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We study the effect of sudden transitions in the effective Planck mass during inflation on primordial
power spectra. Specifically, we consider models in which this variation results from the nonminimal
coupling of a Brans-Dicke type scalar field. We find that the scalar power spectra develop features at the
scales corresponding to those leaving the horizon during the transition. In addition, we observe that the
tensor perturbations are largely unaffected, so long as the variation of the Planck mass is below the percent
level. Otherwise, the tensor power spectra exhibit damped oscillations over the same scales. Due to
significant features in the scalar power spectra, the tensor-to-scalar ratio r shows variation over the
corresponding scales. Thus, by studying the spectra of both scalar and tensor perturbations, one can
constrain sudden but small variations of the Planck mass during inflation. We illustrate these effects with
a number of benchmark single- and two-field models. In addition, we comment on their implications and
the possibility to alleviate the tension between the observations of the tensor-to-scalar ratio performed by

the Planck and BICEP2 experiments.
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I. INTRODUCTION

Aside from resolving a number of issues in the standard
hot big bang scenario (see e.g. [1-4]), including the horizon
problem and overabundance of magnetic monopoles, infla-
tionary cosmology has made a number of predictions
consistent with current observations of the cosmic micro-
wave background (CMB). These include the expectation of
an almost spatially flat Universe and an approximately
scale-invariant power spectrum of the primordial curvature
perturbations, as confirmed by the Wilkinson Microwave
Anisotropy Probe [5] and, more recently, the Planck
Satellite [6].

Many models of inflation also predict a cosmological
gravitational wave background, parametrized in terms of
the tensor-to-scalar ratio r. Recently, the BICEP2 experi-
ment [7] reported a detection of B-mode polarization in
the CMB. When interpreted as being produced by such a
background of primordial gravitational waves, this trans-
lates into a tensor-to-scalar ratio of

r=0.201007, (1)
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around # = 80, i.e. kgicgp = 0.005 Mpc~'. This would be
in tension with the previous limit set by Planck [6] of r» <
0.11 (95% C.L.) at the pivot scale k, = 0.002 Mpc~!, i.e.
¢ =128. Such a value for the amplitude of the gravitational
wave background would determine the scale of inflation to
be at the GUT scale. Moreover, a value of r > 0.1 would
rule out a large number of inflationary models in which
the displacement of the field is smaller than Mp [8—10].
Super-Planckian excursion of the inflaton field can be
realized within a number of models, including assisted
inflation [11-15], natural inflation [16—18], string-inspired
many-field models [19-22] and monodromy [23-25].
In addition, values of » > 0.11 can be realized in scalar
models in which the potential has flat directions [26].
Many authors have proposed solutions to alleviate the
tension between BICEP2 and Planck on both theoretical
[27-34] and experimental grounds [35-37]. In nonsingular
bouncing cosmologies [38], it was shown [39] that the
emergence of jump features in the scalar and tensor
power spectra at a given scale may conspire to lessen this
discrepancy. This tension can also be alleviated in
Starobinsky models [40], if the speed of the inflaton field
undergoes a sudden change [41]. In addition, sharp features
are observed in the scalar power spectra in models of
punctuated inflation, where the shape of the inflaton potential
changesdiscontinuously ata givenscale [42-44]. Aninflaton
potential with a step was studied in the Einstein frame [45]
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(see also [46]) and shown to result in oscillations in the
power spectra. Fading oscillatory features in the primordial
scalar power spectrum can also occur from jumps in the
potential [47-51], particle production during inflation
[52—54] or turns in the inflaton trajectory in the landscape
of heavy fields [55-59]. For a discussion of observed
features in the primordial power spectrum, see for instance
[60] and references therein.

Recently, there has also been renewed interest in models
of inflation with time-varying gravitational constants [61].
The potential time dependence of physical constants has
long been recognized [62] and variation in the effective
gravitational coupling is known to arise in theories of
modified gravity, such as Brans-Dicke scalar-tensor
[63-68] and tensor-vector-scalar (TeVeS) theory [69,70].
The latter provides a relativistic basis for Milgrom’s
modified Newtonian dynamics [71]. Time dependency
may also arise in supersymmetric string theories [72—74].

The implications of a time-varying gravitational constant
(see also [75]) have been studied in the radiation and matter
dominated epochs [76]. It was shown in [77] that modu-
lations of the gravitational constant can result from the
nonminimal coupling of a massive scalar field that oscillates
around its vacuum expectation value (VEV). It was found
that cosmological measurements can be affected when the
frequency of oscillations is high compared to the Hubble
expansion rate. This work was extended in [78] to consider a
scenario in which the Brans-Dicke field is driven away from
its VEV during inflation, thereby inducing oscillations. For
cosmological perturbation theory in models beyond general
relativity, see [79,80] and references therein.

