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The joint probability distribution function (PDF) of the density within multiple concentric spherical cells
is considered. It is shown how its cumulant generating function can be obtained at tree order in perturbation
theory as the Legendre transform of a function directly built in terms of the initial moments. In the context
of the upcoming generation of large-scale structure surveys, it is conjectured that this result correctly
models such a function for finite values of the variance. Detailed consequences of this assumption are
explored. In particular the corresponding one-cell density probability distribution at finite variance is
computed for realistic power spectra, taking into account its scale variation. It is found to be in agreement
with Λ-cold dark matter simulations at the few percent level for a wide range of density values and
parameters. Related explicit analytic expansions at the low and high density tails are given. The conditional
(at fixed density) and marginal probability of the slope—the density difference between adjacent
cells—and its fluctuations is also computed from the two-cell joint PDF; it also compares very well to
simulations. It is emphasized that this could prove useful when studying the statistical properties of voids as
it can serve as a statistical indicator to test gravity models and/or probe key cosmological parameters.
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I. INTRODUCTION

With new generations of surveys either from ground-
based facilities (e.g. BigBOSS, DES, Pan-STARRS, LSST
[1]) or space-based observatories (EUCLID [2], SNAP and
JDEM [3]), it will be possible to test with unprecedented
accuracy the details of gravitational instabilities, in par-
ticular as it enters the nonlinear regime. These confronta-
tions can be used in principle to test the gravity models (see
for instance [4,5]) and/or more generally improve upon our
knowledge of cosmological parameters as detailed in [2].
There are only a limited range of quantities that can be

computed from first principles. Next-to-leading-order terms
to power spectra and polyspectra have been investigated
extensively over the last few years with the introduction of
novel methods. Standard perturbation theory calculations, as
described in [6], have indeed been extended by the develop-
ment of alternative analytical methods that try to improve
upon standard calculations. The first significant progress in
this line of calculations in the renormalized perturbation
theory proposition [7] followed by the closure theory [8] and
the time flow equations approach [9]. Latest propositions,
namely MPTbreeze [10] and RegPT [11], incorporate
2-loop-order calculations and are accompanied by publicly
released codes. Recent developments involve the effective
field theory approaches [12].
Alternatively one may look for more global properties of

the fields that capture some aspects of their non-Gaussian
nature. A number of tests have been put forward from peak

statistics (see [13]) that set the stage for Gaussian fields,
to topological invariants. The latter, introduced for instance
in [14] or in [15], aim at producing robust statistical
indicators. This topic was renewed in [16] and [17] with
the introduction of the notion of a skeleton. How such
observables are affected by weak deviations from
Gaussianity was investigated originally in [18] and for
instance more recently in [17,19] with the use of standard
tools such as the Edgeworth expansion applied here to
multiple variable distributions. These approaches, although
promising, are hampered by the limited range of appli-
cability of such expansions and as a consequence have to
be restricted to a limited range of parameters and are
usually confined to the nonrare event region.
There is however at least one counterexample to that

general statement: the density probability distribution
functions in concentric cells. As we will show in detail
in the following it is possible to get a global picture of what
the joint density probability distribution function (PDF)
should be, including in its rare event tails. The size of the
past surveys prevented an effective use of such statistical
tools. Their current size makes it now possible to try and
confront theoretical calculations with observations.
Hence the aim of the paper is to revisit these calculations

and assess their domain of validity with the help of
numerical simulations.
To a large extent, the mathematical foundations of the

calculation of the density probability distribution functions
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in concentric cells are to be found in early works by Balian
and Schaeffer [20], who explored the connection between
count-in-cell statistics and the properties of the cumulant
generating functions. In that paper, the shape of the latter
was just assumed without direct connection with the
dynamical equations. This connection was established in
[21] where it was shown that the leading order generating
function of the count-in-cell probability distribution func-
tion could be derived from the dynamical equations. More
precise calculations were developed in a systematic way in
[22] that takes into account filtering effects, as pioneered in
[23,24] where the impact of a Gaussian window function or
a top-hat window function was taken into account. At the
same time, these predictions were subjected to simulations
and shown to be in excellent agreement with the numerical
results (see for instance [22,25]). We will revisit here the
quality of these predictions with the help of more accurate
simulations. In parallel, it was shown that the same
formalism could address more varied situations: large-scale
biasing in [26], projection effects in [27,28]. A compre-
hensive presentation of these early works can be found
in [6].
Insights into the theoretical foundations of this approach

were presented in [29] that allow to go beyond the
diagrammatic approach that was initially employed. The
key argument is that for densities in concentric cells,
the leading contributions in the implementation of the
steepest descent method to the integration over field
configurations should be configurations that are spheri-
cally symmetric. One can then take advantage of Gauss’s
theorem to map the final field configuration into the initial
one with a finite number of initial variables, on a cell-by-
cell basis. This is the strategy we adopt below. The purpose
of this work is to rederive the fundamental relation that was
obtained by the above mentioned authors, and to revisit the
practical implementation of these calculations alleviating
some of the shortcuts that were used in the literature.
Specifically, the first objective of this paper is to quantity

the sensitivity of the predictions for the one-cell PDF for
the density on the power spectrum shape, its index and the
scale dependence of the latter (the so-called running
parameter). The second objective is to show that it is
possible to use the two-cell formalism to derive the
statistical properties of the density slope defined as the
difference of the density in two concentric cells of (possibly
infinitesimally) close radii and more globally the whole
density profile. More specifically we show that for suffi-
ciently steep power spectra (index less than −1), it is
possible to take the limit of infinitely close top-hat radii and
define the density slope at a given radius. We can then take
advantage of this machinery to derive low-order cumulants
of this quantity as well as its complete PDF. Finally this
investigation allows us to make a theoretical connection
with recent efforts (see for instance [30–36]) in exploring
the low density regions and their properties [37] such as the

constrained average slope and its fluctuations given the
(possibly low) value of the local density. This opens the
way to exploit the properties of low density regions: we
will suggest that the expected profile of low density regions
is in fact a robust tool to use when matching theoretical
predictions to catalogs.
The outline of the paper is the following. In Sec. II we

present the general formalism of how the cumulant gen-
erating functions are related to the spherical collapse
dynamics. In Sec. III, this relationship is applied to derive
the one-point-density PDF; the sensitivity of the predictions
with scale and with the power spectrum shape is also
reviewed there. In Sec. IV, we define the density profile and
the slope, and derive its statistical properties. A summary
and discussion on the scope of these results is given in the
last section.

II. THE CUMULANT GENERATING
FUNCTION AT TREE ORDER

Let us first revisit the derivation of the tree-order
cumulant generating functions for densities computed in
concentric cells.

A. Definitions and connections to spherical collapse

We consider a cosmological density field, ρðxÞ, which is
statically isotropic and homogeneous. The average value of
ρðxÞ is set to unity. We then consider a random position x0

and n concentric cells of radius Ri centered on x0. The
densities, ρi, obtained as the density within the radius Ri,

ρi ¼
1

4πR3
i =3

Z
jx−x0j<Ri

d3x ρðxÞ; ð1Þ

form a set of correlated random variables. For a nonlinearly
evolved cosmic density field, they display non-Gaussian
statistical properties. It is therefore natural to define the
generating function of their joint moments as

MðfλkgÞ ¼
X∞
pi¼0

hΠiρ
pi
i i

Πiλ
pi
i

Πipi!
; ð2Þ

which can be simply expressed as

MðfλkgÞ ¼
�
exp

�X
i

λiρi

��
: ð3Þ

The generating function, MðfλkgÞ, is a function of the
n variables λk. A very general theorem (see for instance
[38,39]) states that this generating function is closely
related to the joint cumulant generating function,

φðfλkgÞ ¼
X∞
pi¼0

hΠiρ
pi
i ic

Πiλ
pi
i

Πipi!
; ð4Þ
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via the relation

MðfλkgÞ ¼ exp ½φðfλkgÞ�: ð5Þ

Note importantly that this makes φðfλkgÞ an observable on
its own [40].
The tree-order expression of such cumulants can be

derived from a direct expansion of the density field, i.e.

ρðxÞ ¼ 1þ δð1Þ þ δð2Þ þ δð3Þ þ � � � ; ð6Þ

where δðpÞ is of order p with respect to the initial density
contrast. For Gaussian initial conditions the leading order
cumulant (that is the connected parts of the moments) can
be derived from the expression of the fields δðpÞ. Formally,
Wick’s theorem imposes [41] that the leading contributions
to the p-order cumulant obtained from the following terms:

hρpic ¼
XP

p
i¼1

ni¼2ðp−1Þ
hΠp

i¼1δ
ðniÞic: ð7Þ

One of the well-known consequences of that property is

that hρpic scales like hρ2i2ðp−1Þc . It is then natural to define
precisely the reduced cumulants, Sp, as

SpðηÞ ¼
hρpi ic

hρ2i i2ðp−1Þc

: ð8Þ

It has been shown in [21,22] that these quantities are
entirely determined by the dynamics of the spherical
collapse. More precisely the function ζ that relates the
initial density contrast τ<r within a given shell of radius r to
the time-dependent (η) nonlinear density contrast, ρ<R

within the shell of radius R ¼ rρ−1=3<R ,

ρ<R ¼ ζðη; τð< rÞÞ; ð9Þ

encodes all the necessary ingredients to compute the tree-
order cumulants. Note that the mere existence of such a
function takes full advantage of Gauss’s theorem, as the
time evolution of the shell radius depends only on the
density contrast at this radius (before shell crossings). More
precisely, if one perturbatively expands ζðη; τÞ with respect
to τ,

ζðη; τÞ ¼
X
p

νpðηÞ
ðDþðηÞτÞp

p!
; ð10Þ

where DþðηÞ is the linear growth factor between the initial
time and time η (with ν0 ¼ 1, ν1 ¼ 1), then each SpðηÞ
parameters can be expressed in terms of νpðηÞ. For instance

S3ðηÞ ¼ 3ν2ðηÞ þ
d loghτ2ðrÞi

d log r
; ð11Þ

S4ðηÞ ¼ 4ν3ðηÞ þ 12ν22ðηÞ

þ ð14ν2ðηÞ − 2Þ d log½hτ
2ðrÞi�

d log r

þ 7

3

�
d log½hτ2ðrÞi�

d log r

�
2

þ 2

3

d2 log½hτ2ðrÞi�
dlog2r

: ð12Þ

The explicit form of ζðη; τÞ or equivalently the values of
νpðηÞ can a priori be predicted for any given cosmology.
They depend on time—although very weakly—and take
simple analytic forms for an Einstein–de Sitter background.
For instance, for such a background, we then have
ν2 ¼ 34=21. A more general expression of ζðη; τÞ can be
found in [21,43,44]. In practice one can use a simple
expression for ζðτÞ:

ζðτÞ ¼ 1

ð1 −DþðηÞτ=νÞν
: ð13Þ

Here we choose ν ¼ 21=13 ≈ 1.6 so that the high z skew-
ness of the density contrast is exactly reproduced [45]. We
checked that this choice of ν reproduces the exact spherical
collapse dynamics for an Einstein–de Sitter background at a
precision level of 0.5% from ζ ¼ 0.3 to ζ ¼ 2.5, which is
typically the range of values we need to cover.
The understanding of the connection between the lead-

ing order statistical properties and the spherical collapse
dynamics has been dramatically improved in [26,28,29]
where it was realized that it could be extended to the
cumulants of any number of concentric cells. We now turn
to the presentation of these results.

