

versus time for the four possible combinations of signs of
the spins for a q ¼ 1=2 binary with spin magnitudes αi ¼
0.8 (Q0.500̲ � 0.80̲ � 0.80). The UD configuration
Q0.500̲ 0.80̲ − 0.80 recoils at 420 km s−1, while the
DD configuration recoils at a more modest 267 km s−1.
Reversing the spin directions for both BHs leads to a DU
configuration that recoils at 154 km s−1. Finally, a UU
configuration recoils at a very small 2 km s−1. Notably, the
recoil of the DU configuration agrees with the purely
unequal mass recoil vmðq ¼ 1=2Þ, and the difference
between the recoil velocities of the UD and DU configu-
rations, as well as the differences in the recoil between the
DD and UU configurations, is around 266 km s−1.
It is also interesting to see which configurations lead to a

remnant with vanishing spin [as was done in Ref. [72],
Fig. 4(a)]. Our results are shown in Fig. 16. They show that
in order to have a final Schwarzschild black hole, the larger
hole must be counteraligned with the orbital angular
momentum and the smaller hole must bear a mass ratio
of less than 0.3. This small mass ratio also explains the
relatively weak dependence on the spin of the secondary
black hole.
In the equal-mass regime, Eq. (14) predicts a maximum

amount of radiated energy of Mmax
rem =m ¼ 0.88693�

0.00027, i.e., a maximum radiated energy of 11.3%, and
Eq. (16) predicts a maximum remnant spin of αmax

rem ¼
0.95166� 0.00027, both of which are close to the

predictions of Ref. [73] (11.397% and 0.951383, respec-
tively). The differences between our extrapolation and
those of Ref. [73] are likely due to higher-order terms
not included in Eqs. (14) and (16).
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FIG. 15 (color online). The radiated linear momentum for the
Q0.500 ̲ 0.80 ̲ 0.80 configuration (red line). We observe the
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due to the merger, and the final antikick from the ringdown phase
which reduces the final velocity of the remnant to 2 km s−1. For
comparison we also show the Q0.500 ̲ � 0.80 ̲ � 0.80 configu-
rations to see the different effects of the superposition of spin
(signs) and unequal mass components of the recoil.
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FIG. 17 (color online). The probability PðvÞ of the remnant BH
recoiling with speed v assuming a distribution of progenitor
binaries with spin magnitude given by the cold accretion model of
[7] and mass ratio distribution given by [74], and assuming the
first (smaller) BH or second (larger) BH is always aligned (U),
always counteraligned (D), or randomly (R) distributed with
equal probability of being aligned or counteraligned.
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In the above analysis we truncated our fits at fourth order.
In Appendix B we compare these results with third-
order fits.

V. STATISTICAL DISTRIBUTIONS

In order to visualize the consequences of Eqs. (14), (16),
(17), and (18), we study the distributions of recoils and
remnant masses and spins from BHBs where the individual
BH spins are either aligned or counteraligned with the
orbital angular momentum. We study nine families of
distributions of progenitors: both BH spins aligned with
the orbital angular momentum, both counteraligned, two
families where one BH is aligned and the other counter-
aligned, four families where one BH spin direction is
chosen randomly (aligned or counteraligned) and the other
direction is fixed, and one family where both BH orienta-
tions are chosen randomly. In all cases the spin magnitudes
are chosen from the cold accretion distribution in [7],
which is represented by PðαÞ ¼ ð1 − αÞb−1αa−1 (where

a ¼ 5.935 and b ¼ 1.856), and the mass ratio distribution
from [74–76], which is given by PðqÞ ∝ q−0.3ð1 − qÞ.
In Figs. 17, 18, and 19 we show the probabilities for a
remnant recoiling with speed v, having mass Mrem and
spin αrem.
There are several interesting things to note from Fig. 17.

First, the probability for large recoils is much larger for the
UD family of configurations than for any of the other
(nonrandom) configurations. The UR and RD (here R
denotes that the spin orientation is chosen randomly)
families both show the same probabilities at high velocities.
The reason for this is that high velocities can only come
from a UD-type configuration. Both the UR and RD
families have a 50% probability for a given configuration
to be UD.
From Fig. 18 we see that the UU families show

significant probabilities for smaller remnant mass. Small
remnant masses occur for near-equal-mass UU systems, as
this maximizes the radiated energy. The UR, RU, and RR

FIG. 18 (color online). The probability PðmÞ of the remnant
BH having mass m (in units of the initial mass M1 þM2)
assuming a distribution of progenitor binaries with spin magni-
tude given by the cold accretion model of [7] and mass ratio
distribution given by [74] and assuming the first (smaller) BH or
second (larger) BH is always aligned (U), always counteraligned
(D), or randomly (R) distributed with equal probability of being
aligned or counteraligned.

