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When extracting cosmological information from power spectrum measurements, we must consider the
impact of super-sample density fluctuations whose wavelengths are larger than the survey scale. These
modes contribute to the mean density fluctuation δb in the survey and change the power spectrum in the
same way as a change in the cosmological background. They can be simply included in cosmological
parameter estimation and forecasts by treating δb as an additional cosmological parameter enabling
efficient exploration of its impact. To test this approach, we consider here an idealized measurement of the
matter power spectrum itself in the ΛCDM cosmology though our techniques can readily be extended to
more observationally relevant statistics or other parameter spaces. Using subvolumes of large-volume
N-body simulations for power spectra measured with respect to either the global or local mean density, we
verify that the minimum variance estimator of δb is both unbiased and has the predicted variance. Parameter
degeneracies arise since the response of the matter power spectrum to δb and cosmological parameters share
similar properties in changing the growth of structure and dilating the scale of features especially in the
local case. For matter power spectrum measurements, these degeneracies can lead in certain cases to
substantial error degradation and motivates future studies of specific cosmological observables such as
galaxy clustering and weak lensing statistics with these techniques.
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I. INTRODUCTION

The statistical properties of large scale structure provide
a wealth of cosmological information on fundamental
physics, including cosmic acceleration, neutrino masses
and inflation. The simplest statistic is the two-point
correlation function or power spectrum of the matter
density field which underlies observables such as weak
lensing and galaxy clustering. To extract cosmological
information from the power spectrum of upcoming wide-
area galaxy surveys (e.g. [1]), we need to properly model its
own statistical properties, one of which is the impact of
modes whose wavelengths are larger than the survey scale,
the so-called super-sample modes.
While these super-sample modes are not directly observ-

able, they impact the evolution of subsample modes in an
observable way due to nonlinear mode coupling [2–15].
Ref. [13] developed a simple, unified approach that
describes the impact of the super-sample modes as the
response of the power spectrum to a change in the mean
density in the finite-volume region. Ref. [14] then utilized
the so-called separate universe approach to calibrate this
response in N-body simulations. Here, the mean density
fluctuation δb is absorbed into a change in cosmological
parameters (e.g. [16–20]). The separate universe approach
is also useful for gaining a physical understanding of the
response. In a coherently overdense region structure grows

more quickly and regions expand less quickly. The
response is therefore a change in the amplitude or growth
of structure and in the scale or dilation of features in the
power spectrum.
The impact of the mean density fluctuation can also be

viewed in two ways: as additional noise due to its
stochasticity, or as additional signal from which the mean
density in a given volume may be recovered [13]. In the
former view, the super-sample effect introduces a covari-
ance to power spectrum estimates since each realization of
δb coherently changes the power spectrum according to the
calibrated response. Ref. [14] used the covariance matrix of
power spectra in subsampled simulations to verify the
separate universe response itself.
Here we develop the alternative view that in each

realization the super-sample effect biases the measured
power spectrum or equivalently introduces an extra param-
eter, δb, upon which it depends. The mean density
fluctuation leaves a signal in the power spectrum which
can be used to recover its value providing constraints on
super-sample modes that are not directly observable in the
survey (see also [12,21]). Moreover, this view facilitates
studies of the impact of super-sample modes on cosmo-
logical parameter estimation by treating the two on an equal
footing.
While here we only test this view in the idealization that

the matter power spectrum is directly observed, these ideas
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can be readily extended to more observationally relevant
power spectrum observables once their response to δb is
calibrated.
The structure of this paper is as follows. In Sec. II we

review the super-sample effects on the power spectrum and
test its interpretation as signal by explicitly constructing
an estimator of the mean density fluctuation in simulations.
In Sec. III we study the similarities between the power
spectrum response to the mean density fluctuation and to
cosmological parameters which propagate into parameter
degeneracies in the Fisher information matrix. We discuss
these results in Sec. IV. Appendix A provides details of the
simulations and the numerical techniques.

II. SUPER-SAMPLE SIGNAL

In Sec. II A, we first briefly review the impact of super-
sample modes on the power spectrum covariance which
was developed in Refs. [13,14]. Next we show the effect
can alternately be treated as a signal that allows us to
construct an unbiased minimum variance estimator of the
mean density fluctuation in Sec. II B. We test this estimator
against cosmological simulations in Sec. II C and show
that its statistical properties are well characterized by the
separate universe response of the power spectrum to the
mean density and the covariance of the power spectrum in
the absence of the mean density mode.

A. Super-sample modes

In this section we characterize the effect of super-sample
modes on power spectrum measurements in a finite survey
volume in a manner that brings out their role as both signal
and noise. Let us denote the average density fluctuation in
the survey region from these modes as δb and assume that
the measurement of the power spectrum of subsurvey
modes P̂ðk; δbÞ is sample variance limited. Let us bin these
measurements into a data vector,

P̂iðδbÞ≡ k3i P̂ðki; δbÞ
2π2

; ð1Þ

and consider the impact of δb on the mean and covariance
of these data. We use the dimensionless power spectrum
since it is independent of the units with which the wave
number is measured and thus allows a cleaner separation of
effects on the amplitude and scale of structure
(see Ref. [14]).
Even if we define an estimator which yields the true

power spectrum PðkiÞ when averaged over realizations of
all modes, including the super-sample ones,

hP̂ii≡ Pi ¼
k3i PðkiÞ
2π2

; ð2Þ

the average over realizations of different subsurvey modes
at fixed δb, which we denote by h…ib, is biased:

hP̂iib ≡ PiðδbÞ ¼ Pið1þ Tδb
i δbÞ: ð3Þ

Here we have linearized the response of the power
spectrum assuming jδbj ≪ 1:

Tδb
i ≡ ∂ lnPi

∂δb : ð4Þ

As demonstrated in Ref. [14] through its effects on the
power spectrum covariance below, we can use the separate
universe approach to calibrate the power spectrum
response, Tδb

i , for a given fiducial cosmological model.
In this approach the mean density fluctuation of the survey
δb is absorbed into the local background density by
redefining cosmological parameters.
Fig. 1 summarizes the results for the ΛCDM model (see

Table II) at z ¼ 0 using N-body simulations to calibrate the
response deep into the nonlinear regime. Note that the
technique itself is more general than this particular imple-
mentation. Given a state-of-the-art simulation that includes
baryonic effects, e.g. star formation and feedback [22,23],
the impact of super-sample modes can still be calibrated by
runs where the background parameters are changed to
absorb δb.
These results apply to power spectrum measurements

where the global mean density is known through cosmo-
logical parameters, e.g. in the case of weak lensing power
spectra. If the power spectrum is estimated with respect to
the local mean density within the survey region, which is
the case for galaxy surveys, the relevant observable is