There are various experiments that test models with a time-
dependent Newton’s constant: lunar ranging observations
[81,82], big bang nucleosynthesis [83-86], gravitational
waves [87] and, more recently, the WiggleZ experiment
[88]. In addition, it has been shown that the late-time
evolution of the gravitational constant can be constrained
through comparisons of the ages of globular clusters with
independent measurements of the age of the Universe [89]
and by observations of type 1a supernovae [90,91], as well as
pulsating white dwarfs [92,93], pulsars [94-97] and neutron-
star surface temperatures [98]. Such limits on the variation of
the gravitational constant place constraints on scalar-tensor
theories [99] in addition to those obtained from observations
of primordial density perturbations [100-102] and gravita-
tional Cherenkov radiation [103].

In this article, we show that sharp features may arise in
the scalar power spectra as a result of transitions in the
effective Planck mass (or equivalently Newton’s gravita-
tional constant) during inflation. Specifically, we address
the question of whether smooth step variations in the
gravitational coupling, occurring during the observable
window of scales between 60 and 50 e-folds before the
end of inflation [104,105], have sizable effects on the
power spectra for curvature and tensor perturbations. Step
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changes in the Planck mass could result from a first-order
phase transition in the VEV of a Brans-Dicke field [61].
Alternatively, as we will consider, the step change could
arise through a second-order transition, with the Brans-
Dicke field rolling slowly towards its VEV. We consider
two scenarios: one in which the role of Brans-Dicke field
is played by the inflaton itself and a two-field model in
which this role is played by a second auxiliary field.
The variations that we have in mind are not violent ones;
i.e. the variations of Myp, are not of order 1. Instead, they
are typically of order a percent or less. Nevertheless, we
illustrate that, for a particular choice of parameters for the
single-field model, the impact upon the resulting power
spectra and, consequently, the tensor-to-scalar ratio r has
the potential to alleviate the aforementioned discrepancy
between BICEP2 and Planck. Furthermore, in contrast to
potentials with a step [45], we show that oscillations are
not observed in the scalar power spectra when the step
transition occurs instead in the nonminimal coupling of
the Brans-Dicke field.

The paper is organized as follows. In Sec. II, we describe
the relevant background field and perturbation equations
for the single-field model under consideration. In Sec. III,
we solve these systems of equations numerically for a
number of single- and two-field benchmark models, illus-
trating the potential implications for observations of pri-
mordial power spectra. Finally, in Sec. IV, we provide our
conclusions. In addition, Appendix A summarizes the
background and perturbation equations for the two-field
model considered and Appendix B describes the approxi-
mate analytic solutions to the background evolution,
relevant to Sec. III.

II. FIELD EQUATIONS

Our goal is to study the influence of variations in the
effective Planck mass (or equivalently Newton’s gravita-
tional constant) on inflation and the primordial power
spectra for scalar and tensor perturbations. This can be
described conveniently in the context of scalar-tensor
theories. Specifically, we will focus on the case in which
the evolution of the inflaton itself causes this variation
by means of its nonminimal coupling to the Ricci scalar.
For this reason and throughout this article, we choose to
perform the computations in the Jordan frame, which
allows us to model these variations in the Planck mass
intuitively. Nevertheless, physical observables do not
depend on the choice of frame (see e.g. [106—-108] and
references therein) and hence equivalent results would
be obtained in the Einstein frame.

The single-field action that we consider is of the form

§@) — % / d*x/=gIMEF ()R — ¢ 0, — 2U ()],
(2)
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where M3, = (82G,)™! is the reduced Planck mass, with
G, being the present-day Newton’s constant; R is the Ricci
scalar and U(g) is the potential of the scalar field ¢.
Hereafter, we set Mp; = 1, with all dimensionful quantities
understood to be in units of the reduced Planck mass.
The coupling of gravity to other energy and matter degrees
of freedom is then determined by the effective Planck
mass F(g).

Varying the action Eq. (2) with respect to the metric, we
obtain the Einstein equations, which are given by

1

1
GIW = m |:(p,ﬂ(p,l/ - Egpwgaﬂ(p,a(p./)’ + F;ﬂv((p)

— g OF(0) —g,wuwﬂ, 3)

where G, is the Einstein tensor, [ is the d’Alembertian
operator and ,u and ;u denote partial and covariant
derivatives with respect to the spacetime coordinate x*,
respectively. Varying the action with respect to the scalar
field ¢ yields the Klein-Gordon equation, written in Brans-
Dicke form as

2w (p)Oep(p) = —@ ,(0) 9" ¢ 40, — 4F ,(@)U(p)
+2F(p)U (o), (4)

where we have defined w(¢) = F(¢) + 3 F2,(¢), in which
the subscript , ¢ denotes partial differentiation with respect
to the scalar field ¢. Hereafter, we will omit arguments on
the functions of the scalar field for notational convenience.

