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We propose to use dynamical symmetries of the field equations, in order to classify the dark energy
models in the context of scalar field (quintessence or phantom) Friedmann-Lemaitre-Robertson Walker
cosmologies. Practically, symmetries provide a useful mathematical tool in physical problems since they
can be used to simplify a given system of differential equations as well as to determine the integrability of
the physical system. The requirement that the field equations admit dynamical symmetries results in two
potentials, one of which is the well-known unified dark matter potential and another new potential. For
each hyperbolic potential we obtain the corresponding analytic solution of the field equations. The
proposed analysis suggests that the requirement of the contact symmetry appears to be very competitive to
other independent tests used to probe the functional form of a given potential and thus the associated nature
of dark energy. Finally, in order to test the viability of the above scalar field models we perform a joint
likelihood analysis using some of the latest cosmological data.
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I. INTRODUCTION

The detailed analysis of the current cosmological
data indicates that the Universe is spatially flat and has
incorporated two acceleration phases. An early acceleration
phase (inflation), which occurred prior to the radiation
dominated era, and a recently initiated accelerated expan-
sion (see [1-10] and references therein). The source for the
late time cosmic acceleration has been attributed to an
unidentified type of “matter” with negative equation of
state, usually called dark energy (DE). Despite the mount-
ing observational evidences on the existence of the DE
component in the Universe, its nature has yet to be found
(for a review see [11] and references therein).

The easiest path for DE corresponds to the so-called
cosmological constant (see [12—14] for reviews). Indeed the
spatially flat concordance ACDM model, which contains
cold dark matter (DM) and a cosmological constant A,
fits accurately the current cosmological data and thus it is
an excellent candidate as a model which describes the
observed universe. However, more complex dynamics
are necessary since the idea of a rigid cosmological
constant or vacuum energy is very difficult to reconcile
with a possible solution of the cosmological constant
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(tuning and coincidence problems) plaguing theoretical
cosmology [12,15]. A constant cosmological constant term
throughout the entire history of the Universe presents
strong conceptual difficulties from the point of view of
fundamental physics.

Attempts to overcome the above cosmological problems
have been presented in the literature (see [13,14,16] and
references therein), by replacing the constant vacuum
energy with a DE that evolves with time. Popular proposals
for the DE are, among others, the existence of new fields in
nature and the modified gravity (see [17-33] and references
therein). Particular attention over the last decades has been
paid on scalar field DE [11] due to its simplicity. In the
scalar field models [34] and later in the quintessence
context, one can ad hoc introduce an adjusting or tracker
scalar field ¢ [23], rolling down the potential energy V(¢),
which could mimic the DE [13,14,30-32]. The potential
V(¢) is not known and one must introduce it by some kind
of ad hoc assumption. There have been many such
proposals as to the form of this potential e.g. power law,
hyperbolic, exponential etc. [35-39]. However one would
like to have a fundamental method according to which one
would fix the form (or forms) of the potential. One such
method is the geometric requirement that the resulting field
equations admit Noether point symmetries [40].

In fact the idea to use Noether symmetries as a
cosmological tool is not new in these kinds of studies. It
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has been proposed that the Noether point symmetry
approach as a selection rule for the dark energy models
is a geometric criterion; that is, the geometry of the field
equations can be used as a selection criterion in order to
discriminate the dark energy models. Specifically, such a
selection approach in the framework of scalar field cos-
mology has been considered in [41-47] and in the context
of modified theories of gravity in [48-58]. Dynamically
speaking, Noether symmetries are considered to play a
central role in physical problems because they provide first
integrals which can be utilized in order to simplify a given
system of differential equations and thus to determine the
integrability of the system. Indeed, in [42] it has been
shown that the Lie point symmetries of a dynamical system
are related to the geometry of the underlying space where
the motion occurs (a similar analysis can be found in
[59-61]).

In the current article we attempt to generalize our previous
work of Basilakos er al. [43] (see also [47,48,58]) in the
sense that we use dynamical Noether symmetries instead of
point Noether symmetries to select the potential of the scalar
field cosmology in a spatially flat Friedmann-Robertson-
Walker spacetime (FRW). Geometrically speaking, the
Noether point symmetries of the Lagrangian are connected
with the homothetic algebra of the minisuperspace (see [42]
and references therein), and the dynamical Noether sym-
metries are related with the Killing tensors of the minisuper-
space [62]. Obviously, the latter implies that the Noether
approach provides a useful tool in order to study the
geometrical properties of the Lagrangian in the context of
the scalar field cosmology. In this respect, we would like to
emphasize that dynamical symmetries have properties
which are well above the corresponding properties of point
symmetries. Indeed the dynamical Noether symmetries
provide conserved quantities both in Newtonian physics
and in general relativity which point symmetries cannot. For
instance, the well-known Runge-Lenz vector field of the
Kepler potential [63], the Ermakov integral [64,65], and the
Carter constant in the Kerr spacetime [66] all follow from
dynamical symmetries and not from point symmetries.
These integrals are not linear in the momentum; that is,
dynamical Noether symmetries provide new conservation
laws in contrast to Noether point symmetries which give
integrals linear in the momentum [67,68]. Furthermore, the
integrals they provide contain a larger number of degrees of
freedom allowing the consideration of more scenarios in a
given dynamical problem.

To our view it is important to consider the possibility of
dynamical symmetries in scalar field cosmology. As it will
be shown below such symmetries (at the level of contact
symmetries) exist for some hyperbolic scalar field poten-
tials which provide us with a wide range of possibilities.
The structure of the article is as follows. In Sec. II we
review briefly the basic elements of scalar field cosmology.
In Sec. III we give the basic definitions of generalized
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symmetries. In Sec. IV we apply the dynamical symmetry
condition and classify the potentials of the scalar field
cosmology which admit contact Noether symmetries. In
Sec. V we apply the results of Sec. IV and determine the
analytical solution for each model. In order to test the
viability of the resulting cosmological models in Sec. VI we
perform a joint likelihood analysis using some of the latest
cosmological data namely, supernovae type la data (SNIa),
baryonic acoustic oscillations (BAO) and the H(z) data.
Finally, the main conclusions are summarized in Sec. VII.