FIG. 1 (color online). Power spectrum response to the mean
density fluctuation in a survey region, calibrated with the separate
universe simulations through a change in background parameters
(see Ref. [14]). Solid curve represents the response of the power
spectrum referenced to the true or global mean density, while the
dashed curve to the mean survey or local density. The two are
related by an additive constant 2, which changes the shape of the
response.
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P̂W ¼ P̂
ð1þ δbÞ2

; ð5Þ

where W denotes the survey volume or window here and
below. The power spectrum response is therefore modified
to be

Tδb
i jlocal ≡ ∂ lnPW

i

∂δb ≈
∂ lnPi

∂δb − 2: ð6Þ

Because the formalism for super-sample effects is other-
wise identical, we use the term “local” data or response
when replacing the “global” versions of Eqs. (4) and (5), in
relevant formula below. Both responses are shown in Fig. 1.
Since δb is a random zero mean variable, its variance

turns into a covariance of the power spectrum estimators. In
this sense the super-sample effect contributes as additional
noise. We can model this noise by treating the bias as a
purely systematic additive shift in the power spectrum per
realization,

P̂iðδbÞ ¼ P̂ið0Þ þ PiT
δb
i δb: ð7Þ

The covariance matrix of the power spectrum data is then
given by

hP̂iP̂ji − PiPj ¼ Cij þ PiPjT
δb
i T

δb
j σ

2
b; ð8Þ

where σ2b is the variance of the mean density field in the
survey window, defined as

σ2b ≡ hδ2bi ¼
1

V2
W

Z
d3q
ð2πÞ3 j

~WðqÞj2PðqÞ: ð9Þ

Here VW is the survey volume and ~WðqÞ is the survey
window function which acts as a low pass filter. For a
sufficiently large survey volume, the super-sample modes
are in the linear regime and therefore σb can be accurately
calculated with the linear power spectrum either by explicit
computation of Eq. (9) or Gaussian realizations of the linear
density field. The matrix Cij in Eq. (8) is defined as

Cij ¼ hP̂ið0ÞP̂jð0Þi − PiPj: ð10Þ

Note that this is the covariance of the power spectrum
estimators in the absence of the super-sample effect. It can
be readily calibrated from a suite of small-volume N-body
simulations for a given cosmological model [24,25] (see
Appendix A and Ref. [14] for implementation specifics).
The sum of the two contributions of Eq. (8) reproduces the
super-sample covariance derived in Ref. [14] from trispec-
trum considerations.
An alternate model would be to consider the bias in the

power spectrum estimators to be multiplicative with respect
to P̂ið0Þ,

P̂i ¼ P̂ið0Þð1þ Tδb
i δbÞ: ð11Þ

This model yields an additional contribution to the second
term of Eq. (8),

PiPjT
δb
i T

δb
j σ

2
b → ðPiPj þ CijÞTδb

i T
δb
j σ

2
b; ð12Þ

and hence only a small change for well measured bins
where the covariance is much smaller than the product of
the means. We hereafter adopt the additive model.

B. Signal vs noise

In a given realization of the survey volume, the super-
sample effect systematically changes the power spectrum of
subsurvey modes just like a cosmological parameter pc.
Indeed, in the additive model of Eq. (7), the analogy is
precise: δb is simply a parameter that changes the mean
power spectrum:

P̂iðδbÞ − Piðδb;pcÞ ¼ P̂ið0Þ − PiðpcÞ: ð13Þ

Thus the data in the presence of δb have the same statistical
properties as in its absence. They are both drawn from a
distribution with covariance Cij and only the mean is
shifted. Parameter estimation then proceeds in the usual
way by treating δb as a parameter p ¼ fδb;pcg. For
example, the posterior probability of model parameters
including δb can be estimated using Markov Chain
Monte Carlo techniques based on the likelihood function
constructed from the covariance matrix Cij with the model
parameterized by p. In this view, the super-sample effect is
a signal which allows the mean density fluctuation to be
recovered rather than a source of additional noise.
To test this interpretation with simulations, we can

construct an explicit estimator of δb based on linear
response. Here we shall assume that cosmological param-
eters are fixed and hence suppress their appearance in the
expressions. A general unbiased linear estimator of δb takes
the form

δ̂b ¼
X
i

wiðP̂i − PiÞ; ð14Þ

where the weight

X
i

wiPiT
δb
i ¼ 1; ð15Þ

is constrained by the condition hδ̂bib ¼ δb. The remaining
freedom in choosing the weights is fixed by minimizing the
variance of the estimator

σ2δb ≡ hδ̂2bib − δ2b ¼
X
ij

wiwjCij; ð16Þ
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subject to the Lagrange multiplier constraint yielding

wi ¼
P

jT
δb
j Pj½C−1�ijP

jkT
δb
j Pj½C−1�jkTδb

k Pk

ð17Þ

and

σ2δb ¼
�X

jk
Tδb
j Pj½C−1�jkTδb

k Pk

�
−1
: ð18Þ

If instead of the additive bias model, the multiplicative bias
model of Eq. (11) is correct, this estimator remains
unbiased but its variance changes. Thus comparing the
predicted variance from Eq. (16) with the variance obtained
from simulations tests the accuracy of our additive model of
super-sample effects as well as that of the response Tδb

i and
covariance Cij calibration.

