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We consider cosmological inflationary models in which vector fields play some role in the generation
of the primordial curvature perturbation ζ. Such models are interesting because the involved vector fields
naturally seed statistical anisotropy in the primordial fluctuations which could eventually leave a
measurable imprint on the cosmic microwave background fluctuations. In this article, we estimate the
scale and shape dependent effects on the non-Gaussianity (NG) parameters due to the scale dependent
statistical anisotropy in the distribution of the fluctuations. For concreteness, we use a power spectrum (PS)
of the fluctuations of the quadrupolar form: Pζð~kÞ≡ PζðkÞ½1þ gζðkÞðn̂ · k̂Þ2�, where gζðkÞ is the only
quantity which parametrizes the level of statistical anisotropy and n̂ is a unitary vector which points towards
the preferred direction. Then, we evaluate the contribution of the running of gζðkÞ on the NG parameters by
means of the δN formalism. We focus specifically on the details for the fNL NG parameter, associated with
the bispectrum Bζ , but the structure of higher order NG parameters is straightforward to generalize.
Although the level of statistical anisotropy in the power spectrum is severely constrained by recent
observations, the importance of statistical anisotropy signals in higher order correlators remains to be
determined, this being the main task that we address here. The precise measurement of the shape and scale
dependence (or running) of statistical parameters such as the NG parameters and the statistical anisotropy
level could provide relevant elements for model building and for the determination of the presence (or
nonpresence) of inflationary vector fields and their role in the inflationary mechanism.
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I. INTRODUCTION

The study of statistical characteristics of the inflationary
fluctuations such as non-Gaussianity (NG) and statistical
anisotropy, and their signatures in the cosmic microwave
background (CMB) and in the large scale structure (LSS),
is a subject of major interest in modern cosmology [1].
The interest in these subjects is justified by the fact that
non-Gaussianity and statistical anisotropy signatures in the
probability distribution of the CMB temperature anisotro-
pies are sensitive to the specific details of the mechanisms
ruling the dynamics of the early Universe; thus, their
precise evaluation could provide relevant criteria to dis-
criminate among the many models proposed to explain
the origin of the LSS distribution that we observe today.
Moreover, the detection of a significant signal of NG and
statistical anisotropy would rule out the simplest models of
inflation based on a single “slowly rolling” scalar field

driving the inflationary mechanism. A possible way to
generate significant levels of statistical anisotropy and NG
is by introducing vector fields during the inflationary epoch
as a source of the primordial curvature perturbation ζ. For
this reason, inflationary models with vector fields have
been studied with great interest during recent years, and
the literature addressing the main features of these models
is rich; see, for instance, Refs. [2–38] (for reviews see
Refs. [39–41]). Besides, inflationary models with vector
fields are interesting on their own because their phenom-
enology is rich and also because the statistical parameters,
modified by the privileged directions inherent to the nature
of the vector fields, could eventually be tested with the
required amount of precision.
The main purpose of this paper is the evaluation and the

detailed quantitative description of the principal features
of the statistical parameters related to NG and statistical
anisotropy in the presence of vector fields and the relations
among them. We focus mainly on the first level of non-
Gaussianity fNL obtained from the three-point correlation
function of ζ, or equivalently, its Fourier transform in
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momentum space, the bispectrum (BS) Bζð~k1; ~k2; ~k3Þ. The
bispectrum is sensitive to the configuration adopted by the

wave vectors ð~k1; ~k2; ~k3Þ in momentum space. This sensi-
tivity is exacerbated in the presence of vector fields given
that, in this case, the bispectrum not only depends on the
magnitude of the wave vectors but also on their orientations
with respect to a preferred direction induced by the vector
field. There are many ways to parametrize the presence of
statistical anisotropy in the correlation functions, but for
simplicity and definiteness of the analysis, we restrict
ourselves here to a parametrization generated from a
quadrupolar expansion of the power spectrum (PS) of