II. FIELD EQUATIONS

The scalar field contribution to the curvature of space-
time can be absorbed in Einstein’s field equations as
follows:

1 ~
R, — Eg”"R =kT,, k= 8zG (1)

where R, is the Ricci tensor and TW is the total energy
momentum tensor given by T#D =T, +T,(¢). Here
T,,(¢) is the energy-momentum tensor associated with
the scalar field ¢, and T, is the energy-momentum tensor
of matter and radiation. Modeling the expanding Universe
as a perfect fluid that includes radiation, matter and DE
with 4-velocity U, we have TW =-Pg,, +(p+P)UU,,
where p = p,, + p4 and P = P,, + P, are the total energy
density and pressure of the cosmic fluid respectively. Note
that p,, is the proper isotropic density of matter-radiation,
py denotes the density of the scalar field and P,,, P are the
corresponding isotropic pressures. In the context of a FRW
metric in Cartesian coordinates

ds* = —dr* + a*(1) 5 (dx? + dy* +dz*)  (2)

(1+%x?%)

the Einstein’s field equations (1), for comoving observers
(U* = &), provide

P
Ry, = —3— 3
=3 ©

i _a*+K
R;w: E_I_ZT g;w (4)

R—gor, —6|0 4+ EHK 5)

=9 =0 a?

where the overdot denotes derivative with respect to the
cosmic time , a(t) is the scale factor of the Universe and
K =0, %1 is the spatial curvature parameter. Finally, the
gravitational field equations boil down to Friedmann’s
equation
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a\? k K
H=(-) == -, 6
(E) =5 0n+on-% (6)
and
2 3 K
3H* +2H = —k(P,, + P¢) - (7)
a

where H(t) = a/a is the Hubble function. The Bianchi
identity V#T,, = 0 amounts to the following generalized
local conservation law:

Combining Egs. (6), (7) and (8) we obtain

a k
Zz—g[ﬂm+0¢+3(Pm+P¢)]- )

Assuming negligible interaction between matter and the
scalar field we have

(Pis Pr) = (=T0.T3) (g Py) = (=T(6). Ti(9)).

(10)

Then Eq. (8) leads to the following independent differential
equations

py+3H(py+Py) =0 (12)

and the corresponding equation of state (EoS) parameters
are given by w, =P,/p, and w, = P,/p,. In what
follows we assume a constant w,, which implies that p,, =
pmoa2HWn) (=0 for cold matter and w,, = 1/3 for
relativistic matter), where p,,, is the matter density at the
present time. Generically, some high energy field theories
suggest that the dark energy EoS parameter is a function of
cosmic time (see, for instance, [69]) and thus

P¢(a) = Pyo €Xp </al Md") (13)

o

where p is the DE density at the current epoch.

A. Scalar field cosmology

We consider a scalar field in a FRW background which is
minimally coupled to gravity, such that the field satisfies
the cosmological principle; that is, ¢ inherits the sym-
metries of the metric. This means that the scalar field
depends only on the cosmic time ¢ and consequently ¢, =
$8° where ¢p = dj";. A scalar field ¢(¢) with a potential V()
is defined by the energy momentum tensor of the form (for
review see [11] and references therein)
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V=9 b69*
where L is the Lagrangian of the scalar field. Although in

the current analysis we study generically, as much as
possible, the problem we will focus on a scalar field with

T;w (¢) ==

Ly = —%eg"”rﬁ,ﬂqb.p -V(9) (15)

or equivalently

1 -
Ly= 55452 - V(e) (16)
where
1 Quintessence
€= { —1 Phantom. (17)

Therefore, using the second equality of Egs. (10), (14) and
(16) the energy density p,, and the pressure P, of the scalar
field are given by

1

Py ==TH(@) = 5ed” + V(¢) (18)

and

Py=Tid) =Ly =ged V(). (19

Inserting Eqgs. (18) and (19) into Eq. (12) we derive the
Klein-Gordon equation which describes the time evolution
of the scalar field. This is

¢+ga¢s+ev¢ =0 (20)

where V , = dV /d¢. If we use the current functional form
of L, then Eq. (7) takes the form

a 1

& K k L .5 _
i3 () r3(Porgeit-vw) =0 en

Notice, that for the rest of the paper we use a spatially flat
FLRW metric, namely K = 0.
The corresponding dark energy EoS parameter is

Py e(d*/2) - V(9)
Py e(¢7/2) + V(9)
The quintessence (¢ = 1) cosmological model accommo-

dates a late time cosmic acceleration in the case of w, <

—1/3 which implies that ¢* < V(). On the other hand, if
the kinetic term of the scalar field is negligible with respect

(22)

to the potential energy [i.e. %7 < V(¢)] then the equation of
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state parameter is wy = —1. In the case of a phantom DE
(e = —1), due to the negative kinetic term, one has wy <
—1 and (¢*/2) < V().

The unknown quantities of the problem are a(z), ¢(z)
and V(¢) whereas we have only two independent differ-
ential equations available namely Eqgs. (20) and (21).
Therefore in order to solve the system of differential
equations we need to assume a functional form of the scalar
field potential V(¢). In the literature, due to the unknown
nature of DE, there are many forms of this potential (for a
review see [11]) which describe differently the physical
features of the scalar field. In the present work we use
dynamical symmetries of the field equations in order to
determine the unknown potential V(¢).