C. Density estimation

In this section, we test the δ̂b estimator with large-volume
simulations where the true mean density fluctuation δb is
known in each subvolume of the simulation. We summarize
here the relevant simulation details presented in
Appendix A. Specifically seven large-volume simulations,
each with a 4 Gpc=h box length are divided into a total of
Ns ¼ 7 × 83 ¼ 3584 subvolumes of size 500h−1 Mpc
each. For reference the variance of the mean density
fluctuation of the subvolumes is

σ̂2b ¼
1

Ns

XNs

a¼1

δ2b;a ¼ ð0.01263Þ2; ð19Þ

which matches well the computation from Eq. (9),
σb ¼ 0.01258. We measure the power spectrum P̂i in each
subvolume separately. Note that this power spectrum is of
the density fluctuation from the large-box mean and hence
characterizes the “global” data in the language of Sec. II A.
For the “local” data, we use the true average density in the
subvolume to rescale the global data according to Eq. (5).
To calibrate the mean power spectrum Pi and the

covariance matrix Cij, we run another suite of Ns small
box simulations each of the same size as the subvolume. All
power spectra are binned in 80 k bins per decade and we
utilize measurements out to k≲ 2h Mpc−1 up to which we
verified the response calibration is accurate to several
percent or better, based on higher-resolution simula-
tions [14].
From P̂i, Pi, and Cij we form the δ̂b estimator of

Eq. (14) for both the global and local cases and compare it
with the true value δb in each of Ns subvolumes. Figure 2
shows the results binned in δb with width σb=4. In both the
global and local estimations, there is no trace of a bias in the
estimator to a small fraction of its standard deviation.
Moreover, in Fig. 3 we test the predicted distribution of the

estimator combining all bins with the prediction from
Eq. (16) for the variance under the assumption of a
Gaussian distribution. The agreement in both cases is very
good. For a more quantitative assessment we measure the
variance of the estimator with our Ns samples in the usual
way,

σ̂2δb ¼
1

Ns

XNs

a¼1

ðδ̂b;a − δb;aÞ2: ð20Þ

The result is σ̂δb ¼ 0.29σb for the global case and 1.4σb for
the local case. In both cases the result is only ∼7% larger in
standard deviation than the prediction of Eq. (16). Even in
the local case where the standard deviation is comparable to
σb there is non-negligible extra information provided by the
estimator.
These results validate the use of our additive model to

predict the impact of the super-sample effect in other cases
of interest. In Fig. 4, we use this model to explore the
dependence of the standard deviation of the estimator on
the maximum k used. Note that in the local case, σδb is only
a weak function of kmax. This is because, the intrinsic
covariance between bins Cij induces very similar changes
to the power spectrum as Tδb local for k≳ 0.1h Mpc−1. The
difference in shape between the local and global responses

FIG. 2 (color online). Estimated (δ̂b) vs true (δb) mean density
fluctuations for the set of 3584 simulation subvolumes. The
means (×, þ, slightly shifted for clarity) of the estimators using
both globally and locally referenced power spectra show no trace
of a bias for bins with sufficient statistics that the standard
deviation (errorbars) can be estimated. This standard deviation is
significantly smaller than�σb (gray band) for the global case and
comparable for the local case.
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causes an improvement in the standard deviation of the
latter for k≳ 1h Mpc−1.
The above results apply to estimates of δb when all other

parameters that change the power spectrum are known a
priori. With joint estimator of parameters from the survey,
the δb mode will degrade results on cosmological param-
eters and vice versa if their impact on the power spectrum is
sufficiently similar to cause degeneracies.

Finally in the additive model, the scaling of these results
with the volume of the survey is also simple. Since Cij
characterizes the covariance of subsurvey modes in the
absence of the super-sample effect, it scales with volume as

CijðVÞ ¼
V0

V
CijðV0Þ; ð21Þ

where V0 ¼ ð500h−1 MpcÞ3, the volume of the simulation
test. Hence,

σpμ
ðVÞ ¼

ffiffiffiffiffiffi
V0

V

r
σpμ

ðV0Þ ð22Þ

for any parameter estimated from power spectra data
including δb. The ratio σδb=σb does in general depend on
volume. However in ΛCDM the quantity σbV1=2 varies
weakly with V, typically by ∼

ffiffiffi
2

p
across a V=V0 ¼ 100.

Thus we expect that the relative impact of the super-sample
effect will be only weakly dependent on volume for the
cubic geometry we consider. In Ref. [13] it was also shown
that for a cylindrical geometry the scaling holds although
σbðV0Þ itself is smaller for the same volume.

III. PARAMETER FORECASTS

In this section we use the Fisher information matrix
formalism to study the impact of the super-sample effect on
cosmological parameter estimation in the idealized context
of direct matter power spectrum measurements. After
defining the Fisher matrix in Sec. III A, we study similarities
in the power spectrum response between the super-sample
mode and cosmological parameters in Sec. III B. These
similarities lead to degeneracies which degrade errors when
parameters are jointly estimated in Sec. III C and are
themselves limited by prior information on the variance
of the super-sample mode III D.

A. Fisher matrix

As discussed in Sec. II B, the additive model δb can be
thought of as an additional parameter of the model power
spectrum so that the full parameter vector is p≡ fδb;pcg,
where pc are cosmological parameters. In the Fisher
approximation, the information from the power spectrum
mean is added to any prior information Fprior

μν on the
parameters,

Fμν ¼
X
ij

PiT
μ
i ½C−1�ijPjTν

j þ Fprior
μν ; ð23Þ

where

Tμ
i ≡ ∂ lnPi

∂pμ
: ð24Þ

FIG. 3 (color online). Distribution or scatter of the density
estimator δ̂b around the true value (histogram) versus the
prediction from Eq. (16) with a Gaussian distribution (curve).
In both the global and local cases, the predictions are within 7%
of the simulation results in the standard deviation justifying their
use in parameter forecasts below.

FIG. 4 (color online). Standard deviation of the δb estimator,
σδb , in the local and global cases as a function of the maximum k
bin compared with the rms density fluctuation σb. In the local
case the standard deviation approaches the rms in the nonlinear
regime and remains nearly constant to 2h Mpc−1. In the global
case, it drops below the rms in the nonlinear regime and continues
to improve beyond 1h Mpc−1.
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The inverse Fisher matrix is an approximation to the
covariance matrix of the parameters

½F−1�μν ≈ hp̂μp̂νib − pμpν: ð25Þ

To make contact with Sec. II C, note that in the limit that the
parameter space includes only δb and there is no prior
information on it, Eq. (25) yields the variance of the
estimator given in Eq. (18). This is because the Fisher
approximation involves the same linearization of the
response to the parameters that permits the construction
of a linear minimum variance unbiased estimator. With
additional parameters and no external prior, degeneracies
where the errors strongly covary appear if the responses
take a similar form. Thus to understand the impact of super-
sample modes on parameter estimation we must compare
the various responses Tμ

i .