FIG. 19 (color online). The probability PðαÞ of the remnant BH
having dimensionless spin α assuming a distribution of progenitor
binaries with spin magnitude given by the cold accretion model of
[7] and mass ratio distribution given by [74] and assuming the first
(smaller) BH or second (larger) BH is always aligned (U), always
counteraligned (D), or randomly (R) distributed with equal
probability of being aligned or counteraligned.
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families show a similar tail at smaller remnant masses. The
UR and RU configurations have a 50% probability of being
UU, and the RR configurations have a 25% probability of
being UU. Hence the PðmÞ for the RR configurations is
half the value of PðmÞ for the UR and RU families.
Finally, in Fig. 19 we see that the probability for a final

remnant spin counteraligned with the binary’s orbital
angular momentum is nearly equal for the DD and UD
families. The reason is that this can only happen in the
small mass ratio regime with a counteraligned larger BH.
The UR, DR, RR configurations show similar tails near
α ¼ −1. Again, these configurations have a 50% proba-
bility of being an XD configuration (here X just means that
the orientation of the smaller BH is unimportant).
In Fig. 20 we show the integrated probability ΠðvÞ for a

recoil v or larger, where

ΠðvÞ ¼
Z

∞

v
PðνÞdν;

and PðνÞ is the probability for a recoil with speed
ν < v < νþ dν.
We can thus consider a scenario where coherent accre-

tion aligned the smaller BH spin but left the spin of the

larger BH either aligned or counteraligned (with equal
probability). For such a UR configuration, we find that
the probability for V > 250 km s−1 is nearly 23%, while
the probability for V > 400 km s−1 is 8.4%. If we assume
that both BHs are equally likely to be aligned or counter-
aligned, the probabilities reduce to 19% and 4.2%, respec-
tively. While these recoil velocities are enough to expel the
merged BHs from galaxies similar to the Milky Way, they
are not enough for the BHs to escape from much larger
galaxies. Nevertheless, these recoils can still produce
observational effects such as displacement of the central
BH from the galactic core or a disturbance in the velocity
field of nearby stars [4]. We also note that these recoil
velocity probabilities represent a lower bound for large
recoils since we assumed exact alignment (or counteralign-
ment) of the spins with the orbital angular momentum, and
components of the spin on the orbital plane can lead to very
large recoils [6,8] even for relatively small misalignment
angles, i.e., a few degrees.

VI. CONCLUSIONS AND DISCUSSION

We studied the merger remnant of nonprecessing BHBs
as a function of the individual BH spins and mass ratio. As
accretion [27,77] and resonances [33,34] align spins with
the orbital angular momentum, this represents an important
subcase of the more general, seven-dimensional parameter
space of binaries, which includes arbitrary orientation of
the spins. The study performed here allowed us to use the
unified phenomenological description of a BHB merger
developed in [8,59] to model the recoil (17), remnant mass
(14), and spin (16), with expected accuracies to within 3%,
1%, and 1% relative errors, respectively.

FIG. 20 (color online). The integrated probability ΠðvÞ of the
remnant BH recoiling with speed v or larger assuming a
distribution of progenitor binaries with spin magnitude given
by the cold accretion model of [7] and mass ratio distribution
given by [74] and assuming the first (smaller) BH or second
(larger) BH is always aligned (U), always counteraligned (D), or
randomly (R) distributed with equal probability of being aligned
or counteraligned.
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FIG. 21 (color online). The recoil velocity for the UD con-
figuration with the small black hole spin aligned with the orbital
angular momentum and the large hole spin counteraligned as a
function of the mass ratio as predicted by Eq. (17). The maximum
recoil of 526� 23 km s−1 is reached at q ¼ 0.6235� 0.038, with
maximally spinning holes, α1 ¼ 1.0, α2 ¼ −1.0. The shaded area
represents the estimated errors.
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We found that the spin contribution to the recoil can add
to, or subtract from, the component of the recoil due to
unequal masses, with (partial) cancellation occurring when
the larger BH spin is aligned with the orbital angular
momentum. On the other hand, when the larger BH spin is
counteraligned, the two components of the recoil add,
leading to larger recoils at intermediate mass ratios. We find
that the maximum recoil occurs for q ∼ 0.62.
Also note that the new maximum of the recoil (see

