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No experiment can measure an absolute scale: every dimensionful quantity has to be compared to some
fixed unit scale in order to be measured, and thus only dimensionless quantities are really physical.
The Einstein and Jordan frames are related by a conformal transformation of the metric, which amounts to
rescaling all length scales. Since the absolute scale cannot be measured, both frames describe the same
physics and are equivalent. In this article we make this explicit by rewriting the action in terms of
dimensionless variables, which are invariant under a conformal transformation. For definitiveness,
we concentrate on the action of Higgs inflation, but the results can easily be generalized. In addition,
we show that the action for fðRÞ gravity, which includes Starobinsky inflation, can be written in a frame-
independent form.
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I. INTRODUCTION

In recent years there has been renewed interest in inflation
models with a large nonminimal coupling to gravity, of
which Higgs inflation is the prime example [1–3]. Although
the predictions of these models fall right in the sweet spot of
the Planck Collaboration data [4], they can all go in the dust
bin if the polarization signal measured by BICEP is of
cosmological origin [5,6]. Even in this case, a (much
smaller) nonminimal coupling is still allowed [7–9], and
it is thus important to understand its implications.
The nonminimal coupling to gravity entails a coupling

between the Ricci scalar and the inflaton field, which mixes
the metric and scalar degrees of freedom. This also implies
that the effective Planck mass during inflation is field
dependent, and thus time dependent, which in turn hampers
a physical interpretation of the equations in the Jordan
frame. For example, when defining the expansion rate of
the Universe, one has to take into account that not only the
scale factor is time dependent, but also the measurement
unit; when defining an energy-momentum tensor, one has
to take into account that gravitational and field energies are
mixed, and so on.
The nonminimal coupling can be removed, and the

gravity Lagrangian brought into canonical form, by per-
forming a conformal transformation of the metric. Since
gravity is now standard and the Planck mass a constant,
the Einstein frame equations are easy to interpret—all of
the usual textbook intuition applies—but complicated. The
scalar field kinetic terms are noncanonical and the potential
is nonpolynomial.
Calculations can be done in either frame. The conformal

transformation can be seen just as a field redefinition which

does not affect the physics. It has been shown that both the
classical action and the one-loop corrections are frame
independent [10], as is the curvature perturbation [11–15].
Nevertheless, there is still some confusion in the literature
and conflicting claims exist [16–23]. Our results are in line
with earlier work [24–27].
In this paper we will show explicitly that the Jordan

and Einstein frames are equivalent by rewriting the action
in terms of dimensionless fields and parameters. A con-
formal transformation of the metric rescales all length
scales, or equivalently all mass scales, in the theory.
It is important to note that this does not affect physical
quantities, which are dimensionless; no experiment can
measure an absolut scale. Hence, if we rewrite the action
in terms of physical, dimensionless fields, it is auto-
matically invariant under a conformal transformation:
the action obtained describes all frames related by a
conformal transformation at once, and thus all the results
derived from it apply equally to the Jordan and Einstein
frames.
This paper is organized as follows: we start in Sec. II

with a brief review of the action of Higgs inflation in the
Einstein and Jordan frames, and the conformal transforma-
tion which relates them. We then explain our approach to
rewriting the Lagrangian in terms of dimensionless vari-
ables, applying it to the simple setting of the classical
background action only. This is subsequently generalized
to the full action, with a generic spacetime metric, more
than one field coupled to gravity, and arbitrary kinetic
terms. We remark briefly on quantization. In Sec. III we
show that our results apply equally to fðRÞ gravity, and in
particular to Starobinsky inflation. Finally, in Sec. IV we
give an example and discuss how curvature perturbation ζ
can be expressed in dimensionless, Jordan frame, and
Einstein frame quantities. We end with some concluding
remarks.
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II. EQUIVALENCE OF THE ACTION

The action for Higgs inflation in the Jordan frame
is [1–3]