B. General derivation

We are here interested in the leading order expression of
φ ¼ φðfλkgÞ for a finite number of concentric cells. In this
section we set the dimension of space to be D, having in
mind that the formulas we derive should be valid forD ¼ 2
or D ¼ 3. For completeness, we sketch here the demon-
stration of the results and refer to [29] for further details. To
derive such an expression let us introduce the joint density
probability distribution functions, PðfρkgÞdρ1…dρn, so
that

exp ½φðfλkgÞ� ¼
Z

dρ1…dρnPðfρkgÞ exp
�X

i

λiρi

�
:

This expression can be written in terms of the statistical
properties of the initial field. Let us define τðxÞ as the initial
density contrast. Formally the quantities ρi are all func-
tionals of the field, τðxÞ [46], so that the ensemble average
of the previous equation can be written as
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exp½φ� ¼
Z

DτðxÞPðfτðxÞgÞ exp
�X

i

λiρiðfτðxÞgÞ
�
;

ð14Þ

where we introduced the field distribution function,
PðfτðxÞgÞ, and the corresponding measure DðfτðxÞgÞ.
These are assumed to be known a priori. They depend on
the initial conditions and in the following we will assume
the initial field is Gaussian distributed [47].
We now turn to the calculation of the generating function

at leading order when the overall variance, σ2, at scale Ri, is
small. The idea is to identify the initial field configurations
that give the largest contribution to this integral. For
convenience, let us assume that the field τðxÞ can be
described with a discrete number of variables τi. For
Gaussian initial conditions, the expression of the joint
probability distribution function of τi reads

PðfτkgÞdτ1…dτp ¼ exp ½−ΨðfτkgÞ�ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffið2πÞp= detΞp dτ1…dτp; ð15Þ

with

ΨðfτkgÞ ¼
1

2

X
ij

Ξijτiτj; ð16Þ

where Ξij is the inverse of the covariance matrix, Σij,
defined as

Σij ¼ hτiτji: ð17Þ

The key idea to transform Eq. (14) using Eq. (15) relies on
using the steepest descent method. Details of the validity
regime of this approach and its construction can be found
in [29]. The integral we are interested in is then dominated
by a specific field configuration for which the following
stationary conditions are verified:

X
i

λi
δρiðfτkgÞ

δτj
¼ δ

δτj
ΨðfτkgÞ; ð18Þ

for any value of j. Up to this point this is a very general
construction. Let us now propose a solution to these
stationary equations that is consistent with the class of
spherically symmetric problems we are interested in. The
main point is the following: the configurations that are
solutions of this equation, that is the values of fτkg, depend
specifically on the choice of the functionals ρiðfτkgÞ. When
these functionals correspond to spherically symmetric
quantities, the corresponding configurations are also likely
to be spherically symmetric. But then Gauss’s theorem is
making things extremely simple: before shell crossing,
each of the final density ρi can indeed be expressed in terms
of a single initial quantity, namely the linear density

contrast of the cell centered on x0 that contained the same
amount of matter in the initial density field. We denote τi
the corresponding density contrast, which means that,
following definition (9), we have

ρi ¼ ζðη; τiÞ; ð19Þ

and τi is the amplitude of the initial density within a specific
radius [49], ri, which obeys ri ¼ Riρ

1=D
i thanks to mass

conservation. The specificity of this mapping implies in
particular that

δρiðfτkgÞ
δτj

¼ δijζ
0ðτiÞ; ð20Þ

so that the stationary conditions (18) now read

λjζ
0ðτjÞ ¼

δ

δτj
ΨðfτkgÞ: ð21Þ

Note that the no-shell crossing conditions imply that if
Ri < Rj, then ri < rj, which in turn implies that

ρi < ρjðRj=RiÞD: ð22Þ

It follows that the parameter space fρkg is not fully
accessible. In the specific example we explore in the
following, this restriction is not significant, but it could
be in some other cases.
We are now close to the requested expression for

φðfλkgÞ as we have

exp ½φðfλkgÞ� ¼
Z

dτ1…dτnPðfτkgÞexp
�X

i

λiρiðfτkgÞ
�
:

To get the leading order expression of this form for
φðfλkgÞ, using the steepest descent method, one is simply
requested to identify the quantities that are exponentiated.
As a result we have

φðfλkgÞ ¼
X
i

λiρi −ΨðfρkgÞ; ð23Þ

where ρi are determined by the stationary conditions (21).
The latter can be written equivalently as

λi ¼
∂
∂ρi ΨðfρkgÞ; ð24Þ

when all quantities are expressed in terms of ρi.
Equation (24) is the general expression that we will exploit
in the following. Formally, note that (21)–(23) imply that
φðfλkgÞ is the Legendre transform of Ψ when the latter is
seen as a function of ρi, that is
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ΨðfρkgÞ ¼
1

2

X
ij

ΞijðfρkgÞτðρiÞτðρjÞ; ð25Þ

where the functional form τðρÞ is obtained from the
inversion of (19) at a fixed time, and Ξij is the inverse
matrix of the cross-correlation of the density in cells of
radius Riρ

1=D
i [cf. Eq. (17)]:

Σij ¼
D
τ
�
< Riρ

1=D
i

�
τ
�
< Rjρ

1=D
j

�E
; ð26ÞX

j

ΣijΞjk ¼ δik: ð27Þ

These coefficients therefore depend on the whole set of
both radii Ri and densities ρi. From the properties of
Legendre transform, it follows in particular that

ρi ¼
∂
∂λi φðfλkgÞ: ð28Þ

Although known for more than a decade, Eqs. (23)–(28)
and their consequences have not been exploited to their full
power in the literature. This is partially what we intend to
do in this paper and in subsequent ones. For now, in order to
get better acquainted with this formalism, let us first
explore some of its properties.

C. General formalism

The relation Eqs. (23)–(28) have been derived for
Gaussian initial conditions. This eases the presentation
but it is not a key assumption. For instance in Eq. (15),
ΨðfτkgÞ does not need to be quadratic in τk as for Gaussian
initial conditions. If the initial conditions were to be non-
Gaussian these features would have to be incorporated in
the expression of ΨðfτkgÞ. It would not however change
the functional relation between φðfλkgÞ and ΨðfτkgÞ,
provided ΨðfτkgÞ is properly defined when the variance
is taken in its zero limit.
One can then observe that the Legendre transform

between these two functions can be inverted [50].
Applying the fundamental relation at precisely the initial
time, in a regime where ρi ≈ 1þDþðηÞτi, will give the
expression of the function ΨðfτkgÞ in terms of the initial
cumulant generating function.
One can actually pursue this idea more generally. Let

us define the nonlinear spherical transform ζρðη; ρ0; η0Þ
that gives the value of the density ρ within a given
radius R at time η knowing the density ρ0 at time η0 within
radius R0 ¼ Rðρ=ρ0Þ1=3. It is obtained after τ has been
eliminated in

ζρðη; ρ0; η0Þ ¼ ζðη; τÞ; ð29Þ

ρ0 ¼ ζðη0; τÞ; ð30Þ

where ζ is defined in Eq. (9). Using the form (13), one
gets

ζðη; ρ0; η0Þ−1=ν − 1 ¼ DþðηÞ
Dþðη0Þ

ðρ−1=ν0 − 1Þ: ð31Þ

Incidentally we can note that the inverse function is
obtained by changing η into η0.
Then the general formulation of our result is that the

Legendre transform of the joint cumulant generating
function for a choice of radii Rk and taken at time η,
which we denote here as Ψðfðρk; RkÞg; ηÞ, can be
expressed in terms of the same Legendre transform taken
at any other time, η0,

Ψðfðρk;RkÞg;ηÞ¼Ψ

�	
ζρðη0;ρk;ηÞ;Rk

ρ1=3k

ζ1=3ρ ðη0;ρk;ηÞ



;η0

�
:

ð32Þ

This is a general formalism that encompasses the result
we just described [51] but can also be applied for any
initial conditions or any time as it does refer explicitly to
the initial conditions.
In this paper we will however use this construction

for initial Gaussian conditions only with explicit use of the
expressions derived in the previous subsection.