III. LIE-BACKLUND SYMMETRIES

In this section we give the basic definitions and proper-
ties for the generalized symmetries. Consider a function
H(x',u*, uf, uf;...) in the space By {x',u*,u’, uf;, ...}
where x' are n independent variables and uA are m
dependent variables. The infinitesimal transformation

X =x e (xuf uf ul ) (23)

A =ut et (x, uP uf b)) (24)

with generator

X =& uf uluf )0+t (x uP uf b )0,

(25)

is called a Lie-Bédcklund symmetry of the differential
equation

H(x',ut uf, ufy..) =0 (26)
if and only if there exists a function A(x, u, Uil .. .) such
that [67,68]

[X,H| = AH, modH = 0. (27)

From the above definition it follows that a Lie-
Biacklund symmetry preserves the set of solutions u of
H(x',u,u;, u...). In the case where the generator (25) of
the infinitesimal transformation (23), (24) depends only on

o8 _ ot _
ol = Bul = 0, the infinitesi-

mal transformation (23), (24) 1s a p01nt transformation and
the generator X is a Lie point symmetry if there exist A such
that condition (27) holds. That is, the Lie-Backlund
symmetries are more general and reduce to the Lie point
symmetries when the generator X is independent of
the derivatives. In the following we consider only Lie-
Bicklund symmetries.

the variables {x', u}, i.e.

PHYSICAL REVIEW D 90, 103524 (2014)

The operator D; = 9; +u;0, + u;;0, + ... defines
always a Lie-Bécklund symmetry (the trivial one) [67].
Therefore, if (25) is a Lie-Béacklund symmetry of H then
the generator

X=X = iD= (¢ = 0+ O = )0+

is also a Lie-Bicklund symmetry. Since f* is an arbitrary
function we set f* = & and obtain

X =" - &ul)0,. (28)

The generator (28) is the canonical form of the Lie-
Bicklund symmetry (25). Furthermore we can always
absorb the term & u, inside the 5 and conclude that X =
ZA(x!, uP, uf, u¥;...) 0,4 is the generator of a Lie-Bicklund
symmetry. A special class of Lie-Bicklund symmetries are
the contact symmetries defined by the requirement that the
generator depends only on the first derivatives u ;; i.e. it has
the general canonical form

Xe=Z4(x" u®, u8)o,.. (29)

A. Dynamical Noether symmetries

Suppose that the dynamical system (26) follows from
a variational principle, that is, Eqs. (26) are the
Euler-Lagrange equations for a Lagrangian function
L(x' ut, uf.. ) The vector field X = Z/(1,4*,¢")0,
where ¢’ = and Zi(t, g%, §*) is linear in g* is called a
dynamical (contact) Noether symmetry of the Lagrangian
L(t,q', §") if there exists a function f(¢,q") such that the
following condition holds [70]:

XL = f(1,q') (30)

where X!l is the first prolongation of X, ie. X!l =
X+ Ziaqi.

If X is a dynamical Noether symmetry of L(t,q', '),
then the quantity [70,71]

. .. OL )
IZZ’(t,q",q")a, (.4 (31)

is a first integral of Lagrange equations and it is called a
(contact) Noether integral. When Z(¢, g%, ¢*) = Z(t, ¢*)
the integral I(z, g%, g*) is linear in the momentum and in
that case the Noether symmetry X is a Noether point
symmetry.

Consider a particle moving in an n-dimensional
Riemannian space with metric g; j(q ) under the action
of the potential V(g*). The Lagrangian of the system is

. 1 ...
L(g5. ") = 5944 = V(g"). (32)
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Let X = K(1,4")4'0; be the generator of a contact Lie-
Biacklund symmetry of (32). In [62] it has been shown
that in this case the dynamical symmetry condition (30) is
equivalent to the following conditions:

Kij.t =0, f,t =0 (34)
KUVJ +f,i — 0, (35)

where “;” denotes covariant derivative with respect to the
connection coefficients of the metric g;;.

From (34) it follows that K = K'(¢") and f = f(q").
Furthermore, condition (33) means that the second rank
tensor K"}-(qk) is a Killing tensor of the metric g;;. Finally
(35) is a constraint relating the potential with the Killing
tensor K and the Noether function f. The use of
dynamical Noether symmetries provides first integrals
which can be used to reduce the order of the dynamical
system and possibly lead to analytic solutions.

The application of the Noether point symmetries in
scalar field cosmology has been studied in [43]. In this
work we would like to extend the analysis to the case of
dynamical (contact) Noether symmetries. In the following
section we use the symmetry condition (35) in order to
identify the potential(s) of the scalar field in scalar field
cosmology for which the field equations admit contact
Noether symmetries. Subsequently we use the conserved
currents of these symmetries to determine analytic solu-
tions of the resulting scalar field equations.

IV. DYNAMICAL NOETHER SYMMETRIES
IN SCALAR FIELD COSMOLOGY

Consider a dynamical system which consists of a
minimally coupled scalar field and dust (DM component)
in the flat FRW background (2). The gravitational field
equations are the Euler Lagrange equations of the
Lagrangian

L(a,$,a,¢) = —3ai> +§a3¢2 SV (36)
with Hamiltonian
E = -3ad® + §a3¢2 +dV(p) (37)

where p,, = |E|a™> and E is a constant'; hence the present
value of p,, is p,,0 = |E| and p,,g = 3w,,0 where w,,, =
Q,0H3.

Using the coordinate transformation (a,¢) — (r,0)
defined by

'"Where we have set k = 1.

PHYSICAL REVIEW D 90, 103524 (2014)

e
r=14/za2,
3

the Lagrangian (36) becomes

3e
0=/ (38)

. 1 1 5.