Fig. 21) represents a modest increase in the maximum
value itself (nearly 17%). However, just like for the case of
the hangup kicks [6], the most important effect is that
the volume of parameter space leading to large recoils is
much larger; i.e., the UD configurations have ðVrecoil >
200 km s−1Þ with a 52% probability.
Another similarity with the hangup kick effect is the

need to incorporate terms beyond linear in the spins (and
mass ratio) to accurately model the final recoil (and mass
and spin). This underlines the inherently nonlinear nature
of general relativity, in particular, when modeling the
highly dynamical regime of BHB mergers.
This provides the opportunity for an important test of

general relativity in its strong field realm. Searches for
observational effects from recoiling black holes are well
underway. This includes searches for large differential red
or blue shifts from active galactic nuclei (AGN) (see [31]
for a review), and distortions in the dynamics of the core of
galaxies (see [32] for the latest observation that the lack of
black holes in bright cluster galaxies might be the result of
large kicks).
We finally note that the use of gravitational waveforms

from aligned and antialigned spins proves to be of great help
for detection algorithms [78] used by laser interferometer
observatories. Our models for the final mass and spin from
the merger of two black holes can be used to produce more
accurate semianalytic models of such waveform templates,
which may also be used for parameter estimation.
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APPENDIX A: ANALYSIS OF THE SOURCES OF
ERRORS AND ROBUSTNESS OF REMNANT
PROPERTIES IN THE BHB SIMULATIONS

In order to assess the robustness of our results with
respect to the different sources of errors and the various
approximations that we use in our simulations, we study in

TABLE VII. Case studies A and B with BHs at two different initial separations, with two sets of parameters from estimated
quasicircular orbits.

Configuration x1=m x2=m P=m mp
1=m mp

2=m S1=m2 S2=m2 mH
1 =m mH

2 =m MADM=m a1=mH
1 a2=mH

2

A̲ DU0.8 −4.9832 4.5267 0.09905 0.30178 0.30168 −0.2 0.2 0.5 0.5 0.98951 −0.8 0.8
B ̲ DU0.8 −4.5465 4.4303 0.10557 0.30377 0.30366 −0.20465 0.20465 0.5053 0.5053 1 −0.8 0.8
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FIG. 22 (color online). The recoil velocity as computed at a
given extraction radius: 75M–190M and extrapolations to infin-
ity. The different curves correspond to the two initial separations
labeled as A and B and as a function of resolution (low, medium,
high) refined by a global factor 1.2. A quadratic least-squares fit
is shown for each.
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FIG. 23 (color online). The dependence of the computed recoil
velocity on the number of l modes used to construct the radiated
linear momentum. Here all modes with l ≤ lmax were used, and
we show the recoil for the A and B configurations for the low,
medium, and high resolution runs.
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detail an equal-mass BHB in a UD configuration (with
spins α ¼ 0.8) starting from two different initial separa-
tions. We vary the resolutions, grid structure, waveform
extraction radii, and the number of l modes used in the
construction of the radiated linear momentum. The initial
data parameters for the two configurations, denoted here by
A and B, are given in Table VII.
Case A represents a prototypical configuration of the

runs in this paper, while case B was first studied in
Ref. [59], where we also performed a convergence
study of that configuration. In this work we use a grid
structure with between 9 and 11 levels of refinement,
depending on mass ratio and spin. For all new simu-
lations, the outer boundary was placed at 400M with a
resolution of 4M on the coarsest level and a resolution

of 1M in the wave zone. The finest level around each
BH was as wide as twice the diameter of the relaxed
horizon (the number of points across each horizon was
between 28 and 60). In addition, for the highly spinning
horizons, we added another level inside the horizon of
width roughly half of the horizon diameter. We also
performed similar runs but with resolutions in the wave
zone of M=0.88 and M=1.2.
Since in the current work we use a different refinement

level grid structure than in Ref. [59], we also perform a new
set of convergence simulations for case B using the newer
grid structures.
Aside from truncation errors due to finite resolution,