D. Scaling relations

It is interesting to note that the cumulant generating
function has a simple dependence on the overall amplitude
of the correlators σ20. Let us denote in this subsection
φσ0ðfλkgÞ the value of the cumulant generating function for
a fixed value of σ0. It is then straightforward to express
φσ0ðfλkgÞ in terms of φ1ðfλkgÞ, the expression of the
generating function when σ0 is set to unity. IndeedΨðfρkgÞ
is inversely proportional to σ20 for fixed values of ρk. As a
result λk scale like 1=σ20 for fixed values of fρkg. Note that
we have the following identity:

φσ0ðfλkgÞ ¼
1

σ20
φ1ðfλk=σ20gÞ; ð33Þ

while the variables ρk are independent of σ0.
In the upcoming applications we will make use of this

property as we will keep the overall normalization as a free
parameter—that will eventually be adjusted on numerical
results, but will use the structural form of φ1ðfλkgÞ as
predicted from the general theory. In particular this struc-
tural form depends on the specific shape of the power
spectrum through the cross-correlation matrix Σij.
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E. The one-cell generating function

Turning back to the application of Eqs. (23)–(28), one
obvious simple application corresponds to the one-cell
characteristic function. In this case

ΨðρÞ≡ 1

2σ2ðRρ1=DÞ τðρÞ
2; ð34Þ

where

σ2ðrÞ ¼ hτð< rÞτð< rÞi: ð35Þ

The Legendre transform is then straightforward and φðλÞ
takes the form

φðλÞ ¼ λρ −
1

2σ2ðRρ1=DÞ τðρÞ
2; ð36Þ

with ρ computed implicitly as a function of λ via Eq. (24).
One way of rewriting this equation is to define τeff ¼
τσðRÞ=σðRρ1=3Þ and the function ζeffðτeffÞ through the
implicit form,

ζeffðτeffÞ ¼ ζðτÞ ¼ ζ

�
τeff

σðRζ1=Deff Þ
σðRÞ

�
: ð37Þ

Then the expression of φðλÞ is given by

φðλÞ ¼ λρ −
1

2σ2ðRÞ τ
2
eff ; ð38Þ

with the stationary condition

τeff ¼ λσ2ζ0effðτ̂Þ: ð39Þ

In [22], the expression of the cumulant generating function
was presented with this form. This is also the functional
form one gets when one neglects the filtering effects (as
was initially done in [21]) or for the so-called nonlinear
hierarchical model used in [52]. Note that it is not possible
however to use such a remapping for more than one cell.
Note finally that this is a precious formulation for practical
implementations, as one may rely on fitted forms for ζeff to
construct the generating function φðλÞ while preserving its
analytical properties. It is indeed always possible, once one
has been able to numerically compute φðλÞ for specific
values of λ, to define ζeff by Legendre transform and
construct a fitted form with low-order polynomials while
this is not possible for φðλÞ which exhibits nontrivial
analytical properties as we will see later on. This approach
was used in [28]. It is also this procedure we use in Sec. IV
for constructing the profile PDF.

F. Recovering the PDF via inverse
Laplace transform

In the following we will exploit the expression for the
cumulant generating function to get the one-point and joint
density PDFs. To avoid confusion with the variables ρi that
appear in the expression of Ψ, we will use the superscriptb
to denote measurable densities, the PDF of which we wish
to compute.
In general, the joint density PDF, P ¼ Pðρ̂1;…; ρ̂nÞ,

that gives the probability that the densities within a set
of n concentric cells of radii R1;…; Rn are ρ̂1;…; ρ̂n within
dρ̂1…dρ̂n is given by

P ¼
Z þi∞

−i∞

dλ1
2πi

� � � dλn
2πi

exp

�
−
X
i

λiρ̂i þ φðfλkÞg
�
: ð40Þ

where the integration in λi should be performed in the
complex plane so as to maximize convergence. This equa-
tion defines the inverse Laplace transform of the cumulant
generating function [53]. In the one-cell case, Eq. (40)
simply reads

Pðρ̂1Þ ¼
Z þi∞

−i∞

dλ1
2πi

expð−λ1ρ̂1 þ φðλ1ÞÞ; ð41Þ

i.e. the PDF is the inverse Laplace transform of the one-
variable moment generating function. This inversion is
known to be tricky, and to our knowledge there are no
known general foolproof methods. One practical difficulty
is that it generically relies on the analytic continuation of the
predicted cumulant generating function in the complex
plane. It is therefore crucial to have a good knowledge of
the analytic properties of φðλÞ, which is typically difficult
since φðλÞ is defined itself as the Legendre transform of
ΨðρÞ. Only a limited set of ΨðρÞ yield analytical φðλÞ,
which in turn can be inverse Laplace transformed.

III. THE ONE-POINT PDF

Up to this point, the whole construction presented in
the previous section would be a mere mathematical trick to
compute explicit cumulants for top-hat window functions
sparing the pain of lengthy integrations on wave modes.
In this paper, we furthermore aim to use the cumulant
generating function computed in the uniform limit Σij → 0
as an approximate form for the exact generating function
when the Σij are finite (but small). Note that this is a
nontrivial extension for which we have no precise math-
ematical justifications. It assumes that the global properties
of φðfλkgÞ—and in particular its analytical properties
(which will be of crucial importance in the following)—
should be meaningful for finite values of λk, and not only in
the vicinity of fλk ¼ 0g.
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We now conjecture without further proof that they
correctly represent the cumulant generating function for
finite values of the variance.

A. General formulas and asymptotic forms

The implementation of the quadrature in Eq. (41) has been
attempted in various papers [21,28,52], relying on different
hypotheses for φðλÞ [54]. Figure 1 yields a graphical
representation of the stationary equation for a power law
model with index n ¼ −1.5. The implicit equation,
Ψ0½ρ� ¼ λ, always has a solution in the vicinity of ρ ≈ 0.
Expanding this equation around this point naturally gives
the low-order cumulants at an arbitrary order.
Figure 1 shows graphically that there is a maximum

value for λ, λc that can be reached, so that the Legendre

transform of Ψ is not defined for λ > λc. It corresponds to a
value ρ ¼ ρc. At this location we have

0 ¼ Ψ00½ρc�; λc ¼ Ψ0½ρc�: ð42Þ

Note that at ρ ¼ ρc, Ψ is regular [in particular, the
corresponding singular behavior in φðλÞ is not related to
any singularity of the spherical collapse dynamics]. The
function φðλÞ can be expanded at this point. In other words,
Eq. (24) can be inverted as a series near ðρc; λcÞ [where
Eq. (42) holds], and integrated for φðλÞ using Eq. (28). We
give here a whole set of subleading terms that we will take
advantage of in the following,

φðλÞ ¼ φc þ ðλ − λcÞρc þ
2

3

ffiffiffiffiffi
2

π3

s
ðλ − λcÞ3=2 −

π4ðλ − λcÞ2
6π23

þ
ð 1π3Þ7=2ð5π24 − 3π3π5Þðλ − λcÞ5=2

45
ffiffiffi
2

p −
ð40π34 − 45π3π5π4 þ 9π23π6Þðλ − λcÞ3

810π53

þ
ð 1π3Þ13=2ð385π44 − 630π3π5π

2
4 þ 168π23π6π4 þ 3π23ð35π25 − 8π3π7ÞÞðλ − λcÞ7=2

7560
ffiffiffi
2

p þ � � � ; ð43Þ

where πn ¼ ∂nΨ=∂ρnðρcÞ. It is to be noted that the leading
singular term scales like ðλ − λcÞ3=2. The coefficients πi are
all related to the function Ψ and are therefore (cosmologi-
cal) model dependent [55].
What are the consequences of this behavior for the PDF

of the density? Let us present analytical forms for the
inverse Laplace transform of expφ. The idea is that the
inverse transform can be obtained via a saddle point
approximation of Eq. (41) assuming the variance is small.
Formally it leads to the conditions that should be met at the
saddle point λs [56],

∂
∂λ ½λρ̂ − φðλÞ� ¼ 0; ð44Þ

∂2

∂λ2 ½λρ̂ − φðλÞ� < 0: ð45Þ

The first condition leads to ρðλsÞ ¼ ρ̂, the second to
λs < λc. This condition simply means that this approxima-
tion can be used if ρ̂ < ρc. The resulting simple expression
for the density PDF is

Pðρ̂Þ ¼ 1ffiffiffiffiffiffi
2π

p
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
∂2Ψðρ̂Þ
∂ρ̂2

s
exp ½−Ψðρ̂Þ�: ð46Þ

It is valid as long as the expression that appears in the square
root is positive, i.e. ρ̂ < ρc. When this condition is not
satisfied, the singular behavior of φ near λc dominates the
integral in the complex plane. This leads to the following
expression for Pðρ̂Þ as described in Appendix B 2,

Pðρ̂Þ ≈ exp ðφc − λcρ̂Þ
�

3ℑða3
2
Þ

4
ffiffiffi
π

p ðρ̂ − ρcÞ5=2
þ

15ℑða5
2
Þ

8
ffiffiffi
π

p ðρ̂ − ρcÞ7=2

þ
105ðℑða3

2
Þa2 þ ℑða7

2
ÞÞ

16
ffiffiffi
π

p ðρ̂ − ρcÞ9=2
þ � � �

�
; ð47Þ
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0.0

0.5

'

FIG. 1 (color online). A graphical representation of the one-
dimensional stationary condition λ ¼ Ψ0½ρ�. There is a maxi-
mum value for λ that corresponds to a critical value ρc for ρ
defined in Eq. (42).
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where aj are the coefficients in front of ðλ − λcÞj in Eq. (43),
(e.g. a3=2 ¼ 2=3

ffiffiffiffiffiffiffiffiffiffi
2=π3

p
) and ℑðÞ is the imaginary part.

Equation (47) has an exponential cutoff at large ρ̂ scaling like
expðλcρ̂Þ. This property is actually robust and is preserved
when one performs the inverse Laplace transform for finite
values of the variance, or even large value of the variance
(see [20,57]). It also gives a direct transcription of why φðλÞ
becomes singular: for values of λ that are larger than λc, the
integral

R
dρ̂Pðρ̂Þ expðλρ̂Þ is not converging.

Note that in practice, it is best to rely on an alternative
asymptotic form to Eq. (47) that is better behaved and
remains finite for ρ̂ → ρc. It is built in such a way that it has
the same asymptotic behavior as Eq. (47) at a given order in
the large ρ limit. The following form,

Pðρ̂Þ ¼
3a3

2
exp ðφc − λcρ̂Þ

4
ffiffiffi
π

p ðρ̂þ r1 þ r2=ρ̂þ � � �Þ5=2 ; ð48Þ

where the ri parameters are adjusted to fit the results of the
previous expansion, proved very robust. At next-to-leading
order (NLO) and next-to-next-to-leading order (NNLO) we
have

r1 ¼ −
ℑða5

2
Þ

ℑða3
2
Þ − ρc; ð49Þ

r2 ¼ −
7ð2a2a23

2

þ 2a7
2
a3

2
− a25

2

Þ
4a23

2

: ð50Þ

However, none of these asymptotic forms are accurate for
the full range of density values; in general one has to rely
on numerical integrations in the complex plane which can

be done accurately and quickly, as described in
Appendix B. The comparison between the analytical forms
and the numerical integrations are shown in Fig. 2. Such
comparisons are in fact conversely useful to assess the
precision of the numerical integrations. Note that for the
case explicitly shown, which corresponds to σ2 ¼ 0.45 and
a power law index of n ¼ −1.5, the asymptotic forms (46)
and (48) at NNLO are valid within 2% everywhere but for
the range 1 < ρ < 10, where one must rely on an explicit
integration in the complex plane.

