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In the present work we show that the widely believed pathology of the nonunitarity of anisotropic
quantum cosmological models cannot be a generic problem. We exhibit a nontrivial example, a Bianchi-I
model with an ultrarelativistic fluid, that has a well-behaved time independent norm. We also show that a
suitable operator ordering should produce time independent norms for the wave packets in the case of other
more realistic fluids as well.
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In the absence of a generally accepted quantum theory
of general relativity, quantum mechanical principles
are applied to many individual gravitational systems.
Cosmological models are certainly amongst the fields
where this kind of quantization finds an application. The
Universe at its early stage of evolution, at an energy scale
where classical general relativity loses its viability, requires
a quantum description. For some excellent reviews, we
refer to [1,2]. Quantum cosmology has, however, many
issues yet to be resolved. As time is a coordinate in a
relativistic theory of gravity, there is a problem of the
identification of a suitable time parameter against which the
evolution of the Universe would be described [3–6].
Moreover, the interpretation of the wave function faces a
challenge in quantum cosmology. The Copenhagen inter-
pretation fails as there is no exterior observer for the
system. There are attempts in this direction with a many
world interpretation and with Bohmian trajectories [7].
Problems regarding the imposition of proper boundary
conditions are there as well [1].
The present work deals with another widely known

problem, the alleged nonunitarity of the anisotropic quan-
tum cosmological models. The corresponding Hamiltonian,
although Hermitian, is not self adjoint. The norm of the
wave packet is thus time dependent and hence there is a
nonconservation of probability. It may be argued that the
observed Universe is isotropic but one is not really certain
whether the very early Universe, beyond the Planck scale,
is actually isotropic or not. Furthermore, this feature
definitely makes the scheme of quantization unreliable.
For a very recent review, we refer to the work of Pinto-Neto
and Fabris [7].
There is a scheme of quantization of a cosmological

model with a matter field, namely a perfect fluid. Following
Schutz’s formalism, where the fluid variables are given
dynamical degrees of freedom [8,9], the relevant action
can be written in terms of the metric tensor components

representing the gravity sector and some thermodynamic
potentials representing the fluid sector. The method had been
used by Lapchinskii and Rubakov [10] for a Friedmann
model. Recently the method has been utilized by Alvarenga
and Lemos [11], Batista et al. [12], Alvarenga et al. [13],
Vakili [14,15], Alvarenga et al. [16], and Majumder and
Banerjee [17]. The latter two, dealing with anisotropic
Bianchi models, show that the models are nonunitary. If
no proper matter field is used, resulting in no physical
identification of time, this problem of nonconservation of
probability may remain unnoticed [18,19].
In what follows, we show that this general belief is

actually not quite correct. We take up a Bianchi-I cosmo-
logical model with a perfect fluid as an example. Using
Schutz’s formalism, we quantize this model for a barotropic
equation of state P ¼ αρ where P and ρ are the pressure
and density of the perfect fluid and α is a constant
where α ≤ 1.
The relevant action is given by

A ¼
Z
M
d4x

ffiffiffiffiffiffi
−g

p
Rþ 2

Z
∂M

ffiffiffi
h

p
habKab þ

Z
M
d4x

ffiffiffiffiffiffi
−g

p
P;

ð1Þ
where Kab is the extrinsic curvature, and hab is the induced
metric over the boundary ∂M of the four-dimensional
space-time manifold M. The units are so chosen that
16πG ¼ 1. The metric of Bianchi type-I model is given by

ds2 ¼ n2dt2 − ½a2ðtÞdx2 þ b2ðtÞdy2 þ c2ðtÞdz2�; ð2Þ
where nðtÞ is the lapse function and a; b; c are functions of
the cosmic time t.
Using the metric, we rewrite the gravity sector of (1) in

the following form:

Ag ¼
Z

dt

�
−
2

n
ð _a _b cþ _b _c aþ _c _a bÞ

�
: ð3Þ

We introduce a set of new variables as
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aðtÞ ¼ eβ0þβþþ
ffiffi
3

p
β− ; ð4Þ

bðtÞ ¼ eβ0þβþ−
ffiffi
3

p
β− ; ð5Þ

cðtÞ ¼ eβ0−2βþ : ð6Þ

This choice of variables, β0; βþ; β−, is not new [16,17]. The
Lagrangian density of the gravity sector now becomes

Lg ¼ −6
e3β0

n
ð _β20 − _β2− − _β2þÞ: ð7Þ

The conjugate momenta, as a consequence, are given by

p0 ¼ −12
e3β0

n
_β0; ð8Þ

p� ¼ 12
e3β0

n
_β�: ð9Þ

The corresponding Hamiltonian becomes

Hg ¼ −n expð−3β0Þ
�
1

24
ðp2

0 − p2þ − p2
−Þ
�
: ð10Þ

In Schutz’s formalism [8,9] the fluid velocity Uν is
given by

Uν ¼
1

h
ð∂νϵþ θ∂νSÞ; ð11Þ

for a space-time without any vorticity. Here, S is specific
entropy and h is specific enthalpy. The potentials ϵ and θ
do not have any direct physical significance. The velocity
is normalized as UνUν ¼ 1.
Using standard thermodynamical considerations, the

fluid part of the action (1) can be cast into the form

Af ¼
Z

dtLf

¼ V
Z

dt

�
n−

1
αe3β0

α

ð1þ αÞ1þ1
α

ð_ϵþ θ _SÞ1þ1
αe−

S
α

�
; ð12Þ

where the factor of V comes out due to space integration as
we are dealing with a homogeneous model.
We define canonical momentum to be pϵ ¼ ∂Lf

∂ _ϵ and
pS ¼ ∂Lf

∂ _S and the Hamiltonian becomes

Hf ¼ ne−3αβ0pαþ1
ϵ eS: ð13Þ

We effect the canonical transformation,

T ¼ −pS expð−SÞp−α−1
ϵ ; ð14Þ

pT ¼ pαþ1
ϵ expðSÞ; ð15Þ

ϵ0 ¼ ϵþ ðαþ 1ÞpS

pϵ
; ð16Þ

p0
ϵ ¼ pϵ; ð17Þ

so that the Hamiltonian (13) of the matter sector becomes

Hf ¼ ne−3β0e3ð1−αÞβ0pT: ð18Þ

The Poisson brackets fϵ0; p0
ϵg ¼ 1 and fT; pTg ¼ 1 are

satisfied with all other Poisson brackets being 0. This
ensures the canonical structure of the new variables.
For a canonical quantization, the Poisson bracket is

replaced by a commutator bracket, and we have

�
T;−ι

∂
∂T

�
¼ ι: ð19Þ

In the Schrödinger equation, time derivative appears in the
first order so as to guarantee positive normed state. Here,
the fluid momentum, which is conjugate to newly defined
variable T, given by −ı ∂

∂T as an operator, comes as a linear
term in Hamiltonian. It is thus a simple indication that
one can pick up T as the time parameter. So we have first
derivative with respect to time as required for the positivity
of norm. The second justification, which is necessary so as
to give time an orientation and the same direction as cosmic
time, comes classically from the equation

1

n
dT
dt

¼ fT;Hfg ¼ e−3αβ0 > 0: ð20Þ

The fact 1
n
dT
dt has the same sign everywhere makes it

orientable while its positivity gives T the same arrow as
the cosmic time t.
The net Hamiltonian for the gravity plus the matter sector

now becomes

H ¼ n expð−3β0Þ
�
−

1

24
ðp2

0 − p2þ − p2
−Þ þ e3ð1−αÞβ0pT

�
:

ð21Þ

Variation of the action, with respect to n, yields
Hamiltonian constraint

H ¼ 1

n
H ¼ 0: ð22Þ

We now promote the super-HamiltonianH to an operator
and postulate commutation relation amongst the quantum
operators as usual. Unlike the fluid momentum, the momenta
coming from the pure gravity sector come as quadratic terms,
so they define kinetic energy in the Hamiltonian.
We write pi ↦− ιℏ∂βi for i¼0;þ;−, and pT ↦− ιℏ∂T .