A. Background

We shall assume a spatially homogeneous and isotropic
background spacetime, described by the Friedmann-
Robertson-Walker (FRW) line element

ds? = —di* + a*(1)5;;dx'dx/, (5)
where §;; is the Kronecker delta and a(¢) is the scale factor.

In FRW space-time, Eq. (4) is then

. . 1 .
(p—|—3H(p :% [—w',/,(p2+4F’(pU—2FU,4, (6)
where * denotes differentiation with respect to the cosmic
time ¢ and H = a/a is the Hubble parameter. Furthermore,
the Friedmann equations take the form

11 .
2 |22 —
H = [2 +U 3HF], (7a)
S B U
—2H = |§” + F - HF |. (7b)
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Equations (3), (6) and (7) suggest that we define an
effective energy density p and pressure p for the scalar
field as follows:

L., .
R LN (8b)
P*F 2(,0 .

We note that these are effective quantities and that the
corresponding energy-momentum tensor 7' ,([L’)
ie. TW* = 0.

In order to test the generalities of the single-field results,
we consider a two-field model, in which the action Eq. (2)
is supplemented with an additional minimally-coupled
scalar y with action

is conserved,

s = [ xSl + 0L O

where the potential V(y) is given by

V() = 5mi (10)

The pertinent background field and perturbation equations
for the two-field model § = S 4 &) are summarized in
Appendix A.

B. Perturbations

1. Scalar perturbations

We will now focus our attention on the first-order
perturbation equations, which will be studied in the
Newtonian gauge. In this gauge, the scalar metric pertur-
bations are expressed by the following line element,
cf. Eq. (5),

ds? = —(1+20)d* + a(1)*(1 - 29)5;;dx'dx/,  (11)

where U and ® are the scalar metric perturbations.

The scalar field ¢(t,x) is decomposed in terms of the
homogeneous background contribution ¢(7) and the per-
turbation ¢ (r, x), i.e.

(1, %) = (1) + 69(1,%). (12)

Thereafter, we work with the Fourier components of the
perturbations, 8¢y (t), satisfying V8¢, = —k?6¢p;. In what
follows, the subscript k will be omitted in order to shorten
the subsequent expressions.
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The resulting perturbation equation for the scalar field is

1
5¢+{3H+w‘”¢}6¢+{ <w‘”> @*
w 2\ w »

1/1 k?
P

. . 1
- (U +3P)p +— {—4F‘¢U+2FU,¢]\D:0. (13)
w
Additionally, in the Newtonian gauge, the perturbed
Einstein equations are given by the following:

1

: K2
a
. 1
b+ HVY = - 6q. (14b)
. . . . 1
&+ (2H +3H*)V + H(V +39) = 5(Sp, (14c)

where Jp, dg and Jp, obtained from the effective energy-
momentum tensor T, mentioned earlier, are the perturba-
tions in the energy density, momentum potential and
pressure, respectively:

1 ..
Sp = 7 @S9 — p*V + U ,6¢ + 3F (P +2HT)

2
— 3H(5F + HSF) — k—25F , (15a)
a

1 ..
8q = = [¢p0p + 5F — F'V — HOF) (15b)

Sp = 7 PS¢ — ¢*V — U ,6¢ — pSF + SF + 2HSF

.. .. .. . K?
—FVY-2F®-2(F +2HF)V + —dF|. (15¢)
a
Hence, we find that anisotropic stress is present in the
Jordan frame with

oF F ,op
-V =—="27, 16

The observational quantities include the spectral index
n, and its running «, which can be obtained from the
curvature (scalar) power spectra by using [5,109]

k nx(ko)—1+%ln(k/k0)a
Pe(k) = Pelko) | - Y
0
The scalar perturbations
i3
P, =—|¢]? 18
¢ 277:2 |C| ( )
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are provided by the curvature perturbation on constant
hypersurfaces ¢, defined via

H
{=-%——0p. (19)
p

At the Planck pivot scale kg, the amplitude of the power
spectrum is Py (ko) ~ 2.15 x 1077 [6]. The running index a,
in relation to the spectral index ng, is given by

_dny
YT Ak

(20)

The current best fit values for both the spectral index and its
running, as measured by Planck [6], are

ng; = 0.9603 £ 0.0073, a = —0.0134 £ 0.0090.

