
Astrophysical Bose-Einstein condensates and superradiance

Florian Kühnel1,* and Cornelius Rampf2,3,†
1Department of Physics, The Oskar Klein Centre for Cosmoparticle Physics,

Stockholm University, AlbaNova, 106 91 Stockholm, Sweden
2Institute of Cosmology and Gravitation, University of Portsmouth,

Portsmouth PO1 3FX, United Kingdom
3Max-Planck-Institute for Gravitational Physics (Albert-Einstein-Institute),

14476 Potsdam-Golm, Germany
(Received 9 September 2014; published 21 November 2014)

We investigate gravitational analogue models to describe slowly rotating objects (e.g., dark-matter halos,
or boson stars) in terms of Bose-Einstein condensates, trapped in their own gravitational potentials. We
begin with a modified Gross-Pitaevskii equation, and show that the resulting background equations of
motion are stable, as long as the rotational component is treated as a small perturbation. The dynamics of
the fluctuations of the velocity potential are effectively governed by the Klein-Gordon equation of an
“Eulerian metric,” where we derive the latter by the use of a relativistic Lagrangian extrapolation.
Superradiant scattering on such objects is studied. We derive conditions for its occurrence and estimate its
strength. Our investigations might give an observational handle to phenomenologically constrain Bose-
Einstein condensates.
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I. INTRODUCTION

The history of superradiance possibly started with the
discovery of the (inverse) Compton effect in 1923 by A. H.
Compton [1], and has since then stimulated various works
in different fields of physics and mathematics. The specific
phenomenon of inertial superradiance due to the super-
luminal motion of a (charged) object through some medium
goes back to investigations by P. A. Cherenkov in 1934
[2,3]. Since these pioneering works, which were both
awarded with a Nobel Prize, the idea of rotational super-
radiance also arose, i.e., where a wave is inelastically
scattered on a rotating rigid object such that its rotational
momentum is transferred to the energy of the wave [4] (for
an overview of superradiant phenomena see, e.g., Ref. [5]).
In particular, investigations in the 70s then showed [6–9]
that superradiance should also be spontaneously emitted by
rotating black holes, where the space-time geometry can be
described by a Kerr metric. Initially, the argument of
superradiance was based on purely quantum-mechanical
considerations, but it was Bekenstein in 1973 who realized
that the argument should also hold in the classical sense to
satisfy Hawking’s classical horizon area theorem for black
holes [5,10].
Stimulated by these works, but also from the idea that

black holes could radiate Hawking radiation [11], W. G.
Unruh proposed in 1980 that the very occurrence of
Hawking radiation is not related with generic properties
of gravity, but just the result of evolving quantized

perturbations at an (apparent) event horizon [12,13]. As
a consequence, Hawking radiation should also become
apparent at a sonic horizon when a fluid flow becomes
transonic. The idea of analogue models of gravity, often
dubbed acoustic black holes, was born.1 Since then, various
efforts have been made to study Bose-Einstein condensates
(BEC) in the laboratory to establish and to study analogue
event horizons (cf. Refs. [14,15] and references therein).
Soon it became also clear that not only Hawking radia-

tion but also superradiance should arise at acoustic black
holes, simply because superradiance is the consequence of
forming some horizon and an ergosphere [16,17] (provided
that appropriate boundary conditions are established [18]),
and thus has in general nothing to do with a space-time
singularity, or with gravity in specific. Thus, analogous to
Unruh’s idea, the analogue scenario for extracting angular
momentum fromKerr black holeswould be a supersonic and
a (mildly) rotating fluid flow.
In recent years, it has become very fruitful not only to

study BECs in the laboratory but also to interpret macro-
scopic objects—such as (primordial) black holes [19–22],
neutron/boson stars [23–25], white dwarfs [26], and/or dark-
matter halos as BECs [27–29].
Herewe follow a similar objective, although our approach

is to some extent new. We shall begin with a modified
Hamiltonian of the BECwith gravitational self-interactions,
and we include a rotational kinetic term which is greatly
suppressedwith respect to its nonrotational kinetic term (see
the following Sec. II). In Sec. III B, we then show that the
resulting equations of motion are indeed stable, and we
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solve for the resulting density and velocity distribution of
the BEC.
Generally, the inclusion of a rotational term in the

Hamiltonian is known in studies related with generating
vortex states in rapidly rotating BECs (cf. Refs. [30–33]),
such as in superfluid helium II (cf. Refs. [34,35]), but we
wish to stress again that we treat the rotational component
as a small perturbation. As thoroughly explained in Sec. IV,
the origin of the small “rotational” component arises from a
relativistic coordinate transformation performed from a
Lagrangian to an Eulerian/observer’s frame. Actually, the
fluid flow is still irrotational, but it is the fluid’s space-time
which is dragged with respect to the Eulerian frame. We
analyze the properties of the Eulerian metric, which are
somewhat similar to those of the Kerr metric, but we also
refer to the Appendix for calculational details about its
derivation. Equipped with the Eulerian metric, we solve its
Klein-Gordon equation in Sec. V. Then, in Sec. VI, we
derive the conditions for the occurrence of superradiance,
and finally give a summary and outlook in Sec. VII.