B. Parameter responses

Given that the separate universe technique described in
Sec. II A and detailed in Ref. [14] involves modeling the
super-sample effect by changes in background cosmologi-
cal parameters, we expect the response to δb and cosmo-
logical parameters will contain similarities that can create
parameter degeneracies. Namely, these parameters change
the amplitude of power in the spectrum and the scale at
which features like baryon acoustic oscillations (BAO)
appear. We will call these effects growth or “g” and dilation
or “d,” respectively.
Let us begin by examining this decomposition for δb and

a power spectrum measurement with respect to the local
mean density of the survey, defining

Tδb jlocal ≡ 2
∂ lnD
∂δb Tδb;g −

1

3
Tδb;d: ð26Þ

Here and below we omit the k-bin index i where no
confusion should arise. The first term is due to the
enhancement of the growth of structure in a coherently
overdense region. Absorbing this fluctuation into a redefi-
nition of the background implies a change in the linear
growth function of density fluctuations D with respect to
the local mean density [19],

∂ lnD
∂δb ≈

13

21
: ð27Þ

Hence, with this normalization, limk→0Tδb;g ¼ 1.
The second term of Eq. (26) is due to the fact that an

overdense region expands less quickly than the global
universe. This changes the comoving scale of physical
features in the power spectrum according to a dilation
template,

Td ≡ ∂ lnP
∂ ln k : ð28Þ

The factor of 1=3 arises since an equal time comparison is
at equal physical mean density and so the scale factor is
adjusted by ð1þ δbÞ1=3. By removing this rescaling with a
choice of simulation box size introduced in Ref. [14] (see
also Appendix A), we can determine Tδb;g independently of
the full response Tδb as shown in Fig. 6. The difference
between these responses gives the dilation template Tδb;d

which is compared with the k derivative of the mean power
spectra Td in Fig. 7. The agreement is good and as
discussed in the Appendix, the response difference pro-
vides a more accurate way of calibrating dilation than
differencing noisy power spectrum data.
Finally, when referenced to the true global mean density,

the response becomes (see Eq. (6)

Tδb ¼ Tδb jlocal þ 2: ð29Þ

Note that the additional factor flattens the response of the
power spectrum as shown in Fig. 1. We shall see that this
addition is important for understanding parameter degen-
eracies (cf. [26]).
Now let us compare this response with those of cosmo-

logical parameters. The full set of flat ΛCDM parameters
are As; ns which jointly define the primordial curvature
power spectrum

PR ¼ As

�
k

0.05 Mpc−1

�
ns−1

; ð30Þ

the baryon density Ωbh2; the cold dark matter density Ωch2

and the dimensionless Hubble constant h. The parameters
Ωbh2 and Ωch2 are well determined by the cosmic micro-
wave background (CMB) data and additionally are not
degenerate with pure growth and dilation due to the
changes in the BAO and matter radiation equality features
that they induce. We therefore study responses to changes
in the parameter set pc ¼ flnAs; ns; hg and keep the
remaining parameters fixed to their fiducial values. We
calibrate each response function as discussed in
Appendix A 2 b and show the results in Fig. 5.
The response to h shares the same features as δb. Since h

is varied at fixedΩbh2 andΩch2 in a flat universe its impact
on the power spectrum in the linear regime at a fixed scale
in Mpc comes solely from changing the growth function D
due to the change in ΩΛ. However because observations at
z ¼ 0 determine a scale in hMpc−1, observable features in
the power spectrum shift. This is the same effect that allows
BAO to measure h at z ¼ 0 or the expansion rate and
angular diameter distance at higher redshift. The result is
that the response can be decomposed as
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Th ¼ 2
∂ lnD
∂h Th;g þ 1

h
Th;d: ð31Þ

For reference, in the chosen cosmology ∂ lnD=∂h≈
−0.668. As shown in Fig. 6, the growth pieces of the δb
and h responses are nearly indistinguishable. Likewise,
defining the dilation piece as the difference of these
responses agrees with the dilation defined from δb and
the k derivative of the mean power spectrum as shown in
Fig. 7. In an extended parameter space, we expect the
response to parameters such as the dark energy equation of

state or curvature can be modeled accurately with Th;g and
their impact on the linear growth function D.
Next lnAs directly controls the amount of power in the

spectrum at the initial epoch. At z ¼ 0 a change in lnAs and
a change in growth can produce the same linear power
spectrum and hence in the linear regime the two responses
are indistinguishable. In Fig. 6 we compare these response
and show that they begin to differ in the nonlinear regime. If
the nonlinear power spectrum were a functional of the
linear power spectrum then the responses would be
identical. For example, in a halo model description, if
the mass function were universal and the scale radii of halos
were fixed then the linear power spectrum determines the
nonlinear power spectrum directly with no further reference
to the past history of structure formation. We have verified
that the differences in response are qualitatively modeled
by a change in concentration of halos with respect to a fixed
scale [27]. The concentration of halos retains information
about the mean density of the Universe at their formation
epoch, and so one would not expect a change in the initial
conditions and late-time growth that leaves the linear power
invariant to yield the same concentration. In principle, then
lnAs is not degenerate with other parameters associated
with growth. In practice, uncertainty in the concentration-
mass relation due to baryonic physics can restore this
degeneracy.
Small changes in the tilt can also restore this degeneracy

across a limited range in k. Figure 5 also shows the response
to tilt, which changes the power spectrum in opposite
directions around the pivot point k ¼ 0.05 Mpc−1 ¼
0.071h Mpc−1. Given the greater statistical power of
measurements in the nonlinear regime, a small amount of
tilt can compensate the differences due to changes in the
concentration.

FIG. 6 (color online). Growth component of the power spec-
trum response to δb and h compared with the response to the
initial amplitude of power lnAs. The two growth responses are
nearly identical whereas the lnAs one differs in the nonlinear
regime. The difference can be attributed to a change in halo scale
radii between models with the same linear power spectrum.

FIG. 7 (color online). Dilation component of the power
spectrum response to δb and h compared with that derived from
the slope of the power spectrum Td. All three responses are nearly
identical with the Td exhibiting more noise and resolution
dependence from numerical differencing.

FIG. 5 (color online). Power spectrum response to cosmologi-
cal parameters flnAs; ns; hg as calibrated from simulations.
Similarities between these responses and Fig. 1 cause degener-
acies which degrade parameter errors once uncertainties in the
super-sample mode δb are marginalized.
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In summary, the response functions show that for power
spectrum measurements with respect to the local mean,
there are three parameters fδb; h; lnAsg whose power
spectrum response is characterized mainly by linear com-
binations of two templates, Tg and Td, once minor changes
in tilt or halo concentration are factored in. We therefore
expect a strong degeneracy in the local case. For power
spectra measured with respect to the global mean, the
addition of 2 to the response breaks this degeneracy
yielding three templates for three parameters. We shall
now see that these features are reflected in the forecasted
parameter errors.