the simulation results will depend on the extraction radii.
Hence we also consider different extraction radii and
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FIG. 24 (color online). Top panel: The radiated energy as
computed at a given extraction radius: 75M–190M and extrapo-
lations to infinity. The different curves correspond to the two initial
separations labeled as A and B and as a function of resolution (low,
medium, high) refined by a global factor 1.2. A quadratic least-
squares fit is shown for each. Bottom panel: The dependence of the
computed radiated energy on the number of l modes used to
construct it. Here all modes with l ≤ lmax were used. The black
and gray lines labeled with “IH” are the associated final mass
calculated from the BH horizon. On this scale, all resolutions are
on top of one another, so only one line is shown.
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FIG. 25 (color online). Top panel: The radiated angular
momentum as computed at a given extraction radius:
75M–190M and extrapolations to infinity. The different curves
correspond to the two initial separations labeled as A and B and
as a function of resolution (low, medium, high) refined by a
global factor 1.2. A quadratic least-squares fit is shown for each.
Bottom panel: The dependence of the computed radiated angular
momentum on the number of l modes used to construct it. Here
all modes with l ≤ lmax were used. The black and gray lines
labeled with “IH” are the associated final spin calculated from the
BH horizon. On this scale, all resolutions are on top of one
another, so only one line is shown.
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extrapolations to null infinity. While the location of
the observers in the set of runs in Ref. [59] was restricted
to the Robs=M ¼ 60–100 range, in the runs of this paper we
extended this to Robs=M ¼ 190 and, in addition, located
the extraction radii equidistant in 1=R, with Robs=M ¼
75; 80.4; 86.7; 94.0; 102.6; 113.0; 125.7; 141.7; 162.3;
190.0. The results of such studies are displayed in Fig. 22.
Interestingly, we see that while the measured recoils

from the A and B simulations differ by ∼30 km s−1 at lower

resolution and smaller radii, they approach each other as
both the resolution and extraction radii increase. The
difference in the extrapolated recoil for the highest reso-
lution A and B configurations is smaller than 10 km s−1.
In Fig. 23 we show the recoil extrapolated to infinity

versus the number of l modes. Interestingly, for the B
configuration, using all modes up through l ¼ 4 appears
to be sufficient, while for the A configuration, there is
a noticeable change in the recoil when adding the
l ¼ 5 modes.
Based on the results in Figs. 22 and 23, we used the

medium resolution grid structure (i.e., A-M in the figures)
and summed all modes up through l ¼ 6 when calculating
the recoils given in the tables and figures of this work. We

TABLE X. Table of RMS errors for third- and fourth-order fits
for recoil, mass, and spin formulas.

Vrms;3rd Vrms;4th Mrms;3rd Mrms;4th αrms;3rd αrms;4th

RIT 5.52 2.55 0.00061 0.00021 0.00237 0.00072
SXS 14.47 20.01 0.00084 0.00036 0.00206 0.00047

TABLE VIII. Fits of the remnant mass, spin, and recoil to the
form X ¼ X∞ þ Að1=hÞn, as well as measures of the truncation
and extrapolation errors in these quantities for the A configura-
tions. In the table below, 1st and 2nd denote quantities obtained at
r ¼ ∞ using first-order and second-order extrapolations, respec-
tively, while the subscripts rad and IH refer to radiative and
isolated horizon measures, respectively. Finally, med refers to a
quantity measured using the medium resolution run, and ∞
denotes a quantity Richardson extrapolated to infinite resolution
(i.e., X∞). Isolated horizon measures are the most accurate, and
for radiative quantities, radial extrapolation errors are of the same
magnitude as truncation errors. Finally, the difference Radiative v
IH measures how different the radiative and IH quantities are,
Extrapolation error measures the error in radial extrapolation,
and Truncation errormeasures the truncation error. Note that S is
given in units of M2 and V is in units of km s−1.