II. SYSTEM AND EQUATIONS OF MOTION

Our starting point is a slowly rotating d-dimensional
Bose-Einstein condensate in its own gravitational potential,
being described by a complex scalar field ψ̂ with the grand
canonical Hamiltonian

Ĥ ¼
Z
V
ddx

�
ψ̂†

�
−

1

2m
Δþ μþ iΩ · ðx ×∇Þ

�
ψ̂

þ 1

2

Z
V
ddyψ̂†ðxÞψ̂†ðyÞ C

jx − yjd−2 ψ̂ðyÞψ̂ðxÞ
�
; ð1Þ

where μ is the chemical potential and V is the spatial
volume of the halo. The third term on the right-hand side is
due to a rotation around the axis Ω. The condensate is
supposed to be constituted by a number of N ≫ 1 particles,
and self-bound by a gravitational potential, with effective
(attractive) interaction strength C > 0. We set the Planck
constant ℏ equal to 1, and express energy in units of the
parameter m.
In Bose-Einstein condensates, the quantum state ψ̂

consists of two components: a highly occupied ground-
state, condensate part Ψ ≔ hjψ̂ ji, which shall here be
described by a classical field2; and a quantum-fluctuation
part ϕ̂, i.e., ψ̂ ≡Ψþ ϕ̂. In the so-called Madelung repre-
sentation [36], the condensate part reads

Ψ≡ ffiffiffiffiffi
n0

p
eiS; ð2Þ

with n0 being the ground-state particle-number density, and
the phase S is the potential of the longitudinal part of the
velocity.
We thus obtain a modified Gross-Pitaevskii equation

(cf., e.g., Refs. [32,34,35])

i∂tψ ¼
�
−

1

2m
Δþ Ξþ iΩ · ðx ×∇Þ

�
ψ ; ð3Þ

where ψ is the normalized wave function of the condensate,
and Ξ denotes the nonlocal gravitational potential induced
through the condensate’s density ρ ≔ ψ†ψ. In particular,
the potential satisfies Poisson’s equation

ΔΞ ¼ −ΩdCρ; ð4Þ

where Ωd ≔ 2πd=Γðd=2Þ, and the latter is the gamma
function. We obtain two independent real equations

∂tn0 þ∇ · j ¼ Ω · ðx ×∇n0Þ; ð5aÞ

∂tS −
1

2m
1ffiffiffiffiffi
n0

p Δ
ffiffiffiffiffi
n0

p þm
2
ð∇SÞ2 þ μþ Ξ

¼ mΩ · ðx ×∇SÞ; ð5bÞ

with j ≔ n0∇S. The second term in Eq. (5b) is called the
quantum potential. It has the dimension of energy, and it
can be shown to be related to the trace of an intrinsically
quantum-induced stress-energy tensor (cf. Ref. [14]). In the
following, we will come back to this quantity, and derive a
condition under which it can be neglected.

III. STABILITY ANALYSIS

To this end we expand the background particle-number
density as well as the background phase up to first order,
and furthermore treat the rotation terms as first-order
perturbations. In doing so, we allow all perturbations to
have a general coordinate dependence. This is important,
because the system might be stable under perturbations that
respect its symmetry, and unstable with regard to those that
do not. We expand

nðx; tÞ ¼ n0ðrÞ þ δnðx; tÞ þ higher orders; ð6aÞ

Sðx; tÞ ¼ S0ðrÞ þ δSðx; tÞ þ higher orders; ð6bÞ

Ωðx; tÞ ¼ δΩðx; tÞ þ higher orders: ð6cÞ

Note that we treat Ω as a small perturbation. This choice is
not only important to stabilize our results, but we shall
show that it is also physically motivated.

2We can describe the condensate part as a classical field
because it is precisely a highly occupied state. This fact becomes
clearer when expanding the field ψ̂ into creation and annihilation
operators, â† and â, respectively. Due to the high occupation
number N ≫ 1, we have for the zero mode âk¼0jNiBEC¼
âk¼0

ffiffiffiffi
N

p jN−1iBEC≈
ffiffiffiffi
N

p jNiBEC, which is tantamount to replac-
ing âk¼0 with the c number

ffiffiffiffi
N

p
.
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A. Background

Here we consider the static case at the level of the
background perturbations, and then add the perturbations in
the stability analysis (see the following section).
Equation (5a) is at the background level

∇ · ½n0∇S0�≃ 0; ð7Þ

which yields the solution of the background fluid flow,

∇S0ðrÞ ¼ v00
rd−1

1

n0ðrÞ
≕ v0: ð8Þ

Plugging this solution into Eq. (5b) and neglecting the
quantum potential, we obtain an approximate expression
for the chemical potential:

μ≃ 1

2
mv200

1

r2d−2
1

n20ðrÞ
þ C

Z
ddy

n0ðjyjÞ
jx − yjd−2 ; ð9Þ

which we assume to be spatially constant, for simplicity.
Then we obtain from the Laplacian of the above equation

n̄0ðrÞ≃ 1

rd−1
∂rrd−1∂r

�
1

r2d−2
1

n̄20ðrÞ
�
; ð10Þ

where ∂r is the radial derivative in polar coordinates, and
we have defined

n̄0ðrÞ ≔
1ffiffiffī
c3

p n0ðrÞ; c̄ ≔
1

2
m̄v200; m̄ ≔

m
ΩdC

: ð11Þ

The asymptotic behavior of the background solution is to a
good approximation [22]

n0ðrÞ⟶r→∞
∼ 1=rd−1; ð12aÞ

v0ðrÞ⟶r→∞
const: ð12bÞ

To get a better intuition of the above, we solve numerically
for n0ðrÞ and v0ðrÞ in the case of d ¼ 3; see Fig. 1. We have
checked that the general behavior of n0ðrÞ and v0ðrÞ is
essentially independent of the chosen initial conditions,
which have to be imposed on Eqs. (9) and (10).
The above solutions for the background density and

velocity have been derived under the assumption that the
quantum pressure can be neglected.3 More precisely,
validity requires

1

2m
1ffiffiffiffiffi
n0

p Δ
ffiffiffiffiffi
n0

p ≃ 0: ð13Þ

Now, in the outer region of a sufficiently large halo (inwhich
we will be mainly interested), we have that the quantum
pressure term actually diminishes approximately as ∼r−2.
This means that the quantity x ≔ 1=ðmr2maxÞ has to be
sufficiently small. Equation (9) suggests that x, which has
the dimension of energy, has to be compared to the chemical
potential μ. Thus, we get the approximate condition

μ=x ¼ μmr2max ≫ 1; ð14Þ

which translates to the condition for the maximal extent of
the halo, i.e., rmax ≫ μm−1=2.

B. Stability

We now perform a stability analysis. Using Ansätze
(6a)–(6c), and the zeroth-order results for the velocity and
density, Eqs. (8)–(10), we obtain up to first order

∂tδnðx; tÞ≃ −∇ ·
h
∇S0δnþ 1

m
n0∇δS

i
þΩ · ½x ×∇δn�;

ð15aÞ

∂tδSðx; tÞ≃ −∇S0 · ∇δSþ Ω · ½x ×∇δS�
−
Z

ddy
C

jy − xjd−2 δnðy; tÞ; ð15bÞ
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FIG. 1 (color online). Particle-number density n0ðrÞ (left) and
velocity jv0ðrÞj (right) for d ¼ 3 in units where m ¼ 1, and for
rmax ¼ 500 as well as jv0ðrmaxÞj ¼ 10.

3This is commonly called the Thomas-Fermi approximation
[27,28,37].
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where we have suppressed some dependences for nota-
tional simplicity. In particular, Ω can vary with space and
time. Acting with Δ on Eq. (15b), we find

δn≃ 1

ΩdC
Δð∂tδSþ∇S0 ·∇δS −Ω · ½x ×∇δS�Þ: ð16Þ

Plugging Eq. (16) into Eq. (15a) yields

Δð∂2
t δSþ∇S0 ·∇∂tδS −Ω · ½x ×∇∂tδS�Þ

≃ −∇ ·

�
ΩdC
m

n0∇δSþ∇S0Δð∂tδS

þ∇S0 ·∇δS −Ω · ½x ×∇∂tδS�Þ
�
: ð17Þ

Now, taking into account Eqs. (12a) and (12b), we are for
large r approximately left with

½∂t þ∇S0ðrÞ ·∇ −Ωðx; tÞ · ðx ×∇Þ�2δ ~Sðx; tÞ≃ 0; ð18aÞ

where we have restored all dependences. The quantity
δ ~Sðx; tÞ ≔ ΔδSðx; tÞ can be thought of as the gradient of
the velocity perturbation. Hence, any pulse keeps its shape
at large distances from the center of the halo. Along similar
lines, Eq. (15a) becomes

½∂t þ∇S0ðrÞ ·∇ −Ωðx; tÞ · ðx ×∇Þ�δnðx; tÞ≃ 0: ð18bÞ

Thus, our stability result also holds for arbitrary perturba-
tions in the particle-number density. Moreover, these
findings are true for all dimensions greater than two.

IV. EULERIAN METRIC

As mentioned above we treat the rotation as a small
perturbation with respect to the longitudinal velocity
component. Here we include such a suppressed rotational
velocity component by performing a gauge transformation
of an irrotational fluid flow in a synchronous/comoving
coordinate system to an observer’s coordinate system. We
call the synchronous/comoving coordinate systems the
Lagrangian frame; we call the observer’s coordinate system
the Eulerian frame.
The essential idea of such a coordinate/gauge trans-

formation is that its intrinsic nonlinear nature induces
naturally a small amount of frame dragging [38]. Thus,
even though the fluid motion is irrotational, the fluid’s
Lagrangian space-time is dragged with respect to the
Eulerian frame. Such frame dragging is essential to observe
superradiance.
For simplicity, we set d ¼ 3 from now on. We transform

such an irrotational fluid flow to the Eulerian framewith the
following line element (see the Appendix):

ds2 ¼ −ð1 − v2LÞdt2 − 2ðvL þ vTÞ · dxdtþ
�
1 −

5

2
v2L

�
dx2;