The potential of the scalar field is yet unspecified. In
order to select a potential we make the geometric
assumption that Lagrange equations admit a dynamical
(contact) Noether symmetry. As it has been shown in the
last section this requirement is equivalent to condition (30).
From Lagrangian (39) we infer that the kinetic metric is the
2d minisuperspace with line element

ds* = —dr* + r’do* (40)

whereas the effective potential is Ve (r,0) = r2V(0).

Dynamical Noether symmetries require the knowledge
of Killing tensors of valence 2 in the minisuperspace (40).
This space is 2d flat; hence the Killing tensors K;; form a
six-dimensional space and all are constructed from the
symmetrized products of the Killing Vectors (see e.g. [72]).
In Cartesian coordinates” the generic form of a second rank
Killing tensor in (40) is [72]

C1y2 + 2C2y + C3

K. — Ce — C1YX — CoX — Cyg)y
= .
/ Ce — C1YX — CoX — Cyq)y

C1X2 + 2C4X + CS

We apply condition (35) taking into account the above
result. For arbitrary potential V(0) the Lagrangian (39)
admits only the trivial contact symmetry X = ¢'%/0;
where g;; is the two-dimensional kinetic metric (40).
The corresponding Noether integral of this symmetry is
the Hamiltonian constraint.

In order to find extra dynamical Noether symmetries we
must consider special forms for the potential V(6). A
detailed analysis gives the following results™:

(i) For the potential

V(0) = ¢; + ¢y cosh? 0 (41)

Lagrangian (39) admits the additional dynamical
symmetry

>The coordinate transformation is
2= (x* —y?), 9:arctanh<z).
X

*In Appendix A we give the complete classification of the
potentials for which Lagrangian (39) admits contact Noether
symmetries.
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1 .
X=- (coshzﬁi +5 rsinh (29)6> 0,
/1. . s
+— (E sinh (26)7 + rsinh 99> 0;  (42)
,

with corresponding Noether integral

I, = (cosh 07 + rsinh 89)* — 2r%(c, + ¢,)cosh20.
(43)
The model with potential (41) is the well-known

UDM model [43,74]. If ¢, = 3c; the potential (41)
admits one more dynamical symmetry

X = —r2sinh 600, + (sinh @7 4 2r cosh 99)89

(44)
with corresponding Noether integral
1, = (12 sinh 070 +1° cosh 06?)
+ 2¢, r* cosh @sinh?4. (45)

(ii) For the potential

V(0) = c;(1 + 3cosh?0) + ¢,(3 cosh @ + cosh*0)
(46)

Lagrangian (39) admits the dynamical symmetry
(44) with corresponding Noether integral

I, = (12 sinh 670 +1° cosh 06?)
+ r3sinh?0(2¢, cosh @ + ¢, (1 + cosh?0)).
(47)

In case ¢; = ¢, the potential becomes
V(0) = c;(1 + cosh 0)°,

which is the model of Sahni and Wang [39]
(for p = 3).

V. ANALYTIC SOLUTIONS

It is straightforward to see that the dynamical Noether
integrals [, 1, are in involution and independent of the
Hamiltonian H, i.e. {I,H} =0; hence the dynamical
systems we have found are Liouville integrable. In this
section we apply the extra integrals to reduce the order of
the dynamical system and see if it is feasible to find an
exact solution. In the following the constants c¢;,c, are
assumed to be positive. We would like to mention that
analytical solutions in the context of an hyperbolic type
potential can be also found in Ref. [73].

PHYSICAL REVIEW D 90, 103524 (2014)
A. The unified dark matter model

The quintessence UDM cosmological model has been
studied both analytically and statistically in [74] (see also
[35,43,44,74-76]). In the latter papers it has been found
that the quintessence UDM scalar field model is in a fair
agreement with that of the A cosmology” at expansion and
at perturbation levels, although there are some differences
between the two models. In the current work we solve
analytically the UDM dynamical problem by treating dark
energy simultaneously either as quintessence or phantom.
Moreover we have provided, for the first time (to our
knowledge), the dynamical Noether symmetries of the
UDM model. Evidently, the combination of the results
published by Basilakos and Lukes-Gerakopoulos [74] and
Basilakos er al. [43] with the current article provide a
complete investigation of the UDM scalar field model.

Using the notations of Bertacca et al. [35], the real
constants in Eq. (41) are chosen to obey ¢; = ¢, > 0. It is
interesting to mention that the potential (41) has one
minimum at ¢ = 0, which reads

Vmin = V(O) =C + Ch. (48)
Lastly, as long as the scalar field is taking negative and
large values the UDM model has the attractive feature due
to V(0) x e~ [39].

1. UDM: Quintessence
Inserting Eq. (41) and € = 1 into Eq. (36) we obtain

. 1 . 3
L(a,¢,a,¢)=-3ad’ +§a3¢2 -a’ (CQI + ¢ gacosh? \/%¢>
(49)

where the index Q denotes the quintessence model. Under
the coordinate transformation

(x* —y?), ¢ = \/garctan h <§>

the Lagrangian becomes

3:

ool W

a

“Recall that for the A cosmology the exact solution of the scale
factor is

Q 3
ay(t) = (1 _'g) 0>'sinh%(w1z).
m

The Hubble function is written as

2
HA(I) = 5(1)1 COth(wl[)

3Ho(1-Q,0)"?
where w; = %
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FIG. 1.
factor (55). We use (@9, 1) =
dashed-dotted line is for 8, = 0.

I
2

1
L=—(-%*+y%) - 5 —(0}x? — w3y?) (50)

which is the Lagrangian of the 2d unharmonic hyper-
bolic oscillator. The field equations are the Hamiltonian
constraint

1
(=pi+py) +5 (@K —w}y?) = E (51)

N[ =

and Hamilton’s equations of (51). Furthermore co% =
2 (co1 + cga), w3 =3 ¢ are the oscillators’ “frequencies”
with units of inverse of time (@, , o Hy) and p,, p, are the
components of the momentum. Since cy; = ¢y, we simply
derive w; = ﬂwz.