the fluctuations [3]: Pζð~kÞ≡ PζðkÞ½1þ gζðkÞðn̂ · k̂Þ2�,
where gζðkÞ measures the magnitude of the statistical
anisotropy and n̂ points towards the preferred direction
of the anisotropies [3,42–45]. We study the relation
between the NG and the statistical anisotropy parameters
and the sensitivity of the former to variations in the latter.
We devote special attention to the scale dependence (or
running) of the statistical anisotropy parameter gζ and the
way in which it contributes to the shape and scale depend-
ence of NG. Scale dependent NG [46–58] has been shown to
be a generic feature of several inflationary models based on
scalar fields such as Dirac-Born-Infeld (DBI) [55,59] and
related models, so it is important to quantify this character-
istic in order to have predictive power over the considered
models [60]. Our main goal here is to quantify the relation
between statistical anisotropy and NG and to identify how
the running of the statistical anisotropy level is encoded in
the running and shape dependence of the NG parameters.
Related studies about scale dependent anisotropic NG have
been done in the context of noncommutative inflationary
models without vector fields [61] and also in the context of
LSS through scale dependent bias parameters induced by
primordial vector fields [62,63]. Throughout this paper, we
employ the δN formalism1 [5,64] to obtain the statistics
encoded in the correlation functions of the primordial
curvature perturbation in inflationary models in the presence
of vector fields. We will do a full analysis of the tree-level
correlators and define a template for their quantitative
evaluation, extracting the scale and shape dependence on
the wave vectors.
This paper is organized as follows: In Sec. II we roughly

review and discuss the general characteristics of infla-
tionary models where vector fields play some role in the
generation of the primordial curvature perturbation. In
Sec. III we derive the correlation functions by means of
the δN formalism, identify the way in which the statistical
anisotropy enters in the correlators and discuss some
particular cases of interest. The main results of this article
are presented in Sec. IV; there, we evaluate the NG

parameters in the presence of statistical anisotropy; we
also discuss a way to track and identify the shape and scale
dependence of the NG parameter fNL by introducing the
relevant definitions for measuring variations in the shape
and size of the triangle formed by the wave vectors. Some
numerical evaluations exemplifying and illustrating the
way in which the statistical anisotropy affects the NG
parameters are presented in Sec. V. Finally, in Sec. VI we
summarize our results and conclude.

II. PRIMORDIAL ANISOTROPY IN MODELS
WHICH INVOLVE VECTOR FIELDS

The statistical anisotropy can be studied through the
correlation functions of the primordial curvature perturba-
tion ζ. A common parametrization of the anisotropy in the
power spectrum of ζ is obtained by doing a multipolar
expansion, the lowest level being the quadrupolar term, as
follows [3]:

Pζð~kÞ≡ Piso
ζ ðkÞ

h
1þ gðkÞðn̂ · k̂Þ2

i
; ð1Þ

where n̂ is a unit vector pointing towards the preferred
direction, g is a function measuring the amplitude of the
anisotropy, and Piso

ζ ðkÞ denotes the isotropic part of the
power spectrum. The five-year WMAP data were analyzed
in order to obtain the value of g and the orientation of
the primordial anisotropy [42,43], and it was found that
g ¼ 0.290� 0.031 nearly along the ecliptic poles. This
result was confronted later in Refs. [65,66], and it was
claimed that this value might have its origin in systematic
errors in the measurements due to asymmetric beams in
the instruments. The PLANCK mission at first seemed to
confirm the presence of anomalies due to statistical
anisotropy [67], but soon after, using the PLANCK
2013 temperature map results, it was shown that there is
“no evidence for violation of rotational symmetry” with
g ¼ 0.002� 0.016 (68 % CL) [44], where the asymmetry
beam effects were removed; the latter result is consistent
with the analysis performed in Ref. [45] employing the
WMAP nine-year data.
Despite these results disfavoring the presence of signifi-

cant statistical anisotropy in the power spectrum, it is still
possible that it appears in higher order correlation func-
tions. To this end, in this paper we also study how the
statistical anisotropy appears in the three-point correlator,
parametrized by the bispectrum (BS), and its effects on the
non-Gaussianity parameter fNL, especially on its scale and
shape dependence. The analysis of the non-Gaussianity
parameters gNL and τNL related to the four-point correlator,
parametrized by the trispectrum, and higher order param-
eters is intricate but straightforward.
Several models produce statistical anisotropy which is

parametrized as in Eq. (1). We consider models which can
be derived from the action