This mapping is equivalent to postulating the fundamental
commutation relations
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½βi; pj� ¼ ıℏδijI: ð23Þ

Henceforth, we shall use natural units, i.e., ℏ ¼ 1. It
deserves mention that a simple choice of gauge as
n ¼ e3αβ0 will make T independent of β0 and ∂

∂T then
commutes with the gravity sector. This provides the
justification of using βi and T as a set of independent
coordinates. The Wheeler-DeWitt equation, Hψ ¼ 0, now
takes the form

� ∂2

∂β20 −
∂2

∂β2þ −
∂2

∂β2−
�
ψ ¼ 24ιe3ð1−αÞβ0

∂ψ
∂T : ð24Þ

We assume that the wave function ψ is separable as
ψðβ0;βþ;β−;TÞ¼ϕðβ0;βþ;β−Þe−ıET where E is a constant.
So the Eq. (24) becomes

� ∂2

∂β20 −
∂2

∂β2þ −
∂2

∂β2−
�
ϕ ¼ 24Eϕe3ð1−αÞβ0 : ð25Þ

The solution for this equation is now discussed for two
different cases, namely α ¼ 1 and α ≠ 1.
Case I: Stiff fluid (ρ ¼ P):
We put α ¼ 1, i.e., P ¼ ρ, and again use a separation

of variables as ϕ ¼ ϕ0ðβ0ÞϕþðβþÞϕ−ðβ−Þ to obtain
ϕ� ¼ C�eık�β� and, as a result, the behavior of ϕ0 is
determined by

∂2ϕ0

∂β20 þ ð−24Eþ ðk2þ þ k2−ÞÞϕ0 ¼ 0: ð26Þ

Hence, the general solution can be written as

ψ ¼ eıkþβþeık−β−eıωβ0e−ıET; ð27Þ

where ω2 ¼ −24Eþ k2þ þ k2−. Initially, we have k� and E
as free parameters and ω is defined as a function of k�
and E. Once we have a relation between four variables ω,
k�, and E, we can mathematically treat any three of them
as independent variables while the fourth one will be a
function of the other three. Here, we treat k� and ω as
independent variables while E has to be understood as a
function of k� and ω where k� ∈ ð−∞;∞Þ.
One can thus construct the following wave packet via

superposing solutions with different k� and ω:

Ψ ¼
Z

e−ðk2þþk2−þω2Þψdkþdk−dω: ð28Þ

We directly compute the norm jjΨjj as

jjΨjj≡
Z

ΨΨ�dβþdβ−dβ0

¼
Z

dβþdβ−dβ0

Z
dkþdk−dω

×
Z

dk0þdk0−dω0e−ðk2þþk2−þω2þk02þþk02−þω02Þ

×Ψðkþ; k−;ωÞΨ�ðk0þ; k0−;ω0Þ: ð29Þ

Now we integrate over βþ; β0; β− to obtain Dirac-delta
functions, which in turn are employed to integrate over
k0þ; k0−;ω0 to obtain

jjΨjj ¼
Z

dkþe−2k
2
þ

Z
dk−e−2k

2
−

Z
dωe−2ω

2 ¼
�
π

2

�3
2

:

ð30Þ

If we wish to have superposition of negative energy
states only, we impose the condition ω2 > ðk2þ þ k2−Þ. This
choice arises from the fact that the super-Hamiltonian (22)
is constrained to be zero, i.e., we haveHg þHf ¼ 0. Thus,
the Hamiltonian (energy) due to the gravity part and the
Hamiltonian (energy) due to the fluid part must add up to
zero. If we assume on physical ground that the energy
of the fluid is positive definite, then the energy due to the
gravity sector has to be negative since it must compensate
for the positive energy of the fluid so as to validate the
constraint (22). In fact, we can have such states due to the
hyperbolicity of the kinetic term of the gravity sector of
the Hamiltonian (10). It is noteworthy that there is no
instability due to this unboundedness of the Hamiltonian
of gravity sector since there is always a compensating
positive energy of the fluid so as to ascertain the total
super-Hamiltonian equal to zero, i.e., Hg þHf ¼ 0.
Even with this condition imposed, we can find the norm

as follows:

jjΨjj ¼
Z

dkþdk−e−2k
2
þ−2k2−

Z
∞ffiffiffiffiffiffiffiffiffiffi
k2þþk2−

p dωe−2ω
2

¼
ffiffiffi
2

p
− 1

8
π

3
2: ð31Þ

Hence, contrary to general belief, we clearly have a time
independent and finite normed wave packet. Although
hβii ¼ 0 in this case, use of relevant prefactors in the
calculation of the expectation values indicates that the
second moments hβ2i i ≠ 0 and are also not the same for
all is. So the unitarity is not achieved at the expense of the
anisotropy itself or the evolution of the Universe. It is
noteworthy that one can treat k�; E as independent vari-
ables without going over to k�;ω. In that case, we will get a
wave packet different from (28). Nonetheless, the norm of
that wave packet can be shown to be finite and time
independent as well.
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We provide a clear counterexample of the alleged non-
unitarity in anisotropic cosmological models and thereby
show that nonunitarity is not perhaps a built-in pathology for
anisotropic models. We shall, however, show more examples
as follows.
Models with other equations of state (0 < α < 1):
In Eq. (24), we have assumed a particular ordering,

namely,

H ¼ e−3αβ0
�
−

1

24
e3ðα−1Þβ0ðp2

0 − p2þ − p2
−Þ þ pT

�
: ð32Þ

Quantization would require promoting the variables to
operators. There is no reason why the ordering of operators
chosen in Eq. (24) has a special status. Majumder and
Banerjee [17] showed that the norm of the wave packet
becomes asymptotically time independent for a different
operator ordering in the case of a Bianchi-V model. Here,
we try a different operator ordering given by

H ¼ e−3αβ0
�
−

1

24
e
3
2
ðα−1Þβ0

�
p0e

3
2
ðα−1Þβ0p0 − pþe

3
2
ðα−1Þβ0pþ

− p−e
3
2
ðα−1Þβ0p−

�
þ pT

�
: ð33Þ

With the standard separation of variables as
Ψðβ0; βþ; β−; TÞ ¼ ϕðβ0Þψðβþ; β−Þe−ıET , the equation
for ϕ becomes

�
e
3
2
ðα−1Þβ0 ∂

∂β0 e
3
2
ðα−1Þβ0 ∂

∂β0 þ k2e3ðα−1Þβ0 − 24E

�
ϕ ¼ 0;

ð34Þ

where k2 ¼ ðk2þ þ k2−Þ. This is because in the pþ; p−
sector, the factor ordering does not matter and again the
solution of this sector will be of the form eıkþβþeık−β− . This
ordering can also be extended to α ¼ 1 where the exponent
ð1 − αÞ vanishes trivially and we get back Eq. (26).
For α ≠ 1 we make a change of variables as