ð19Þ

where vL∶ ¼ ∇S0 and vT ≔ ∇ × T denote the longi-
tudinal and a perturbatively suppressed transverse fluid
velocity, respectively; S0 is the background velocity
potential, see Eq. (8). Calculational details about the
transverse field T can be found in the Appendix, but we
do not need its explicit form in the following, since we
shall assume a constant amplitude in the latter, for
simplicity. In the above line element, we have set the
local speed of sound to 1, i.e., c ¼ 1. This approximation
also means that we neglect pressure perturbations; this is
consistent with the neglect of the quantum pressure term
(see Sec. III A), but including pressure perturbations is
far beyond the scope of this paper. We leave this issue for
a forthcoming paper.
In this paper we assume that the longitudinal velocity

component is much larger than the transverse component

jvTj
jvLj

≪ 1: ð20Þ

It is difficult to estimate the precise amount of the
suppression of the transverse velocity, since we heavily
rely on a Lagrangian extrapolation far into the nonlinear
regime. On cosmological scales, where the solutions are
formally valid, we expect that the transverse velocity
should be suppressed by a factor ∼10−3–10−5. Note also
that we can discard the term ∝ v2L in the space-space
component in Eq. (19) for sufficiently small velocities.4

Generally, the above line element is valid for an arbitrary
geometry. In the following we consider an approximate
spherical symmetry and also assume a stationary and
convergent fluid flow [12]. Now, performing a temporal
gauge transformation according to

τðt; rÞ ¼ tþ
Z

r
dr0

vrðr0Þ
1 − v2rðr0Þ

; ð21Þ

and setting vT ≔ êϕvT, the metric (19) becomes

ds2 ¼ −ð1 − v2rÞdτ2 þ
1

1 − v2r
dr2 þ r2dϕ2 − 2rvTdϕdτ

þ 2r
vrvT
1 − v2r

dϕdr; ð22Þ

or, equivalently,

4Actually, the very term in the space-space component in
Eq. (19) is of Oðv4LÞ, as can be seen when calculating the proper
time between two events along the worldline [14,38].
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ds2 ¼ −½1 − ðv2r þ v2TÞ�dτ2 þ
1

1 − v2r
dr2

þ r2
�
dϕ −

vT
r
dτ

�
2

þ 2r
vrvT
1 − v2r

dϕdr: ð23Þ

Again, we have vT=vr ≪ 1, in accordance with the require-
ment (20). Note also that we have restricted the line element
to the equatorial plane (i.e., dθ ¼ 0). Some properties of the
above metric are identical to those of a Kerr metric, but it
differs by one (i.e., the last) property:
(1) It is stationary, i.e., it does not explicitly depend

on time.
(2) It is axisymmetric, i.e., it does not depend explicitly

on ϕ.
(3) It is not static, i.e., it is not invariant under time

reversal τ → −τ.
(4) It reduces to a Schwarzschild-like metric in the

limit vT → 0, if the fluid velocity smoothly exceeds
the speed of sound vr≔1−αðr−RÞ−Oðα2Þ. This
also means that we expect the occurrence of Hawk-
ing radiation [12,21] (see also Ref. [22]).

(5) There is a coordinate singularity when vr → 1 (i.e.,
when it approaches the local speed of sound), and
a curvature singularity for r → 0. Indeed, since
limr→0vr∝1=r2, the 4-Ricci curvature is limr→0

ð4ÞR∝
1=½r6ð1þv2TÞ�¼∞.

(6) The metric is invariant under the simultaneous
inversion τ → −τ, ϕ → −ϕ.5

(7) The metric is not asymptotically flat, i.e., the metric
does not reduce to the Minkowski metric in the
limit r→∞: ds2 ¼ −C2dτ2 þ C−2dr2 þ r2dϕ2−
2rvTdϕdτ þ 2rvTDdϕdr, with C¼1−v2r¼const,
and D ¼ vrC−2 ¼ const.

Thus, because of the last property, the metric (23) is not
identical to the Kerr metric. The above metric is not
asymptotically flat due to the fact that the frame dragging
is in principle apparent even at radial infinity, despite the
fact that also the background density of the condensate
is vanishing at infinity (see Fig. 1). This feature of the
Eulerian metric is the result of the change of inertial frames
(Mach’s principle) between the condensate and the observer.

The occurrence of superradiance is not affected by the fact
that our metric (23) is not asymptotically flat.

V. KLEIN-GORDON EQUATION WITH
TORTOISE COORDINATES

Here we solve the relativistic Klein-Gordon equation
for the linearized velocity-perturbation potential Φ̂≡
1=ð2mi

ffiffiffiffiffi
n0

p Þðe−iSϕ̂þeiSϕ̂†Þ, which reads (cf. Refs. [12,14])

