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We consider the ghost-free higher-order corrections to the Starobinsky model in the old-minimal
supergravity, focusing on a sector among several scalar fields in the model that reproduces the scalaron
potential in the original Starobinsky model. In general, higher-order corrections cannot be forbidden by
symmetries, which likely violate the flatness of the scalaron potential and make inflation difficult in
explaining the present Universe. We find a severe constraint on the dimensionless coupling of the R4

correction as −5.5 × 10−8 < s < 9.1 × 10−8 from the recent results of the Planck observation. If we start
from the chaotic initial condition, the constraint becomes much more severe. However, in the case in which
the coupling of the R4 correction is positive, the scalaron potential has a local maximum with two local
minima at the origin and infinity, which admits topological inflation. In this case, inflation can take place
naturally if the coupling satisfies the observational constraints.
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I. INTRODUCTION

The curvature-square inflation originally proposed by
Starobinsky [1] occupies a unique position in inflationary
cosmology [2] because it only requires a single additional
term in the Einstein–Hilbert action instead of a new scalar
field—a functional degree of freedom. Despite its simplic-
ity, R2 inflation is fully consistent with the state-of-the-art
cosmological observations of the cosmic microwave back-
ground (CMB) by WMAP [3] and Planck [4], which report
the scalar spectral index ns ¼ 0.963� 0.014 [4], tensor-to-
scalar ratio r≲ 0.135 [4,5], and the fNL parameter meas-
uring possible deviation from Gaussianity of curvature
perturbations being consistent with zero.
Recently, the BICEP2 experiment [6] announced the

detection of B-mode polarization of the CMB on relatively
low multipoles with its amplitude corresponding to r ∼ 0.2.
This is an epoch-making discovery if it is confirmed to
be due to the primordial gravitational waves, but at the
moment, the possibility that the detected signal is entirely
due to polarized dust has been ruled out only at 2.2σ level
[6]. Furthermore, it has been pointed out recently that the
effect of foreground dust may have been even larger, so that
only an upper bound on r can be obtained as reported in
Ref. [7]. In this sense, we had better not conclude in haste
that R2 inflation, which predicts r≃ 3 × 10−3, has been
ruled out by the latest observations of B-mode polarization.

Turning our attention to more theoretical aspects, this
model is so simple that it had not been investigated in the
context of modern high-energy theory including supersym-
metry and supergravity, which would be the only theories
that allow us to use the usual perturbative quantum field
theory without a fine-tuning up to scales relevant to
inflation and necessary to embed it in the most promising
candidate of the quantum theory of gravity, the superstring
theory. It is only recently that R2-type inflation was studied
based on supergravity [8–11],1 although its basic frame-
work was already known in the late 1980s using the old-
minimal supergravity [17] or the new minimal supergravity
[18], which were obtained by the gauge fixing of the
superconformal theory.
One of the most important messages of these studies is

that higher-order corrections such as the R4 term will arise
as the nonrenormalizable operators. The effect of the R4

term on the Starobinsky model can be seen easily when we
go to the scalaron picture, which is the dual theory of fðRÞ
theory that consists of a scalar field and the Einstein–
Hilbert action. In the scalaron picture, the Starobinsky
model has a very flat potential at larger field values that is
suitable for inflation, but R4 correction destroys the flatness
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1Another model of supergravity extension of the Starobinsky
model known as FðRÞ supergravity has also been proposed [12]
and its cosmological consequences have been studied [13]. But
its insufficiency as a supersymmetric theory has been pointed out
recently [14,15]. See also [16] for supersymmetric models that
have a potential similar to the Starobinsky model.
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of the potential. Therefore, it must be strongly suppressed
for the successful inflation [9,10].
In this paper, we investigate the quantitative constraint on

the R4 corrections to the Starobinsky model in supergravity
in light of the observational result and the possibility of its
realization. Even if the scalaron potential admits an infla-
tionary solution, it is nontrivial whether it generates the
primordial perturbations consistent with the current obser-
vation. As a result, we find severe constraints on the
amplitude of the R4 term. Moreover, it is also nontrivial
how severe tuning for the initial condition is required, since
the regions for successful inflation in the field space are
drastically limited.We find that the couplingof theR4 term is
very severely constrained if we start from the chaotic initial
condition [19]. However, we also find that if the scalaron
potential vanishes at the larger field values, depending on
the sign of the coupling of the R4 corrections, topological
inflation [20–22] would be possible. Therefore, the initial
condition problem is solved in this case, and we should only
focus on the observational constraint for the embedding of
the Starobinskymodel in a supersymmetric theory. Here, we
take the old-minimal supergravity for concreteness, but the
same result is obtained in other supersymmetric extensions
such as the newminimal supergravity, too, as far as the form
of the scalaron potential is concerned after all the other
degrees of freedom have been stabilized. Note that the
observational constraint for the R4 correction to the non-
supersymmetric Starobinsky model has been studied in
Ref. [23]. Our result is slightly different but consistent.
The paper is organized as follows. In Sec. II, we derive

the scalaron potential of the Starobinsky model in old-
minimal supergravity with R4 correction. In Sec. III, we
show the observational constraints to the R4 correction
from the Planck results. We examine the initial condition
problem from the chaotic initial condition and show that the
topological inflation likely takes place in Sec. IV. Section V
is devoted to the summary. In the Appendix A, we show the
equivalence of the scalaron potential to the nonsupersym-
metric Starobinsky model.