B. Practical implementation, comparisons
with N-body results

We now move to an explicit comparison of these
predictions to N-body results. The simulations are described
in Appendix D. They are determined in particular by the
linear power spectrum PlinðkÞ set for the initial conditions.
The knowledge of the power spectrum determines the values
of the cross-correlation matrix,ΣijðRi; RjÞ, that are explicitly
given by

Σij ¼
Z

d3k
ð2πÞ3 P

linðkÞW3DðkRiÞW3DðkRjÞ; ð51Þ

whereW3DðkÞ is the shape of the top-hat window function in
Fourier space,

W3DðkÞ ¼ 3

ffiffiffi
π

2

r
J3=2ðkÞ
k3=2

; ð52Þ

where J3=2ðkÞ is the Bessel function of the first kind of index
3=2. In three dimensions (3D), it is actually possible to
express W3DðkÞ in terms of elementary functions as

0 2 4 6 8 10 12
10 5

10 4

0.001

0.01

0.1

1

P

FIG. 2 (color online). The PDF of the one-point density. The blue solid line is the numerical integration, the red dashed line the low ρ
asymptotic form of Eq. (46); the other lines correspond to the large ρ asymptotic forms proposed in the text: the dark lines correspond to the
form(47) and the red lines to the form(48) and the formsare computedat leadingorder, at next-to-leading, andnext-to-next-to-leadingorder
for respectively the dotted, dot-dashed and dashed curves. The plots are given for σ2 ¼ 0.45 and a power law index of n ¼ −1.5.
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W3DðkÞ ¼
3

k2
ðsinðkÞ=k − cosðkÞÞ: ð53Þ

For the one-cell case we only need to know the amplitude
and scale dependence of σ2R defined as

σ2ðRÞ ¼
Z

d3k
ð2πÞ3 P

linðkÞW2
3DðkRÞ: ð54Þ

To a first approximation, σ2ðRÞ can be parametrized with
a simple power law σ2ðRÞ ∼ R−ðnsþ3Þ. It is this functional
form which was used in the previous section. The detailed
predictions of the PDF depend however on the precise scale
dependence of σ2ðRÞ. Such scale dependence can be
computed numerically from the shape of the power
spectrum but then makes it difficult to derive the function
φðλÞ from the Legendre transform. So in order to retain
simple analytic expressions for the whole cumulant gen-
erating function, we adopt a simple prescription for the
scale dependence of σ2ðRÞ given by

σ2ðRÞ ¼ 2σ2ðRpÞ
ðR=RpÞn1þ3 þ ðR=RpÞn2þ3

; ð55Þ

where Rp is a pivot scale. Such a parametrization ensures
that the single-point ΨðρÞ function takes a simple analytic
form as it involves the inverse of σ2ðRÞ. Note that our
ansatz can be extended to an arbitrary (finite) number of
terms in the denominator.
The values of the three parameters, σ2ðRpÞ, n1 and n2 are

then adjusted so that the model reproduces (i) the measured
variance σ2ðRÞ, (ii) the linear theory index

nðRÞ ¼ −3 −
d logðσðRÞÞ
d logR

; ð56Þ

and (iii) its running parameter

αðRÞ ¼ d logðnðRÞÞ
d logR

; ð57Þ

at the chosen filtering scale. It is important to point out that
we do not take the amplitude of σ2ðRÞ as predicted by linear
theory. We consider instead its overall amplitude as a free
parameter and σ2ðRÞ is directly measured from the N-body
results. The reason is that using the predicted value of
σ2ðRÞ would simply introduce too large errors and this
dependence can always be scaled out using the relation of
Sec. II D [58].
In Fig. 3, we explicitly show the comparison between our

predictions following the prescription we just described
to measured PDFs. The predictions show a remarkable
agreement with the measured PDF. Recall that only one
parameter, σR, is adjusted to the numerical data. In
particular the predictions reproduce with an extremely

good accuracy the PDF tails in both the low density and
high density regions. The plot of the residuals shows the
predictions are at the percent level over a large range of
density values. And this result is obtained for a squared
variance close to 0.5.
More extended comparisons with numerical simulations

are shown on Fig. 15 which qualifies in more detail the
validity regime of our predictions. Note that up to σ ¼ 0.64
(σ2 ¼ 0.41), we see no significant departure from the
results of the simulation in the whole range of available
densities, that is in particular up to about the 5σ rare event
in the high density tail. This success is to be contrasted
with the Edgeworth expansion approach which breaks for
jδj ≥ σ (see for instance [59]).
We observe that departures from our calculations start to

be significant, of the order of 10%, when σ2ðRÞ is of the
order of 0.7 or more [60]. These results also show that
taking into account the scale dependence of the local index
through the introduction of the running parameter improves
upon the predictions in the low density region. This aspect
is examined in more detail in Fig. 4 which shows the ratio
of the predicted PDFs with and without taking into account
the running parameter. We see that the PDFs are mostly
affected on their tails. This is related to the fact that the
kurtosis is the lowest order cumulant to be changed when
one introduces a running parameter [24], as can be verified
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FIG. 3 (color online). Comparison with simulations (top panel)
with residuals (bottom panel). The solid line is the theoretical
prediction computed for a variance of σ2R ¼ 0.47 as measured in
the simulation, a power law index of n ¼ −1.576 and a running
parameter α ¼ 0.439 corresponding to the input linear power
spectrum. The measured PDF in the simulation is shown as a
band corresponding to its 1–σ error bar (but different data points
are correlated). The residuals show the ratio of the measured PDF
in bins with the predictions (computed in bins as well). The thin
red symbols show the comparison when the running parameter is
set to zero in the prediction.

STATISTICS OF COSMIC DENSITY PROFILES FROM … PHYSICAL REVIEW D 90, 103519 (2014)

103519-9



from the relation (12). The effect is actually detectable in
the low density region only and confirms the fact that the
introduction of a running parameter can have a noticeable
impact when comparisons at the percent level are to
be done.

IV. THE STATISTICAL PROPERTIES OF THE
DENSITY SLOPE AND PROFILE

We nowmove to the application of the general formalism
to the two-cell case. Such situations have already been
encountered in [26] to compute effective bias properties,
and in [28] to compute the aperture mass statistics out of
two concentric angular cells of fixed radius ratio. But all
these applications eventually reduce to an effective one-cell
case. We are interested here in genuine two-cell statistics.
Let us first make a remark that may seem trivial. Indeed,

from the very definition of cumulant generating functions,
one should have

φ2−cellðλ1; λ2 ¼ 0Þ ¼ φ1−cellðλ1Þ; ð58Þ
where φ2−cellðλ1; λ2Þ is the cumulant generating function for
cells of radii R1 and R2 and φ1−cellðλ1Þ is the cumulant
generating function for one cell of radius R1. Checking that
the relations (23)–(28) verify this property makes a sound
mathematical exercise. More generally one can show that
our formulation is consistent with radii decimation, that is

when one computes the cumulant generating functions of a
restricted number of variables out of a larger number one
gets a consistent result. The demonstration of this property
is given in Appendix A.
The purpose of this section is now to define the statistical

properties of the density profile, while relying on the fact
that the function φðλ1; λ2Þ has a well-defined, but nontrivial
limit, when one sets ΔR ¼ R2 − R1 ≪ R1.

A. The density slope

From the densities in two concentric cells, it is indeed
always possible to define the corresponding density slope
as

ŝðR1; R2Þ ¼
R1

ΔR
½ρ̂2 − ρ̂1�: ð59Þ

In the limit of a vanishing smoothing radius difference, ŝ
will define the local density slope. In the following we will
in particular see that this is a genuine limit in the sense that
it leads to regular and nontrivial expressions.
Let us start with basic preliminary calculations; to avoid

too complicated notations, let us define

σ2R1
≡ σ2ðR1; R1Þ; ð60Þ

σ2R1R2
≡ σ2ðR1; R2Þ; ð61Þ

σ2R2
≡ σ2ðR2; R2Þ; ð62Þ

which are quantities involved in the expressions of cumu-
lants. The variance of ŝ is then for instance given by

hŝ2i ¼
�
R1

ΔR

�
2

ðσ2R1
− 2σ2R1R2

þ σ2R2
Þ: ð63Þ

From the general theory, Eqs. (23)–(28) implemented for
two cells, one can compute the generating function of joint
density contrasts in concentric cells [61] in the limit of
small λi. Up to third order it is explicitly given by

φðλ1; λ2Þ ¼ λ1 þ λ2 þ
1

2
λ21σ

2
R1

þ 1

2
λ22σ

2
R2

þ λ1λ2σ
2
R1R2

þ λ31

�
1

2
ν2σ

4
R1

þ 1

6
R1σ

2
R1

d
dR1

σ2R1

�
þ λ32

�
1

2
ν2σ

4
R2

þ 1

6
R2σ

2
R2

d
dR2

σ2R2

�
þ λ21λ2

�
1

2
ν2σ

2
R1R2

ðσ2R1;R2
þ 2σ2R1

Þ þ 1

6

�
2R1σ

2
R1

∂
∂R1

σ2R1R2
þ σ2R1R2

�
2R2

∂
∂R2

σ2R1R2
þ R1

d
dR1

σ2R1

���
þ λ1λ

2
2

�
1

2
ν2σ

2
R1R2

ðσ2R1R2
þ 2σ2R2

Þ þ 1

6

�
2R2σ

2
R2

∂
∂R2

σ2R1R2
þ σ2R1R2

	
2R1

∂
∂R1

σ2R1R2
þ R2

d
dR2

σ2R2


��
; ð64Þ

where ν2 ¼ 34=21 for a 3D dynamics in an Einstein–de Sitter background. In Eq. (64), the cumulants and joint cumulants
can be read out using definition (4) or via differentiation. For instance,
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FIG. 4 (color online). Ratio of the one-point density PDF when
the running parameter is taken into account over the PDF when it
is not. The running model is the same as in the previous plot. The
dashed lines are the ratio of the corresponding asymptotic forms
in the low and high density regions.
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hρ̂31ic ¼ 3ν2σ
4
R1