Variable X∞ A n

M1st
rad 0.950512 2493.83 −3.20426

M2nd
rad 0.950598 2405.2 −3.13343

MIH 0.950649 −7.21411 × 1015 −10.7552a

Radiative v IH M∞
rad

1st −M∞
IH −0.000137

M∞
rad

2nd −M∞
IH −0.000051

Extrapolation error M∞
rad

1st −M∞
rad

2nd −0.000086

Truncation error Mmed
rad

1st −M∞
rad

1st 0.000974

Mmed
rad

2nd −M∞
rad

2nd 0.00130

Mmed
IH −M∞

IH −0.000009

Srad1st 0.614951 15014.4 −3.3263

Srad2nd 0.617925 24351.1 −3.37852

SIH 0.618414 −448868 −4.8117

Radiative v IH S∞rad
1st − S∞IH −0.003463

S∞rad
2nd − S∞IH −0.000489

Extrapolation error S∞rad
1st − S∞rad

2nd −0.002974

Truncation error Smed
rad

1st − S∞rad
1st 0.00334

Smed
rad

2nd − S∞rad
2nd 0.00426

Smed
IH − S∞IH −0.000107

V1st
rec 372.2 −1.6181 × 109 −4.28911

V2nd
rec 373.673 −7.54367 × 108 −4.00812

Truncation error V1st;med
rec − V1st;∞

rec −4.273

V2nd;med
rec − V2nd;∞

rec −7.267

Extrapolation error V1st;∞
rec − V2nd;∞

rec −1.473
aThis quantity is almost constant as a function of resolution.

TABLE IX. Same as Table VIII but for the B runs. Note that the
final remnant dimensionless spin here is αrem ¼ 0.68394�
0.00005, which is in close agreement (but outside the error bars)
with the A case αrem ¼ 0.68429� 0.00010.

Variable X∞ A n

M1st
rad 0.961132 2187.04 −3.17927

M2nd
rad 0.961214 2077.94 −3.10559

MIH 0.961276 −8.05332 × 1012 −9.22462a

Radiative v IH M∞
rad

1st −M∞
IH −0.000144

M∞
rad

2nd −M∞
IH −0.000062

Extrapolation error M∞
rad

1st −M∞
rad

2nd −0.000082
Truncation error Mmed

rad
1st −M∞

rad
1st 0.000958

Mmed
rad

2nd −M∞
rad

2nd 0.001278

Mmed
IH −M∞

IH −0.00000259

Srad1st 0.629398 11168.2 −3.26154
Srad2nd 0.632003 17393.8 −3.3056
SIH 0.631994 −1.91992 × 1010 −7.27771
Radiative V IH S∞rad

1st − S∞IH −0.002596
S∞rad

2nd − S∞IH 0.000009

Extrapolation error S∞rad
1st − S∞rad

2nd −0.002605
Truncation error Smed

rad
1st − S∞rad

1st 0.003349

Smed
rad

2nd − S∞rad
2nd 0.004258

Smed
IH − S∞IH −0.0000531

V1st
rec 370.09 −9.75205 × 107 −3.6121

V2nd
rec 373.311 −6.03304 × 107 −3.436760

Truncation error V1st;med
rec − V1st;∞

rec −5.820
V2nd;med
rec − V2nd;∞

rec −8.073
Extrapolation error V1st;∞

rec − V2nd;∞
rec −3.221

aThis quantity is almost constant as a function of resolution.
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also note that, because the recoils from the A and B
configurations did approach each other, effects due to finite
initial separations are reasonably mitigated for separations
of between 9M and 10M and above.
In conclusion we see that in order to have a robust

measure of the recoil, we need to consider BHBs with
sufficiently large initial separations and medium resolution,
and we need to sum over modes up through l ¼ 6.
In Fig. 24 we plot the radiated energy and the ratio of

the final to initial mass derived from the radiated energy
as a function of 1=r and lmax. We see that the A and B
configurations approach each other with an increase in
resolution and larger observer radii. We also note that
there are only small errors introduced by using lmax as
small as l ¼ 4. For the radiated angular momentum (see
Fig. 25), the extrapolation error dominates, and while the
A and B configuration results seems to converge to each
other, the error bars are quite large. Again, we see that
summing up through l ¼ 4 is sufficient to obtain the final
remnant spin.
To compute finite difference errors and consistency

between the isolated horizons and radiation measures of
the final remnant mass and spin, we perform a Richardson-
like extrapolation of both the remnant mass and spin as
calculated by both methods, as well as the recoil computed
from the radiation, and fit to the form X ¼ X∞ þ Að1=hÞp
where X∞, A, and p are fitting parameters and X is the
mass, spin, or recoil velocity. We show results in Table VIII
and IX. Based on the results in the table, we estimate that
the truncation errors in the final mass and spin, as measured
by the highly accurate IH techniques, are 10−5M for the
mass and 10 − 4M2 for the spin, while the finite difference
errors in the recoil are ∼8 km s−1.

TABLE XI. Table of third- and fourth-order fitting parameters for recoil, mass, and spin formulas.