1Even though we use the δN formalism, other formalisms can
be used equivalently to obtain the same results.
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S ¼
Z

d4x
ffiffiffiffiffiffi−gp

LðR;ϕ; AμÞ; ð2Þ

with a single scalar inflaton field ϕ and a vector field Ai
both minimally coupled to Einstein gravity. In principle, we
can consider a vector field with a potential term (or simply,
a mass term) but, at some point, we shall specialize in the
massless U(1) invariant case which is ghost instability free
[68]; an example of a massive, stable model, however, has
been presented in Refs. [9,10]. Several models of this type
have been studied with interest in recent years; among
them, it is worth mentioning the model with the coupling
term f2ðϕÞFμνFμν [11] mainly because it is a stable model
able to produce both statistical anisotropy and anisotropic
expansion which do not dilute during the inflationary
expansion (see, for instance, Refs. [15,24,28] and refer-
ences therein).
Roughly speaking, one can solve the equations of motion

derived from Eq. (2) for the scalar field perturbations δϕ
and vector field perturbations δAi and express the general
solution as an expansion:

δϕ ¼
X
~k

h
âð~kÞfðτ; kÞ þ â†ð−~kÞf�ðτ; kÞ

i
ei~k·~x; ð3Þ

δAj ¼
X
~k;λ

h
ejλðk̂Þâλð~kÞwλðτ; kÞ

þ e�jλð−k̂Þâ†λð−~kÞw�
λðτ; kÞ

i
ei~k·~x; ð4Þ

where τ is the cosmic time, the functions f and wλ form,
respectively, a complete basis for the solutions of the
equations of motion, the vectors eiλ are the polarization
vectors of vector perturbations, and âð~kÞ; â†ð~kÞ and
âλð~kÞ; â†λð~kÞ are the creation and annihilation operators
for scalar and vector field perturbations, respectively, such
that they satisfy âð~kÞj0i ¼ 0; âλð~kÞj0i ¼ 0, and obey the
commutation rules:h

âð~kÞ; â†ð~k0Þ
i
¼ δð~k − ~k0Þ;h

âλð~kÞ; â†λ0 ð~k
0Þ
i
¼ δλλ0δð~k − ~k0Þ: ð5Þ

The polarizations of the vector field perturbations are the
transverse right (R) and left (L) and the longitudinal (long)
in the massive case, so λ ¼ fR;L; longg. By choosing
standard vacuum conditions and using the several asymp-
totic properties of Hankel and Bessel functions, one can
express the solutions up to first order in slow-roll param-
eters as follows2:

δΦIð~kÞ ¼
iHffiffiffiffiffiffiffi
2k3

p
�
ð1 − ϵÞδJI þ

�
cþ ln

�
aH
k

��
ϵJI

�

×
X
λ

eJλðk̂Þâλð~kÞ: ð6Þ

In the previous expression, we have introduced the compact
notation δΦI ¼ ðδϕ; δAiÞ, where the index I labels both the
scalar field and the components of the vector field. In
addition, H is the Hubble parameter during inflation, a is
the expansion parameter,

ϵ≡− _H
H2

; ð7Þ

ϵIJ ≡ ϵδIJ þ ΣIJ; ð8Þ

c ¼ 2 − ln 2 − γ ¼ 0.7296…, with γ being the Euler-
Mascheroni constant, and the polarization vectors also
follow a compact notation3: eJλ ¼ fδ0λ ; eiλg. Regarding the
ΣIJ symbols, they are related to the slow-roll parameters,
their precise form depending on the particular model; for
instance, in multiscalar field models one gets

ΣIJ ¼
VIVJ

9H4
− VIJ

3H2
; ð9Þ

where VI ¼ ∂V
∂ϕI

and VIJ ¼ ∂2V
∂ϕI∂ϕJ

.