∂μð
ffiffiffiffiffiffi
−g

p
gμν∂νÞΦ̂ ¼ 0; ð24Þ

with g ¼ det gμν, and summation over repeated space-time
indices μ, ν is implied. As mentioned earlier, we set d ¼ 3
for simplicity, although our calculations may be easily
generalized to higher dimensions.
Note that we make use of two essential simplifications at

this step. First, we suppress the “spatial dimension” related
with the altitudinal angle dθ. Second, we assume that vT is
constant. Relaxing these approximations does not lead to
any conceptual difficulties, but it would imply a dramatic
increase in computational power. In this paper, we use these
simplifying approximations mainly since we are only
interested in the qualitative behavior of superradiance,
and we leave more computationally demanding approaches
for future work. Note, however, that vT should be generally
time dependent, since we expect that the negative momen-
tum transfer due to superradiance leads to a decreasing vT
in time. However, considering the typically large amount
of rotational energy as compared to that of the small
amount of energy of a single scattered wave, it is a good
approximation to neglect the time dependence of vT for
each individual scattered wave, which we do so in the
following for simplicity.
Now we turn back to the Klein-Gordon Eq. (24). Let

us therefore decompose the quantum field Φ̂ into creation
and annihilation operators, α̂† and α̂, respectively, i.e.,
Φ̂≡P

α̂f þ H:c:, for some mode function f. Then, using
our result in Eq. (22), the Klein-Gordon equation
becomes [39]

r2½1þ v2T − v2r� �Δ2
1f;r�r� − 2rvTvr�Δ1f;r�ϕ þ 2r½1þ v2T − vr�fvr� þ rΔ1vr�;r�g�Δ1f;r�

þ rv2T
1 − v2r�

��
2vr� þ r

1þ v2r�
1 − v2r�

Δ1vr�;r�
�
f;t þ rvr�Δ1f;tr�

�
−
r2ð1 − ½1þ v2T�v2r� Þ

ð1 − v2r� Þ2
f;tt

þ f;ϕϕ − vTðvr� þ rΔ1vr�;r� Þf;ϕ − 2r
vT

1 − v2r�
f;tϕ þ

r2v2Tvr�

1 − v2r�
Δ1f;tr� ¼ 0; ð25Þ

where we have introduced the tortoise coordinates r�,
which are

dr�

dr
≕ Δ1;

d
dr

¼ Δ1

d
dr�

; Δ1 ¼
1

1 − v2r�
: ð26Þ

Δ1 was derived from the requirement that the purely spatial
and purely temporal parts of the metric (22) be conformally
invariant, i.e.,

5Note that the last term in (21) also flips the sign under the
inversion τ → −τ, as it should.
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Xð−dτ2 þ dr�2Þ¼! − ð1 − v2r�Þdτ2 þ
1

1 − v2r�
dr2; ð27Þ

where X is found to be X ¼ 1=Δ1.
To solve the Klein-Gordon equation (25), we fix vT to be

a small6 constant, and we use the background solution
of the longitudinal velocity vðrÞ≃ v0ðrÞ, which is also
depicted in the right panel of Fig. 1. Since the dependence
of Δ1 (through vr) on the tortoise coordinate r� is non-
trivial, we numerically integrate

r�ðrÞ≡
Z

dr� ¼
Z

Δ1dr ð28Þ

and then use this result explicitly in the Klein-Gordon
equation (25).

VI. SUPERRADIANCE IN THE
FREQUENCY DOMAIN

Using the tortoise coordinates from the previous section,
and utilizing a decomposition of the mode function f into
base elements

fðr�; m;ωÞ ¼ zω;mðr�Þφω;mðr�Þe−imϕeiωt; ð29Þ

we find, after plugging the above expression into Eq. (25), a
second-order differential equation of the structure

½α2∂2
r� þ α1∂r� þ α0�½zω;mðr�Þφω;mðr�Þ� ¼ 0; ð30Þ

where αi ≡ αiðω; mÞ. We determine the function zω;m such
that the coefficient of ∂r�φω;m vanishes (cf. Ref. [39]).
Then, the quasinormal form of the differential equation for
φω;m reads

∂2
r�φω;mðr�Þ¼−½Vðr�;ω;mÞþ iΓðr�;ω;mÞ�φω;mðr�Þ: ð31Þ

Here, both Γðr�;ω; mÞ and Vðr�;ω; mÞ are real functions,
and are given by

Γðr�;ω; mÞ ¼ −
mvTv3r�ð1 − v2r� Þ
r�2ð1 − v2r� þ v2TÞ

; ð32aÞ

where we introduce the shorthand notation vr� ≡ v0ðr�Þ—
and we shall indicate spatial derivatives with respect to r�
with a prime in the following—and

Vðr�;ω; mÞ ¼ 1

ðr�2½1 − v2r� �2½1þ v2T − v2r� �2Þ
½r�v3r� ðr�v2T½2þ v2T�v00r� − 2½4þ 3v2T�v0r� Þ

þ fv2Tðr�2ω2 − 2mr�ωvT − v2TÞ − 5½2þm2� þ ðr�2ω2 − 2mr�ωvT − ½8þ 5m2�v2TÞgv8r�
þ ð½5þm2� þ ½2þm2�v2TÞv10r� − v12r� − 2r�½4þ v2T�v7r�v0r� þ 2r�v9r�v