II. STAROBINSKY MODEL IN OLD-MINIMAL
SUPERGRAVITY WITH HIGHER-ORDER

CORRECTIONS

We start from the old-minimal supergravity from super-
conformal gravity [17], where the conformal symmetry is
broken by the gauge fixing of a chiral compensator field2

following the discussion of Ref. [9]. Here, we introduce a
chiral compensator superfield, S0, for which the scaling
weight is 1 and chiral weight is 1=2. Action in the
superconformal theories can be categorized by the D-type
and F-type Lagrangians. The D-term Lagrangian is
expressed as

LD ¼ ½V�D ¼
Z

d2ΘEP½V� þ H:c:; ð1Þ

where V is a real function of chiral fields for which the
scaling weight is 2 and chiral weight is 0, E is the chiral
measure, and P is the chiral projector in conformal super-
space. The F-term Lagrangian is expressed as

LF þ H:c: ¼ ½W�F þ H:c: ¼
Z

d2Θ2EW þ H:c:; ð2Þ

where W is a holomorphic function for which the scaling
weight is 3 and chiral weight is 2.
The gravity part of the standard supergravity Lagrangian

is obtained by the compensator chiral superfield as

L ¼ −3½S0S̄0�D; ð3Þ

with the gauge fixing S0 ¼ 1.3 Introducing a chiral
multiplet

R≡ 1

2
S−10 P½S̄0�; ð4Þ

for which the scaling weight is 1 and chiral weight is 2=3,
we obtain the R2 correction to the standard supergravity
Lagrangian,

L ¼ −3½S0S̄0�D þ 3λ1½RR̄�D: ð5Þ

Note that after gauge fixing the chiral projector is
expressed as

P½V� ¼ −
1

4
ðD̄ D̄−8RÞV; ð6Þ

where D is the covariant derivative and the R is the
curvature chiral superfield. As a result, the Lagrangian
reads

L ¼ −3
Z

d2θ2E
�
Rþ λ1

8
ðD̄ D̄−8RÞðRR̄Þ

�
þ H:c:;

ð7Þ

which has been shown to be the supersymmetrization of
the Starobinsky’s R2 model [15,17].
Now, let us consider higher-order corrections without

fixing S0 ¼ 1 for the moment. Since ½fðRR̄Þ�D corrections
have been found not to lead the supersymmetrization of
Rn corrections [15], here we focus on the ghost-free
correction that includes covariant derivatives of the curva-
ture multiplet [24],

2In the new minimal supergravity [18], the conformal sym-
metry is broken by a real linear multiplet. 3Here, we take the reduced Planck mass Mpl ¼ 1.
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ΔL ¼ ξ½∇αðR=S0Þ∇αðR=S0Þ∇̄ _αðR̄=S̄0Þ∇̄ _αðR̄=S̄0Þ�D;
ð8Þ

where ∇ represents the covariant derivative in the super-
conformal theory. As we will see, the Lagrangian contains
only first derivatives of the fields, and all the terms with the
form of L ∝ ð∂μϕÞ2 have the correct signs along the
inflationary trajectory. Thus, this system does not suffer
from the emergence of the ghost degrees of freedom. On
the contrary, terms expressed with a function g as
½gðS−10 R; S̄−10 R̄; S−20 PðR̄Þ; S̄−20 P̄ðRÞÞS0S̄0�D give ghost
degrees of freedom [15,17], and hence we do not consider
them here. Therefore, Eq. (8) would be the lowest non-
renormalizable term that can give the consistent theory in
this framework.
Now, we examine the structure of this system by using

the Lagrange multiplier method, or the scalaron picture. By
introducing a chiral superfield A with scaling weight 1 and
chiral weight 2=3, and a chiral Lagrange multiplier super-
field Λ with scaling weight 2 and chiral weight 4=3, the
Lagrangian can be rewritten as

L ¼ −3½S0S̄0�D þ 3λ1½AĀ�D
þ ξ½∇αðA=S0Þ∇αðA=S0Þ∇̄ _αðĀ=S̄0Þ∇̄ _αðĀ=S̄0Þ�D
þ 3½ΛðA −RÞ�F þ H:c: ð9Þ

By integrating out the multiplier field, we haveA ¼ R, and
the original Lagrangian Eqs. (5) and (8) are reproduced.
Noting that the identity ½ΛR�F þ H:c: ¼ ð1=2Þ½ΛS−10 S̄0 þ
Λ̄S̄−10 S0�D holds [17], it can be further rewritten as