S ¼
Z

d4x
ffiffiffiffiffiffiffiffi
−gJ

p �
1

2
M2Ω2R½gJ� −

1

2
γJabg

μν
J ∂μϕ

a
J∂νϕ

b
J

− VJðϕJÞ
�
;

where ϕa
J are real scalar fields, ξ is the nonminimal

coupling that mixes the metric and scalar degrees of
freedom, and

Ω2 ¼ 1þ ξϕa
JϕJa

M2
: ð1Þ

Although our focus is on the conformal factor (1) motivated
by Higgs inflation, our methods can be generalized to
generic conformal factors [28]. The gravitational action can
be brought into canonical form via a conformal trans-
formation of the metric

gEμν ¼ Ω2gJμν: ð2Þ

This yields the action in the Einstein frame [29]

S ¼
Z

d4x
ffiffiffiffiffiffiffiffi
−gE

p �
1

2
M2R½gE� −

1

2
gμνE γEab∂μϕ

a
J∂νϕ

b
J

− VEðϕJÞ
�
; ð3Þ

with field-space metric

γEab ¼
1

Ω2
½γJab þ 3∂ϕa

J
lnΩ2∂ϕb

J
lnΩ2�: ð4Þ

The Einstein frame potential is

VE ¼ VJ

Ω4
: ð5Þ

Note that the fields ϕa
J do not change going from one frame

to the other. We added the subscript J to denote the fields
originally defined in the Jordan frame; the use of this will
become clear soon.
From the action we can read off the (reduced) Planck

mass in the Jordan and Einstein frames, respectively:

mJ ¼ MΩ; mE ¼ M: ð6Þ

Although the metric changes under a conformal trans-
formation, distances measured in Planck units are invariant.
Indeed, the line element written in Planck units is invariant:

m2
Jds

2
J ¼ m2

JgJμνdx
μdxν ¼ m2

EgEμνdx
μdxν ¼ m2

Eds
2
E; ð7Þ

where we used (2), (6).

A. Dimensionless action—background

In this subsection we rewrite the classical background
action in terms of dimensionless quantities which transform
trivially under a conformal transformation: this shows
clearly our approach in a simple setting. Then, in the next
subsection, we will generalize our results to the full action.
For simplicity, we take the field-space metric in the

Jordan frame to be canonical, γJij ¼ δij, and specialize
to the case of a single, homogeneous background field
ϕa
JðxÞ ¼ ϕJðtÞ. The metric is of the Friedmann-Robertson-

Walker form, and (7) can be written

m2
Jds

2
J ¼ m2

J½−N2
Jdt

2 þ a2Jdx
2� ¼ m2

E½−N2
Edt

2 þ a2Edx
2�

¼ m2
Eds

2
E; ð8Þ

with NJ; aJ and NE; aE the lapse function and scale factor
in the Jordan and Einstein frames, respectively. We choose
the coordinates to be dimensionless and take Ni; ai to have
dimensions of inverse mass.1 We define the dimensionless
metric functions, denoted by an overbar, via

N̄i ¼ miNi; āi ¼ miai; i ¼ J; E; ð9Þ
where mi is the frame-dependent Plank mass (6). The
dimensionless quantities transform trivially under a con-
formal transformation, e.g., N̄J ¼ N̄E . To make this
explicit we drop the subscript index on the barred quantities
and simply write N̄, etc. All barred quantities defined below
transform trivially; they correspond to the respective
quantities expressed in Planck units.
Now let us rewrite the background action in terms of

physical dimensionless quantities. We start from the
Einstein frame action (3), which can be expressed

S¼
Z

d4x
ffiffiffiffiffiffiffiffi
−gE

p
m4

E

�
1

2

R½gE�
m2

E
−
1

2
γE

_ϕ2
J

N2
Em

4
E
−

VJ

Ω4m4
E

�
; ð10Þ

where γE ≡ γEϕϕ, with the metric given in (4), and the dot
denotes the time derivative _ϕJ ¼ ∂tϕJ.
All of the separate terms in the action (10) and also the

measure are written as dimensionless combinations. We are
now going to rewrite these terms in a form that makes
explicit that they are all separately invariant under a
conformal transformation. Consider first the measure: we
define the invariant combination