The solution of the field equations is

x(t) = xq sinh (w7 + 6)) (52)
() = yo sinh (@, + 0,). (53)
The Hamiltonian constraint (51) gives E —wix3).

= % (@3y5—
Moreover close to the singularity a(r — 0%) — 0" we have

the constraint

0, = tarcsinh <— sinh @ ) (54)

Yo

Without losing the generality we set x, = y,. In that case

from the Hamiltonian constraint we have |E| = }x}w3.
8 IEI

3t and the solution of the scale factor

This gives x3 =

becomes

PHYSICAL REVIEW D 90, 103524 (2014)

q(a)

0 0.2 0.4 0.6 0.8 1 1.2

a

Left: Equation of state w,(a) evolution for scalar field with scale factor (55). Right: Deceleration parameter ¢(a) for scale
(0.12,0.36) x 10*, &y = —1; the solid line is for §; = 0.01, the dotted line is for @, = 0.1 and the

9 2
a’(t) = 7Dmo sinh?(w,t + 0,) — sinh? <\é_a)]t + 6991)]

Zw%
(55)
where ¢y = £1. Equation (55) can be written
a(f) = a_(t)sinhi(w,t + 6;) (56)
where
9 h (Lo, + e
a3 (1) = om0 | _ (S0 Cronr+ )\’ (57)
2w3 sinh (w7 + 6,)

92 "50 = const. Therefore for the
late time, @t + 6| = w,t, the scale factor (56) becomes the
A cosmology. Furthermore for the late time,
wt+ 6, = w,t, the Hubble function for the scale factor

(56) is

with limit a_ (t) ‘(u] t+0,>1 —

a_(r)
a_(1)

where H (¢) is the Hubble function of the A cosmology.

In Fig. 1 we present the evolution of the equation of state
parameter of the scalar field and the evolution of the
deceleration parameter of the scale factor (55). We observe
that for values of 6, € (0,0.1) the equation of state
parameter has values w, € [~1, 1] and reaches the value
—1 for a large scale factor; however for #; = 0 the equation
of state parameter is wy € [-1,—0.95).

H(t) = Hy(1) +

(58)

2. UDM: Phantom

For ¢ = —1 and the potential (41) the Lagrangian of the
field equations becomes

103524-7
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La.,a.$) = =30 ~ 3@

-a’ <Cp1 + ¢ cos? \/§¢> (59)

where the index P denotes the phantom model. Under the

coordinate transformation
¢ = \/7 arctan< )

the field equations are the Hamiltonian constraint

3
a3:§(x —I—y

5 (@ +@35%) =E (60

and the Hamilton’s equations of (60). This dynamical
system is the 2d unharmonic hyperbolic oscillator where
Px» Dy are the components of the momentum and cbl =

%(Cpl + CpZ) %
%(t) = Xy sinh (@1 + 6;)
3(t) = y sinh (@, + 6,)

. The solution of the system is

for which the Hamiltonian constraint (60) gives E =
—1(x}@? + y3@3). Prior to the singularity we have
a(t —» 0%) = 0F implying 6, = 6, = 0.

In order to reduce the number of the free parameters we
make again the ansatz ¢,; = ¢, and X, = y,. Then from
the Hamiltonian constraint we have x5 =3 “jll and the

analytic solution of the scale factor is

3 @0

a*(t) ==

2
S |sin(@, 1) + sinh? <§@lr>} (61)
1

However, the scalar factor (61) can be written in the
following form:

a(t) = a. (¢)sinhi(@, 1) (62)
where
3 (1) 30w | sinh (% 1) ’ (63)
G inh (@,7)

with limit a, (1)],, s =32 _'”2", hence in the late time the

scale factor (62) is that of the A cosmology. Therefore, for
the Hubble function holds

H(l) :HA(I)+ .

(64)

PHYSICAL REVIEW D 90, 103524 (2014)
B. The new hyperbolic model

In the following we use the second integral 7, of the
hyperbolic potential (46) in order to reduce the order of the
dynamical system.

1. Quintessence, € = 1

For the potential (46) and € = 1, we apply the coordinate
transformation (hyperparabolic coordinates)

3 8 2uv
a = % (u? — v?)?, ¢ = —\/;arctanh<u2 - v2>

and the Lagrangian (36) of the field equations becomes

(l/tz—l)z) V1M6—V21)6

(—i?+0?) —————— (65)

L ??.7.:
(u,v,1,0) 7 e

whereas the Hamiltonian (37) is

v uf’—&vf’

1
- —(—1173+p%)+g1 S| =E (66)

2
where Pu,» Py, are momenta and V=
Vo =7(co1 = cpa)-

Elnsteln field equations are the Hamiltonian constraint
(66) and Hamilton’s equations

%(CQ1+CQ2)’

(> =i =-p,, (=1 =p,
_ 2Eu-Vw _ 2Ev-Vy»®
pu_ (uz_vz) ) pv_ (uz_DZ)

In order to solve the system of equations we prefer to work
with the Hamilton-Jacobi equation. Hence from (66) we
have

e B () -

as
~ES=0 (67)

BS

where S = S(u,v,1) is the Hamiltonian and p, = au,pv o
It is easy to see that (67) is separable; hence the solution is

S(t,u,v) /\/Vlu + 6|E|u® + Pydu

:I:T/ \/VzUG +6|E|U2 + CI)Od’U‘f't

where @ is an integration constant (®g o 1,).
Using the Hamiltonian function we find that the reduced
system is

103524-8
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q(a)

FIG.2. In the left panel we give the equation of state w,,(a) evolution of the scalar field with Lagrangian (65) and in the right panel we
give the deceleration parameter g(a) of the scale factor with Lagrangian (65) where in (69) we considered the sign minus. For the
numeric solution we use (u, v),_, = (0.01,0.0998), (p,u0, c1>¢2) = (0.33,1,0.8) x 10%; the solid line is for ®, = 0, the dotted line is

for ®, = 10° and the dashed-dotted line is for &, = 10%.