þ σ2R1

R1d
dR1

σ2R1
; ð65Þ

hρ̂21ρ̂2ic ¼ ν2σ
2
R1R2

ðσ2R1R2
þ 2σ2R1

Þ þ 2

3
σ2R1

R1∂
∂R1

σ2R1R2

þ 1

3
σ2R1R2

�
2
R2∂
∂R2

σ2R1R2
þ R1d
dR1

σ2R1

�
; ð66Þ

and the cumulants hρ1ρ22ic and hρ32ic can be obtained
exchanging the role of R1 and R2. It is then also possible
to derive the explicit form for a number of auto- and cross-
cumulants between the density ρ̂≡ ρ̂1 in the first cell and
the slope ŝ as defined in (59). For instance,

hρ̂2ŝic ¼
R1

ΔR
½hρ̂21ρ̂2ic − hρ̂31ic�; ð67Þ

hρ̂ŝ2ic ¼
�
R1

ΔR

�
2

½hρ̂1ρ̂22ic − 2hρ̂21ρ̂2ic þ hρ̂31ic�; ð68Þ

hŝ3ic ¼
�
R1

ΔR

�
3

½hρ̂32ic − 3hρ̂1ρ̂22ic þ 3hρ̂21ρ̂2ic − hρ̂31ic�:
ð69Þ

Following the one-cell case (see for instance [6]) it is
possible to formally define the reduced cross-correlations
that are independent on the overall amplitude of the power
spectrum. More precisely, the reduced cross-correlations
can be defined as

Sp0 ¼
hρ̂pic
hρ̂2ip−1c

; ð70Þ

Spq ¼
hρ̂pŝqic

hρ̂2ip−1c hρ̂ ŝichŝ2iq−1c
; ð71Þ

S0q ¼
hŝqic
hŝ2iq−1c

: ð72Þ

From the previous expressions these quantities can be
computed in the limit of an infinitely small variance.

B. Cumulants and slope in the limit ðΔRÞ=R → 0

Let us now consider the statistical properties of ŝ in
the limit ðΔRÞ=R → 0. To start with, let us compute the
variance of the slope ŝ in the limit ΔR=R → 0. Its variance
is formally given by

hŝ2i ¼ R2
1∂2

∂R1∂R2

σ2R1R2
j
R¼R1¼R2

: ð73Þ

This expression can easily be expressed in terms of the
power spectrum,

hŝ2i ¼
Z

d3k
ð2πÞ3 P

linðkÞ ~W2
3DðkRÞ; ð74Þ

where ~W3DðkÞ is the logarithmic derivative of W3DðkÞ,

~W3DðkÞ ¼
d

d log k
W3DðkÞ; ð75Þ

which for the 3D case can be written,

~W3DðkÞ ¼
1

k3
½ð9k cosðkÞ þ 3ðk2 − 3Þ sinðkÞ�: ð76Þ

Note that for a power law spectrum of index ns this variance
is only defined when ns < −1. For practical application to
cosmological models that resemble the concordant model,
the effective index ns decreases to −3 at small scales and
the variance of ŝ is always finite. This property however
suggests that the amplitude of the slope fluctuations could
be dominated by density fluctuations at scales significantly
smaller than the smoothing radius if the latter is large
enough. This is not expected to be the case however for
the filtering scales we explore in this investigation. More
precisely, provided the power spectrum index is in the
range ½−3;−1�, the amplitude of the variance of ŝ can be
expressed in terms of the variance of the density as

hŝ2i ¼ σ2R
nsðns þ 3Þðns þ 5Þ

4ðns þ 1Þ : ð77Þ

Let us now see how the whole statistical properties of
the variable ŝ can be derived from our formalism. Let us
first explore the consequence of the change of variable,
ðρ̂1; ρ̂2Þ → ðρ̂; ŝÞ. Instead of describing the joint PDF as a
function of the associated variables λ1 and λ2 we can build
it with the variable associated to ρ̂ and ŝ. Noting that
λ1ρ̂1 þ λ2ρ̂2 can be written as

λ1ρ̂1 þ λ2ρ̂2 ¼ ðλ1 þ λ2Þρ̂1 þ
ΔR
R1

λ2ŝ; ð78Þ

as a consequence, the joint cumulant generating function of
ρ̂1 and ŝ is given by φðλ1; λ2Þ when written as a function of

λ ¼ λ1 þ λ2; μ ¼ ΔR
R1

λ2; ð79Þ

which are the variables associated with the Laplace and
inverse Laplace transform of Pðρ̂1; ŝÞ. One can also check
that, following this definition, φðλ; μÞ is the Legendre
transform of Ψðρ1; s ¼ ðρ2 − ρ1ÞR1=ΔRÞ.
Let us then explore the whole statistical properties of ŝ in

the limit of a vanishing radius difference ðΔRÞ=R → 0.
First note that the reduced skewness of ŝ is still finite [62]
and has a nontrivial value. It is given by

STATISTICS OF COSMIC DENSITY PROFILES FROM … PHYSICAL REVIEW D 90, 103519 (2014)

103519-11



SΔR→0
03 ¼2þ

∂
∂R1

σ2R1R2

R1∂2∂R1∂R2
σ2R1R2







R¼R1¼R2

ð6ν2−ð ~nþ3ÞÞ; ð80Þ

where the effective index, ~n, is defined as

1

hŝ2i
d

d logR
hŝ2i ¼ −ð ~nþ 3Þ: ð81Þ

We will see in the following that this feature, the fact that
reduced cumulants remain finite, extends to the whole
generating function.

C. Analytic properties of φðλ;μÞ
Let us now turn to the full analytical properties of

φðλ; μÞ, for a finite radius difference to start with, and then
in the limit of vanishing radius difference. It is to be noted
that, as for the one-cell case, not all values of λ and μ
are accessible. This is due to the fact that the ρi –λi

relation cannot always be inverted via Eq. (24). The
boundary of the region of interest is signaled by the fact
that the determinant of the transformation vanishes, i.e.,
det ½∂2ΨðfρkgÞ=∂ρi∂ρj� ¼ 0. This condition is met for
finite values of both ρi and λi. The resulting critical lines
are shown as thick solid lines in Fig. 5. Note that φðλ1; λ2Þ
is also finite at this location. Within this line φ is defined;
beyond this line it is not. Let us now explore the behavior of
φðλ; μÞ when ΔR=R → 0. This is actually a cumbersome
limit to take. One of the reasons is that the matrix Ξij then
becomes singular. More precisely the determinant of the
cross-correlation function takes the form

det ½ΣijðR;Rþ ΔRÞ� ¼ R−2ð3þnsÞ
�
ΔR
R

�
2 −9þ n2s
4ð1þ nsÞ

at leading order in ΔR=R and when ns < −1. For a power
law spectrum, the actual coefficients read

Ξ11ðR;ΔRÞ ¼
2ðns þ 1ÞRnsþ3

ðΔRR Þ2ðn2s − 9Þ
��

ΔR
R

�
2

ðn2s þ 7ns þ 12Þ − 2
ΔR
R

ðns þ 3Þ þ 2

�
; ð82Þ

Ξ12ðR;ΔRÞ ¼ −
Rnsþ3

2ðΔRR Þ2ðn2s − 9Þ
��

ΔR
R

�
2

ðn3s þ 8n2s þ 23ns þ 24Þ − 4
ΔR
R

ðn2s þ 4ns þ 3Þ þ 8ðns þ 1Þ
�
; ð83Þ

Ξ22ðR;ΔRÞ ¼
4ðns þ 1ÞRnsþ3

ðΔRR Þ2ðn2s − 9Þ : ð84Þ

All these coefficients are diverging like ðR=ΔRÞ2. What we need to compute is however Ψðρ; sÞ for finite values of ρ and s.
In this case ρ2 is also infinitely close to ρ1 with ρ2 − ρ1 ¼ sΔR=R with a fixed value for s. Then the resulting value of
Ψðρ; sÞ is finite in the limit ΔR → 0. Assuming the form (13) for ζðτÞ one gets

FIG. 5 (color online). Contour plot of φðλ; μÞ − λ (left panel) with a finite radius difference ΔR=R ¼ 1=10 and (right panel) with
ΔR=R → 0. We see that the structure of the critical region, although deformed, is preserved. In both cases, the restriction of φðλ; μÞ to
μ ¼ 0 is precisely the one-cell cumulant generating function considered in Sec. III.
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Ψðρ; sÞ ¼ R3þnsρns=3þðν−2Þ=ν

2ðn2s − 9Þðsþ 3ρÞ2 fs
2½ν2n3sðρ1

ν − 1Þ2 þ 3nsð5ν2ðρ1
ν − 1Þ2 þ 16νðρ1

ν − 1Þ þ 12Þ

þ4νn2sðρ1
ν − 1Þð2νðρ1

ν − 1Þ þ 3Þ þ 36ðνðρ1
ν − 1Þ þ 1Þ� þ 9ν2ρ2nsðn2s þ 8ns þ 15Þðρ1

ν − 1Þ2

þ 6sνρðns þ 3Þðρ1
ν − 1Þðνn2sðρ1

ν − 1Þ þ nsð5νðρ1
ν − 1Þ þ 6Þ þ 6Þg: ð85Þ

The function φðλ; μÞ can then be obtained by Legendre
transform. Like for the one-cell case, the transformation
becomes critical when the inversion of the stationary
condition is singular. For the new variables, it is also
occurring when the determinant of the second derivatives of
Ψ vanishes,

det

�∂2Ψðρ; sÞ
∂ρ∂s

�
¼ 0; ð86Þ

which generalizes the condition (42). This condition
defines the location of the critical line which can then
be visualized in the λ − μ plane (thick lines in Fig. 5). Note
that the no-shell crossing condition, which in this limit
reads s > −3ρ, is located beyond this critical line and is
therefore not relevant.
In the regular region, the contour lines of φðλ; μÞ are

shown in Fig. 5 for both a finite ratio ΔR=R and when it is
infinitely small. This figure explicitly shows in particular
that the limit ΔR → 0 is nonpathological, in the sense that
the location of the critical line and the actual value of
the cumulant generating function converge to well-defined
values in that limit. The convergence is however not very
rapid and in practice we will use finite differences for
comparisons with simulations.
Finally, to conclude this subsection we also compare

these contour plots with those measured in simulations.
There, one actually computes the explicit sum

exp½φðλ; μÞ� ¼ 1

Nx

X
x

expðλρ̂x þ μŝxÞ; ð87Þ

where ρ̂x and ŝx are the measured values of ρ̂ and ŝ in a cell
centered on x (in practice on grid points) and Nx is the
number of points used (see Appendix D for details). Then
φðλ; μÞ is always well defined, irrespective of the values of
λ and μ. To detect the location of a critical line one should
then rely on the properties it is associated with. From the
analysis of the one-cell case it appears that for λ > λc, φðλÞ
is ill defined because