. (21)
2. Tensor perturbations

We shall also study the effect of variations in the Planck
mass on tensor perturbations. The equations for the tensor
modes take the standard form, since they are not affected
by the presence of the nonminimal coupling F(¢).
Specifically, the power spectrum for the tensor perturba-
tions is given by [110]

2

€ 22)

2

Uk

Pr

a

where the mode equation for gravitational waves takes the
form

v+ <k2 - %) v =0, (23)

in which the prime ! denotes the derivative with respect to
conformal time 5 = 5;('?:).

Finally, the tensor-to-scalar ratio r is given in terms of
the scalar and tensor power spectra Pp and P [see

Egs. (18) and (22)] via [111]

8Pt
=—. 24
"= (24)

III. MODEL WITH STEP VARIATION IN
THE PLANCK MASS

In this section, we will consider models in which the
effective Planck mass undergoes a step transition during the
inflationary epoch. To this end, we consider the following
nonminimal coupling and potential for a canonical Brans-
Dicke scalar field:

F(p) =1 - p{1 + tanh[(¢ — ¢.)/7]}, (25)

U(p) == mig?, (26)
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where m, is the mass of the scalar field ¢, f is a
dimensionless constant, and y and ¢, are constants of
mass dimension. As we shall see, the parameters f and y
determine the amplitude and sharpness of the transition in
F and ¢, determines the field value at which the transition
occurs. We have chosen the quadratic potential for con-
creteness. However, we should emphasize that the features
observed in the forthcoming sections are anticipated to
persist for other choices of the potential U(gp).

In the first instance, we will consider a single field
model, in which the Brans-Dicke field also drives inflation.
Subsequently, we will consider a two-field model, in which
a second minimally-coupled scalar field acts as the inflaton.
Nevertheless, in both cases and for each of the benchmark
models considered, the values of the parameters are chosen
so as to obtain successful inflation, with the inflationary
period lasting a total of 66 e-folds.

Before proceeding, we will now illustrate that the
Jordan-frame model described above is not equivalent to
an Einstein-frame model of an inflaton potential with a
step; see [45]. By means of a conformal transformation, we
could transform the model in Eqgs. (25) and (26) to the
Einstein frame. Therein, the new potential for the Brans-
Dicke field ¢ would become

I _ U((p) _ mq,(p
V) =) = 3= 00 + bl =g/ &

which resembles the step potential in [45] for f < 1.
Note however that we should anticipate different dynamics,
since in the Einstein frame the kinetic term of the model
we consider will not be of canonical form, as it is in [45].
The canonical field ¢ is related to the noncanonical ¢
through the relation

oo [

Inverting the above equation, one can derive ¢ in terms of
¢, at least implicitly. Upon replacement of ¢ in terms of ¢
in U(g), the potential for the canonical field ¢ could be
obtained. However, the final form of the potential, written
in terms of the canonical field ¢, will not be the potential
with a step (27). As such, we conclude that a step potential
of a canonical field is not an appropriate phenomenological
model of a Jordan-frame action in which the effective
Planck mass undergoes a step change. Thus, the model
under investigation here differs from those considered
previously in the literature, leading to significantly different
predictions for the scalar and tensor spectra.

Returning to the Jordan frame, the dynamics of the fields
will be solved numerically, following the method outlined
in [112]; the derivatives of the background fields are given
their slow-roll values, and the initial field perturbations
will have the standard oscillatory Bunch-Davies initial

+3F ()
2F ((ﬂ)z

do. (28)
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conditions [45]. In order to calculate the tensor perturba-
tions generated by the system, we employ the methods
described in [45,110].

In Appendix B, we use an approximate analytic solution
to the background field equations in order to illustrate the
dependence on the parameters f and y of the resulting
features in the slow-roll parameter €. The latter allows us to
infer the dependency on the same parameters of the features
in the scalar power spectra P, and the tensor-to-scalar
ratio r.

A. Single-field model

1. Minimally-coupled limit

We first consider the minimally-coupled case, in which
p =0, i.e. F = 1. The value of the scalar field ¢ at the start
of inflation is taken to be ¢;,; = 16.179. The mass of the
scalar field is chosen to be m, = 6.5 x 107°, so that the
power spectrum for the scalar perturbations at the Planck
pivot scale is approximately 2.15 x 107°. The power
spectra for the scalar and tensor perturbations are given
in Fig. 1. Notice that we have defined the number of e-folds
N such that N = 0 at the start of inflation.