3
(4 = 2)it = g\/vlbﬁ +6|E +®y  (68)

3
(w2 = 1) = j:\g—\/vzv6 F6|E|0? + By (69)

From the singularity condition a(t - 0) = 0 we have
that |u|,_o = |v|,o. However if in r — 0% we consider
u > v > 1, then from (68), (69) we have that iz > 7; when
V, >V, hence in late time holds that u? > »?, then the
system (68), (69) becomes

b= tp,—
u

where u;, = 33 \/V1,. Hence the solution of the scale
factor is

it = pyu,

[S

ax(t) = aje' aipt (70)
- pae™ M + atarp,
and when a, = 0 the scale factor (70) becomes
2,2
a%(t) — <CIIZFM) eZﬂ]t (71)
Ha

which is the de Sitter solution.

In Fig. 2 we give the evolution of the equation of state
parameter of the scalar field and the evolution of the
deceleration parameter of the model with Lagrangian (65)
where in (69) we considered the minus. We observe that for
the equation of state parameter w holds wy(a — 1) = —1
provided that the integration constant P, satisfies the
condition log ®, < 1.

a. Exact solution The dynamical system (68), (69) is anon-
linear 2d system of first order ordinary differential equations.
In order to solve this system analytically we consider the
“conformal”  transformation dt=\/3(u*=v?)dr, ie. dt=
a>dr which transforms the dynamical system to

u = \/V1u6 + 6|E|u® + ®, (72)
v = \/Vzv6 + 6|E|v? + By (73)
where ' = %. From (72), (73) follows
/ du - / dr (74)
VViul + 6|E[ui? + @
d
/ v - / dr. (75)
V10 + 6|E|0? + @,

The solution of (74), (75) can be written in terms of
elliptic functions. In order to simplify the integrals (74),
(75) and obtain an explicit solution we select special values
for the constants. For &, = 0 and E = 0 the solution of the
system (74), (75) gives the de Sitter universe (71).

However when ®; =0 and E # 0 the solution of the
system (74), (75) is

2exp (Cy (7 — 10)

Vexp (24 /6]E] (¢ — 7)) — 4C}
2exp (Cy(t — 1))

\exp (4y/6IE( — 7)) - 4C3

u() =

v(r) =

103524-9
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1 .
where C;, = ec(%)z, ec = =1 and from the relation dt =

V3(u? = v*)dr we have

2C 2Ci7y _ ,2C 7
t—t0:\/§{ln( 1 ¢ )

2C162C‘TO + e2C]T

N n <2C2€2C270 + eZCzr):|

2C262C210 _ eZCZT

2. Phantom, ¢ = —1

In the case of phantom scalar field, i.e. ¢ = —1, in
parabolic coordinates

2
@ = 33—2(w2 + 22)2, ¢= \/garctan <WZL_Z22> (76)

the Lagrangian (36) of the field equations becomes

(w? +2%)

V1W6 + V2Z6
7 .

)
(W* +2°) + e

L(W7 2, wa 2) - -

The field equations are the Hamiltonian

1 1 v, v,
T PP e g

=E (77)
and Hamilton’s equations of (77), where p,,, p, are the
momenta and V| =2 (c,1 + ¢,n), Vo =3 (c,0—cp1).

Working as previously we find that the solution of the
Hamilton-Jacobi equation is

3 -
S(tw.z) = —g/ \/V1w6 + 6|E|w? + ®pdw

3 -
+ %/ \/V2z6 + 6|E|z? — dydz — 1.

Therefore the reduced dynamical system is

. 3/
(v1/2—|—z2)w:\/T_\/V1w6—l—6|E|w2 + @, (78)

3/
W2 +2%)z = ig \/szﬁ +6|E|2 - ®).  (79)

The dynamical system (78), (79) is a two-dimensional
nonlinear system. In order to simplify it we may apply
the conformal transformation dr = \/§(W2 + 2%)dz, ie.
dr = a%dr, as we did in Sec. V B 1. Furthermore, from
the singularity condition a(t — 07) - 07, we have
(w,2) —o = 0; hence, in order to avoid complex solutions
of the system (78), (79) we set ¢, = 0.

PHYSICAL REVIEW D 90, 103524 (2014)
VI. OBSERVATIONAL CONSTRAINTS

In this section, we test the viability of the cosmological
model in the late times (well inside the matter era) resulting
in the scalar field potentials we have determined, by
performing a joint likelihood analysis using the SNIa,
BAO and the H(z) data. The likelihood function is

L(p) = Lsnia X Lpao X £H(z) (80)

where p is the statistical vector that contains the free
parameters and £, « e /% that is, y* = XNt + Xha0 +
X %—I (2)°

For the type Ia supernova data we use the Union 2.1 set
which provides us with 580 SNIa distance moduli at
observed redshift [77]. The chi-square is given by the
expression5

Nsnia
Hos (2i) = i (2i5P) ) 2
S COEAEE) S

i1 Oi

where Ngn, = 580, z; is the observed redshift
(z; €10.015,1.414]), u is the distance modulus u = m —
M = 5logD; + 25 and D, is the luminosity distance.

The chi-square for the Hubble parameter constraint
data is

Ny
Hobs(zi)_Hh(Zi;p) 2

o

where Ny =21, Hy(z;;p) is the theoretical Hubble
parameter and H ,,, are the 21 observed Hubble parameters
at the observed redshift z; [78-81] (see Table 1 of [82]).