R
Pðρ̂Þ expðλρ̂Þdρ̂ diverges. More

precisely when λ → λc the value of φðλÞ becomes domi-
nated by the rare event tail. It makes such a quantity very
sensitive to cosmic variance and in practice the critical line
position is therefore associated with a diverging cosmic
variance. In the two-cell case, we encounter the same
effects. To locate we therefore simply cut out part of the
ðλ − μÞ plane for which the measured variance of φðλ; μÞ
exceeds a significant fraction of its measured value. We set

this fraction to be 20% [63]. This criterium give rises to the
solid line shown in Fig. 6. This figure is now to be
compared to the left panel of Fig. 5. Although the figures
are not identical they clearly exhibit the same patterns.

D. Slope cumulant generating function and PDF

When one wishes to build the PDF of ŝ, one needs to
restrict φðλ; μÞ presented in the previous section to the
λ ¼ 0 axis, i.e. focus on φsðμÞ≡ φðλ ¼ 0; μÞ. Figure 6
shows that φsðμÞ has two extrema points, one correspond-
ing to a positive value of μ, μþc , and one to a negative value
μ−c . The resulting global shape of φsðμÞ is shown in Fig. 7,
where it is also compared to the results whereΔR=R is kept
finite. It actually shows that the limit ΔR=R is genuine at
the level of the cumulant generating function but is reached
for very small values of ΔR=R. When predictions are
compared with simulations for which the slope is measured
with finite differences, it is necessary to use a finite
difference ΔR.
We are now in position to build the one-point PDF of

the density slope via the inverse Laplace transform of the
cumulant generating function. It should be clear from the
singular behavior of φsðμÞ that it will exhibit exponential
cutoffs on both sides, for positive and negative values of ŝ
although not a priori in a symmetric way. In practice, to do
the complex plane integration, we build the function φsðμÞ
for the actual power spectrum of interest, and then build an

FIG. 6 (color online). Contour plot of φðλ; μÞ − λ, from the
simulation. It is to be compared with the left panel of Fig. 5.
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effective form ζeffðτÞ that reproduces the numerical inte-
gration following Eqs. (38)–(39) as explained in [28]. In
practice we use a seventh order polynomial to do the fit.
We then proceed via integration in the complex plane using
the usual approach (see Appendix B). The results for
R ¼ 10h−1 Mpc and z ¼ 1.46 and z ¼ 0.97 is presented
in the top panel of Fig. 8. The figure clearly exhibits the
expected double cutoffs. Discrepancies between numerical
results and theory that can be seen in the bottom panels for
ŝ ≈ −0.5 are not clearly understood (cosmic variance,
numerical artifacts?).

E. The expected constrained slope and profile

Let us finally move to the key result of this paper. In the
previous subsection we built the marginal PDF of ŝ; we
now focus on the conditional properties of ŝ given ρ̂1 ¼
ρ̂ð< R1Þ at a given R ¼ R1, whether ŝ is defined from a
nearby radius of not. Mathematically it can be expressed in
terms of the joint PDF, Pðρ̂1; ρ̂2Þ, as

hŝiρ̂1 ¼ −
R
ΔR

ρ̂1 þ
R

ΔRPðρ̂1Þ
Z

dρ̂2ρ̂2Pðρ̂1; ρ̂2Þ; ð88Þ

given thatZ
dρ̂2ρ̂2Pðρ̂1; ρ̂2Þ

¼
Z þi∞

−i∞

dλ1
2πi

∂φðλ1; λ2Þ
∂λ2






λ2¼0

expð−λ1ρ̂1 þ φðλ1ÞÞ; ð89Þ

which can be obtained by explicit integration in the
complex plane [64]. Note that the solution of the stationary
equations, Eq. (28), yields the identity

∂φðλ1; λ2Þ
∂λ2 j

λ2¼0

¼ ρ2ðλ1; λ2 ¼ 0Þ: ð90Þ

For the saddle point solution corresponding to the low ρ
regime, λ1 and ρ̂1 in Eq. (89) are related through the
stationary condition. In this limit we therefore have

hρ̂2iρ̂1 ¼ ρ̄2ðρ̂1Þ; ð91Þ

where ρ̄2ðρ̂1Þ is the solution of the system

λ1 ¼
∂Ψðρ1; ρ̄2Þ

∂ρ1 ; 0 ¼ ∂Ψðρ1; ρ̄2Þ
∂ρ2 : ð92Þ

These calculations can be extended to the constrained
variance of the slope. The computation follows the same
line of derivation but is slightly more involved. It is
presented in Appendix C.
Let us now present the expected slope from exact

complex plane numerical integration, using the analytical
saddle point approximations and as measured in numerical
simulations. For instance, Fig. 9 shows the expected slope
given by 10: × ½ρ̂ð1.1RÞ − ρ̂ðRÞ� as a function of ρ̂ðRÞ
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FIG. 8 (color online). The PDF of the slope for z ¼ 1.46. The
bottom panels show the residuals for z ¼ 1.46, z ¼ 0.97 and
z ¼ 0.65 from top to bottom.
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FIG. 7 (color online). The slope generating function φsðμÞ for
finite differencesΔR=R ¼ 0.1 andΔR=R ¼ 0.01, and in the limit
ΔR=R → 0. The corresponding curves are respectively in blue,
darker blue and black. The vertical dashed lines show the
locations of the critical points, μ−c and μþc .

BERNARDEAU, PICHON, AND CODIS PHYSICAL REVIEW D 90, 103519 (2014)

103519-14



using the same cosmological parameters as for Fig. 2. The
solid lines are the results of complex plane integrations and
the dashed line is the saddle point approximation. The latter
is found to perform very poorly when compared to
simulation. We note also that the low density part of the
prediction can only be accounted for when the running
parameter is taken into account. This is clearly visible in the
middle and bottom panels when one compares the (thick)
blue and the (thin) red marks. These comparisons show that
the analytical predictions are accurate at percent level in a
large range of parameters.
Let us finally turn to the more global properties of the

density in cells and consider the density profile defined as
the constrained density ρ̂ðR2Þ given ρ̂ðR1Þ as a function of
R2. Technically computing expected profiles or slopes is
equivalent. The second point of view allows however to
visualize what should be the radial variation of the density
profile, and its fluctuations, of an underdense or an over-
dense region. The result of such a calculation is presented

in Fig. 10 which shows the expected density as a function
of the radius R2 and for various values of ρ̂ðR1Þ. In the same
plot we also show the expected 1-σ variance about the
expectation values. Both quantities are computed using the
exact complex plane integration and compared to their
saddle point approximation counterparts. The difference is
only significant for ρ̂ðR1Þ ¼ 1.25. Interestingly for low
density prior, e.g. ρ̂ðR1Þ ¼ 0.2 in the figure, the variance is
small (and significantly smaller than the variance of ŝ in the
absence of prior on the density). That implies that all voids
should look similar, probably a good starting point for
exploring the statistical properties of the field while
focussing on these regions.
Comparisons of the latter prediction with numerical

simulations is made in Fig. 11 where we give both the
measurements of the expected profile and their variance for a
given constraint. The only difference with the theoretical
predictions is that the constraints are binned, i.e. the prior is
that the density ρ1 is assigned in a given bin of width 0.2
centered on the values 0.35,0.74,1.13,1.52,1.92. As the
theoretical predictions do not take into account the binning,
there is a noticeable departure between the predicted variance
and itsmeasured value nearR2=R1 ≈ 1 due to thewidth of the
bin. But, this departure notwithstanding, the agreement
between the theoretical predictions and the measured quan-
tities, for both the expected profile and its variance, is just
striking. Only when the constraint density is large (top two
panels) canwe see some slight departure of thevarianceswith
the theory for small radii, which is due to the fact that they
correspond to regions entering the nonlinear regime.