C. Parameter constraints without δb prior

We begin with parameter constraints for the case where
there is no external prior on δb so that any information
about it must be recovered from the power spectrum
measured by the survey. Figure 8 shows an overview of
the impact of marginalizing δb on cosmological parameter
estimation. The left panel shows the impact on the three
cosmological parameters considered one at a time with the
other two fixed whereas the right panel shows the result
with the other two marginalized. In the former case, the
degradation is the most severe when the two templates are
most similar. For example in the global case, the flattening
of the response in the nonlinear regime relative to local in
Fig. 1 makes it more similar to lnAs around k ∼ 1 −
2h Mpc−1 and causes a larger degradation in errors for
such choices of kmax. Parameter degeneracies also increase
the importance of having a sufficiently large kmax to

distinguish the responses compared with a naive quantifi-
cation of information through Fμμ [28,29] (see also [6,7]).
Similar statements apply for the case where the two other

cosmological parameters are also marginalized. Here what
is important for determining degeneracies is whether a
linear combination of the four responses can compensate
each other. From Fig. 8 (right) we see that the flattening of
the global vs local response now has the opposite effect on
lnAs. By kmax ¼ 2h Mpc−1 most degeneracies are broken
for the global case whereas they remain strong and impact
all three cosmological parameters in the local case.
To see how these results arise geometrically, we show

various 2D 68% confidence regions for the four parameters
for the local case in Fig. 9 (left) with kmax ¼ 2h Mpc−1. In
particular, the contours involving δb show a strong degen-
eracy with all three of the other parameters. This implies
that without a prior on δb, constraints on cosmological
parameters will be severely degraded by marginalizing δb.
This degradation is quantified in Table I (see Appendix A 3
for details and notation). With the Fisher matrix, we can use
the eigenvector with the largest variance to identify the
degenerate direction

πdegen ¼ 3.5δb þ 2.0δh − 4.9δ lnAs þ 1.5δns; ð32Þ

where we have normalized the vector such that the
estimator of this mode has unit variance. This direction
is displayed as the dashed lines in Fig. 9 (left).
Figure 10 shows the response of the power spectrum

to this combination. This linear combination nulls the

FIG. 8 (color online). Errors on cosmological parameters as a function of the maximum k bin for δb fixed (dot-dashed), marginalized in
the local case (dashed) and in the global case (solid). Left panel: single cosmological parameter estimation with the remaining two held
fixed. Right panel: joint cosmological parameter estimation.
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response in the nonlinear region where changes in the tilt
and halo concentration can compensate each other. The
change in tilt implies a change in the linear regime which
variations in h partially compensate at the expense of
leaving a residual response in the BAO scale.
Next in Fig. 9 (right) we show the two-dimensional error

contours for the global case. As discussed in the previous
section, the change in the δb response from the local case
eliminates the near degeneracy provided by the growth and
dilation responses. Consequently the degradation in

parameter errors from marginalizing δb is much smaller
as shown in Table I. The largest degradation occurs for lnAs
and involves mainly the direction

πdegen ¼ 5.5δb − 0.22δh − 20δ lnAs þ 6.4δns: ð33Þ

Figure 10 shows that this direction does not allow an
approximate nulling of the response in the nonlinear region.

FIG. 9 (color online). Error contours (68%) and distributions for joint δb and cosmological parameter estimation with kmax ¼
2h Mpc−1 with (inner, black) and without (outer, blue) an external prior from σb. Left panel: local case, with dashed lines representing
the degeneracy direction from Eq. (32). Right panel: global case.

TABLE I. Error degradation from marginalizing δb, with or
without prior, for the local and global cases, the fiducial V0 and
100V0 volumes and kmax ¼ 2h Mpc−1. Note that “max” is the
combination of cosmological parameters that is maximally
degraded by marginalizing δb and that degradation is numerically
equal to that on the errors of δb by marginalizing cosmological
parameters.

Local Global
Parameter No prior σb prior No prior σb prior

V ¼ V0

lnAs 4.14 1.17 1.51 1.24
ns 2.37 1.05 1.09 1.04
h 2.54 1.06 1.10 1.04
max,δb 5.02 1.24 4.34 2.91
V ¼ 100V0

lnAs 4.14 1.09 1.51 1.15
ns 2.37 1.03 1.09 1.03
h 2.54 1.03 1.10 1.03
max,δb 5.02 1.13 4.34 2.37

FIG. 10 (color online). Power spectrum responses in most
degenerate directions in the local and global cases, Eqs. (32) and
(33), respectively. In the local case, the direction effectively nulls
the response in the nonlinear regime creating a near perfect
degeneracy. In the global case, no direction nulls the response and
the degeneracy is much weaker. Responses are normalized to
represent 1σ deviations in degenerate parameter combination.
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Instead it yields a flat response in the nonlinear region
which no longer requires significant variations in h to
compensate in the linear regime.
Although these degeneracy studies, which identify the

worst constrained directions, reveal the overall impact on
the individual cosmological parameters, it is also interest-
ing to consider the impact of marginalizing δb on the best
constrained directions. For example, if the CMB or other
cosmological probe constrains a different combination of
these parameters and breaks the degeneracy, then the
impact of the best constrained directions may be revealed.
Moreover, the impact of marginalizing δb is generally larger
on the best rather than worst constrained directions. In
Appendix A 3, we formalize these statements by identify-
ing the combination of cosmological parameters whose
errors are most degraded by marginalizing δb,

πmax ¼ 127δhþ 138δ lnAs þ 183δns; global;

πmax ¼ 67.9δhþ 106δ lnAs þ 116δns; local; ð34Þ

which in practice are in directions very similar to the best
constrained direction without marginalization

πbest ¼ 125δhþ 137δ lnAs þ 199δns; ð35Þ

especially in the global case. Here again we normalize each
mode so that its estimator has unity variance, conditional on
δb held fixed. The amount of the degradation is numerically
equal to that on δb upon marginalizing over cosmological
parameters. In Table I we compare the various degradation
in errors. Note that even in the global case, the maximal
degradation is large and comparable to the local case.
Finally given that the covariance matrix scales with

survey volume according to Eq. (21), we can account for a
change in survey volume by simply rescaling all parameter
errors according to Eq. (22) so that the relative impact of δb
remains the same.
In summary, even though the local case involves a

smaller response to δb, it can have a much bigger impact
on cosmological parameter estimation compared with the
global case due to the ability to construct near perfect
degeneracies in the nonlinear regime. On the other hand,
errors in the combination of cosmological parameters along
the direction that is best constrained without δb are
substantially degraded in both cases.

