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Recently, BICEP2 measurements of the cosmic microwave background (CMB) B-mode polarization at
degree angular scales has indicated the presence of tensor modes with a high tensor-to-scalar ratio of
r ¼ 0.2 when assuming nearly scale-invariant tensor and scalar spectra, although the signal may be
contaminated by dust emission, as implied by recent Planck polarization data. This result is in conflict with
the Planck best-fit lambda cold dark model with r < 0.11. Because the inflaton has to interact with other
fields to convert its potential energy into radiation to reheat the Universe, the interacting inflaton may result
in a suppression of the scalar spectrum at large scales. This suppression has been used to explain the
observed low quadrupole in the CMB anisotropy. In this paper, we show that a combination of the tensor
modes measured by BICEP2 and the large-scale suppressed scalar modes contributes to the CMB
anisotropy in such a way that the resultant CMB anisotropy and polarization power spectra are consistent
with both Planck and BICEP2 data. We also project our findings to cases in which r may become reduced
in future CMB polarization measurements.
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I. INTRODUCTION

The spatial flatness and homogeneity of the present
Universe strongly suggest that a period of de Sitter
expansion or inflation occurred in the early Universe [1].
During inflation, quantum fluctuations of the inflaton field
may give rise to energy density perturbations (scalar
modes) [2], which can serve as the seeds for the formation
of large-scale structures of the Universe. In addition, a
spectrum of gravitational waves (tensor modes) is produced
from the de Sitter vacuum [3].
In the standard big bang cosmology, scalar and tensor

modes leave signatures on the cosmic microwave back-
ground (CMB) thoroughly determined by the power
spectra, CTT

l , CTE
l , CEE

l , and CBB
l , where T, E, and B

denote the temperature anisotropy, E-mode polarization,
and B-mode polarization, respectively. CMB anisotropy
and E-mode polarization have been well measured by
WMAP, Planck, and many other experiments (and refer-
ences therein) [5]. Unlike scalar modes, tensor modes are
very weakly coupled to matter, so once produced they
remain as a stochastic background. However, they induce
large-scale CMB anisotropy via the Sachs-Wolfe effect and
uniquely B-mode polarization. Detecting these signals
would provide a potentially important probe of the infla-
tionary epoch, and the latter is the primary goal of ongoing
and future CMB experiments [6]. Recently, WMAPþ SPT
CMB data has placed an upper limit on the contribution of
tensor modes to the CMB anisotropy in terms of the tensor-
to-scalar ratio, which is r < 0.18 at 95% confidence level,
tightening to r < 0.11 when measurements of the Hubble
constant and baryon acoustic oscillations [7] are also

included. Planck Collaboration XVI has quoted r < 0.11
using a combination of Planck, South Pole Telescope (SPT),
and Atacama Cosmology Telescope (ACT) anisotropy data,
plus WMAP polarization [5]. More recently, a BICEP2
CMB experiment has found an excess of B-mode power at
degree angular scales, indicating the presence of tensor
modes, with r ¼ 0.20þ0.07

−0.05 when assuming nearly scale-
invariant tensor and scalar spectra [8]. If this result is
confirmed, it would give very strong support to the inflation
model and open a new window for probing inflationary
dynamics, though it conflicts with the Planck low r limit.
There have been many attempts to alleviate the tension

on the high tensor-to-scalar ratio of BICEP2. Here we will
restrict ourself to those involving inflationary dynamics [9].
The main idea is to accommodate relatively large tensor
contribution in the CMB anisotropy by suppressing the
large-scale scalar spectrum with a transient fast-roll phase
or sound-speed variation of inflaton fluctuations in a slow-
roll inflation, or by anticorrelating the tensor and scalar
modes for power cancellation. Recently, the authors in
Refs. [10,11] considered the effect on density perturbation
due to a quantum environment that interacts with the
inflaton. It was shown that the quantum environment
constitutes a colored noise that induces inflaton fluctua-
tions, resulting in a suppression of the scalar spectrum at
large scales. This suppressed scalar power spectrum was
then used to explain the observed low quadrupole in the
CMB anisotropy. On the other hand, tensor modes gen-
erated during inflation are also affected by the quantum
environment, but only through gravitational interaction, so
the effect is suppressed by the Planck mass and the tensor
modes remain nearly intact. In light of this, we will show

PHYSICAL REVIEW D 90, 103531 (2014)

1550-7998=2014=90(10)=103531(6) 103531-1 © 2014 American Physical Society

http://dx.doi.org/10.1103/PhysRevD.90.103531
http://dx.doi.org/10.1103/PhysRevD.90.103531
http://dx.doi.org/10.1103/PhysRevD.90.103531
http://dx.doi.org/10.1103/PhysRevD.90.103531


that, by the same token, an interacting inflaton could
alleviate the tension between Planck and BICEP2 data.