F. Joint n-cells PDF

The results presented in the previous section give us
confidence in the general framework we have adopted here.
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FIG. 10 (color online). The conditional profile as a function of
R2 and for different choices of ρ̂ðR1Þ [to which ρ̂ðR2Þ is equal to
at R2 ¼ R1]. The blue thick solid lines are the results of numerical
integrations; the colored thin lines show the 1-σ variance about
the expectation. The close-by gray lines are the same calculations
but using the saddle point approximations of Eqs. (91) and (C5)
respectively. Note in particular the smaller variance of the
underdense profile near R2 ∼ 0.
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FIG. 9 (color online). (Top panel) The conditional profile,
hŝiρ̂ð<R1Þ as a function of ρ̂ð< R1Þ. The thick blue solid line is the
result of the numerical integration, the thin dashed line the saddle
point approximation Eq. (91). We also present the power law
approximation case as a thin (red) solid line. It is shown to depart
from the exact prediction in the low density region. The agree-
ment between the theory and the measurements near the origin is
quite remarkable. The bottom panels show the residuals com-
puted in bins as a function of the density (with a zoomed plot
below). Again the thick symbols correspond to the exact
calculation, the thin symbols correspond to the power law
approximation.
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It has to be stressed that all of the properties we have
described are simultaneously captured with the shape of the
multiple cell cumulant generating function, φðfλkgÞ, or its
counterpart, the n-cell PDF, Pðfρ̂kgÞ. We should keep in
mind that we could have considered the former only to
compare with simulations but we dramatically lack intu-
ition for such a representation. By contrast we have much
better intuition of what n-cell PDFs are. So far we have
considered only the one-cell PDF. In the following we
succinctly consider the derivation of the multicell PDF in
our framework.
Hence let us consider a set of n concentric cells and its

cumulant generating function φðfλkgÞ. In principle the
corresponding PDF, Pðfρ̂kgÞ, is to be obtained from

inverse Laplace transform. Such a computation appears
extremely challenging to implement and we have not
succeeded yet in producing a full two-cell PDF. We can
however present its low density approximation, the
counterpart of Eq. (46), for a multidimensional case. It
is based on the use of the saddle point approximation
of Eq. (40) assuming the overall variance is small. It leads
to a similar condition that should be met at the saddle
point fλsgi,

∂
∂λk ½

X
i

λiρ̂i − φðfλigÞ� ¼ 0; ð93Þ

which leads to

ρ̂i ¼ ρiðfλkgÞ; ð94Þ

and with the constraint that

det

� ∂2Ψ
∂ρk∂ρl

�
> 0 ð95Þ

at the saddle point position. The resulting expression for the
density PDF generalizes Eq. (46) to

Pðfρ̂kgÞ ¼
1

ð2πÞn=2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
det

� ∂2Ψ
∂ρ̂k∂ρ̂l

�s
exp ½−Ψðfρ̂kgÞ�:

ð96Þ

This analytic expression is expected to be an approximate
form for the exact PDF in underdense regions.
We suggest that in the absence of computable multiple

cell PDFs, this form could be used, provided one makes
sure to restrict its application to its proper region of
validity. It is interesting to note that, in this framework,
the parameter dependence of the mode of that PDF and its
local curvature tensor can be straightforwardly computed
from it analytically. In the concluding section we will
simply sketch a way to constrain key cosmological param-
eters using this form.

V. CONCLUSIONS AND PROSPECTS

A. Summary

In the context of upcoming large wide field surveys
we revisited the derivation of the cumulant generating
functions of densities in spherical concentric cells in the
limit of a vanishing variance and we conjectured that it
correctly represents the generating function for finite values
of the variance. We noted that such a quantity is an
observable in itself and could probably be used as a
cosmological indicator. In this study we however focused
our efforts on its counterpart, the multicell density PDF.
We first computed the resulting one-cell density PDF.

These results were tested with unprecedented accuracy, in
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FIG. 11 (color online). Same quantities as in Fig. 10 measured
here in simulations. The solid lines are the theoretical predictions
and the points with error bars are the measurements for both the
expected value and its variance. The agreement is spectacular in
particular for low density constraints.
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particular taking into account the scale variation of the
power spectrum index. Comparisons to modern N-body
simulations showed that predictions reach percent order
accuracy (when the density variance is measured from
simulations) for a large range of density values, as long as
the variance is small enough. It confirmed in particular that
this formalism gives a good account of the rare event
tails: predictions are in agreement with the numerical
measurements down to numerical precision.
We took advantage of the finite variance generating

function formalism to explore its implications to the two-
cell case in a novel regime. In particular we derived the
statistical properties of the local density slope, defined as
the infinitesimal difference of the density in two concentric
cells of (possibly infinitesimally) close radii. We gave its
mean expectation, and its expectation constrained to a
given density. From the properties of the local slope,
one can also construct the overall expected profile, i.e.
the density as a function of the radius, and its fluctuations.
We found the latter to be of particular interest when
focusing on voids, as in these regions, the variances around
the mean profile are significantly reduced (though the
relative fluctuations less so). In particular we suggest
below a possible method to constrain cosmological and
gravity models from these low density regions. All these
predictions were successfully compared to simulations.

B. Prospects

The full statistical power of the approach presented in
this paper would ultimately be encoded in the shape of the
two-cell density PDF but we do not know at this stage how
to properly invert the exact expression given by Eq. (40) in
this two-cell regime. Despite this limitation, as we do not
have simulations that span different gravity models, let us
use the saddle point form of Eq. (96) assuming it is exact
(hence avoiding the issue of the domain of validity of that
analytic fit to the exact PDF), and use its dependence on
key (cosmic) parameters to infer the precision with which
cosmological parameters could be constrained.
Focusing the analysis on two quantities, the parameter ν

that encodes the spherical collapse dynamics [see Eq. (13)]
and the power law index ns, let us simply consider sets of
about 2 000 and 11 000 independent measurements drawn
in concentric spheres of radii 10 and 11 Mpc=h and such
that 0.05 < ρ1 < 0.5 and −0.02 < Δρ=ρ1 < 0.06 (i.e. near
the peak of the PDF). The samples are drawn directly from
the two-cell PDF for chosen values of the power law power
spectrum and ν parameter starting respectively with ns ¼
−2.5 and ν ¼ 3=2. The likelihood of the models where ns
and ν vary in the range ½−0.12; 0.12� around the reference
value is computed.
The resulting mean (over 25 independent samples) log

likelihood of the data set as a function of Δν=ν and Δns=ns
is displayed in Fig. 12 (at one, three and five sigma
respectively) [65]. As expected, the likelihood contours

are centered on the zero offset values; they yield the
precision that could be reached in a survey of a useful
volume of about ð200h−1 MpcÞ3 (red contours) and
ð360h−1 MpcÞ3 (blue contours). These sample sizes are
not unreasonable. Indeed, the volume span with about 30
000 spheres corresponds to the volume covered by the
simulation and we found that, in doing so, the error bars
on relevant quantities such as profiles (as shown in Fig. 9)
were of the same order as the one measured in the
simulation we used throughout the paper. At face value,
relative accuracies below the percent on ðns; νÞ could be
reached with such surveys. Yet, this numerical experiment
is, at this stage, at best illustrative. We are indeed aware that
in more realistic situations, one would have to properly
account for the domain of validity of the above functional
form, which would take us beyond the scope of this paper.
Another open question would be to estimate how many
concentric cells should be used to get an optimal constraint
for a given set of cosmic parameters, but the answer to this
question will probably depend on the geometry of the
available survey.
Should these problems be alleviated, effective imple-

mentation of such cosmological tests would still be far
fetched. In particular galaxy catalogs in z space break the
local spherical symmetry in a complex way making the
application of such a method impractical. One way to avoid
this problem is to stick to observations for which this
method is applicable, such as projected densities along the
line of sight. It can be done either in the context of cosmic
shear observations or for photometriclike redshift surveys.
In both cases the point is not to reconstruct the spherical 3D

FIG. 12 (color online). The likelihood contours at one, three
and five sigmas around the reference model ðns ¼ −2.5;
ν ¼ 3=2Þ, drawn from ∼11 000 measurements (inner blue con-
tours) and ∼2 000 measurements (outer red contours) of the
densities in concentric shells of radii 10 and 11 Mpc=h.
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statistics but the circular two-dimensional statistics for
which the whole method should be applicable following
early investigations in [27,28]. The accuracy of the pre-
dictions still has to be assessed in this context. Another
missing piece that can be incorporated is the large distance
correlation of statistical indicators such as profiles and
constrained profiles. Following [27] it is indeed within
reach of this formalism to compute such quantities. We
would then have a fully working theory that could be
exploited in real data sets.
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APPENDIX A: RADII DECIMATIONS

The purpose of this appendix is to make sure that the
expression of φðfλgÞ is consistent with variable decima-
tion, i.e. we want to make sure that

φðfλ1;…; λngÞ
¼ φðfλ1;…; λn; λnþ1 ¼ 0;…; λnþm ¼ 0gÞ; ðA1Þ

where the left-hand side is computed from n cells whereas
the right-hand side is computed with nþm cells.
In order to prove this property, let us define a set A of n

cells and a set B of m cells. One can then define the
covariance matrix σijðρi; ρjÞ as in (17) between two any
cells of the union of A and B.
We first need to establish a preliminary relation between

the element of the inverse matrix ΞijðfρkgÞ and the
covariance matrix. FromXn

l¼1

σilðρi; ρlÞΞljðfρkgÞ ¼ δij; ðA2Þ

we indeed can derive the following relation,

σilðρi; ρlÞ
∂
∂ρk ½ΞljðfρkgÞ�σjmðρj; ρmÞ

þ ∂
∂ρk ½σimðρi; ρmÞ� ¼ 0; ðA3Þ

where all the repeated indices run from 1 to nþm. One can
also write this relation when the inverse matrix is defined

from the covariance matrix of the cells restricted in A only.
Let us define by Ξ̂μνðfρρμgÞ this matrix and in the following
restrict the Greek indices from 1 to n. The previous relation
is then transformed into

σμλðρμ; ρλÞ
∂
∂ρκ ½Ξ̂λνðfρμgÞ�σνσðρν; ρσÞ

þ ∂
∂ρκ ½σμσðρμ; ρσÞ� ¼ 0: ðA4Þ

The cumulant generating functions for the n cells in A is
given by

φ̂ðfλμgÞ ¼ λμτμ −
1

2
Ξ̂μντμτν; ðA5Þ

with the stationary conditions

λκ ¼ Ξ̂μκτμ
dτκ
dρκ

þ 1

2

∂Ξ̂μν

∂ρκ τμτν: ðA6Þ

The purpose of the following calculation is to show that it is
identical to the expression of φðλiÞ describing the cumulant
generating function of the nþm cells when the last m − n
values of λi are set to zero. In this case we have

φðfλμ; 0gÞ ¼ λμτμ −
1

2
Ξijτiτj; ðA7Þ

with the stationary conditions

FIG. 13 (color online). The path line in the ρ complex plane.
We superimposed the contour plot of the imaginary part of φðλÞ −
λρ̂ to check that it follows a ℑ½φðλÞ − λρ̂� ¼ 0 line. The starting
point on the real axis correspond to the saddle point value.
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λκ ¼ Ξiκτi
dτκ
dρκ

þ 1

2

∂Ξij

∂ρκ τiτj; ðA8Þ

0 ¼ Ξkiτi
dτk
dρk

þ 1

2

∂Ξij

∂ρk τiτj; ðA9Þ

for k running from nþ 1 to nþm. The second set of
constraints allows to determine the values of τi for i ∈
½nþ 1; nþm� in terms of τν. It is given by