1We could just as well have used the more standard convention
with a; N dimensionless and the coordinate’s dimensions of
inverse mass, but in that case attention should be paid in defining
the Hubble parameter, which should be taken as H ¼ ∂t lnΔx
(i.e., the rate of change of a physical coordinate’s distance rather
than of the unphysical scale factor H ¼ ∂t ln a).
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ffiffiffiffiffiffi
−ḡ

p ¼ ffiffiffiffiffiffiffi
−gi

p
m4

i ; i ¼ J; E: ð11Þ

It can be checked explicitly that it is invariant under a
conformal transformation

ffiffiffiffiffiffi
−ḡ

p ¼ ffiffiffiffiffiffiffiffi−gE
p

m4
E ¼ NEa3Em

4
E ¼

NJa3Jm
4
J ¼

ffiffiffiffiffiffiffiffi−gJ
p

m4
J. The dimensionless potential can like-

wise be defined

V̄ ¼ Vi

m4
i
; ð12Þ

where we used (5). Note that if VJ ¼ λϕ4
J, this implies the

scaling

ϕE ¼ ϕJ

Ω
: ð13Þ

This is, in general, the case: dimensionful variables scale
with a factor Ω under a conformal transformation. As a
consequence, physical observables which are dimension-
less ratios remain invariant. Care should be taken, though,
when defining dimensionless quantities involving time
derivatives, such as the Hubble constant. The reason is
that in the Jordan frame not only is the quantity itself time
dependent, but also the measurement stick [e.g., when
expressed in Planck units, it is important to take into
account that the Jordan frame Planck mass (6) is itself
time dependent]. On the background the Ricci scalar
is Ri ¼ 6ð2H2

i þH0
iÞ, with i ¼ J; E. To write this in

physical quantities we define the dimensionless Hubble
constant

H̄ ¼ ā0

ā
¼ 1

ā
∂tā
N̄

¼ 1

aimi

1

miNi
∂tðaimiÞ; ð14Þ

with i ¼ E; J for Einstein and Jordan frame quantities,
respectively, and the prime derivative is defined as

ϕ̄0
i ¼ 1

N̄i

_̄ϕi. This dimensionless Hubble constant trans-

forms trivially under a conformal transformation.
Likewise we define

H̄0 ¼ 1

N̄
∂tH̄; ð15Þ

so we can write the dimensionless Ricci scalar (on the
background) as

R̄ ¼ 6ð2H̄2 þ H̄0Þ: ð16Þ

To formulate the kinetic term in invariant form it is
convenient to first express the Einstein frame quantities in
terms of the rescaled field ϕE using (13). Then, in a next
step, it is straightforward to introduce the invariant and
dimensionless field, defined in the usual way:

ϕ̄ ¼ ϕi

mi
; ϕ̄0 ¼ 1

N̄
∂tϕ̄: ð17Þ

Before going further, let us reformulate Ω2 in terms of the
Einstein frame field2:

Ω2 ¼ 1þ ξϕ2
J

m2
E
¼ 1þ ξϕ̄2Ω2

⇒ Ω2 ¼ 1

1 − ξϕ2
E=m

2
E
¼ 1

1 − ξϕ̄2
: ð19Þ

The derivatives of the Einstein and Jordan frame fields
ϕJ ¼ ΩϕE are related via

1

NE

_ϕJ ¼ Ω
�
ϕ0
E þ ϕE

Ω0

Ω

�

¼ Ω
1 − ξϕ2

E=m
2
E

1

NE

_ϕE

¼ Ω3
1

NE

_ϕE: ð20Þ

The dimensionless expression for the kinetic terms in (10)
can now be rewritten

1

2

γE _ϕ
2
J

N2
Em

4
E
¼ 1

2Ω2N2
Em

4
E
ð1þ 6m2

Eð∂ϕJ
ΩÞ2Þ _ϕ2

J

¼ Ω4

2

�
1þ 6

ξ2ϕ2
E

m2
E

�
_ϕ2
E

N2
Em

4
E

¼ Ω4

2
ð1þ 6ξ2ϕ̄Þϕ̄02

≡ 1

2
S̄ðϕ̄Þϕ̄02: ð21Þ

In the second expression we used the explicit form of the
Einstein frame metric (4), and in the third we used the
relations between the fields in the two frames (13), (20).
Finally, in the last two expressions we introduced the
frame-invariant fields (17). S̄ðϕ̄Þ is the dimensionless and
frame-invariant field-space metric, which is a function of
the dimensionless field ϕ̄.3

Now we have all of the expressions (11,12,16,21) needed
to write the action in terms of dimensionless quantities; this
action reads

2The dimensionless field is bounded from above,

ξϕ̄2 ¼ ξϕ2
J

ðm2
p þ ξϕ2

JÞ
< 1; ð18Þ

as the denominator is always larger than the numerator. It follows
that Ω2 in (19) is always positive definite.