χ ¼ e−
3
2
ðα−1Þβ0 ; ð35Þ

so that Eq. (34) becomes

9

4
ð1 − αÞ2 d

2ϕ

dχ2
þ k2þ þ k2−

χ2
ϕ − 24Eϕ ¼ 0: ð36Þ

We define σ ¼ 4ðk2þþk2−Þ
9ð1−αÞ2 and E0 ¼ 32

3ð1−αÞ2 E and Eq. (36) is
now written as

Hgϕ ¼ d2ϕ
dχ2

þ σ

χ2
ϕ ¼ E0ϕ: ð37Þ

We can write (37) in the form

−
d2ϕ
dχ2

−
σ

χ2
ϕ ¼ −E0ϕ; ð38Þ

which is in fact a well known Schrödinger equation
of a particle of m ¼ 1=2 in an attractive inverse square
potential with energy −E0. This potential is extensively
studied in other branches of physics. For a review, we refer
to [20].
This Hamiltonian may not be self adjoint to start with,

but it has a deficiency index that guarantees existence
of a family of self-adjoint extensions [21]. To find the
deficiency index, we look for eigenfunctions ofHg with an
imaginary eigenvalue

Hgϕ� ¼ �ıϕ�: ð39Þ

The general solution to (39) is given by Hankel functions as

Φ�ðχÞ ¼
ffiffiffi
χ

p h
A�H

ð1Þ
ıβ ðıλ�χÞ þ B�H

ð2Þ
ıβ ðıλ�χÞ

i
; ð40Þ

where λ� ¼ e�ıπ
4 and β ¼

ffiffiffiffiffiffiffiffiffiffi
σ − 1

4

q
. But Hð2Þ

ıβ ðıλ�χÞ does not
belong to the Hilbert space as it diverges for a large χ.
Hence, we have

Φ�ðχÞ ¼ A�
ffiffiffi
χ

p
Hð1Þ

ıβ ðıλ�χÞ: ð41Þ

Let n� be the number of linearly independent solutions for
HgΦ� ¼ �ıΦ�; so here we find n� ¼ 1 since we have only
one well-behaved linear independent solution given by (41)
for each of the eigenvalues �ι. This nþ and n− are called
the deficiency index. It was shown by Neumann [22] that,
although the Hamiltonian is not self adjoint to start with,
if nþ ¼ n− holds good, it is always possible to have a
self-adjoint extension of the same. For an inverse square
potential, the method is lucidly described by Essin and
Griffiths [23].
The energy eigenvalue equation (37) can be solved for

three different regions, for (i) σ > 1
4
, (ii) σ < 1

4
, and (iii) the

critical case σ ¼ 1
4
, and one can find solutions that conserve

probability. The details of the calculations can be found
in [20,23,24]. The solution to (37) for σ > 1

4
is given by

Hankel functions of imaginary order,

ϕaðχÞ ¼
ffiffiffi
χ

p h
AHð2Þ

ιβ ðλχÞ þ BHð1Þ
ιβ ðλχÞ

i
; ð42Þ

where β ¼
ffiffiffiffiffiffiffiffiffiffi
σ − 1

4

q
∈ R and the spectrum is given by

E0 ¼ −λ2. On the other hand, the solution for σ < 1
4
is

given by Hankel functions of real order,

ϕbðχÞ ¼
ffiffiffi
χ

p ½AHð2Þ
α ðλχÞ þ BHð1Þ

α ðλχÞ�; ð43Þ
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where α ¼
ffiffiffiffiffiffiffiffiffiffi
1
4
− σ

q
∈ R and E0 ¼ −λ2. It is noteworthy, for

σ ¼ 1
4
, that the above two solutions (42), (43) merge

as β ¼ α ¼ 0.
After the self-adjoint extension as described in [23],

using the asymptotic expression for ϕa, the reflection
coefficient j BA eπβj2 is unity, as required by conservation
of probability. Similarly, using the asymptotic expression
for ϕb, we can find the reflection coefficient as j BA j2, which
can be shown to be one as well, after the required extension.
Thus, we have a self-adjoint Hamiltonian and the evolution
is unitary.
In the variable χ the norm is defined by

hϕ;ψi ¼
Z

dχϕ�ψ ; ð44Þ

which, in terms of η ¼ eβ0 , the average scale factor, can be
written as [with the help of Eq. (35)]