III. SCALE AND SHAPE DEPENDENT
STATISTICAL ANISOTROPY IN THE

CORRELATION FUNCTIONS

In cosmological inflationary models that include vector
fields, part, or even all, of the curvature perturbation can be
generated by the vector field perturbations. In such scenar-
ios, ζ can be calculated through the δN formalism [5,64]
which states that one can evaluate the primordial curvature
perturbation ζ in terms of the derivatives of the amount of
expansion N with respect to the background field values,
and the values of the field perturbations, in the flat slicing,
at the time of horizon exit.4 The expression that we use for
our calculations is the following [34]:

ζð~x;tÞ≡δNð~x;tÞ

¼NIδΦIþ
1

2!
NIJδΦIδΦJþ

1

3!
NIJKδΦIδΦJδΦKþ��� :

ð10Þ

2This form is a direct generalization of the results for multi-
scalar field inflation shown in Refs. [49,50,69] and the results in
Ref. [9] for a vector curvaton field with a varying kinetic function
during inflation.

3In this compact notation, a0ð~kÞ means að~kÞ, i.e., the annihi-
lation operator for the scalar perturbation.

4Since the gauge is fixed so that A0 ¼ 0 (in the background),
the perturbation δA0 does not enter in Eq. (10).
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For the amount of expansion derivatives we use

NI ≡ ∂N
∂ΦI

; NIJ ≡ ∂2N
∂ΦI∂ΦJ

; etc: ð11Þ

The N derivatives are evaluated at the initial time t at
some instant soon after horizon exit defined by the scale
k ¼ aðt�ÞHðt�Þ (t� being the time of horizon exit), so they
carry some scale dependence also encoded in this time
dependence. The scale dependence in the derivatives can
be calculated, for instance, as explained in Ref. [70] by
evaluating the derivative

∂
∂ ln k

����
a¼constant

¼ ∂
∂ ln a

����
k=a¼constant

− ∂
∂ ln a

����
k¼constant

;

ð12Þ

or as derived at second order in slow-roll parameters
in Ref. [69].
With the curvature perturbation expansion in Eq. (10),

we can calculate the different correlation functions and see
how the scale and shape dependence enters in the statistical
parameters.

A. Power spectrum

We start with the PS:

D
ζð~k1Þζð~k2Þ

E
≡ ð2πÞ3δð~k12ÞPζð~k1Þ

≡ ð2πÞ3δð~k12Þ
2π2

k3
Pζð~k1Þ; ð13Þ

where Pζð~kÞ is the dimensionless power spectrum, and
~k12 ≡ ~k1 þ ~k2. We shall restrict our analysis by doing some
assumptions about the field perturbations. First, we con-
sider that the expansion is Friedmann-Robertson-Walker
(FRW) type. Second, NG in the field perturbations is
negligible; that is, the NG is generated due to the super-
horizon evolution. This will be important since, this being
the case, the primordial NG can be big enough to be
observable by foreseeable dedicated missions, and, as we
will see, the corrections due to the statistical anisotropy can,
in principle, be too. Third, we assume that the correlations
between scalar and vector field perturbations at horizon exit
are subleading order [34]. Fourth, we consider that the
vector field perturbations do not violate parity symmetry.
We shall adopt the notation