Third Fourth Third Fourth Third Fourth

H 7137.601620 7367.250029 M0 0.952396 0.951507 L0 0.685797 0.686710
H2a −1.781198 −1.626094 K1 −0.052082 −0.051379 L1 0.606328 0.613247
H2b −0.801039 −0.578177 K2a −0.000100 −0.004804 L2a −0.135864 −0.145427
H3a −0.644087 −0.717370 K2b −0.090987 −0.054522 L2b −0.123083 −0.115689
H3b −1.116936 −2.244229 K2c −0.002985 −0.000022 L2c −0.005198 −0.005254
H3c −0.880054 −1.221517 K2d 1.997610 1.995246 L2d 0.872193 0.801838
H3d 0.047189 −0.002325 K3a −0.030344 0.007064 L3a −0.047694 −0.073839
H3e −0.966091 −1.064708 K3b 0.006774 −0.017599 L3b 0.023793 0.004759
H4a 0 −0.579599 K3c −0.118419 −0.119175 L3c −0.047273 −0.078377
H4b 0 −0.455986 K3d 0.044927 0.025000 L3d 1.751494 1.585809
H4c 0 0.010963 K4a 0 −0.068981 L4a 0 −0.003050
H4d 0 1.542924 K4b 0 −0.011383 L4b 0 −0.002968
H4e 0 −4.735367 K4c 0 −0.002284 L4c 0 0.004364
H4f 0 −0.284062 K4d 0 −0.165658 L4d 0 −0.047204
a 2.572817 2.611988 K4e 0 0.019403 L4e 0 −0.053099
b 1.528474 1.383778 K4f 0 2.980990 L4f 0 0.953458
c 0.657752 0.549758 K4g 0 0.020250 L4g 0 −0.067998

K4h 0 −0.004091 L4h 0 0.001629
K4i 0 0.078441 L4i 0 −0.066693
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FIG. 26 (color online). Third-order recoil velocities and resid-
uals for RIT runs (top panel) and AEI and SXS runs (bottom
panel). Fits are given in red, and data in blue.
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One final note, for the runs presented in the main body of
the paper, we use extraction radii up to r ¼ 102.6M, rather
than r ¼ 190M. We did this because we observed, at our
working resolutions, a dissipation effect at larger radii in
which the amplitude of rψ4 steadily decreases with radius
in the outer zone.
We apply all these criteria to the rest of the new

simulations that we perform in this paper to ensure similar
error bars as the ones presented in this appendix. Note also
that a similar, but independent, waveform-error analysis
was carried out in Ref. [79].

APPENDIX B: THIRD-ORDER FITS

In this appendix we compare fits of the final remnant
mass, spin, and recoil truncated at third order to our
standard choice of fourth-order fits. We give the RMS
errors in the third- and fourth-order fits in Table X and the
fitting coefficients themselves in Table XI. Finally, we
show the fits and residuals in Figs. 26–28.
We expect that the RMS errors in the third-order fits are

larger than in the fourth-order fits. For the RIT recoil, this is
the case (the RMS error more than doubles from 2.5 km s−1

to 5.5 km s−1), but the RMS error in the SXS and AEI
recoils actually decreases (20 km s−1 to 15 km s−1 and
6.8 km s−1 to 3.8 km s−1, respectively).
The case is more clear for the fits to the final masses and

spins where we included RIT data and SXS data, practically
doubling the number of points (we also used the more
accurate IH measures rather than measuring the radiated
energy and angular momentum). Here we observe that for
all data sets the RMS error increases by a factor of 3–5
when going from the fourth-order to third-order fits.
Finally, by comparing the fitting coefficients in the third-

and fourth-order fits (see Table X), we get an estimate of the
robustness of the fitting coefficients to the addition of still
higher-order terms. This is important when using the fitting
formulas to extrapolate to very high spins and very small
mass ratios. Note that although some of the third- and
fourth-order coefficients are quite different, the fitting
curves themselves are very close to each other for moderate
mass ratios (1=10≲ q ≤ 1) and spins (0 ≤ jαij ≲ 0.9).
However, we caution against using these formulas in
regimes where the two predictions (third and fourth order)
are substantially different.
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FIG. 27 (color online). Third-order remnant mass and residuals
for RIT runs (top panel) and SXS runs (bottom panel). Fits are
given in red, and data in blue.
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FIG. 28 (color online). Third-order remnant spin and residuals
for RIT runs (top panel) and SXS runs (bottom panel). Fits are
given in red, and data in blue.
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