D. Parameter constraints with δb prior

If the linear power spectrum were perfectly predicted by
external information on cosmological parameters such as
the CMB measurements, then we would possess prior
knowledge that δb is distributed as a Gaussian with variance
σ2b. In this limiting case,

Fprior
μν ¼ 1

σ2b
δKδbμδ

K
δbν
; ð36Þ

where δKμν is the Kronecker delta. Here we use Eq. (9) to
evaluate σb. In practice, cosmological parameter uncertain-
ties should be propagated into this prior but this simple
prior is useful to study as a best case scenario. Note that the
view of super-sample effects as signal makes it simple to
incorporate uncertainties in σb as opposed to the excess
covariance approach where it would enter through the
cosmological parameter dependence of the covariance
matrix.
The impact of this prior is qualitatively different in the

local and global cases. In the local case, with all four
parameters jointly estimated, intrinsic parameter degener-
acies are so strong that the net degradation in parameter
estimation from marginalizing δb is prior limited as shown
in Fig. 9 (left) and Table I. For the global case, the
degradation is only marginally changed by the prior. In
both cases, with the prior, the remaining impact of
marginalizing δb is mainly on lnAs and represents approx-
imately a factor of 1.2 degradation in its errors.
The reason that these degradations are small in both

cases is the remaining degeneracies among the cosmologi-
cal parameters themselves come to dominate the parameter
errors. This fact however does not mean that marginalizing
δb has little effect on combination of cosmological param-
eters that are well constrained in its absence. The direction
of maximal degradation is the same with or without the σb
prior and so is close to the best constrained direction in
Eq. (35). In the global case, this degradation is nearly a
factor of 3 and is substantially larger than the local case.
This degradation can be important for errors on individual
cosmological parameters if other measurements break the
intrinsic cosmological parameter degeneracies.
Finally, with a δb prior, parameter errors do not simply

scale with volume as V−1=2 unless σb ∝ V−1=2. To test the
impact of volume scaling we consider a case where the
volume is increased by V=V0 ¼ 100. In this case σbV1=2 is
reduced by a factor of 1.4. For cases that are not limited by
the prior, the volume scaling of Cij ensures that the
degradation factors are the same. In general for ΛCDM,
increasing the volume tends to slightly strengthen the
relative impact of the prior.

IV. DISCUSSION

Super-sample density fluctuations systematically change
the observable power spectrum of subsample modes. In this
paper, we have developed and tested the interpretation of
this effect as a signal due to the dependence of the observed
power spectrum on the mean density fluctuation in the
survey volume δb. This dependence can be calibrated
efficiently by using the separate universe technique that
absorbs the fluctuation into a change in the background
parameters.
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This interpretation has the advantage that the effect can
be incorporated into parameter estimation without modi-
fication of traditional procedures or pipelines. The form of
the likelihood of the power spectrum data as a function of
the model takes the same form except that the model gains a
parameter δb in addition to cosmological parameters. Its
impact on cosmological parameter estimation comes
through parameter degeneracies. Contrast this with the
alternate but equivalent view that when ensemble averaged
over many realizations of the survey volume and δb, the
effect induces a covariance in the power spectrum that
modifies the form of the likelihood function.
The super-sample signal allows δb itself to be estimated

from power spectrum data. The amount of information on
δb depends on whether the power spectrum is measured
with respect to the global or local mean density, which is
relevant, e.g., for weak lensing or galaxy clustering,
respectively. For a wide range of survey volumes, the
global case contains substantial extra information in the
nonlinear regime on top of the prior expectation that it
be limited by the rms σb predicted by linear theory. For the
local case, the extra information is comparable to the prior
for kmax ¼ 2h Mpc−1.
If cosmological parameters are jointly estimated, this

extra information can be lost to degeneracies. Likewise,
marginalization of δb can degrade errors on cosmological
parameters. The degradation takes on different values
depending on the the parameter space and priors consid-
ered, whether the local or global power spectra are used,
and the maximum wave number utilized. In general, the
strongest degeneracies arise from compensated changes in
the growth of structure and dilation of features induced by
the parameters, which provides a physical basis for which
to extend our results beyond the ΛCDM parameter space.
Without prior information on σb, the degradation of errors
for the local case can be more than a factor of 4 for kmax ¼
2h Mpc−1 and likewise in the global case but only for the
combination of cosmological parameters that is best mea-
sured in the absence of δb and maximally degraded by its
marginalization. Even with a prior that reflects perfect
knowledge of the linear power spectrum, the maximal
degradation in the global case can reach a factor of 2–3.
Fortunately all of these cases and more can be simply and
rapidly considered given a single calibration of the power
spectrum responses.
While we have only considered the effects on the matter

power spectrum throughN-body simulations inΛCDM, our
separate universe and growth-dilation techniques can be
extended to other parameter spaces or observables and can
incorporate baryonic effects and galaxy formation. While
other uncertainties in modeling the data, e.g. redshift space
distortions and galaxy bias for galaxy surveys, may domi-
nate the error budget for current measurements, the super-
sample mode provides an intrinsic limitation to extracting
cosmological information that is degenerate with its effects.
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APPENDIX: NUMERICAL IMPLEMENTATION

In this Appendix we provide details on various numerical
calculations in the main paper. In Sec. A 1, we describe the
cosmological simulations used in the super-sample signal
studies. We calibrate the power spectrum response to
various parameters in Sec. A 2. In Sec. A 3, we establish
the formalism for calculating the degradation of parameter
errors upon marginalizing over δb.

1. Simulations

Here we summarize the salient features of the simula-
tions and power spectrum analysis from Ref. [14] and used
in Sec. II to test super-sample effects with subvolumes of
large-volume simulations. For the large-volume simula-
tions, we take a suite of seven realizations of the fiducial
cosmology given in Table II, originally made for the Dark
Energy Survey. Each of these has a 4h−1 Gpc box length
evolved from initial conditions at ai ¼ 0.02 that are
provided by CAMB [31,32] and 2LPTIC [33], using
L-GADGET2 [34] with 20483 particles and 30723 (Tree-)
PM grid. We then assign the particles to a ð8 × 1920Þ3 grid
with a cloud-in-cell (CIC) scheme, before subdividing each
large box into 83 ¼ 512 subvolumes of size

TABLE II. Parameters of baseline flat ΛCDM model used
throughout.