D
δΦIð~k1ÞδΦJð~k2Þ

E
≡ ð2πÞ3δð~k12ÞΠIJð~k1Þ; ð14Þ

with the components

D
δϕð~k1Þδϕð~k2Þ

E
≡ ð2πÞ3δð~k12ÞPδϕðk1Þ; ð15ÞD

δAið~k1ÞδAjð~k2Þ
E
≡ð2πÞ3δð~k12ÞΠijð~k1Þ
≡ð2πÞ3δð~k12Þ

X
λ

eλi ðk̂1Þeλ�j ð−k̂1ÞPλð~k1Þ;
ð16Þ

and zero otherwise. In the latter expression,

δAið~kÞ≡
X

λ¼R;L;long

eλi ðk̂ÞδAλð~kÞ; ð17Þ

and

X
λ

eλi ðk̂Þeλ�j ð−k̂ÞPλð~kÞ

≡ Πijð~kÞ
¼ Πeven

ij ð~kÞPþðkÞ þ Πodd
ij ð~kÞP−ðkÞ þ Πlong

ij ð~kÞPlongðkÞ;
ð18Þ

where Πeven
ij ð~kÞ≡ δij − k̂ik̂j, Πodd

ij ð~kÞ≡ iϵijkk̂k, and

Πlong
ij ð~kÞ≡ k̂ik̂j [5,34]. PlongðkÞ is the longitudinal (“mas-

sive component”) part of the power spectrum and PþðkÞ
and P−ðkÞ are, respectively, the parity conserving and
parity violating power spectra: P� ¼ ðPR � PLÞ=2 [5,34].
The scale dependence in every spectra can be derived from
the analysis sketched in Sec. II that leads to Eq. (6), and
their precise forms depend on the specific details of the
model. We do not enter in the specifics of each model but,
instead, we consider that the scale dependence in every
spectrum can be written as a power law, which is quite a
general consideration.
Additionally, given the separate universe assumption

[71], which the δN formalism is based on, the form of the
equations for the dynamical quantities at each comoving
location is the same as for the unperturbed quantities.
Thus, the field perturbation equations in momentum space

do not depend explicitly on ~k. They depend on time, thus
on k� (the wavenumber at horizon exit), but they do not

depend on the direction of ~k. Their solutions are, therefore,

independent of the direction of ~k except for the set of initial
conditions fαn~kg. However, the field perturbations are

evaluated in the flat slicing, so, taking into account the
assumption of a FRW-type expansion, the whole perturbed
metric in this slicing is actually FRW which is conformally
equivalent to Minkowski. As a consequence, the set of
initial conditions, when quantizing, can be written as
fα̂n~k ¼ αnkâ

n
~k
g, where ân~k is the respective annihilation

operator. Following the usual procedure to calculate the
power spectrum of the field perturbations, this implies that

JUAN P. BELTRÁN ALMEIDA et al. PHYSICAL REVIEW D 90, 103511 (2014)

103511-4



none of PδϕðkÞ, PþðkÞ, P−ðkÞ, and PlongðkÞ depends on the
direction of the wave vector (since the αnk do not depend on

the direction of ~k). This is valid for all the relevant
cosmological scales since the time of horizon exit for
each of them is contained within the time interval spanning
from the beginning of inflation to the time when the
curvature perturbation ζ is evaluated. Thus, at tree level,
the PS is [5,34]

Pζð~kÞ ¼ NINJΠIJð~kÞ ¼ ðNϕÞ2PδϕðkÞ þ NiNjΠijð~kÞ:
ð19Þ

As already mentioned, in this article we only consider
the case of parity conserving vector field perturbations;
then, we only keep PþðkÞ and PlongðkÞ. We need not
suppose that all the δAi perturbations evolve in the same
way after horizon exit so that they do not necessarily have
the same scale dependence on their spectra. With these
assumptions, the longitudinal and the parity conserving
spectra can be related by PlongðkÞ ¼ qðkÞPþðkÞ, where
the qðkÞ function could, in general situations, carry
some level of scale dependence. Then, the vector power
spectra read

Πijð~kÞ ¼
h
δij þ ðqðkÞ − 1Þk̂ik̂j

i
PþðkÞ: ð20Þ

Therefore, the PS obtained from the δN formalism is

Pζð~kÞ ¼ Piso
ζ ðkÞ þ Paniso

ζ ð~kÞ ¼ Piso
ζ ðkÞ

h
1þ gζðkÞðn̂ik̂iÞ2

i
;

ð21Þ

which fits in the parametrization given in Eq. (1). In the
previous expression we must employ

Piso
ζ ðkÞ≡ 2π2

k3
Piso

ζ ðkÞ ¼ NINJPIJðkÞ; ð22Þ

Paniso
ζ ð~kÞ ¼ ðqðkÞ − 1ÞðNik̂iÞ2PþðkÞ; ð23Þ

and

n̂i ≡ Ni=ðNjNjÞ1=2: ð24Þ

The relation between the ðqðkÞ − 1Þ factor and the
anisotropy parameter gζðkÞ in the power spectrum is
given by

gζðkÞ ¼ ðqðkÞ − 1Þ NiNiPþðkÞ
NINJPIJðkÞ

¼ ðqðkÞ − 1Þ
PζAþ

ðkÞ
Piso

ζ ðkÞ ;