II. COLORED NOISE

Motivated by various theoretical reasons and cosmo-
logical observations, there has been a lot of interest in
inflation models with an interacting inflaton involving a
reheating, preheating, or trapping phenomenon in which
the inflaton is coupled to scalar, fermion, or vector fields.
Here we will not restrict ourselves to a specific inflation
model, but rather we will assume a successful inflation
potential that satisfies the standard slow-roll condition.
Furthermore, we introduce an interaction between the
inflaton and scalar fields as a simple working example to
show the occurrence of a colored noise due to the interaction
during inflation and to study its effect on inflaton fluctua-
tions. There are many studies on the effects of particle
production during inflation, though in different contexts,
deriving similar inflaton perturbation equations that exhibit
both noise and dissipation effects [11–13].
The colored noise stems from the quantum interaction of

the inflaton, ϕ, and other fields such as a scalar, σ, while the
inflaton is rolling down the potential VðϕÞ. The Lagrangian
of this kind of model usually takes the following form (see,
for example, Refs. [11,12]):

L ¼ 1

2
∂μϕ∂μϕ − VðϕÞ þ Lσ;

Lσ ¼
X
i

1

2
½∂μσi∂μσi −m2

σiσ
2
i − g2i ðϕ − ϕ̄iÞ2σ2i �; ð1Þ

where gi is a coupling constant and ϕ̄i is a constant field
value. For a single σ field and ϕ̄ ¼ 0, it reduces to the
simplest case in which a massive scalar couples to the
inflaton [11]. In the case with many copies of σi fields and
mσi ¼ 0, when ϕ rolls down to a trapping point ϕ̄i, σi
particles become instantaneously massless and are copi-
ously produced and then backreact on the motion of the
inflaton [12]. In either case, it has been shown that particle
number density fluctuations (or the noise term) in the σi
particle production would induce a blue power spectrum
of the inflaton fluctuations. Below we will give a brief
review of this phenomenon. For the purpose of showing the
generation of the blue power spectrum, we consider the
simplest interaction in a small-field inflation model that has
been investigated in Ref. [11]:

Lσ ¼
1

2
∂μσ∂μσ −

1

2
m2

σσ
2 −

1

2
g2ϕ2σ2: ð2Þ

We can approximate the background metric to be de
Sitter during inflation which is given by

ds2 ¼ a2ðηÞðdη2 − dx2Þ; ð3Þ

where a ¼ −1=ðHηÞ with the Hubble parameter H and
inflation begins at aðηiÞ ¼ 1. Then, using the influence
functional method that integrates out the interaction term
and the field σ and introduces an auxiliary field ξ, the
effective action becomes [14]

Seff ½ϕ;ϕΔ; ξ� ¼
Z

d4xa2ðηÞϕΔðxÞ
�
−ϕ̈ðxÞ − 2aH _ϕðxÞ

þ∇2ϕðxÞ − a2½V 0ðϕÞ þ g2hσ2iϕðxÞ�

− g4a2ðηÞϕðxÞ
Z

d4x0a4ðη0Þθðη − η0Þ

× iG−ðx; x0Þϕ2ðx0Þ þ g2a2ðηÞϕðxÞξðxÞ
�
;

ð4Þ

where ϕΔ is a relative field variable, the dot and the prime
denote differentiation with respect to η and ϕ, respectively,
and the kernels G� can be obtained from the Green’s
function of σ:

G�ðx; x0Þ ¼ hσðxÞσðx0Þi2 � hσðx0ÞσðxÞi2: ð5Þ

The effects from the quantum field σ on the inflaton are
given by the dissipation via the kernel G− as well as a
stochastic force induced by the multiplicative colored noise
ξ, with

hξðxÞξðx0Þi ¼ Gþðx; x0Þ: ð6Þ

Next, we extremize the effective action δSeff=δϕΔ and
obtain the semiclassical Langevin equation for ϕ:

ϕ̈þ 2aH _ϕ −∇2ϕþ a2½V 0ðϕÞ þ g2hσ2iϕ�

− g4a2ϕ
Z

d4x0a4ðη0Þθðη − η0ÞiG−ðx; x0Þϕ2ðx0Þ

¼ g2a2ϕξþ ξw; ð7Þ

where we have included the white noise ξw in the free-field
stochastic inflation [4], with

hξwðxÞξwðx0Þi ∝ δðx − x0Þ; ð8Þ

which can be produced by integrating out the high-
frequency modes of the inflaton (see, for example,
Ref. [10]). The white noise reproduces the inflaton vacuum
quantum fluctuations hφ2

qi with a scale-invariant power
spectrum given by Δq

k ¼ H2=ð4π2Þ [15]. Note that the
dissipation in the equation is not important at the beginning
of inflation because it is a time accumulated term. We
may safely neglect it if we only consider the first few
e-folds of inflation. Let us drop the dissipation for the
moment and consider the colored noise only. Then,
after decomposing ϕ into a mean field and a classical
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perturbation, ϕðη;xÞ ¼ ϕ̄ðηÞ þ φðη;xÞ, we obtain the lin-
earized Langevin equation,

φ̈þ 2aH _φ −∇2φþ a2m2
φeffφ ¼ g2a2ϕ̄ξ; ð9Þ

where the effective mass ism2
φeff ¼ V 00ðϕ̄Þ þ g2hσ2i and the

time evolution of ϕ̄ is governed by Vðϕ̄Þ. The equation of
motion for σ from which we construct its Green’s function
can be read off its quadratic terms in the Lagrangian as

σ̈ þ 2aH _σ −∇2σ þ a2m2
σσ ¼ 0: ð10Þ

Let us decompose

YðxÞ ¼
Z

d3k

ð2πÞ32 YkðηÞeik·x; where Y ¼ φ; ξ;

σðxÞ ¼
Z

d3k

ð2πÞ32 ½bkσkðηÞe
ik·x þ H:c:�; ð11Þ

where b†k and bk are creation and annihilation operators
satisfying ½bk; b†k0 � ¼ δðk − k0Þ. Then, the solution to
Eq. (9) is obtained as

φkðηÞ ¼ −ig2
Z

η

ηi

dη0a4ðη0Þϕ̄ðη0Þξkðη0Þ

× ½φ1
kðη0Þφ2

kðηÞ − φ2
kðη0Þφ1

kðηÞ�; ð12Þ

where the homogeneous solutions φ1;2
k are given by

φ1;2
k ¼ 1

2a
ðπjηjÞ12Hð1Þ;ð2Þ

ν ðkηÞ: ð13Þ

Here Hð1Þ
ν and Hð2Þ

ν are Hankel functions of the first and
second kinds, respectively, and ν2 ¼ 9=4 −m2

φeff=H
2. In

addition, we have from Eq. (10) that

σkðηÞ ¼
1

2a
ðπjηjÞ12½c1Hð1Þ

μ ðkηÞ þ c2H
ð2Þ
μ ðkηÞ�; ð14Þ

where the constants c1 and c2 are subject to the
normalization condition, jc2j2 − jc1j2 ¼ 1, and μ2 ¼
9=4 −m2

σ=H2.
To maintain the slow-roll condition,m2

ϕeff ¼ m2
φeff ≪ H2

(i.e., ν ¼ 3=2), requires that g2 < 1 and m2
σ > H2. The

latter condition limits the growth of hσ2i during inflation to
be less than about 10−2H2 [16,17]. Equation (10) does not
include mass corrections to m2

σ from the mean inflaton
field, g2ϕ̄2, and the mass renormalization due to quantum
fluctuations of the inflaton, g2hφ2

qi. Under the slow-roll
condition, hφ2

qi grows linearly as H3t=4π2 [16,17] and
thus hφ2

qi≃H2 after about 60 e-foldings (i.e., Ht≃ 60).
Therefore, as long as g2ϕ̄2 ≤ 2H2 for the period during
which those k modes of cosmologically relevant scales
cross out the horizon, we can conveniently choose