Furthermore we use the 6dF, the SDSS and WiggleZ
BAO data [83,84] for which the corresponding chi-
square is

NBAO NBAO
Boro= Y. (X las(a) ~ (a7
i1 \=1

« ldon(z)) - dth<z,-;p>]) (83)

where Ngpo = 6, C,-‘jl is the inverse of the covariant matrix
in terms of d, [85], and the parameter d, follows from the
relation d, = lé""v—"(‘;); I5A0(Zdrag) is the BAO scale at the drag
redshift and Dy(z) is the volume distance [84].

Without losing the generality in the case of the quintessence
UDM model we set #; — 0. Therefore, the UDM statistical
vector p is of dimension 2 (dimp = 2); that is, p =
(@0-¢(0p)1) (recall that w,,,g = Q,,0HF) and p,,g = 3w, =
|E|. In order to constrain the new hyperbolic scalar field with
potential (46) with the data, we have to define six free
parameters, thatis, ¢(g )1, €(0.p)2: Pmo» Po/ @/, and the initial

>We have applied the diagonal covariant matrix.

103524-10
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TABLE 1.

PHYSICAL REVIEW D 90, 103524 (2014)

Best fit values and cosmological parameters for the SNIa + BAO and SNIa + BAO + H(z) tests for the A cosmology and

for the scalar fields’ dark energy models which admit dynamical symmetries. The final three columns present the goodness-of-fit

statistics y2,, parameter.

ACDM Q.0 Hy, wy (fixed) @0 X 1074 Lo
SNIa + BAO 0.29100:8 68.41070 -1.000 0.14 560.32
SNIa + BAO + H(z) 0.291008 68.41210 -1.000 0.14 574.77
Scalar Field (41) Q.0 H, W0 (@m0 C(g.p)1) X 1074 o
Quintessence, € = 1

SNIa + BAO 0.25 68.1 ~0.965 (0.12:0931,0.39+0020) 563.48
SNIa+BAO+H(z) 0.28 69.8 —0.968 (01310005 0.3970029) 577.82
Phantom, € = —1

SNIa + BAO 0.29 67.9 ~1.017 (0.1319920.0.58+0.98%) 562.93
SNIa + BAO + H(z) 0.30 69.6 ~1.016 (015939, 0.60709%9) 576.59
Scalar Field (46) Q.0 H, W40 (@pos €(g.pn) X 107 Lo
Quintessence, € = 1

SNIa + BAO 0.27 67.9 ~1.000 (0.12:09%6 0.147001%) 562.84
SNIa + BAO + H(z) 0.28 69.7 ~1.000 (0.1410502.0.15105%) 576.76
Phantom, ¢ = —1

SNla + BAO 0.27 68.3 -1.044 (0.1310:023 0.1570:01%) 562.75
SNIa + BAO + H(z) 0.29 69.6 ~1.048 (0.14+009 () 1540006 576.65

conditions (u, v)/(w, z). In order to reduce the number of the
free parameters we make the ansatz c(g ), = 0.8¢(g p)i-
Furthermore from the singularity condition a(t — 07) — 0
we select the initial conditions (u, v),_,+ = (0.1,0.0998),
(W, 2),_o+ = (1073,107*) where in (69) we considered the
sign minus “—" and in (79) the sign plus “+.” Finally we
assume the integration constants ®,/®;, to vanish.

Lastly, since N/ng > 40 we will use the corrected
Akaike information criterion (AIC) relevant to our case
[86], which is defined, for the case of Gaussian errors, as

AIC = ;2. + 2ng, (84)

where N = Ngnia + Np(z) + Npao = 607 and ng, is the
number of free parameters. A smaller value of AIC
indicates a better model-data fit (for the scalar field models
ng = 2 and for the ACDM we have ng = 2). However,
small differences in AIC are not necessarily significant and
therefore, in order to assess the effectiveness of the different
models in reproducing the data, one has to investigate the
model pair difference AAIC = AIC, — AIC,. The higher
the value of |AAIC|, the higher the evidence against the
model with higher value of AIC, with a difference |AAIC| >
2 indicating a positive such evidence and |AAIC|Z 6
indicating a strong such evidence, while a value <2 indicates
consistency between the two comparison models.

The scalar field with potential (41) has been compared
with the cosmological data in [74] for the quintessence field
and in [44] for the phantom field. In contrast to [74] in our
solution we include the dark matter component in the field

equations. Furthermore in [44] the authors examine the
case where ¢,; =0 and ¢, # 0.

In Table I we give a numerical summary of the current
statistical analysis and the scalar field models with
potentials (41), (46). For the A cosmology we find the
minimum total chi-square y2. = 574.77(d.o.f. = 606)
with best fit values (L9, Hy), = (0.29,68.4). For the
scalar field model (41) we find for the quintessence field
ming 2., = 577.82(d.o.f. = 605) and for the best fit
values of the parameters (®,,, C(0.P) 1) we have the cosmo-
logical parameters (QmO’HO’WqﬁO)Ql =(0.28,69.8,-0.968)

whereas for the phantom field we have y2. = 576.59
and (0, Hy. wyo)p; = (0.30,69.6,—-1.016).

Similarly for the potential (46) we find for the
quintessence field y2. = 576.76, (QmO,HO,w¢O)Q2 =

(0.28,69.7,—1.000) and for the phantom field y2. =
576.65, (0. Hy. Wyo) p, = (0.29,69.6, —1.048).

As it is expected the value of AIC,(=578.77) is
smaller than the corresponding values of the scalar field
models AIC,(580.59 — 581.82) which indicates that
the ACDM model appears to fit the expansion data better
than the scalar field models. However, the differential
value® |AAIC| = |AIC, — AIC .| is actually <2 which
indicates that the cosmological data are perfectly con-
sistent with the current scalar field models in a way
comparable to the concordance model.