There are no features generated in this model, as we
would expect for minimally-coupled single-field inflation.
The spectral and running indices are calculated to be

ny, = 0.968865, a = 0.00107427. (29)
In addition to this, the tensor-to-scalar ratio at the pivot
scale kg is

r(ko) = 0.133205 (30)

We have chosen a quadratic potential for simplicity. The
model is under slight pressure from the Planck experiment
[6] (cf. [113], which attempts to reconcile this model with
the Planck data), although it is still within the 68% C.L. in
the n, —r plane. Nevertheless, the phenomenological
conclusions presented later in this paper do not depend
heavily on the choice of potential.

2. Benchmark 1

In this first benchmark model, we will consider a steep
transition in the Planck mass, causing a violent feature in
the slow-roll parameter . Specifically, the model param-
eters are m, = 2.1 X 1073, B =0.0460, y = 0.145 and
@, = 15.8, with the initial field value ¢;,; = 16.5783.
The e-fold evolutions of F' and ¢ are displayed in Fig. 2,
in which we see a transient violation of slow-roll."

'For a discussion of the calculation of correlation functions for
single-field models that does not rely on slow-roll approxima-
tions, see for instance [114].
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Evolution of the slow-roll parameter ¢ (left) and the effective Planck mass F (right) for the first 20 e-folds of
inflation in benchmark model 1. The model parameters are m,, = 2.1 x 1073, f = 0.0460, y = 0.145 and ¢, = 15.8, with ¢,,; = 16.5783.

The resulting scalar and tensor power spectra are
displayed in the left panel of Fig. 3. We see an extremely
sharp dip in the power spectrum of the scalar perturba-
tion at k~0.003 Mpc~!. This feature and the smaller

FIG. 3 (color online).
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oscillatory fluctuations that follow coincide with those
observed in the slow-roll parameter in Fig. 2. Notice
however that these features do not resemble the dramatic
oscillations seen in inflationary models with a step potential;
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Power spectra (left) of scalar (P, solid black) and tensor perturbations (P, blue dashed) and the associated
tensor-to-scalar ratio r (right) against wave number k (Mpc™") for benchmark model 1. The model parameters are m, =2.1x 1073,
p =0.0460, y = 0.145 and ¢, = 15.8, with ¢;,; = 16.5783.
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FIG. 4. The power spectrum of tensor perturbations (Pr)
showing the damped oscillations present for benchmark model
1. The model parameters are m,, = 2.1 x 1079, £ =0.0460, y =
0.145 and ¢, = 15.8, with ¢;,; = 16.5783.

see [45]. For this set of parameters, we also observe damped
oscillations in the tensor power spectrum, as demonstrated in
Fig. 4. However, the amplitude of this effect is significantly
smaller than that of the feature in the scalar power spectrum.

These observations may be understood in terms of the
behavior of the slow-roll parameter . Specifically, in the
single-field model, the scalar power spectrum P, ~ H?/e,
whereas Py ~ H 2 Hence, we see that the sharp rise in the
slow-roll parameter leads to a sharp dip in the scalar power
spectrum at the same scale, while leaving the tensor power
spectrum largely unaffected.

The tensor-to-scalar ratio as a function of the wave
number is presented in the right-hand side panel of Fig. 3.
We see a sharp rise in r at scales corresponding to the
feature in the slow-roll parameter &, since r ~ Pr/P; ~ &.
Although an unrealistically-large tensor-to-scalar ratio is
generated in the region of the Planck pivot scale in this

12

10
efold number, N

0 5

FIG. 5 (color online).
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benchmark model, this can be useful in constraining the
parameters of the nonminimal coupling F.

3. Benchmark 2

In this example, we show that one can produce features
in the scalar power spectrum that reduce the tension
between the tensor-to-scalar ratio r observed by the
Planck [6] and BICEP2 [7] experiments, as described in
Sec. I. To this end, we choose the following set of model
parameters: m,, = 6.9 x 107, g =0.002, y = 0.111 and
@, = 15.49, with the initial field value ¢;,; = 16.2271.

In Fig. 5, we see that the slow-roll parameter creates a
peak due to the increase in the coupling at approximately
N = 6. Notice that, with this combination of parameters,
the initial value of F(¢y,;) = 0.996 deviates by less than
0.5% from minimal coupling, compared with ~10% devia-
tion in benchmark 1.

The resulting power spectra for the scalar and tensor
perturbations are displayed in the left panel of Fig. 6 and
the tensor-to-scalar ratio versus wave number in the right
panel. As expected, a reduction in the power is observed.
The tensor power spectrum, on the other hand, is unaf-
fected. We see that, with this choice of parameters, the
value of r at k = 0.005 Mpc~! [see Eq. (1)] is consistent
with the BICEP2 result, while maintaining agreement with
the Planck limit of r < 0.11 at k = 0.002 Mpc~'.