L ¼ − 3½S0S̄0 − λ1AĀþ ð1=2ÞðΛS−10 S̄0 þ Λ̄S̄−10 S0Þ�D
þ ξ½∇αðA=S0Þ∇αðA=S0Þ∇̄ _αðĀ=S̄0Þ∇̄ _αðĀ=S̄0Þ�D
þ 3½ΛA�F þ H:c:; ð10Þ

which will lead to the standard Poincaré supergravity with a
chiral multiplet that has higher-order derivative coupling.
Defining new chiral multiplets

C≡
ffiffiffiffiffi
λ1

p
A

S0
; T ¼ Λ

2S20
þ 1

2
; ð11Þ

we obtain the Lagrangian

L ¼ −3½S0S̄0ðT þ T̄ − CC̄Þ�D þ ξ

λ21
½∇αC∇αC∇̄ _αC̄∇̄ _αC̄�D

þ 6ffiffiffiffiffi
λ1

p
�
S30C

�
T −

1

2

��
F
þ H:c: ð12Þ

After gauge fixing S0 ¼ 1, the Lagrangian leads to

L ¼
Z

d2Θ2E
�
3

8
ðD̄ D̄−8RÞe−K=3 þW

�
þ H:c:

−
ξ

λ21

Z
d2Θ2E

�
1

8
ðD̄ D̄−8RÞDαCDαCD̄ _αC̄D̄ _αC̄

�
;

ð13Þ

where

K≡−3 ln½Tþ T̄ −CC̄�; W ¼ 6ffiffiffiffiffi
λ1

p C

�
T −

1

2

�
: ð14Þ

Expanding the component fields, integrating out the
auxiliary fields in the gravity sector and the F-term of the T
field, and performing an appropriate Weyl transformation,
we have

L¼ ffiffiffiffiffiffi
−g

p �
−
R
2
−Kij̄∂μzi∂μz�j

−
12

λ1

jCj2
T þ T� − jCj2

�
1−

3ðT þ T� − 1Þ
T þ T� − jCj2

�

þ 6ffiffiffiffiffi
λ1

p ðT þ T� − jCj2Þ2
��

jCj2 þ T −
1

2

�
FC þH:c:

�

þ
�

3

ðT þ T� − jCj2Þ2 −
32ξ

λ21

∂μC∂μC�

T þ T� − jCj2
�
jFCj2

þ 16ξ

λ21
∂μC∂μC∂νC�∂νC� þ 16ξ

λ21ðT þ T� − jCj2Þ2 jFCj4
�
;

ð15Þ

where zi ¼ C, T, Kij̄ ≡ ∂2K=∂zi∂z�j and FC is the F-term
of C. Here, we have used the same symbol for the
superfield and its scalar component. Since Kij̄ has the form

KTT̄ ¼ 3

ðT þ T� − jCj2Þ2 ; KTC̄ ¼ −3C
ðT þ T� − jCj2Þ2 ;

KCC̄ ¼ 3ðT þ T�Þ
ðT þ T� − jCj2Þ2 ; ð16Þ

the system does not have the ghost instability as long as
T þ T� > jCj2. Note that the equation of motion for C has
only up to the second-order derivative, and hence there
arise no additional degrees of freedom.
∂L=∂FC ¼ 0 gives the condition that FC satisfies,

Aþ BF�
C þ 2SFCF�2

C ¼ 0; ð17Þ
where

A ¼ 6ffiffiffiffiffi
λ1

p ðT þ T� − jCj2Þ2
�
jCj2 þ T −

1

2

�
; ð18Þ

B ¼
�

3

ðT þ T� − jCj2Þ2 −
32ξ

λ21

∂μC∂μC�

T þ T� − jCj2
�
; ð19Þ
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S ¼ 16ξ

λ21ðT þ T� − jCj2Þ2 : ð20Þ

Then, jFCj2 satisfies the equation

α ¼ ð1þ βjFCj2Þ2jFCj2; ð21Þ
with

α ¼ jAj2
B2

; β ¼ 2S
B

: ð22Þ

Here, α is always positive, and assuming that ∂μC ¼ 0, the
sign of β is determined by ξ.
In the case β > 0, Eq. (17) has only one real and positive

solution,

jFCj2 ¼
2

3β
ðcoshm − 1Þ; ð23Þ

where

m ¼ 1

3
cosh−1

�
27

2
αβ þ 1

�
: ð24Þ

Note that 1þ ð27=2Þαβ > 1 is always satisfied in this case.
On the other hand, in the case β < 0, the situation is
relatively complicated. If 0 < α < −ð4=27Þβ−1, or
−1 < 1þ ð27=2Þαβ < 1, Eq. (17) has three real and
positive solutions,

jFCj2 ¼

8>>><
>>>:

2
3β ðcos ~m − 1Þ
2
3β

	
cos

	
~mþ 2π

3



− 1



2
3β

	
cos

	
~m − 2π

3



− 1


 ; ð25Þ

where

~m ¼ 1

3
cos−1

�
27

2
αβ þ 1

�
: ð26Þ

If α > ð4=27Þβ−1, it has again only one real and positive
solution,

jFCj2 ¼
1

3β
ð−2þ Z1=3 þ Z−1=3Þ; ð27Þ

with

Z≡ 2þ 27αβ þ ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
27αβð4þ 27αβÞp
2