0
r�

þ ½1þ v2T�v2r�fð1þ 5m2 − 4r�2ω2 þ 8mr�ωvT þ v2TÞ − 2r�2v2Tv
02
r�g

− ½1þ v2T�fðm2 − r�ω½r�ω − 2mvT�Þ þ r�2v2Tv
02
r�g

þ v4r�f½1þ v2T�ð6r�2ω2 − 5½1þ 2m2� − 3vT½4mr�ωþ vT�Þ þ 3r�2v2Tv
02
r�g

þ f10½1þm2� − v2Tð4r�2ω2 − 8mr�ωvT − 3v2TÞ − 2ð2r�2ω2 − 4mr�ωvT − ½6þ 5m2�v2TÞgv6r�
þ r�v5r� ð6½2þ v2T�v0r� − r�v2Tv

00
r� Þ þ r½1þ v2T�vr�ð2v0r� − r�v2Tv

00
r�Þ�: ð32bÞ

Now, as we have seen in Sec. III A, the background velocity
approaches a constant for large r�. In this limit we find

r�Γðr�;ω; mÞ≃ 0; Vðr�;ω; mÞ≃ ~ω2; ð33Þ
where

~ω≃ ω
ð1 − v2r�Þ

ffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ v2T

p
1 − v2r� þ v2T

: ð34Þ

Note that limvT→0 ~ω ¼ ω, so the energy of the outgoing
wave is identical to the energy of the ingoing wave in this

limit. The above relation also means that, for large r�, the
solution of Eq. (31) for φ≡ φω;m can be written as

φðr�Þ≃ e−i ~ωr
� þRei ~ωr

�
; r� → ∞; ð35Þ

which consists of an incident wave of unit amplitude and a
scattered one with an amplitude given by the reflection
coefficient R. The extraction of (the condensate’s rota-
tional) energy by a scattered wave is one example of the
phenomenon of superradiance (cf. Ref. [5] for a review). It
occurs if7

6vT has to be small because of the requirement from (20),
which itself is based on the Appendix.

7This condition can be shown to be equivalent to that of an
imaginary Wronskian (cf. Ref. [18]).
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jRj2 > 1: ð36Þ

In Fig. 2, we show precisely this quantity for the most
relevant case of three spatial dimensions, and for various
small values of the ratio Ω ≔ vT=jv0ðr�maxÞj for which our
approximation is valid [cf. Eq. (20) and also the Appendix].
We observe that the system becomes more and more
superradiant if this ratio is increased. This can be achieved
either by increasing the rotation of the object, or by
decreasing the (outer) radial velocity. However, for all
studied parameter values Ω, the corresponding amplifica-
tion is quite small.
We find that, as expected, superradiance is only present

for small enough frequencies, i.e., for ω < ωmax. Here,

ωmax > 0 is defined by the condition jRðωmaxÞj2¼! 1. For the
present choice of parameters (r�max ¼ 500 and jv0ðr�maxÞj ¼
10), we obtain for all studied curves the fixed “law” of
superradiance, which is to a very good approximation

ω < 0.02mΩ; ð37Þ

which is our central result in this section.

VII. SUMMARY AND OUTLOOK

In this work we have investigated stability and dynami-
cal properties of slowly rotating gravitationally self-bound
Bose-Einstein condensates. Although the model under
consideration is rather general, we primarily focused on
respective dark-matter halos. However, we expect that our
considerations should also hold for Bose-Einstein conden-
sates of white dwarfs, neutron and boson stars.
First, we derived the modified Gross-Pitaevskii equation

and found general solutions for the background particle-
number density and proved that the associated background
equations of motion are stable in all dimensions. This holds
true as long as the rotational component is treated as a
small perturbation. We showed that the dynamics of the

perturbation of the velocity potential are effectively gov-
erned by the Klein-Gordon equation of a newly derived
“Eulerian metric.”
The latter is based on a relativistic coordinate trans-

formation from the (Lagrangian) fluid frame to an observ-
er’s frame, where a small “rotational” component naturally
arises because of the inherent nonlinearities due to the
gravitational instability. Physically, the fluid flow is irrota-
tional, but the Eulerian frame is dragged with respect to
the Lagrangian frame, where the fluid is at rest. We thus
associate the small rotational component with Lagrangian
transverse fields, which manifests in a frame dragging.
We would like to emphasize that the derived Eulerian
metric is generally valid on cosmological scales, and
that the reported geometrical correspondence with that
of the Bose-Einstein condensate relies heavily on a
Lagrangian extrapolation, i.e., the correspondence holds
only approximately.
We then analyzed the properties of this Eulerian metric,

which shares many properties of the Kerr metric (e.g., the
Eulerian metric has an event horizon and an ergosphere,
when the fluid velocity becomes transonic), but differs
in that the Eulerian metric is not asymptotically flat.
(The latter has no consequence for the occurence of
superradiance.)
Then, we particularly investigated the effect of super-

radiance at the vicinity of Bose-Einstein condensates. For
convenience, we restricted our investigation to a (2þ 1)-
dimensional description [16,39]. Our formalism has the
advantage that the boundary conditions of the velocity and
density are everywhere well defined and, in particular, our
model does not possess a divergent velocity at the origin,
as is the case in the draining bathtub model. We found
that superradiance actually does occur, and computed the
precise form of the reflection coefficient. We found that, in
our general model, amplification takes place when ω <
ωmax ¼ 0.02mΩ is satisfied, where Ω is the ratio of
transverse and longitudinal velocity of the condensate,
and m is the azimuthal quantum number of the scat-
tered wave.
As halos typically rotate quite slowly (cf. Ref. [40]), the