For k > 1072, the value of the spectral tilt is n,; = 0.98.
The maximum value of the spectral index in the vicinity of
the feature is obtained by means of [115]

(31)

One can obtain a rough estimate on the maximum magni-
tude for the nonlinearity parameter fy; in the squeezed
limit [116] of

d
ng(k) ~ 1+ kﬁlnpg(k).

| NLmax & E'l —ng| ~ 0.45. (32)
’
0.999
0.998
0.997
0'9960 5 10 15 20

efold number, N

Evolution of the slow-roll parameter ¢ (left) and the effective Planck mass F (right) for the first 20 e-folds of

inflation in benchmark model 2. The model parameters are m,, = 6.9 x 1075, = 0.002,y = 0.111 and ¢, = 15.49, with ¢;,; = 16.2271.
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Evolution of the slow-roll parameter € (left) and the effective Planck mass F (right) for the first 20 e-folds

of inflation in benchmark model 3. The model parameters are m, = 6.5 x 1079, p = -0.005, y =0.100 and ¢, = 14.64, with

@i = 15.9055.

Thus, even in the vicinity of the transition, this model
remains consistent with the Planck limit for local non-
Gaussianity of fi¢ =2.74+5.8 [117].

4. Benchmark 3

Finally, to illustrate the enhancement of power over
certain scales, we consider the case in which the factor
f is negative. The model parameters chosen are m, =
6.5 x 107%, p = —0.005, y = 0.100 and ¢, = 14.64, with
the initial field value ¢;,; = 15.9055.

The evolutions of the slow-roll parameter ¢ and coupling
F(p) for this choice of parameters are displayed in
Fig. 7. We see that the change in sign of f# causes a dip
in the evolution of the slow-roll parameter, which lasts
approximately 7 e-folds for this set of parameters. As we
would anticipate given the earlier examples, this results in a
region of enhancement in the scalar power spectrum. The
scalar power spectrum is shown in the left panel of Fig. 8. In
addition, Fig. 8 presents both the scalar and tensor power
spectra as well as the gravitational coupling as functions of

wave number. There is no considerable effect upon
the tensor power spectrum. From the right panel of
Fig. 8, we see that the enhancement in the scalar
power spectrum suppresses the tensor-to-scalar ratio in the
range 107" Mpc~! < k < 10" Mpc™! compared with the
enhancement for 1072 Mpc™' < k < 107! Mpc~!, corre-

sponding to the initial suppression of power.

B. Two-field model

In this section, we calculate the power spectra of a two-
field model directly in the Jordan frame. The transition in
the Planck mass results again from the Brans-Dicke scalar
@ [see Eq. (2)], while inflation is instead driven dominantly
by an additional minimally-coupled scalar y [see Eq. (9)].

The model parameters chosen are m, = 5.6 X 1079,
m, = 4.48 x 107°, p=0.009, y =0.111 and ¢, = 1.0.
The initial field values are ¢;,; = 4.5 and y;,; = 15.489.
Figure 9 shows the evolution of the Brans-Dicke field ¢ and
the scalar y. Therein and for these model parameters, it is
clear that the last 50 e-folds of inflation are driven by the

103515-8
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FIG. 8 (color online).

Power spectra (left) of scalar (P, solid black) and tensor perturbations (Pr, blue dashed) and the associated

tensor-to-scalar ratio r (right) against wave number k (Mpc™") for benchmark model 3. The model parameters are m, = 6.5 X 1079,
p = -0.005, y =0.100 and ¢, = 14.64, with ¢;,; = 15.9055.
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FIG. 9 (color online).

Evolution of ¢ and y versus e-fold number N (left) and the field trajectory in the ¢-y plane for the same
e-foldings, illustrating the sharp turn at N ~ 10 (right).

would-be inflaton field y. The evolutions of the slow-roll
parameter ¢ and the effective Planck mass F are shown in
Fig. 10. Here, we see the feature arising from the step
change in the effective Planck mass superposed upon an

additional background from the more rapid evolution of the
Brans-Dicke field, as it rolls to the origin.