: ð28Þ

Let us study the resultant Lagrangian. The full Lagrangian
in which all the auxiliary fields are integrated out is

L ¼ ffiffiffiffiffiffi
−g

p �
−
R
2
− Kij̄∂μzi∂μz�j þ 16ξ

λ21
∂μC∂μC∂νC�∂νC�

−
12

λ1

jCj2
T þ T� − jCj2

�
1 −

3ðT þ T� − 1Þ
T þ T� − jCj2

�

− BjFCj2 − 3SjFCj4
�
; ð29Þ

independent of the value of β with F terms given above.
Taking C ¼ 0,4 the Lagrangian is now of the form

L¼ ffiffiffiffiffiffi
−g

p �
−
R
2
−

3

ðT þ T�Þ2 ∂μT∂μT� −BjFCj2 − 3SjFCj4
�
:

ð30Þ

Let us define

T ¼ 1

2
e

ffiffiffiffiffiffi
2=3

p
ϕ þ ib; ð31Þ

to canonicalize the real part of the T field. Noting that we
now have

B ¼ 3

ðT þ T�Þ2 ¼ 3e−2
ffiffiffiffiffiffi
2=3

p
ϕ;

S ¼ 16ξ

λ21ðT þ T�Þ2 ¼
16ξ

λ21
e−2

ffiffiffiffiffiffi
2=3

p
ϕ;

α ¼ 4

λ1

����T −
1

2

����2 ¼
	
e

ffiffiffiffiffiffi
2=3

p
ϕ − 1



2 þ 4b2

λ1
;

β ¼ 32ξ

3λ21
; ð32Þ

the Lagrangian becomes

L ¼ ffiffiffiffiffiffi
−g

p �
−
R
2
−
1

2
∂μϕ∂μϕ − 3e−2

ffiffiffiffiffiffi
2=3

p
ϕ∂μb∂μb − V

�
;

ð33Þ

where

VðϕÞ ¼ 3λ21
16ξ

e−2
ffiffiffiffiffiffi
2=3

p
ϕXðX − 1Þ; ð34Þ

with

4For small ξ, the Lagrangian (29) reveals a tachyonic
instability for C [9]. However, by introducing the
½ðRR̄Þ2=ðS0S̄0Þ�D → ½ðCC̄Þ2�D term, C can acquire a positive
mass squared, and the tachyonic instability problem can be
solved [8,9]. Here, we assume implicitly such an extra term. Note
that such a term does not change the Lagrangian for T in the
C ¼ 0 direction. We discuss it in more detail in Appendix B.
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jFCj2 ¼
2

3β
ðX − 1Þ: ð35Þ

The expression of X is different depending on the values of ξ and ϕ as

X ¼

8>>>>>><
>>>>>>:

coshm for ξ > 0;0
B@

cos ~m

cos ð ~mþ 2π=3Þ
cos ð ~m − 2π=3Þ

for ξ < 0 and ϕ <
ffiffi
3
2

q
log

�
1þ 1

6
ffiffiffiffiffi
2jsj

p
�
≡ ϕc

ðZ1=3 þ Z−1=3Þ=2 for ξ < 0 and ϕ > ϕc

; ð36Þ

where

s≡ ξ

λ31
: ð37Þ

Here, the X ¼ cosð ~mþ 2π=3Þ branch for ξ < 0 smoothly
connects to the solution for ϕ > ϕc. m and ~m are expressed
by ϕ and b as

m ¼ 1

3
cosh−1

h
144s

		
e

ffiffiffiffiffiffi
2=3

p
ϕ − 1



2 þ 4b2



þ 1

i
; ð38Þ

~m ¼ 1

3
cos−1

h
144s

		
e

ffiffiffiffiffiffi
2=3

p
ϕ − 1



2 þ 4b2



þ 1

i
; ð39Þ

and the condition α < −ð4=27Þβ−1 yields ϕ < ϕc.
One may wonder which branch to take for s < 0. We find

that the branch X ¼ cos ~m has the potential minimum V¼0
at ϕ ¼ 0 for b ¼ 0 and approaches the pure Starobinsky
model for the s → 0 limit, whereas other branches as well
as the solution ϕ > ϕc have no potential minimum, and the
potential takes a negative value at ϕ → −∞. Therefore, we

take the branch X ¼ cos ~m as the supresymmetrized
Starobinsky model with an R4 correction for s < 0 and
ϕ < ϕc. Since other branches do not have well-defined
vacua, hereafter we do not consider them. In Appendix A,
we show that the resultant potential is the equivalent to the
Starobinsky model with a R4 correction in the nonsuper-
symmetric case, which strongly suggests that the model is
its supersymmetrized one.
Figure 1 shows the parameter dependence of the poten-