3S̄ is not directly related to either γE [because the fields in (3)
are still the Jordan frame fields] or γJ (when writing out the S̄ and
R̄ terms in Jordan frame quantities, both contribute to the Jordan
field kinetic terms γJ).
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S ¼
Z

d4x
ffiffiffiffiffiffi
−ḡ

p �
1

2
R̄ðā; N̄Þ − 1

2
S̄ðϕ̄Þϕ̄02 − V̄ðϕ̄Þ

�
: ð22Þ

Making a conformal transformation leaves the action
invariant; therefore, the latter describes all frames related
by a conformal transformation. In fact all relevant equations
and expressions can be derived from this action. If at some
point it is desired to express them in frame-dependent
quantities, it can easily be done by substituting in the
explicit definitions of the barred quantities. This way it can
be checked that (22) indeed returns to the Jordan frame
action when the Planck mass and variables proper to that
frame are substituted in.
We have expressed all quantities in Planck units. This is a

very convenient choice for calculations in cosmology and,
moreover, the results can readily be compared with experi-
ments. Of course, the choice of units is not unique. The
reason (22) takes the form of the Einstein frame action is
precisely because in that frame the Planck mass (our
reference mass) is constant.

B. Dimensionless action—full action

In the previous section we showed our idea at work in a
very simple but significant example. Now we want to
extend the results to the full action (not just the back-
ground) and allow for several nonminimally coupled scalar
fields.
The metric and scalar fields are thus taken as both time

and space dependent; we keep the Jordan frame field metric
γJ and potential VJ.
The approach is the same as before: start with the

Einstein frame action (3) and write it in terms of the
Einstein frame fields ϕa

J ¼ Ωϕa
E; in the next step, go to

dimensionless and frame-invariant variables by dividing
everything with the proper powers of the Planck mass. Care
should be taken for quantities that involve derivatives: the
derivatives should always act on dimensionless and frame-
invariant quantities themselves; this properly takes into
account that the Planck mass is spacetime dependent in the
Jordan frame.
The only nontrivial step is to relate the derivatives of the

Jordan and Einstein frame fields and rewrite the kinetic
terms. It is convenient to start expressing Ω in terms of the
Einstein frame fields:

Ω2 ¼ 1þ ξ

m2
E
ϕa
JϕJa ¼ 1þ ξ

m2
E
ϕa
EϕEaΩ2

⇒ Ω2 ¼
�
1 −

ξ

m2
E
ϕa
EϕEa

�
−1

¼ ð1 − ξϕ̄aϕ̄aÞ−1: ð23Þ

In the second line, ξϕ̄aϕ̄a < 1 always (see footnote 2). Now
we can proceed as follows:

∇μϕa
J ¼ ϕa

E∇μΩþ Ω∇μϕa
E

¼ Ω
�
δac þ

ξ

m2
E
Ω2ϕa

EϕEc

�
∇μϕc

E

≡Ma
c∇μϕc

E: ð24Þ

Finally, the field-space metric tensor for the Einstein frame
fields can be calculated:

Sab ¼ γEcdMc
aMd

b ð25Þ

¼ Ω−2
�
γJcd þ 6

ξ

m2
E
ϕEcϕEd

�
Ω2

�
δca þ Ω2

ξ

m2
E
ϕc
EϕEa

�

×

�
δdb þ Ω2

ξ

m2
E
ϕd
EϕEb

�

¼ γJab þ
ξ

m2
E
Ω2ðγJadϕd

EϕEb þ γJbdϕ
d
EϕEaÞ

þ Ω4ϕEaϕEb

�
γJcdϕ

c
Eϕ

d
E
ξ2

m4
E
þ 6

ξ

m2
E

�
: ð26Þ

As it should, in the single field limit ϕa
E ¼ ϕE and for a

trivial field metric γJab ¼ δab, the expression reduces, after
some simplifications, to the field-space metric found in the
previous section (21).
Now it is clear how to pass to the dimensionless

action and frame invariant action. We define the frame-
independent fields

ϕ̄a ¼ ϕia

mi
; ḡμν ¼ giμνm2

i ; ð27Þ

with i ¼ J; E. All other quantities are constructed from
these:

V̄ ¼ Vi

m4
i
; ð28Þ

Γ̄σ
αβ ¼

1

2
ḡσρð∂αḡβσ þ ∂βḡασ − ∂σ ḡαβÞ; ð29Þ

R̄ ¼ ḡαβð∂σΓ̄σ
αβ − ∂βΓ̄σ

ασ þ Γ̄σ
αβΓ̄

ρ
σρ − Γ̄ρ

ασΓ̄σ
βρÞ; ð30Þ

S̄ab ¼ γJab þ ξΩ2ðγJadϕ̄dϕ̄b þ γJbdϕ̄
dϕ̄aÞ

þΩ4ϕ̄aϕ̄bðγJcdϕ̄cϕ̄dξ2 þ 6ξÞ: ð31Þ

Choosing i ¼ E and substituting in the Einstein frame
action (3) finally gives the action in explicitly frame-
independent and dimensionless form:

S ¼
Z

d4x
ffiffiffiffiffiffi
−ḡ

p �
1

2
R̄ −

1

2
S̄abḡμν∇μϕ̄a∇νϕ̄b − V̄

�
: ð32Þ
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This is our main result: the action is written in a frame-
invariant form, so all equations derived from it apply
equally to all actions related by a conformal transforma-
tion; moreover, the results can readily be related to
experiments which measure only dimensionless quan-
tities. In practice, we can simply take the usual Einstein
frame results, set the Planck mass to unity mE ¼ 1, and
put a bar on all quantities: this gives the frame-invariant
equations.

C. Quantization

The discussion in the previous section was fully
classical: we showed that the classical action can be written
in manifestly frame-invariant form. But someone might
still be worried that quantization introduces a frame
dependence; however, it is clear that if the quantization
prescription is formulated in terms of the frame-
independent barred quantities, no such issues arise. We
can thus use the standard quantization procedures, applied
to the action (32).

III. f ðRÞ GRAVITY

In this section we show that theories of fðRÞ gravity, or
equivalently scalar-tensor gravity with the Brans-Dicke
parameter ωBD ¼ 0, can also be written in a frame-
independent way. The key here is to realize that this class
of theories can be rewritten as a scalar theory with a
nonminimal coupling to gravity [30–34]; then the frame-
invariant approach of the previous subsection can be
applied.
Consider the action of fðRÞ gravity:

S ¼ M2

2

Z
d4x

ffiffiffiffiffiffiffiffi
−gJ

p
fðRÞ; ð33Þ

whose function fðRÞ begins with the Einstein-Hilbert term.
Starobinsky inflation is a specific example, with fðRÞ ¼
Rþ αR2 [35,36]. Introducing an auxiliary scalar field AJ,
the action can be rewritten [34]

S ¼ M2

2

Z
d4x

ffiffiffiffiffiffiffiffi
−gJ

p ½AJR − VJðAJÞ�: ð34Þ

Applying the equations of motion for the scalar R ¼ ∂AV,
substituting in the action, one retrieves the original fðRÞ
action (33), provided that f and V are related by a Legendre
transformation,

fðRÞ ¼ RAJ − VJðAJÞ: ð35Þ

Now the action (34) is exactly of the form of the Jordan
frame action (1) for a single field, if we identify

γJab ¼ 0; AJ ¼ Ω2ðϕJÞ: ð36Þ

One can make a conformal transformation (2) to go to the
Einstein frame. Using the results of the previous sec-
tion (29–31), the action can be written in explicitly
dimensionless and frame-invariant form.