The

smooth enhancement in the tensor power spectrum

for k <1072 Mpc~! from the change of slope in the tensor

0.2 1
w 0.1 =
T 0.99}
0.05}
0.985}
0 L L L n L L
0 5 10 15 20 0 5 10 15 20

FIG. 10 (color online).

efold number, N

efold number, N

Evolution of the slow-roll parameter ¢ (left) and the effective Planck mass F (right) for the first 20 e-folds of
inflation in the two-field model. The model parameters are m, = 5.6 x 1079, m, = 4.48 X 1079, p =0.009,y =0.111 and ¢, = 1.00,
with Xini = 15.489 and Pini = 4.5.
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Power spectra (left) of scalar (P;, solid black) and tensor perturbations (Pr, blue dashed) and the associated

tensor-to-scalar ratio r (right) against wave number k (Mpc™') for the two-field model. The model parameters are m, = 5.6 X 1079,
m, = 4.48 x 1073, =0.009, y = 0.111 and ¢, = 1.00, with y;,; = 4.5 and ¢, = 15.489.

spectral index can be understood in terms of the overall
reduction of the slow-roll parameter after the turn in the field
trajectories shown in Fig. 9. Specifically, the k-dependent tilt
of the tensor power spectrum is given in the Jordan frame by
[118-120]

pF
ne=—2e="20, (33)
where ¢ = —H/H? is the usual first slow-roll parameter.

Noting that the variation of F(¢) is zero before and after the
transition, the slope of the tensor spectrum is given only by ¢,
which is larger before the turn in the trajectory occurs.

However, as we see from Fig. 11, the variation in the
scalar power spectra that resulted from the transition in the
Planck mass in the single-field cases is not apparent. This is
in spite of the fact that the fluctuation of the slow-roll
parameter in the vicinity of the transition is comparable with
the first single-field benchmark model. This observation can
be understood as follows. The turn in the field trajectory also
leads to the conversion of isocurvature to curvature pertur-
bations, which washes out the anticipated feature and results
in the enhancement of the scalar power spectrum at scales
k <1072 Mpc~!, leaving the horizon before the turn [121].
This conversion of isocurvature modes for nonminimally-
coupled two-field modes renders the curvature perturbations
frame dependent [122]. We have examined this observed
suppression of the features in the power spectrum with larger
transitions in Newton’s constant. In this case, although still
partially washed out, the features could be more clearly seen.
Further study of such effects on the scalar power spectrum,
and also the curvature spectrum in the Einstein frame, will be
presented in future work.

IV. CONCLUSIONS

We have studied the impact of sudden transitions in the
effective Planck mass during inflation on primordial power
spectra. In the case of single-field models, we have shown

that such variation gives rise to strong features in the scalar
power spectra at scales corresponding to those leaving
the horizon during the transition. In addition, correspond-
ing features occur in the tensor-to-scalar ratio at the same
scales. In comparison to [45], these features do not exhibit
the oscillations that occur for step transitions in the infla-
tionary potential itself. As shown in Sec. III, the resulting
variation in the tensor-to-scalar ratio can potentially alle-
viate the tension between recent measurements by the
Planck and BICEP2 experiments. A detailed comparison to
data will be performed in future work.

Similar transitions in the Planck mass were studied in a
two-field model. In this case however, sharp features are
not observed in the scalar power spectrum and tensor-to-
scalar ratio, as they are washed out by the conversion of
isocurvature modes.
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APPENDIX A: FIELD EQUATIONS:
TWO-FIELD MODEL

In this appendix, we summarize the pertinent back-
ground field and perturbation equations for the two-field
model with action comprising Egs. (2) and (9).

The Einstein equation takes the form

1 1
G/w - = |: #({l{/) + PuPv— Egﬂvgaﬂ§0.a(p,ﬁ + F;m/

F

- gﬂl/DF - g;wU:| ’
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where

s _ 2 osW
SN D&
is the energy-momentum tensor of the field y. Varying the

full action Eq. (9) with respect to the two scalar fields yields
their equations of motion:

(A2)

2wl = F ,q)g"”T;%) - ,d" 0,0, —4F ,U+2FU ,,
(A3a)

Oy =V, (A3b)

Lastly, the Friedmann equations take the following
forms:

1 |1 1 .
H? P +-p?+U+V-3HF]|,

R (Ada)

-1 L
—2H =+ (0> + 7>+ F — HF). (Adb)

The relevant perturbation equations may be found in
[122,123] and are given by

1/F 1
5ip + {3H+w"’1¢}5¢+ { <"’> T0f>+<w""> P
w 2\ w ” 2\ w "
1/1

k2
P

. . 1
- (T +3P)p+ - [F,T% —4F ,U+2FU |V

1

+5— F ,6TW =0, (A5a)

87 +3H8 + 56y — (U +3d)y + 2V, ¥ +V 6y = 0.
(ASb)

The rhs’s of the perturbed Einstein equations (14) are
given by

... . e .
Sp = 7 @op — ™V + oy — U + (U, 00 +V ,0x)

.. . K
+3F(® +2HVY) — 3H(6F + HOF) — — 0F |,
a

(A6a)

1 ..
(@S¢ + y8y + 6F — FU — H5F],

5g = ——
1="F

(A6b)

PHYSICAL REVIEW D 90, 103515 (2014)

... . e
Sp =5 |#56 — PV + 8y — 0 — (U 60+ V ,0)

— poSF + 8F + 2HSF — FU —2F &

.. . k>
—2(F + 2HF)W + —25F] , (A6e)
a

where p, is the total effective pressure from the two fields.
The latter is defined as

I e e vk yoni (A7)
Ptot*F 3 3 .