hϕ;ψi ¼ 3

2
ð1 − αÞ

Z
dηη

1−3α
2 ϕ�ψ : ð45Þ

Hence, the measure is different from that found in [16].
Although it may not have any direct relevance to the

unitarity of the model, we have checked that the expect-
ation values of quantities like β� and β0 are quite regular for
α ≠ 1 also.
Questions may be raised regarding the particular oper-

ator ordering as there is no favored ordering a priori. We
can in fact do better. We can effect a transformation of

variables at the classical level as χ ¼ expð3ð1−αÞβ0
2

Þ.
With this substitution, Eq. (7) can be recast into

Lg ¼ −
6

n0

�
4_χ2

9ð1 − αÞ2 − χ2ð _β2þ þ _β2−Þ
�
; ð46Þ

where n ¼ n0e3αβ0 . This is quite legitimate since one can
rescale the lapse function. The corresponding Hamiltonian
for the gravity sector will be

Hg ¼ −
n0
24

�
9ð1 − αÞ2

4
p2
χ −

p2þ
χ2

−
p2
−

χ2

�
; ð47Þ

and the super-Hamiltonian becomes

H ¼ −
n0
24

�
9ð1 − αÞ2

4
p2
χ −

p2þ
χ2

−
p2
−

χ2
− 24pT

�
: ð48Þ

Variation with respect to n0 yields a constraint equation for
a Bianchi-I model:

�
9ð1 − αÞ2

4
p2
χ −

p2þ
χ2

−
p2
−

χ2
− 24pT

�
¼ 0: ð49Þ

On quantization, we have the Wheeler-DeWitt equation for
a Bianchi-I model as

9ð1 − αÞ2
4

∂2Ψ
∂χ2 −

1

χ2
∂2Ψ
∂β2þ −

1

χ2
∂2Ψ
∂β2− ¼ 24ι

∂Ψ
∂T : ð50Þ

With the separability ansatz Ψ ¼ ϕðχÞeιðkþβþþk−β−Þe−ιET ,
we get back Eq. (36) from (50).
As the transformation of variables is implemented at the

classical level and no particular operator ordering in the
quantization scheme has now been resorted to, the process
looks completely transparent.
The whole point is to emphasize that the nonunitarity

as observed in a Bianchi-I model by Alvarenga et al. [16]
may be due to a bad choice of coordinates. Either a clever
operator ordering or even a suitable change of variables at
the outset would allow us to have a self-adjoint extension of
the Hamiltonian and hence one is able to find solutions
such that reflection coefficient takes a value so as to
conserve the probability and render the model unitary.
The detailed method is elegantly discussed by Essin and
Griffiths [23]. It also deserves mention that, if unitarity is
restored, there is indeed consistency between the expect-
ation values and the Bohmian trajectories as shown in [16].
It deservesmention that inverse square potentialsmay lead

to some trouble; this potential may lead to some strange
behavior, and in many a case the properties, albeit useful, are
derived only approximately. In a theory of gravitation, the
implications have to be thoroughly investigated. For instance,
the classical geodesic equation are to be studied carefully to
check if there is any pathology like a geodesic incomplete-
ness. For this, more examples will have to be worked out if
possible. Anyway, anisotropic quantum cosmological mod-
els should now be investigated carefully in order to ascertain
the price, if any, one has to pay to secure unitarity.
The case for the stiff fluid ðα ¼ 1Þ is quite straightfor-

ward. One example is enough to show that the nonunitarity is
not generic to anisotropic models. However, we conclusively
show that, for other equations of state also, we can construct
models that conserve probability. So the conclusion is that
the legendary pathological behavior of anisotropic quantum
cosmological models is not generic. One needs to find either
a suitably crafted operator ordering or a completely non-
controversial but favorable choice of coordinates. Now that
one has wave functions that preserve the conservation of
probability, the wave functions are worth looking at more
closely for various physical aspects, particularly the quantum
effects, even for anisotropic models.

The authors thank Golam Hossain and Ritesh Singh for a
stimulating discussion.
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