®For the quintessence UDM scalar field we find |AAIC| = 3.1.
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FIG. 3. Likelihood contours of 16(Ay* = 2.3), 26(Ay* = 6.18) and 36(Ay* = 11.83) in the plane (,,9, ¢(g.p)1) for the scalar field
with potential (41). The left panel is for the quintessence field whereas the right panel is for the phantom field. The filled areas are for the
Snla + BAO + H(z) test, the best fit values are marked with a dot; the dotted lines are for the Snla + BAO test and the best fit values are
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In order to give the reader the opportunity to appreciate
our observational constraints, in Figs. 3 and 4 we provide
the likelihood contours for the best fit parameters
(@mos ¢(g.py1) of the scalar fields with potentials (41)

and (46).
VII. CONCLUSION

In this work we have applied the dynamical Noether
symmetry approach as a geometric rule to select the

potential of the scalar field in the scalar field cosmology.
We have found two potentials with this property and
have used the resulting Noether integrals to integrate the
corresponding field equations. The first potential is the
well-known UDM model whereas the second potential is
new. In both cases we have found the analytic solution of
the field equations both in the quintessence and in the
phantom case. The solution for the new potential is
expressed in terms of elliptic functions and contains a
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number of free parameters. In order to find an explicit
analytic solution we consider certain simplifications which
are compatible with the physical assumptions. Furthermore
we test the solutions we have found against the observed
cosmological constraints, that is, the SNIa, BAO and the
H(z) data. We find that the cosmological parameters for the
scalar field models which admit dynamical symmetries are
similar with those of the A cosmology.

Besides the actual value of the new solution the approach
shows that the use of careful geometric requirements/
assumptions can help in two directions, namely (a) to
produce new results which are impossible to find by
ordinary physical reasoning and (b) to lead to models with
a large number of free parameters which provide adequate
freedom of adjustment, in the sense that the values of the
constants are fixed in accordance with the observed data,
therefore leading to viable/sound cosmological models.
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APPENDIX A: CLASSIFICATION OF SCALAR
FIELD POTENTIALS WHICH ADMIT
DYNAMICAL SYMMETRIES

In this appendix we give the complete classification of
the potentials for which the Lagrangian (39) admits contact
Noether symmetries. We have the following results.

(1) If the scalar field potential is

V(6) = ¢, (1 — 3sinh?@) + ¢, (3 sinh @ — sinh>6)
(A1)

Lagrangian (39) admits the additional dynamical
symmetry

X = —r2cosh 098, + (cosh 07 + 2r sinh 00)9,
(A2)
with corresponding Noether integral
T, = (cosh 07 + rsinh 09)r20
— r3cosh?0(2¢; sinh § — ¢, (1 — sinh?6)).
(A3)

This potential is equivalent to potential (46) under
the transformation 6 = 6 + i 3.
(i1) If the scalar field potential is

V(0) = c; + cre¥ (A4)

PHYSICAL REVIEW D 90, 103524 (2014)
Lagrangian (39) admits the dynamical symmetry

20

X = —X(i+ D)0, + (i + D)0,  (AS)
r
with corresponding Noether integral
Iy = X ((ik + r0)* — 212¢,). (A6)

When ¢; =0 the dynamical system admits the
additional dynamical symmetry

X3 = —r2e00, + (i + 2r0)d, (A7)
with corresponding Noether integral
- . 2
Iy = r2e?(ih 0 +r6%) + §czr3e39. (A8)
(iii) In the case where the potential is’
V(0) = c1e¥ + cye¥ (A9)

Lagrangian (39) admits the dynamical symmetry
(A7) with corresponding Noether integral

L o)
Iy = r2e? (i 0 +r0%) + e (g ¢+ 62€6>.
(A10)

Note that the potential (A9) can be seen in the
context of the early dark energy potential [38].
In order to complete our analysis in Appendix B we
apply the integral (A10) in order to reduce the order of the
field equations with potential (A9).

APPENDIX B: REDUCTION OF ORDER
FOR THE EARLY DARK ENERGY POTENTIAL
WITH (A;.4,) = (2.3)

In this appendix we reduce the field equations of the
model with potential (A9). In this case Lagrangian (36)
becomes

. 1 ..
L(a,¢,a,¢) = =3aa® + §a3¢2 - a3(cleJTg¢ + c2e¥‘ ).
(B1)

We consider the coordinate transformation

3 8
a = gézn, ¢ = \@m <\/?ﬁ>

by which the Lagrangian (B1) becomes

"The same result holds for the case 8 = —0.
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. L
L(&n.&n) =—&né—cin’ — ng
where ¢, = %01,2' The Hamiltonian in normal coordi-
nates is
5
PPy |~ 5 P
+cnt+cr—.
¢ ¢
The field equations are the Hamiltonian constraint (B2)
and Hamilton’s equations

E=-

(B2)

5
_ o = pepy

g‘f = —Pys pf 52 s

'frl = _p.f’
. _ 5. r]%
Py = _<201'I+2025>-

We note that (B2) is in the form of Egs. (16) and (18) of

[87] [where F(37)=1,G(n)=0.f(n)=¢1* and g(7) =c,12).
The solution of the Hamilton-Jacobi equation

PHYSICAL REVIEW D 90, 103524 (2014)

_l @ @ +c 2+—’7_%_E§—0
e\ag)\ay) TN T2 TR T

& I
S(t.&m) = =S\ 60 + 18]E}y + By

352’7%

- —dn -1,
V62,7 + 18|E|y + @,

where @  I5.
Therefore the reduced Hamilton’s equations are

R -
i = 5 \/6c1 + 18]l + B (B3)

s = 3@+ |EDE + o)

(B4)
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