tial shape for b ¼ 0. For s > 0, the potential has a
maximum and approaches to V ¼ 0 at ϕ ¼ 0 and
ϕ → ∞. On the other hand, for s < 0, it is a continuously
increasing function with respect to ϕ and undefined for
ϕ > ϕc. In both cases, the flatness of the potential appears
to be violated for jsj > 10−7, making it difficult for inflation
to take place. We will see how inflation can take place and
how the correction is constrained observationally in the
next section.
Here, we comment on the b field. Since the imaginary

part b receives a positive mass squared for ϕ > 0 larger
thanH2 along the inflationary trajectory, we can safely take
b ¼ 0, and we have only to focus on the dynamics of ϕ
field. In Appendix B, we examine it in detail.

III. OBSERVATIONAL CONSTRAINTS

Now, let us consider inflation driven by the ϕ field and
study the observational constraints on the model parame-
ters. Inflation takes place when the slow-roll conditions,

ϵ≡ 1

2

�∂V=∂ϕ
V

�
2

≪ 1; jηj≡ 1

V

���� ∂2V
∂ϕ2

���� ≪ 1; ð40Þ

are satisfied. We can easily find that, even for relatively
large jsj ≫ 1, there are field spaces in whic slow-roll
conditions η ≪ 1, ϵ ≪ 1 are simultaneously satisfied.
Therefore, slow-roll inflation can take place naturally in
a sense apart from the observational consequences and
initial condition problem. We will turn to the latter in the
next section. During inflation, the system obeys the slow-
roll equations,

s 10 4
s 10 7 s 10 10

s 0

s 10 4

s 10 7

s 10 10

0 5 10 15
0

1

2

3

4

M pl

V
1

0
1

1
M

p
l4

FIG. 1 (color online). The potential with higher-order correc-
tion for the Starobinsky model with various amplitudes of the
corrections is shown. Here, we take λ1 ¼ 8 × 1010ðM−2

pl Þ.
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3H2 ¼ VðϕÞ; dϕ
dN

¼ ∂V=∂ϕ
V

; ð41Þ

where N is defined as dN ¼ −Hdt, and inflation ends
when ϵ reaches unity at ϕ ¼ ϕf .
Cosmological perturbations are generated during infla-

tion. They are quantified in terms of the amplitude of the
scalar fluctuations As, the scalar spectral index ns and the
tensor-to-scalar ratio r,

As ¼
H2

8πϵ
; ð42Þ

ns ¼ 1 − 6ϵþ 2η; ð43Þ

r ¼ 16ϵ; ð44Þ

which are evaluated at the ϕ field value when the relevant
scale leaves the horizon during inflation. If there are no
additional sources of cosmological perturbations, they are
directly compared to the Planck and other cosmological
observations. We adopt the ϕ field value at the number of
e-folds at N� ≃ 55 before the end of inflation when the
pivot scale k� ¼ 0.05 Mpc−1 leaves the horizon.5

The model parameters, λ1 and ξ, are constrained by the
observations [4,5],

Aobs
s ¼ ð2.18� 0.05Þ × 10−9; nobss ¼ 0.963� 0.007;

r < 0.135: ð45Þ

For s ¼ 0, the scalaron potential6 is given by

VðϕÞ ¼ 3

λ1

	
1 − exp

h
−

ffiffiffiffiffiffiffiffi
3=2

p
ϕ
i


2
; ð46Þ

which yields 3H2 ≃ 3=λ1 during inflation, and solving the
slow-roll equations analytically, we obtain

ϵ≃ 3

4N2�
: ð47Þ

Then, comparing Eqs. (42) and (45), we find

λ1 ¼
N2�

6πAobs
s

≃ 7 × 1010: ð48Þ

Since the slow-roll dynamics of ϕ cannot be solved
analytically when the higher-order correction exists, we
have performed numerical calculation of the inflationary
dynamics and evaluated the primordial perturbations with
various values of λ1 and s. Parameter regions that are
favored by Planck are shown in Fig. 2 in the cases s < 0
and s > 0. In both cases, for jsj > 10−7, the higher-order

As As
obs As As

obs 3As 3 As
obs

r 0.004

r 0.0036

ns 0.977

ns 0.970

9

8

7

6

5

Log 10 1 M pl
2

L
og

10
s

As As
obs As As

obs 3As 3 As
obs

r 0.003

r 0.001

ns 0.963

ns 0.956

ns 0.949

9

8

7

6

5

Log 10 1 M pl
2

L
og

10
s

10.0 10.5 11.0 11.5 12.0 10.0 10.5 11.0 11.5 12.0

FIG. 2 (color online). The cosmological perturbations generated from the supersymmetric Starobinsky model with higher-order
corrections with respect to the model parameters are shown; (left) in the case with s < 0 and (right) in the case with s > 0. Curved (red)
lines represent the contour lines of the amplitude of the scalar fluctuation As. The thick (light) shaded (blue) regions are the regions in
which the values of the scalar spectral index are within the Planck 1σð2σÞ constraints. Horizontal (green) lines are the contour lines for
the typical values of the tensor-to-scalar ratio r.