m2
σ ¼ 2H2 (i.e., μ ¼ 1=2) for which σ takes a very simple

form. After that, g2ϕ̄2 may grow to a value much bigger
than H2 and thus the effective mass of σ becomes much
larger than H2. If so, this large mass will suppress the
growth of hσ2i [17] and may diminish the effect of the noise
term. From now on, let us consider only the relevant period
with g2ϕ̄2 ≤ 2H2. It was shown that when μ ¼ 1=2 one can
select the Bunch-Davies vacuum (i.e., c2 ¼ 1 and c1 ¼ 0)
[17]. Hence, using Eqs. (6) and (12), we obtain [11]

hφkðηÞφ�
k0 ðηÞi ¼ 2π2

k3
Δξ

kðηÞδðk − k0Þ; ð15Þ
where the noise-driven power spectrum is given by

Δξ
kðηÞ ¼

g4z2

8π4

Z
z

zi

dz1

Z
z

zi

dz2ϕ̄ðη1Þϕ̄ðη2Þ
sin z−
z1z2z−

× ½sinð2Λz−=kÞ=z− − 1�Fðz1ÞFðz2Þ; ð16Þ
where z− ¼ z2 − z1, z ¼ kη, zi ¼ kηi ¼ −k=H, Λ is the
momentum cutoff introduced in the evaluation of the
ultraviolet divergent k integration of σk in the Green’s
function (5), and

FðyÞ ¼
�
1þ 1

yz

�
sinðy − zÞ þ

�
1

y
−
1

z

�
cosðy − zÞ:

ð17Þ
Note that the term sinð2Λz−=kÞ=z− ≃ πδðz−Þ when Λ ≫ k,
so Δξ

kðηÞ is insensitive to Λ. Both ϕ̄ðη1Þ and ϕ̄ðη2Þ in
Eq. (16) can be approximated as a constant mean field ϕ̄0.
Δξ

kðηÞ at the horizon-crossing time given by z ¼ −2π was
found in Ref. [11], and here we show the value versus k=H
in Fig. 1. The figure shows that the noise-driven fluctua-
tions depend on the onset time of inflation and approach
asymptotically a scale-invariant power spectrum Δξ

k ≃
0.2g4ϕ̄2

0=ð4π2Þ at large k. Here, the mean field value ϕ̄0

should naturally be of order H in small-field inflation. In
the large-field inflation model discussed in Ref. [12], the
obtained noise-driven power spectrum is also blue and
there ϕ̄0 ∼H can be the spacing between the trapping
points along the inflaton trajectory.
Let us go back to examining the dissipation term in the

Langevin equation (7). As mentioned above, the dissipation
is a time accumulated effect. Near the beginning of
inflation, by doing integration by parts of this term, it
was found [11] that this term only contributes a mass
correction of about 10−2g4ϕ̄2

0 to m2
φeff , a small friction term

of order 10−2g4ϕ̄2
0a _ϕ=H to Eq. (7), and a correction to

the slope of the inflaton potential V 0ðϕÞ of order 10−2g4ϕ̄3
0.

All of these corrections can be neglected as long
as g2ϕ̄2

0 ≤ 2H2.
One should emphasize that the white noise (8) causes a

delta-function response and thus produces a scale-invariant
spectrum of inflaton quantum fluctuations, whereas the
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colored noise (6) has a causal response due to an interaction
between the inflaton and the quantum environment. The
latter gives rise to a suppressed power spectrum at
cosmologically relevant scales as long as inflation lasts
for just about 60 e-foldings. Although the exact form of the
colored noise varies with the type of interaction, the blue-
tilted power spectrum is just a consequence of the causal
response. This characteristic feature in the power spectrum
should be quite general; it exists whenever there is
interaction between the inflaton and any other quantum
fields.

III. EFFECTS ON LARGE-SCALE CMB

Here, assuming a slow-roll inflation, the scalar power
spectrum contains both inflaton quantum fluctuations and
those driven by the colored noise, given by

PS ¼ PS
ΛCDM

1þ Δξ
k=Δ

q
k

1þ r0
; ð18Þ

where the noise contribution is quantified by a parameter

r0 ≡ lim
k→∞

Δξ
k=Δ

q
k ≃ 0.2g4ϕ̄2

0=H
2; ð19Þ

the power spectrum of the inflaton quantum fluctutations is
given by the scale-invariant Δq

k ¼ H2=ð4π2Þ, and PS
ΛCDM is

the scalar power spectrum in the Planck best-fit lambda
cold dark model (ΛCDM) [5]. In Fig. 1, we will need to
specify the duration of inflation in order to determine the
value of k=H that corresponds to a given comoving scale.
In the following, instead of fixing the duration of inflation,

we will treat the value of k=H that corresponds to
0.05 Mpc−1 as a free parameter denoted by k0.05.
On the other hand, in order to fit BICEP2 data of the BB

power spectrum, we prepare a scale-invariant tensor power
spectrum in the ΛCDM model, PT ¼ PT