τ̂i ¼ σiμΞ̂μντν; ðA10Þ

where once again repeated Greek indices are summed over
from 1 to n. This expression is actually valid for any values
of i as when i is in the 1 to n range we identically have
τ̂i ¼ τi. One can indeed check that for this expression
the two terms in Eq. (A9) are identically 0: indeed Ξkiτ̂i ¼
δkμ ¼ 0 for k ∈ ½nþ 1; nþm� and ∂Ξij=∂ρkτ̂iτ̂j¼
∂Ξij=∂ρkσiμΞ̂μντνσjμ0 Ξ̂μ0ν0τν0 ¼−∂σμμ0=∂ρkΞ̂μντνΞ̂μ0ν0τν0 ¼0

for k ∈ ½nþ 1; nþm�. Then replacing using this expres-
sion for the τi in Eq. (A8), one gets

λκ ¼ ΞiκσiμΞ̂μντν
dτκ
dρκ

þ 1

2

∂Ξij

∂ρκ σiμΞ̂μντνσjμ0 Ξ̂μ0ν0τν0 :

Its first term can be simplified using the definition of Ξ̂ and
the second by the subsequent use of Eqs. (A3) and (A4),

∂Ξij

∂ρκ σiμΞ̂μνσjμ0 Ξ̂μ0ν0 ¼ −
∂
∂ρκ σμμ0 Ξ̂μνΞ̂μ0ν0 ;

¼ ∂Ξ̂κσ

∂ρκ σκμΞ̂μνσσμ0 Ξ̂μ0ν0 ;

¼ ∂Ξ̂νν0

∂ρκ ; ðA11Þ

so that the expression of λκ coincides with the expression
(A6). Finally τ̂μ ¼ τμ ensures that the property (A1) is valid.

APPENDIX B: INTEGRATION
IN THE COMPLEX PLANE

1. Numerical algorithm

The computation of the one-point PDF relies on the
following expression:

Pðρ̂Þ ¼
Z þi∞

−i∞

dλ
2πi

expð−λρ̂þ φðλÞÞ; ðB1Þ

where we explicitly denote ρ̂ as the value of the density for
which we want to compute the PDF. This is to distinguish it
from the variable ρ that enters in the calculation of φðλÞ out
of the Legendre transform of ΨðρÞ. The idea to achieve fast

convergence of the integral is to follow a path in the
complex plane where the argument of the exponential in
Eq. (B1) is real. The starting point of the calculation is
ρ ¼ ρs. When ρ̂ is small enough (in the regular region) then
we simply have ρs ¼ ρ̂ otherwise one should take ρs ¼ ρc.
At this very location, two lines of vanishing imaginary parts
of −λρ̂þ φðλÞ cross, one along the real axis (obviously)
and one parallel to the imaginary axis (precisely because we
are at a saddle point position). The idea is then to build, step
by step, a path by imposing

δ½φðλÞ − λρ̂� ∈ R: ðB2Þ

This condition can be written as an infinitesimal variation
of λ. Recalling that dφðλÞ=dλ ¼ ρðλÞ, for each step we have
to impose

ðρ − ρ̂Þδλ ∈ R; ðB3Þ

which in turns can be obtained by imposing that the
complex argument of ðδρÞ is that of ½ðρ − ρ̂Þd2Ψ=dρ2��.
This is what we implement in practice. Accurate prediction
for the PDFs are obtained with about 50 points along the
path line that is illustrated on Fig. 13.

2. The large density tails

The derivation of the rare event tail of the density PDF for
large positive densities is based on the inverse Laplace
transform of the generating function φðλÞ when it is domi-
nated by its singular part, i.e. for λ ≈ λc. In this case the
complex plane contour is pushed along the real axis wrapping
around the singular value λc as depicted on Fig. 14.
The general form for the density PDF given by Eq. (B1)

is expressed using the form (43) following the path shown
on Fig. 14. As the contributions from the two branches of
the path lines are complex conjugate, it eventually leads to
the form

Pðρ̂Þ ≈ ℑ

	Z
iϵþ∞

iϵþλc

dλ
π
exp½φc − λcρ̂ − ðλ − λcÞðρ̂ − ρcÞ�

× ½1þ a3=2ðλ − λcÞ3=2 þ � � ��


; ðB4Þ

FIG. 14. The path line in the λ complex plane for the
computation of the large density asymptotic forms.
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where we keep only the dominant singular part in φðλÞ and
where ℑ denotes the imaginary part. This integral can easily
be computed and it leads to

Pðρ̂Þ ≈ exp ðφc − λcρ̂Þ
�

3ℑða3
2
Þ

4
ffiffiffi
π

p ðρ̂ − ρcÞ5=2
þ � � �

�
: ðB5Þ

Subleading contributions can be computed in a similar way
when expðφðλÞÞ is expanded to higher order. Note that by
symmetry, only half integer terms that appear in this
expansion will actually contribute.

APPENDIX C: THE CONSTRAINED
VARIANCE

In this appendix we complement the calculations started
in Sec. IV E where we computed the expected slope under a
local density constraint. Pursuing along the same line of
calculations, the variance of ρ̂2 given ρ̂1 can be computed
from the conditional value of ρ̂22. It is given by the second
derivative of the moment generating function, and is
therefore given byZ

dρ̂2ρ̂22Pðρ̂1; ρ̂2Þ

¼
Z þi∞

−i∞

dλ1
2πi

�∂2φðλ1; λ2Þ
∂λ22






λ2¼0

þ
�∂φðλ1; λ2Þ

∂λ2





λ2¼0

�
2
�
expð−λ1ρ̂1 þ φðλ1ÞÞ:

The calculation of its approximate form in the low-ρ saddle
point limit is a bit more cumbersome. Indeed, in the low
variance limit in which this approximation is derived the
two terms in the square brackets are not of the same order,
the first being subdominant with respect the second. It is
nonetheless possible to compute the resulting cumulant in
the low density limit. Formally, differentiating Eq. (90)
with respect to λ2 we have

∂2φðλ1; λ2Þ
∂λ22 ¼ ∂ρ2ðλ1; λ2Þ

∂λ2 ; ðC1Þ

from the Legendre stationary condition, which, after
inversion of the partial derivatives, is formally given by

∂2φðλ1; λ2Þ
∂λ22 ¼ Ψ;ρ1ρ1

Ψ;ρ1ρ1Ψ;ρ2ρ2 −Ψ2
;ρ1ρ2

; ðC2Þ

where Ψ;ρiρj ≡ ∂2Ψ=∂ρi∂ρj are calculated at the station-
ary point. On the other hand ∂φðλ1; λ2Þ=∂λ2 can be
expanded as

∂φðλ1; λ2Þ
∂λ2 ¼ φðλs; 0Þ þ ðλ1 − λsÞ

×
∂2φðλ1; λ2Þ
∂λ2∂λ1 þ 1

2
ðλ1 − λsÞ2

∂3φðλ1; λ2Þ
∂λ2∂λ21 þ � � �

ðC3Þ

near the saddle point value λs. The integration of
∂φðλ1; λ2Þ=∂λ2 in the complex plane therefore leads to
a correction from the ðλ1 − λsÞ2 term. It can be verified
though that this contribution vanishes when one takes
the cumulant. The integration of ð∂φðλ1; λ2Þ=∂λ2Þ
however leads to an extra term due to the second term
in the previous expansion. The resulting term reads
½∂2φ=∂λ2∂λ1�2=∂2φ=∂λ21, so that

hρ22iρ1 − hρ2i2ρ1 ¼
∂2φ

∂λ21 −
� ∂2φ

∂λ2∂λ1
�
2

=
∂2φ

∂λ21
¼

�∂2φ

∂λ21
∂2φ

∂λ22 −
� ∂2φ

∂λ1∂λ2
�

2
�
=
∂2φ

∂λ21 ; ðC4Þ

which can be rewritten more compactly as

hρ̂22iρ̂1 − hρ̂2i2ρ̂1 ¼ 1=Ψ;ρ2ρ2 jρ̂1;ρ̄2ðρ̂1Þ; ðC5Þ

when expressed in terms of Ψ.

APPENDIX D: SIMULATIONS

For the purpose of this paper, we have carried out a
dark matter simulation with GADGET2 [66]. This simulation
is characterized by the following ΛCDM cosmology:
Ωm ¼ 0.265, ΩΛ ¼ 0.735, n ¼ 0.958, H0 ¼ 70 km ×
s−1 ×Mpc−1 and σ8 ¼ 0.8, Ωb ¼ 0.045 within one stan-
dard deviation of Wilkinson Microwave Anisotropy Probe
7 results [67]. The box size is 500 Mpc=h sampled with
10243 particles, the softening length 24 kpc=h. Initial
conditions are generated using MPGRAFIC [68]. The var-
iances and running indexes are measured from the theo-
retical power spectra produced by MPGRAFIC. Snapshots are
saved for z ¼ 0; 0.65; 0.97; 1.46; 2.33 and 3.9. An Octree is
built for each snapshot, which allows us to count very
efficiently all particles within a given sequence of concen-
tric spheres of radii between R ¼ 4; 5… up to 18 Mpc=h.
The center of these spheres is sampled regularly on a grid of
10 Mpc=h aside, leading to 117 649 estimates of the
density per snapshot. All histograms drawn in this paper
are derived from these samples. Note that the cells overlap
for radii larger than 10 Mpc=h.

APPENDIX E: SYSTEMATIC COMPARISONS
WITH SIMULATION

We collect here figures that are too large to be put in the
main text.
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FIG. 15 (color online). (Left panels) The residuals of the expected density PDF from smoothing scale of R1 ¼ 4 (top panel) to
R1 ¼ 20h−1 Mpc. This is for z ¼ 0.97 (same convention as in Fig. 3). The values of σ2 at the smoothing scale is given in the inset. The
value in square brackets is the linear value. (Right panels) The residuals for the expected average profile between scale R1 and
R2 ¼ R1 þ 1h−1 Mpc. From top to bottom we have R1 ¼ 6 to 18h−1 Mpc. Same convention as in Fig. 8.
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