APPENDIX B: APPROXIMATE ANALYTIC
SOLUTION: SINGLE-FIELD MODELS

In order to cross-check the numerical simulations and to
understand the behavior of the features in terms of
variations of the parameters # and vy, it is illustrative to
obtain an approximate analytic expression for the phase
diagram of the Brans-Dicke field ¢ and the slow-roll
parameter €. By means of Egs. (6) and (7), we may show
that ¢ is given by the negative root of

1
@ = A [-B + V' B? + 4A(C?),

(B1)

where

40) =6(F) -y e300, (2). 20)

B(g) = 12 (%)ZUF +2C (mw ~3w %) (B2b)

C(p) = 4F ,U = 2FU , — 2wip. (B2c)

In order to find ¢ = ¢(¢), we proceed iteratively under
the assumption that ¢ remains small in spite of the transient
features due to transition in the effective Planck mass.
In this way, we may approximate

C~C, =4F U -2FU , - 2w, (B3)
with
d d
S = ) A —— () . B4
b1= g0~ o g0 (B4)
where
, 1
=55 [—BO +1/B3 + 4AC%], (BS)

in which C has been replaced throughout by

103515-11



ASHOORIOON et al.

PHYSICAL REVIEW D 90, 103515 (2014)

T T T 0.020 . . .
1.0f . 1
; —— Full Num. —— Full Num.
0.8} ; ]
N Approx. ooist | Approx. i
o 04f 1 « 0.010
0.2} ]
0.0 L 0.005} ]
—-0.2¢ ‘ 4
. . . 0.000 . . .
0 5 10 15 20 0 5 10 15 20
efold number N efold number N
0.020 . : :
—— Full Num.
0.015¢ [ e Approx B

«» 0.010

0.005

L

0.000

L

10 15 20

efold number N

FIG. 12 (color online).

Comparison of the full numerical (solid black) and approximate analytic (dotted blue) solutions for the slow-

roll parameter for benchmark models 1 (top left), 2 (top right) and 3 (bottom). The e-fold number scaling for the approximate solution

was determined semianalytically.

Cy =4F ,U-2FU ,. (B6)

Figure 12 shows a comparison of the analytic approxi-
mation and full numerical results for benchmark models
1-3. We see that the shapes of the features are reproduced
by the approximate solution. However, for the strong
feature in benchmark model 1, the amplitude of the analytic

1.000F T T T L |
0.500( ! — y=025 1

0.100
0.050
[

0.010
0.005(

0.001
2

efold numberN

FIG. 13 (color online).

approximation does not model well the full numerical
solution. Here, we conclude that ¢/ Mp; is not sufficiently
small for this set of parameters for the first-order approxi-
mation detailed above to hold.

In Fig. 13, we show the evolution of the slow-roll
parameter ¢ determined using the analytic approximation
above for a range of values for the parameters y and f.

T T

1.000F" . '
0.500} :

5 =0.002

0.100
0.050

0.010}_
0.005}

0.001

NF

efold number N

Approximate evolution of the slow-roll parameter & for a range of values of the parameter y (left, # = 0.01)

and S (right, y = 0.111). The remaining model parameters were those of benchmark model 2: m, = 6.9 x 107%, ¢, = 15.49 and

Pini — 16.2271.
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The field dependency of the e-fold number N was
determined semianalytically. These plots are indicative
of the tuning possible for the shape of the feature in
the slow-roll parameter and subsequently that occurring
in the scalar power spectra P, as well as the tensor-to-
scalar ratio r. Specifically, smaller values of £ and
larger values of y lead to sharper and more violent
features in the slow-roll parameter and therefore in the

PHYSICAL REVIEW D 90, 103515 (2014)

scalar power spectra. We reiterate that this first-order
approximation in ¢ only allows comparison of the
shape of the feature in the slow-roll parameter. The
overestimate of the amplitude noted above can also be
seen from Fig. 13, in which the duration of inflation is
of order 10% shorter than the full numerical solutions,
decreasing marginally with increasing amplitude of the
feature in the slow-roll parameter.
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