IV. AN EXAMPLE: EQUIVALENCE OF THE
CURVATURE AND ISOCURVATURE

PERTURBATIONS

In the literature there are calculations of the curvature
and isocurvature perturbations in both the Einstein and
Jordan frames. It was shown that the curvature perturbation
is frame independent [11–15], but a frame dependence was
claimed for the isocurvature perturbations [22,23].
Applying the results of the previous section, we can express
the perturbations spectrum in terms of the barred fields,
which manifestly shows their frame independence.
The frame-independent perturbations can be rewritten in

either Einstein or Jordan frame quantities, using the
definitions of the barred quantities; the complicated rela-
tions between the two frames show how easy it is to make
mistakes when comparing results in different frames, when
they are not written in physical, dimensionless quantities.
To write the perturbation spectrum, we have to perturb

the field and metric to first order:

Φ̄aðt;xÞ¼ ϕ̄aðtÞþ φ̄aðt;xÞ;
ḡ00¼−N̄2ð1þ2n̄Þ;
ḡi0¼ ḡ0i¼2āN̄ n̄i;

ḡij¼ ā2ð1−2ψ̄Þδijþ F̄ij:

ð37Þ

With this, we can express the gauge invariant scalar
curvature perturbation as

ζ ¼ −ψ̄ − H̄
δρ̄
_̄ρ
: ð38Þ

Note that we have not put a bar over ζ because it is both
invariant and dimensionless. The energy density appearing
in this equation is defined in the usual way:

ρ̄ ¼ −ḡ0νT̄ν0

¼ ḡ0ν
2ffiffiffī
g

p δS̄M
δḡμν

δμ0

¼ S̄ab

�
1

2
ḡαβ∂αΦ̄a∂νΦ̄b − ḡ0ν∂νΦ̄a∂0Φ̄b

�
þ V̄: ð39Þ

In the presence of isocurvature perturbations, the curvature
perturbation is nonconserved,

ζ0 ¼ −
H̄

ρ̄þ p
δp̄nad; ð40Þ

with, as before, ζ0 ¼ _ζ=N̄ the dimensionless time derivative
and p̄nad the nonadiabatic pressure:
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δp̄nad ¼ δp̄ −
_̄p
_̄ρ
δρ̄: ð41Þ

A. Invariance of ζ

In this subsection we write the curvature perturbation in
Jordan and Einstein frame variables and show how these
are related.
First we have to find the transformation between

ψ̄ ¼ ψE
4 and ψJ. We can express the invariant metric in

either the Jordan or the Einstein frame variables
ḡμν ¼ M2ḡEμν ¼ M2Ω2ḡJμν. Expanding this relation to first
order then gives

a2Eð1− 2ψEÞ ¼ a2JΩ2ð1− 2ψJÞ

¼ a2J

�
1þ ξ

M2
ϕa
JϕJaþ 2

ξ

M2
ϕa
JφJa

�
ð1− 2ψJÞ

≃a2JΩ2
ð0Þ

�
1− 2ψJ þ

2 ξ
M2ϕa

JφJa

Ω2
ð0Þ

�
; ð42Þ

up to second order in perturbation. Further, we defined
Ω2

ð0Þ ¼ 1þ ξ
M2 ϕa

JϕJa. It follows that

ψE ¼ ψJ −
1

Ω2
ð0Þ

ξ

M2
ϕa
JφJa ¼ ψJ −

1

2Ω2
ð0Þ

∂aðΩ2
ð0ÞÞφa

J:

ð43Þ

Using the slow-roll approximation we can write

_̄ρ≃ ∂t

�
1

2N̄2
S̄ð0Þab _̄ϕ

a _̄ϕ
b þ _̄Vð0Þ

�
≃ _̄V

ð0Þ ¼ 4λϕ̄2ϕ̄a _̄ϕa;

δρ̄≃ δV̄ ¼ 4λϕ̄2ϕ̄aφ̄a; ð44Þ

where in the last line we have approximated ρ̄ with its
background value, using the expansion expressed in (37);
to simplify the notation we let ϕ2 ¼ ϕbϕaδab. Now we
relate the ratio δρ̄= _̄ρ in the two frames:

δρE
_ρE

¼ δðλðϕ2
JÞ2ÞΩ2 − λðϕ2

JÞ2δΩ2

λΩ2∂tðϕ2
JÞ2 − λðϕ2Þ2∂tΩ2

¼ 4λð1þ ξ
M2 ϕ2

JÞϕ2
Jϕ

a
JφJa − 2λðϕ2

JÞ2 ξ
M2 ϕ2

Jϕ
a
JφJa

4λð1þ ξ
M2 ϕ2

JÞϕ2
Jϕ

a
J
_ϕJa − 2λðϕ2

JÞ2 ξ
M2 ϕ2

Jϕ
a
J
_ϕJa

¼ 2λ 1þΩ2

Ω2 ϕ2
Jϕ

a
JφJa

2λ 1þΩ2

Ω2 ϕ2
Jϕ

a
J
_ϕJa

¼ ϕa
JφJa

ϕa
J
_ϕJa

¼ δρJ
_ρJ

: ð45Þ

So, finally,

ζ ¼ −ψE −
_aE
aE

δρE
_ρE

¼ −ψJ þ
1

2Ω2
ð0Þ

∂aðΩ2
ð0ÞÞφa

J −
1

ΩaJ
ðΩ _aJ þ _ΩaJÞ

ϕa
JφJa

ϕa
J
_ϕJa

¼ −ψJ −
_aJ
aJ

δρJ
_ρJ

þ 1

2Ω2
ð0Þ

∂aðΩ2
ð0ÞÞφa

J −
_Ω
Ω
ϕa
JφJa

ϕa
J
_ϕJa

¼ ζ: ð46Þ

V. CONCLUSIONS

Higgs inflation has attracted considerable interest over
recent years. The key ingredient of the model is a non-
minimal coupling of the Higgs field to the Ricci tensor.
Unfortunately, this brings along with it the issue of frames.
The freedom to carry out the desired calculation in a given
frame without worrying about possible implications raised
from the choice of the frame itself is very important. With
this in mind, in this paper we have demonstrated the
equivalence between the Jordan and Einstein frames, and
more generally between every frame related to these by a
conformal transformation.
The equivalence of the various frames is not immediately

obvious: directly transforming quantities calculated in one
frame to another can lead (and has led) to mismatching
results. Seen from a physics perspective, these frame-
dependent results make no sense. The key point is that
the conformal transformation that relates the Einstein and
Jordan frames rescales all length scales. Since the absolute
scale cannot be measured, both frames describe the same
physics andmust be equivalent. It is thus important to realize
that when applying a conformal transformation, not
only does the spacetime change, but the unit of measure
is also modified. Therefore it is not surprising that when
comparing quantities between two frames without changing
the measuring reference accordingly, one obtains different
results.
To avoid the unpleasant consequences of not keeping

track of all scale changes, we have introduced the concept
of dimensionless variables: in particular, we have chosen to
express all dimensionful quantities in terms of Planck units.
When transforming between frames, all mass scales includ-
ing the Planck mass scale in the same way; the dimension-
less ratios—our dimensional variables—remain, however,
the same. Rewriting the Lagrangian terms of these dimen-
sionless quantities provides a manifestly frame-invariant
formulation of the theory, which can be directly related to
what is actually measured in experiments. Moreover,
formulating the action and all equations derived from it
in terms of dimensionless variables is very convenient
because, in any moment, it is possible to choose a frame
and immediately convert the desired quantities into their
frame-specific counterparts by simply substituting in the
expressions for variables and for the Plank mass proper of4Clearly ψ̄ ¼ ψE as ψE is dimensionless.

MARIEKE POSTMA AND MARCO VOLPONI PHYSICAL REVIEW D 90, 103516 (2014)

103516-6



that frame. In the last section we have given an example of
this mechanism, showing how it works for the gauge
invariant curvature perturbation ζ.
Our results are applicable tofðRÞgravity and, in particular,

Starobinsky inflation. Introducing an auxiliary field, these
types of actions can be written as a Jordan frame Lagrangian
with a nonminimal coupling to gravity. These can, in turn, be
expressed in our dimensionless, physical quantities.
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