ΛCDM, such that the
r ratio PT=PS

ΛCDM ¼ 0.2 at k ¼ 0.002 Mpc−1. Recently,
Planck polarization data [18] has implied that the BICEP2
B-mode signal may contain contributions from polarized
dust emission, so the ratio r may be reduced significantly.
In light of this, we also study the case where r ¼ 0.1, in
which we repeat every step of the case with r ¼ 0.2 except
for the use of the r ¼ 0.1 tensor power spectrum.

FIG. 2. Solid lines are the likelihood plot of the parameters r0
and k0.05 for the case with r ¼ 0.2, with one-sigma (the loop in
the lower left-hand corner) and two-sigma (unbound) contours.
The maximum likelihood values are r0 ¼ 0.1 and k0.05 ¼ 33. The
dashed lines are for the case with r ¼ 0.1, with the maximum
likelihood values given by r0 ¼ 0.05 and k0.05 ¼ 33.

FIG. 1. Power spectrum of the noise-driven inflaton fluctua-
tions δξk ≡ 4π2Δξ

k=g
4ϕ̄2

0, where ϕ̄0 is the mean field near the
beginning of inflation. The starting point, k=H ¼ 2π, corre-
sponds to the k mode that leaves the horizon at the start of
inflation.

FIG. 3. CMB temperature anisotropy power spectrum of the
colored noise model is denoted by the dashed (solid) line for the
case with r ¼ 0.2 (r ¼ 0.1). The dotted line is the power spectrum
predicted in the ΛCDM model. Overlaid are the Planck measure-
ments. For l > 70, all three spectra overlap.
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Then, using PS and PT , we compute the CMB TT and
BB power spectra based on the CMBFAST code [19]. We
tune the values of r0 and k0.05, by fixing the other
cosmological parameters to the best-fit values of the
Planck ΛCDM model [5], to best fit the Planck and
BICEP2 data. For the case with r ¼ 0.2, the likelihood
plot in Fig. 2 shows the maximum likelihood values of
r0 ¼ 0.1 and k0.05 ¼ 33. Figure 3 shows that the TT power
spectrum with r0 ¼ 0.1 and k0.05 ¼ 33, which is induced by
a combination of both PS and PT , is indeed the same as that
induced only by PS

ΛCDM, within measurement errors. The
large-scale TT power suppression due to the colored noise
can really be made up for by the tensor contribution. If
ϕ̄0 ∼H is assumed, then r0 ¼ 0.1 would imply that
g ∼ 0.84. For the case with r ¼ 0.1, we find that the results
are very similar to those for r ¼ 0.2 except that the value
of r0 is now reduced to about r0 ¼ 0.05. Interestingly,
recent studies based on Bayesian statistics have indicated
that the Planck and BICEP2 joint likelihood analysis
strongly favors a scalar power spectrum like that one in
Fig. 1 [20].

IV. CONCLUSIONS

Because an inflaton has to be interacting with other fields
to convert its potential energy into radiation to reheat the

Universe, the interaction may induce a large-scale power
suppression in the CMB temperature anisotropy power
spectrum. We have shown that the presence of a significant
amount of tensor modes, as indicated in the BICEP2
measurement of the CMB B-mode polarization, would lift
up this temperature suppression. This implies that the
measured temperature anisotropy power spectrum made
by the Planck team can be a combination of scalar and
r ¼ 0.2 tensor contributions. If BICEP2 results are con-
firmed to be genuine tensor B modes, our work would
indicate that we may have a one-sigma detection of the
interacting inflation model. On the other hand, if the
BICEP2 B-mode signal is mostly polarized dust contami-
nation and r is thus reduced significantly, this would put a
tighter upper bound on the interaction strength. Lastly, we
admit that the duration of inflation in the present work must
be assumed to be about 60 e-foldings, such that the power
suppression takes place only at the large scales of the
Universe.
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