5See Ref. [5] for the discussion of the pivot scale in light of the
BICEP2 result.

6The dynamics of scalaron oscillation with this potential is
investigated in Ref. [25].
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corrections are no longer negligible for the inflaton
dynamics, and hence the predictions start to deviate from
the pure Starobinsky model’s; for As ¼ Aobs

s , λ1 ≃ 7 × 1010

is required, and for these parameter values, the scalar
spectral index and the tensor-to-scalar ratios are predicted
as ns ≃ 0.963 and r≃ 3 × 10−3. As a result, the value of s
is constrained as

−5.5 × 10−8 < s < 9.1 × 10−8 ð49Þ
by the Planck observation at the 2σ confidence level.
Therefore, we conclude that the amplitude of the parameter
s must be smaller than at least 10−7 to explain the current
Universe in the context of the supergravity Starobinsky
model. This means that some symmetries or mechanisms to
reduce the higher-order corrections to the Starobinsky
model up to this level are necessary to derive it from the
physics in the higher energy scales.
Here, we explain the behaviors of the parameter depend-

ence of the observables. In the case with s < 0, larger jsj
leads to larger values of ϵ during inflation. Therefore, larger
potential energy or smaller λ1 is required to generate the
correct amplitude of the scalar perturbations As, which
leads to relatively large values of the tensor-to-scalar ratio r.
At the same time, the slow-roll parameter η becomes a
larger or even positive value, which leads to a larger value
of the scalar spectral index ns. On the other hand, in the
case with s > 0, larger s leads to smaller values of ϵ during
inflation. This leads to larger values of λ1 to generate the
correct amplitude of As, which also means smaller values
of r. Simultaneously, for larger s, η becomes larger, which
leads to a smaller value of ns. Note that the slow-roll
parameters are independent of λ1, and hence the observ-
ables ns and r are λ1 independent.

IV. INITIAL CONDITION FOR INFLATION

Now, let us consider the initial condition problem, which
is strikingly different depending on the sign of s. First, for

s < 0, as we have seen above, the field range that can evolve
into the proper vacuum after inflation is limited to ϕ < ϕc.
For a sufficient amount of inflation, slow-roll inflation
should start at ϕ≳ 6. Hence, severe fine-tuning of the initial
condition at, say, the Planckian epoch is necessary for bothϕ
and _ϕ. If _ϕ has a Planckian value _ϕ ∼ 1 initially, the scalar
field amplitude variesΔϕ ∼ 10 before the slow-roll inflation
phase sets in. Therefore, ϕc must be larger than 15–16 for
this initial velocity, which turns to the constraint on s as
jsj < 3.2 × 10−13. For the larger amplitude of s, the initial
velocity must be suppressed accordingly.
On the other hand, for s > 0, there is no restriction in the

field range of ϕ, and the potential has a local maximum at
ϕ≡ ϕt ≃ −0.93log10ð3.5sÞ. Hence, if the universe starts
with a chaotic initial condition, some domain falls into
ϕ ¼ 0, and others run away to infinity. Note that since theC
and b fields are stabilized at the origin for any field values
of ϕ we can take C ¼ b ¼ 0 in all the domains. Between
these domains with different fates exists a region trapped to
the potential maximum at ϕ ¼ ϕt, namely, a domain wall.
As Vilenkin and Linde have pointed out [20], inflation can
naturally take place inside the domain wall, where the large
energy density distributes relatively homogeneously, if its
thickness is larger than the local Hubble radius. This is so-
called the “topological inflation.” Thus, in the present case,
it may be possible for the topological inflation to take place.
Let us study this possibility in detail. The condition for

the realization of topological inflation is numerically
studied in Ref. [21] in the case with a potential
V ¼ κðϕ2 − v2Þ2, and it was concluded that a domain wall
triggers inflation if v is larger than the critical value vc ≡
1.7 regardless of the value of κ. Since the potential we are
studying is different from the double-well type, the con-
clusion in Ref. [21] cannot be applied directly. However, it
is plausible that inflation can take place from the domain
wall in the following reasons. The thickness of the
domain wall can be evaluated as δ ¼ jV 00ðϕtÞj−1=2. Since
numerically we find that
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FIG. 3 (color online). The potential (left) and its second derivative with respect to ϕ (right) of both the Starobinsky model with higher
order corrections s ¼ 10−7 and the double well potential are shown. The double potential has the maximum at ϕ ¼ 6 and the amplitude
is the same to the Starobinsky model. Around the potential maximum, the Starobinsky model is flatter than the double-well potential.
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V 00ðϕtÞ≃ −2.1 × 10
s1=3

λ1
ð50Þ

and the Hubble parameter is evaluated as
H ¼ ðVðϕtÞ=3Þ1=2 ≃ 1=λ1=21 , we have the relation

Hδ≃ 0.22s−1=6: ð51Þ
Since the condition for the critical ratio between the wall
thickness to the Hubble length given in Ref. [21] is
Hδ ¼ 0.48, the one in our case for s < 10−7 is much
larger than the critical value. Figure 3 shows the shape of
potential and its second derivative both in the case with our
potential with s ¼ 10−7 and the double-well potential with
v≃ 6, both of which have the same potential maximum.
We can see that our potential is flatter than the double-well
potential that can trigger the topological inflation.
Therefore, topological inflation will naturally take place
in our potential satisfying the observational constraint
s < 9.1 × 10−8.