Ωm Ωb h ns σ8

0.286 0.047 0.7 0.96 0.82
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V0 ¼ ð500h−1 MpcÞ3 ðA1Þ

for a total of Ns ¼ 3584 sub-boxes.
In each subvolume, we extract the mean density fluc-

tuation δb and the power spectrum by FFT. For the power
spectrum, we then deconvolve the CIC window and bin the
result to 80 logarithmically spaced k bins per decade to
form P̂sub

i . Each bin is positioned at the average ki weighted
by the number of modes. This binning scheme is used
throughout the paper.
To calibrate the mean power spectrum Pi and its

covariance matrix Cij, in the absence of δb, we use the
same number Ns of simulations of the same size as the sub-
boxes but with 2563 particles and 5123 (Tree-)PM grid. We
measure the power spectrum P̂sm of each small-box
simulation in the same way with a 19203 grid. All the
numerical settings match the 1=8 scaling of the large box
dimensions except for the (Tree-)PM grid.
The mean power spectrum of the sub-boxes differs from

that of the small boxes in two ways. On large scales the
difference is dominated by convolution bias from the sub-
box window, and on small scales there is a 1% difference
due mainly to using different resolutions for the (Tree-)PM
grid in simulations. We debias the estimator as in Ref [14]
by rescaling

P̂i ¼
Psm

i

Psub
i

P̂sub
i ; ðA2Þ

where we have defined

PX
i ≡ 1

Ns

XNs

a¼1

P̂X;a
i ðA3Þ

as the average over the Ns samples. Thus,

hP̂ii ¼ Psm
i ≡ Pi: ðA4Þ

For the power spectra referenced to the sub-box mean,

P̂W
i ¼ P̂i

ð1þ δbÞ2
; ðA5Þ

where δb is the average density fluctuation in the same box.
Next we estimate the covariance matrix in the absence of

δb as

Cij ¼
Ns

Ns − 1

�PNs
a¼1 P̂

sm;a
i P̂sm;a

j

Ns
− Psm

i Psm
j

�
: ðA6Þ

Finally unless otherwise specified, the simulations used
to construct the response functions in the next section
follow the prescription for the small box simulations in
order to preserve the same mass and force resolution.

2. Response calibrations

In this section we provide some detail on the calibration
of the power spectrum response to δb and the cosmological
parameters. We review the δb response calibrated in
Ref. [14] and illustrate the cosmological parameter cali-
bration with h as it demonstrate all the important concept
and techniques.

a. δb response

Following the separate universe technique developed in
Ref. [14] (see also [18–20]), a nonzero mean density
fluctuation δb at z ¼ 0 can be absorbed into the background
by a redefinition of the cosmological parameters compared
to those of a global ΛCDM universe,

δΩm

Ωm
≈
δΩΛ

ΩΛ
≈ −2

δh
h
≈
5Ωm

3

δb
D0

; ðA7Þ

where theD0 ¼ Dðz ¼ 0Þ and the linear growth function is
normalized as

lim
a→0

D ¼ a: ðA8Þ

Note that even if the global universe is flat, the separate
universe would have a nonzero spatial curvature
δΩm þ δΩΛ ≠ 0. Finally, as discussed in Sec. III B, the
scale factor associated with a given value of a in the global
cosmology is shifted by

δa
a
≈ −

1

3

D
D0

δb; ðA9Þ

in the separate universe. For example, at z ¼ 0 in the global
universe, zL ¼ δb=3 in the local universe.
With the separate universe cosmological parameters set,

we conduct N-body simulations to calibrate the response of
the power spectrum by finite difference of models with
δb ¼ �0.01 evaluated at zL. Here and below we always
difference simulations with the same initial seeds to
suppress the stochasticity from sample variance. Given
that the mean density of the separate universe is reinter-
preted as the local density of the finite survey, power
spectra extracted from these simulations are always refer-
enced to the local mean, PW in Eq. (5).
To calibrate the growth response Tδb;g, we fix the

simulation box in comoving Mpc and difference the results
from�δb. This procedure only includes the impact of δb on
the growth of structure and omits the fact that due to the
difference in redshift, the physical scale associated with a
given comoving scale differs by the dilation factor.
Separately, we also calculate the total response Tδb jlocal
by instead fixing the physical scale in Mpc of the
simulations at the final redshift with the same initial seeds
in box coordinates. Finally we average over 64 pairs of
realizations to reduce the remaining stochasticity to a level
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that is negligible for our purposes, with standard errors of
the mean of a few percent or better, and at subpercent level
in the nonlinear regime.
To test the precision of our results, we have employed

simulations with twice the mass and PM resolutions, to
verify that at z ¼ 0 for k≲ 2h=Mpc the responses have
converged to several percent or better. We refer the readers
to Ref. [14] for more details of the calibration pipeline.
With Tδb;g and Tδb jlocal calibrated from simulations we

can construct the dilation response from Eq. (26):

Tδb;d ¼ −3
�
Tδb jlocal − 2

∂ lnD
∂δb Tδb;g

�
: ðA10Þ

We compare this constructed dilation response in Fig. 7
with the response calibrated directly as the slope of a cubic
spline fitted to the mean power spectrum of Ns small box
simulations,

Td ¼ ∂ lnP
∂ ln k : ðA11Þ

The differences in fact reflect that the constructed response
reduces the stochasticity from sample variance and the
sensitivity to systematic changes in the slope from finite
resolution. We have verified using higher resolution sim-
ulations that the constructed response is both more precise
and more accurate than the slope-based response.

b. h response

As an example of cosmological parameter response
calibration, we choose h here as it demonstrate all the
important concept and techniques, including the growth-
dilation split, and the test of the linear approximation. We
start with the baseline cosmology in Table II and utilize a
suite of 64 simulations from the small box simulations of
Sec. A 1. As in the δb calibration we then simulate pairs of
models with h0 ¼ h� δh with the same seeds to form a
triplet of simulations at fixed lnAs, ns, ðΩbh2Þ0 ¼ Ωbh2 and
ðΩch2Þ0 ¼ Ωch2 in a flat universe. We choose δh ¼ 0.02 in
accordance with the 68% confidence limits constrained by
Planck and WMAP polarization data.
For the total response Th, we set the comoving size of

simulation boxes in h−1Mpc to be the same, i.e.