energy gain of these waves is naturally rather small. Note
that such a suppressed rotation is actually a prediction of
our model. The precise level of suppression can vary from
model to model, so we depicted in Fig. 2 various values for
Ω, ranging from 10−3–10−4. From the results, we indeed
conclude that the more rapidly the condensate rotates,
the more superradiance is expected, and the larger is
the maximum frequency below which amplification takes
place.
Our results may provide an observational tool to

discriminate/constrain possible Bose-Einstein condensate
dark-matter halo models. In particular, radiation from
intense sources such as supernovae or gamma-ray bursts
in the line of sight behind a possible dark-matter halo

10 6 10 5 10 4
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9 10 4

0
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1. 10 8
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1
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FIG. 2 (color online). jRj2 − 1 as a function of frequency for
d ¼ 3 and for various values of Ω ≔ vT=jv0ðr�maxÞj. The other
parameters are m ¼ 1, r�max ¼ 500 and jv0ðr�maxÞj ¼ 10.
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will be an optimal test for this class of models. Another
set of constraints might come from gravitational
lensing, which is expected to be larger than in the
conventional cases (cf., e.g., Ref. [41] for Bose stars,
and Ref. [42] for scalar-field halos). Of course, similar
investigations could be applied to other astrophysical
condensates.
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APPENDIX: DERIVATION OF THE EULERIAN
LINE ELEMENT [EQ. (19)]

In this Appendix, we show how to obtain the line
element (19), i.e., the Eulerian metric which results from
a relativistic Lagrangian extrapolation of an approximately
spherical overdensity in the deeply nonlinear regime. We
use the relativistic Lagrangian perturbation theory up to
second order [38] to make the nonlinear frame dragging in
the line element apparent. Note explicitly that we assume a
nonexact spherical overdensity; if we had assumed an exact
spherical symmetry, the second-order terms would be
exactly zero.
Before proceeding, we wish to summarize the calcula-

tional steps. First, we perform a specific gauge trans-
formation from the synchronous/comoving gauge (the
Lagrangian frame) to the Eulerian gauge.8 The correspond-
ing Eulerian line element will have no specified symmetry
yet. By restricting the metric to an approximate spherical
symmetry, we shall show that the Eulerian metric reduces
to a Kerr-like metric (being, however, not asymptoti-
cally flat).
The synchronous/comoving line element is (summation

over repeated indices is assumed)

ds2 ¼ −dt2 þ a2ðtÞγijðt; qÞdqidqj; ðA1Þ

with the following solution for an irrotational cold dark-
matter component:

γijðt; qÞ ¼ δij

�
1þ 10

3
φ

�
þ 3aðtÞt20

�
φ;ij

�
1 −

10

3
φ

�

− 5φ;iφ;j þ
5

6
δijφ;lφ

;l

�

−
�
3

2

�
2 3

7
a2ðtÞt40

�
4φ;ij∇2

qφ − 2δijμ2

�

þ
�
3

2

�
2 19

7
a2ðtÞt40φ;liφ

;l
;j; ðA2Þ

where we have defined μ2 ≔ 1=2½ð∇2
qφÞ2 − φ;lmφ

;lm�.9 For
the sake of generality, we include in this Appendix also the
cosmological scale factor aðtÞ; for our specific case in the
main text, a can be viewed as a perturbation parameter
(which we finally suppress in the main text). φ denotes the
cosmological potential, i.e., some initial condition (in our
case, with an approximately spherical symmetry) normal-
ized at some initial time t0. The above solution can be
derived by using standard cosmological perturbation theory
[44], the gradient expansion technique [45,46], or the tetrad
formalism [47], and is valid for an Einstein–de Sitter (EdS)
universe.10 We define the Eulerian gauge by

ds2 ¼ −ð1þ 2AÞdt2 þ 2awidtdxi þ a2Gijdxidxj; ðA3Þ

with the spatial metric Gij ¼ δij½1 − 2B�, where A and B
are scalar perturbations, and, as we shall see, w contains a
solenoidal and a vector part (in the nonperturbative treat-
ment, w is just the ADM shift). We neglect tensor
perturbations, as they are of no importance in what follows.
The coordinate transformation is

xμðt; qÞ ¼ qμ þ Fμðt; qÞ; ðA4Þ

with

xμ ¼
�
t

x

�
; qμ ¼

�
t

q

�
; and Fμ ¼

�
0

F

�
; ðA5Þ

where xμ are the coordinates in the Eulerian line element
(A3), and qμ is the one in the synchronous/comoving line
element. Explicitly, the time coordinates in both coordinate
systems are identical. Thus, the above is a purely spatial
gauge transformation. The relation of the metrics is

gμνðt; qÞ ¼
∂x~μ
∂qμ

∂x~ν
∂qν g ~μ ~νðτ; xÞ: ðA6Þ

The metric coefficients in the Eulerian gauge in (A3),
fA; B;wg, are unknown, and we shall calculate them up

8In the nonperturbative treatment, the Eulerian gauge can
be understood in terms of a simple ADM shift, where the
shift is directly associated with the Lagrangian displacement
field [43].