V. SUMMARY

Starobinsky’s R2 inflation is one of the most attractive
inflation models in light of the Planck result. However, the
mechanism to induce the correct R2 term that explains the
observational result is not known. Therefore, it would be a
good direction to embed it in a supersymmetric theory
because it is one of the most promising physics beyond the
Standard Model and would be the key to the quantum
theory of gravity. On the other hand, once we consider the
supersymmetric theory of the R2 model, higher-order terms
cannot be forbidden by symmetry.
In this paper, we have studied the Starobinsky model in

the old-minimal supergravity with an R4 correction that is
free from ghost degrees of freedom. After confirming that
fields other than the scalaron field are stabilized appropri-
ately, we focused on the dynamics of the scalaron sector.
Since the R4 correction easily violates the flatness of the
inflaton potential in the scalaron picture, it should be
strongly constrained. We find that the constraint on the
R4 term is not so strong just for the accelerating expansion
of the Universe, but in order to generate the spectral index
of primordial scalar perturbation that is consistent with
Planck result, it is strongly constrained. It is found that in
terms of dimensionless coupling constant s≡ ξ=λ31 it is
constrained as

−5.5 × 10−8 < s < 9.1 × 10−8: ð52Þ
On the initial condition, we also find the difficulties in

the realization of inflation when there is an R4 correction.
From the chaotic initial condition in which the Universe
starts from the Planck scale, the R4 term must be very
severely constrained for s < 0, where the scalaron potential
jumps up at the field value larger than the value at which the

R4 correction becomes dominant. On the other hand, in the
case of s > 0, the shape of the scalaron potential is hilltop
type, and domain walls are generated somewhere in the
Universe regardless of the initial condition. We find that the
domain wall is thick enough for the topological inflation
for s < 10−7, and hence we do not suffer from the initial
condition problem in this case. In summary, for the
reasonable initial conditions, the R4 correction is con-
strained as

−3.2 × 10−13 ≪ s < 9.1 × 10−8 ð53Þ

for the realization of inflation that leads to the present
Universe. This would be an important constraint for the
embedding or inducing the Starobinsky model of inflation
from the high-energy theory.
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APPENDIX A: HIGHER-ORDER CORRECTIONS
TO THE NONSUPERSYMMETRIC

STAROBINSKY MODEL

Here, we examine the higher-order correction to the
nonsupersymmetric Starobinsky model in the scalaron
picture. We will find that it is strongly suggested that
the model we studied is truly its supersymmetrized one.
Let us consider the following action:

S ¼ −
Z

d4x
ffiffiffiffiffiffi
−g

p R
2

�
1 −

λ̄

2
R −

ξ̄

4
R3

�
: ðA1Þ

The equivalent action is

S ¼ −
Z

d4x
ffiffiffiffiffiffi
−g

p �
φ

2

�
1 −

λ̄

2
φ −

ξ̄

4
φ3

�

þ 1

2
ð1 − λ̄φ − ξ̄φ3ÞðR − φÞ

�

¼ −
Z

d4x
ffiffiffiffiffiffi
−g

p �
1

2
ð1 − λ̄φ − ξ̄φ3ÞRþ λ̄

4
φ2 þ 3ξ

8
φ4

�
:

ðA2Þ

Performing the conformal transformation gμν → ḡ ¼ Ω2gμν
with Ω2 ¼ 1 − λ̄φ − ξ̄φ3, the action becomes
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S ¼ −
Z

d4x
ffiffiffiffiffiffi
−ḡ

p �
R̄
2
þ 3

4

�
λ̄þ 3ξ̄φ2

1 − λ̄φ − ξ̄φ3

�
2

∂μφ∂μφ

þ 1

ð1 − λ̄φ − ξ̄φ3Þ2
�
λ̄

4
φ2 þ 3ξ̄

8
φ4

��
: ðA3Þ

Defining

χ ≡
ffiffiffi
3

2

r
log ½1 − λ̄φ − ξ̄φ3�; ðA4Þ

we have the action for the canonically normalized field χ,

S ¼ −
Z

d4x
ffiffiffiffiffiffi
−ḡ

p �
R̄
2
þ 1

2
∂μχ∂μχ

þ e−2
ffiffiffiffiffiffi
2=3

p
χ

�
λ̄

4
φ2½χ� þ 3ξ̄

8
φ4½χ�

��
: ðA5Þ

Equation (A4) can be solved as

φ2½χ� ¼
(

2λ̄
3ξ̄
ðcosh m̄1½χ� − 1Þ for ξ > 0;