L0 ¼ 500 Mpc=h0; ðA12Þ

whereas for extracting the growth component, we set the
box scale in Mpc to be the same

L0 ¼ 500 Mpc=h ¼ 500
h0

h
Mpc=h0: ðA13Þ

We then difference the binned power spectrum P̂ in box
coordinates in each case to form the required derivative

T̂h ≈
ln P̂ðþδhÞ − ln P̂ð−δhÞ

2δh
: ðA14Þ

For sufficiently small δh, this finite difference converges to
the derivative as required for a Fisher matrix calculation.
Each of the 64 pairs provides a separate estimate of the
response. In Fig. 11 we show the individual estimates and
the mean of the suite Th. Note that run-to-run deviations
from the mean strongly covary across k in the nonlinear
regime.
Finally, to test the linearity of the response, we calibrate

the change in the response from the second derivative,

δTh ¼ lnPðþδhÞ − 2 lnPð0Þ þ lnPð−δhÞ
δh

; ðA15Þ

using the averages over the 64 triplets. In Fig. 11, we
demonstrate that this second derivative error term
jδThj ≪ Th. Specifically, in the fully nonlinear regime
where the statistical power lies, the error correction is
≲5%. While we could further reduce this error by choosing
a smaller δh, this test demonstrates that even for current
uncertainties on this parameter, the Fisher approximation
should suffice.
To test the resolution dependence, we have employed 16

pairs of higher resolution simulations with 5123 particles
and 10243 (Tree-)PM grid to verify that at k≲ 2h Mpc−1

FIG. 11 (color online). Power spectrum response to h from
finite differences of simulations with δh ¼ �0.02 and scales
fixed in h−1 Mpc. Thin gray lines show differences of 64 pairs of
realizations, with solid black lines representing their means with
standard errors. A single calibration from one pair of simulations
is highlighted in blue to illustrate that stochasticity around the
mean are highly correlated across nonlinear k. In the nonlinear
regime where most information is located, correction from the
second derivative in dotted line is much smaller compared to the
response itself, demonstrating that linear response serves as a
good approximation for the power spectrum variation.
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our response results have converged to percent level or
better.
With both Th and Th;g calibrated in this manner, we can

construct the dilation response using Eq. (31),

Th;d ¼ h

�
Th − 2

∂ lnD
∂h Th;g

�
: ðA16Þ

Similar to the δb case discussed above, this construction
yields a more accurate and precise dilation response than
the slope-based response.
The calibration of T lnAs and Tns are simpler as no scale

dilation is involved, so that we can use the same box size
for simulations. We take δ lnAs ¼ 0.03 and δns ¼ 0.01
again according to the CMB prior, and the rest of the
procedures are the same as for h. For T lnAs and Tns , the
linear response assumption is an excellent approximation,
with second order corrections at the percent level or
smaller.

3. Error degradation

In the main paper, we quote the degradation in the errors
in a given cosmological parameter and the maximal
degradation for any linear combination of parameters
caused by marginalizing δb. Here we give details for those
calculations.
The covariance matrix of cosmological parameters with

δb marginalized is simply the 3 × 3 sub-block of the 4 × 4
inverse Fisher matrix that contains them. We can formalize
the extraction of this matrix by defining a 4 × 3 projection
matrix,

P ¼
�

0

I3

�
; ðA17Þ

where 0 ¼ ð0; 0; 0Þ and I3 is the 3 × 3 identity matrix.
Thus

Cmar ≡ PTF−1P: ðA18Þ

Conversely, if δb is fixed then the covariance matrix is
instead the inverse of the projected Fisher matrix

Cfix ≡ ½PTFP�−1: ðA19Þ
In the same linear approximation employed in the Fisher
analysis, the deviation in any derived parameter from its
fiducial value can be thought of as a linear combination of
changes in fundamental parameters,

π ¼
X
μ

∂π
∂pμ

δpμ ≡ vπ · δp; ðA20Þ

where greek indices in this section run over the three
cosmological parameters and parameter vectors vπ lie in

this space. Thus the degradation in errors dπ upon mar-
ginalizing δb is given by

d2π ≡ σ2marðπÞ
σ2fixðπÞ

¼ vTπCmarvπ
vTπCfixvπ

: ðA21Þ

We can most easily study the degradation in errors in a
new basis, called the Karhunen-Loève basis. The 3 basis
vectors vk are linearly independent solutions of the gen-
eralized eigenvector equation,

Cmarvk ¼ λkCfixvk: ðA22Þ
Note that λk ¼ d2k, the degradation in the variance of a
parameter defined by vk and we can normalize these
statistically independent vectors as

vTkCmarvk0 ¼ λkδ
K
kk0 ; vTkCfixvk0 ¼ δKkk0 : ðA23Þ

These vectors are not typically orthonormal in the usual
sense vk · vk0 ≠ δKkk0 .
The Karhunen-Loève basis is typically used when the

two matrices in Eq. (A22) are the signal and noise
covariance, respectively, and in that context the eigenvec-
tors are called signal-to-noise eigenvectors. In this case,
they represent degradation eigenvectors.
The eigenvalues λk are particularly easy to find in our

case given the relationship between the two matrices
implies

ðPTFPÞðPTF−1PÞvk ¼ λkvk; ðA24Þ
or in terms of components

X
ν

ðδKμν − Fδbμ½F−1�δbνÞ½vk�ν ¼ λk½vk�μ: ðA25Þ

For vectors in the two directions that are orthogonal to
½F−1�δbμ, the second term on the left hand side vanishes and
λk ¼ 1. In these directions, marginalization of δb has no
impact since these elements of F−1 represent a covariance
of the associated direction with δb. The remaining eigen-
vector is in the direction of

½vmax�μ ∝ Fδbμ; ðA26Þ

which is not in general parallel to ½F−1�δbμ or orthogonal to
the 2D space spanned by the other vectors. Thus the
direction of maximal degradation and the combination of
cosmological parameters associated with it,

πmax ¼ vmax · δp; ðA27Þ
is not in general the same as those of maximal covariance or
degeneracy. The maximal degradation itself is given by the
eigenvalue
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λmax ¼ d2πmax
¼ Fδbδb ½F−1�δbδb ðA28Þ

and is exactly the degradation in σδb on marginalizing over
cosmological parameters. A general linear combination of

cosmological parameters suffers a degradation whose value
cannot exceed the maximum since it is composed partially
of the two Karhunen-Loève directions that are not
degraded [35].
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