9Here, indices are lowered and raised by the use of the
Kronecker delta.

10Actually, the solutions for the Eulerian gauge hold also for a
ΛCDM universe, with only minor modifications in the time
evolution coefficients [43].
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to Oðφ2Þ by using the above relation. Truncating up to
second order, the resulting relations between the space-
space, space-time, and time-time parts of the metrics are,
respectively,

γijðt;qÞ≃δij½1−2Bðt;xÞ�þ2Fði;jÞðt;qÞð1−2BÞþFl;iFl;j;

ðA7aÞ

0≃a2½1−2B�∂Fiðt;qÞ
∂t þa2Fl;i

∂Fl

∂t þawiðτ;xÞþawlFl;i;

ðA7bÞ

−1≃ −1 − 2Aðτ; xÞ þ 2awl
∂Fl

∂t þ a2
∂Fl

∂t
∂Fl

∂t : ðA7cÞ

Solving Eqs. (A7a)–(A7c) with an iterative technique, we
obtain for the gauge generator, i.e., the 3-displacement field
up to second order,

Fiðt; qÞ ¼
3

2
at20φ;iðqÞ −

�
3

2

�
2 3

7
a2t40

∂i

∇2
μ2

þ 5at20ð∂iC − ∂iφ
2 þ RiÞ; ðA8Þ

where we have defined the two terms

C ¼ 1

∇2∇2

�
3

4
φ;llφ;mm þ φ;lφ;lmm þ 1

4
φ;lmφ;lm

�
; ðA9aÞ

Ri ¼
1

∇2∇2
½φ;ilφ;mml − φ;lliφ;mm þ φ;iφ;llmm − φ;mφ;mlli�:

ðA9bÞ

The first term denotes a purely longitudinal contribution;
the latter term denotes a purely transverse contribution
to the displacement, and thus to the velocity field as
well. Both terms are of purely relativistic origin. For
the perturbations in the Eulerian line element, we
obtain

Aðt; xÞ ¼ −
1

2
at20φ;lφ

;l; ðA10aÞ

Bðt; xÞ ¼ −
5

3
φðxÞ þ 5

2
at20

�
1

∇2
x
μ2 þ

1

2
φ;lφ

;l

�
; ðA10bÞ

awiðt; xÞ ¼ −SN
;i þ ∂i

�
5

3
tφ2 −

10

3
tC

�
−
10

3
tRi; ðA10cÞ

with

SN ¼ φðxÞt − 3

2
t4=30 t5=3

1

∇2
x
G2ðxÞ; ðA11Þ

G2 ¼
3

7
ð∇2

xφÞ2 þ φ;l∇2
xφ

;l þ 4

7
φ;lmφ

;lm; ðA12Þ

whereG2 is thewell-known second-order EdS kernel for the
velocity field at second order in Newtonian perturbation
theory [48]. The term A is the (linear) velocity of the fluid
squared (generally contracted with the spatial metric which
is, however, a third-order effect), thus denotes nothing
but the Lorentz boost from special relativity. Indeed, A can
be written in terms of the time derivative of the displacement
F, as can be easily proven, A≃−1=2a2ð∂F=∂tÞ2. The scalar
B contains the linear initial conditions [first term in
Eq. (A10b)] and some relativistic corrections. Since we are
only interested here in dynamical effects, we neglect
the 3-curvature in this paper and thus set the spatial
3-metric components to unity, Gij → δij (cf. the
Minkowskian limit defined in Ref. [49]). The quantity w
[see Eq. (A10c)] contains the velocity information of the
fluid: wi ¼ −Gija∂Fi=∂t, where the spatial dependence on
the right-hand side is with respect to the Eulerian coordinates
ðt; xÞ.11Note explicitly thatw contains not only a longitudinal
velocity but also a small transverse component, cf. the termR
in Eq. (A10c), while the metric component A only contains a
longitudinal velocity component, see Eq. (A10a). In fact, A
remains purely longitudinal up to the third order, so the
transverse contribution in A is suppressed by a factor φ2.
Because of the these considerations, wewriteA¼−1=2v2L,

B ¼ 5=4v2L, and −w ¼ vL þ vT, where vL denotes the
longitudinal part of the velocity, and the transverse velocity
vT is suppressed by only one φwith respect to vT.

12 Note that
we have absorbed a scale factor in the definition in the
velocities. To derive the Eulerian metric for an approximate
spherical symmetry, one then has to assume

φðxÞ≃ φðrÞ þ ϵ1=2φΩ; ðA13Þ

where the first term denotes the symmetric contribution, and
the latter term a small perturbation along some given axisΩ.
The Eulerian metric is then

ds2 ≃ −ð1 − v2LÞdt2 − 2ðvL þ vTÞ · dxdt

þ
�
1 −

5

2
v2L

�
dx · dx: ðA14Þ

Note that the above relies on a Lagrangian extrapolation far
into the nonlinear regime, and we have nelgected the
curvature metric Gij → δij. Also note that this extrapolation
is formally valid for any seed with arbitrary φ.

12The transverse velocity vT is proportional to R.
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