2λ̄
3ξ̄
ðcos m̄2½χ� − 1Þ for ξ < 0;

ðA6Þ

with

m̄1½χ� ¼
1

3
cosh−1

�
27ξ̄

2λ̄3
ðe

ffiffiffiffiffiffi
2=3

p
χ − 1Þ2 þ 1

�
for ξ > 0;

ðA7Þ

m̄2½χ� ¼
1

3
cos−1

�
27ξ̄

2λ̄3
ðe

ffiffiffiffiffiffi
2=3

p
χ − 1Þ2 þ 1

�
for ξ < 0:

ðA8Þ

Again, for ξ < 0, there are three solutions for φ½χ�, and
here we take the solution that approaches the Starobinsky
model in the ξ → 0 limit. Therefore, the potential for χ is
expressed as

VðχÞ¼ λ̄2

6ξ̄
e−2

ffiffiffiffiffiffi
2=3

p
χ

�ðcoshm̄1½χ�−1Þcoshm̄1½χ�; for ξ> 0

ðcosm̄2½χ�−1Þcosm̄2½χ�: for ξ< 0:

ðA9Þ

Comparing them with Eqs. (34), (36), (38), and (39), we
find that they are equivalent to the relation

λ1 ¼ 12λ̄; ξ ¼ 162ξ̄: ðA10Þ

APPENDIX B: MASSES OF C AND b FIELDS

In this appendix, we examine the effective mass of C and
b fields and show that they can be safely stabilized during
inflation.

1. C field

In the Starobinsky limit ξ → 0, the Lagrangian for C
becomes

L ∋ −
3ðT þ T�Þ

ðT þ T� − jCj2Þ2 j∂μCj2

−
12

λ1

jCj2
T þ T� − jCj2

�
1 −

3ðT þ T� − 1Þ
T þ T� − jCj2

�

−
12

λ1ðT þ T� − jCj2Þ2
����jCj2 þ T −

1

2

����2: ðB1Þ

The mass term for the C field can be read off as

VðT; CÞ ∋ 12

λ1

1 − 2ðTðT − 1Þ þ H:c:Þ
2ðT þ T�Þ3 jCj2: ðB2Þ

Therefore, the C field becomes tachyonic for
T > ð ffiffiffi

2
p þ 1Þ=2, neglecting the imaginary part of T,

which may violate the successful inflation. This problem
is resolved by introducing higher-order term like
½ζðRR̄Þ2=ðS0S̄0Þ�D → ½ζðCC̄Þ2�D with ζ being a numerical
constant. This term gives an additional mass term,

ΔV ¼ −
12ζ

λ1

j2T − 1j2
ðT þ T�Þ2 jCj

2: ðB3Þ

Then, the mass squared of C becomes always positive
for ζ ≪ −0.1. For the fixed T, around C ¼ 0, one can
canonically normalize C by multiplying

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiðT þ T�Þ=3p
.

Noting that during inflation H2 ≃ VðTÞ=3, the ratio
between the effective mass squared of C and the Hubble
parameter becomes

m2
C;eff

H2
≃ 1 − 2ðTðT − 1Þ þ H:c:Þ

jT − 1=2j2 − 4ζðT þ T�Þ: ðB4Þ

Therefore, since during inflation T þ T� ¼ exp½ ffiffiffiffiffiffiffiffi
2=3

p
ϕ�≃

50, the C field is safely stabilized for ζ ≪ −0.01.
For the nonzero R4 corrections, the situation does not

change. Figure 4 shows m2
C;eff=ðVðϕÞ=3Þ with ζ ¼ 0,

−0.01, and −0.1 and ξ ¼ 10−7 as a function of inflaton
ϕ. We can easily see that the C field is safely stabilized for
ζ < −0.1. The conclusion is the same for s < 0.

2. b field

In the Starobinsky limit ξ → 0, the Lagrangian for the b
field becomes

L ∋ −3e−2
ffiffiffiffiffiffi
2=3

p
ϕ∂μb∂μb −

12

λ1
e−2

ffiffiffiffiffiffi
2=3

p
ϕb2; ðB5Þ

neglecting the C field. For the fixed value of ϕ, the b field is

canonically normalized by multiplying e
ffiffiffiffiffiffi
2=3

p
ϕ=

ffiffiffi
6

p
, and

the effective mass is read as

TOPOLOGICAL INFLATION FROM THE STAROBINSKY … PHYSICAL REVIEW D 90, 103520 (2014)

103520-9



m2
b;eff ¼

4

λ1
: ðB6Þ

The Hubble parameter during inflation isH2¼V=3≃1=λ1,
and hence the b field is safely stabilized.

For the nonzero R4 corrections, again, the situation
does not change. Figure 5 shows m2

b;eff=ðVðϕÞ=3Þ with
s ¼ 10−7 and −10−7 as a function of inflaton ϕ. We can
easily see that the b field is safely stabilized during
inflation.
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