ð25Þ

where the power spectra PIJ assume the values P00 ¼ Pδϕ

and Pij ¼ δijPþ, and the contributions to the spectrum of
ζ from the scalar and the vector field are defined as
follows:

PζϕðkÞ≡
2π2

k3
PζϕðkÞ ¼ N2

ϕPδϕðkÞ; ð26Þ

PζAþ
ðkÞ≡ 2π2

k3
PζAþ

ðkÞ ¼ NiNiPþðkÞ: ð27Þ

We must notice that, according to Eq. (25), generically,
the simultaneous presence of scalar and vector perturba-
tions induces scale dependence in gζ. At this point, we
assume that the isotropic part of the spectrum of the
primordial curvature perturbation can be expressed as a
power law where deviations from scale invariance are
parametrized by a spectral index nisoζ . The precise forms
of the spectral index and its running, as we said before,
depend on the slow-roll parameters in the model but, for
our purposes, we do not need a concrete expression. Then,
the isotropic spectrum (which includes both scalar and
vector perturbations) is written as

Piso
ζ ðkÞ ¼ NINJPIJðkÞ≡Aζ

�
k
k�

�
nisoζ −1

; ð28Þ

with an amplitudeAζ at the pivot scale k�. In the same way,
the spectrum of the scalar perturbations is parametrized as

PζϕðkÞ ¼ N2
ϕPϕðkÞ≡Aϕ

�
k
k�

�
nϕ−1

; ð29Þ

and the spectra of the longitudinal and transverse polar-
izations of the vector perturbations become

PζAþ
ðkÞ ¼ NiNiPþðkÞ≡Aþ

�
k
k�

�
nþ−1

; ð30Þ

PζAlong
ðkÞ≡Along

�
k
k�

�
nlong−1

; ð31Þ

where the spectral indices nþ and nlong can run with the
scale. If we evaluate the logarithmic derivative of the power
spectrum in Eq. (21), we can define a spectral index for this
class of models:

nζ − 1≡ d lnPζð~kÞ
d ln k

¼ d lnPiso
ζ ðkÞ

d ln k
− 1

1þ gζðkÞðn̂ik̂iÞ2
d ln gζðkÞ
d ln k

ð32Þ

≡ nisoζ − 1 − 1

1þ gζðkÞðn̂ik̂iÞ2
ðng − 1Þ; ð33Þ
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where, according to the definitions given above,

d lnPiso
ζ ðkÞ

d ln k
¼ nisoζ − 1

¼ 1

Piso
ζ

½ðnþ − 1ÞPζAþ
þ ðnϕ − 1ÞPζϕ �: ð34Þ

The quantity ng − 1≡ d ln gζðkÞ
d ln k measures the deviation from

scale invariance of the anisotropy parameter function gζðkÞ.
We see from the above expressions that the spectral index
nζ is sensitive to the preferred orientation defined by the
vector n̂ and, certainly, the latter plays a role for quantifying
and measuring deviations from scale invariance and stat-
istical isotropy. Now, we can think about some simplified
scenarios; for instance, we can consider that the longi-
tudinal and transverse spectral indices of the vector
perturbations are equal, so that the q ratio is a constant.
With this in mind, it is easy to realize that the statistical
anisotropy parameter gζ can be expressed as a power law:

gζðkÞ≡ g�ζhðkÞ ¼ g�ζ

�
k
k�

�
ng−1

; ð35Þ

where

g�ζ ¼ ðq − 1ÞAþ
Aζ

; ð36Þ

and

ng − 1 ¼ nþ − nisoζ : ð37Þ

Later, we will devote special attention to an important
particular case: the massless vector field. In that case, the
longitudinal polarization is null; then, the q ratio is zero and
the statistical anisotropy parameter is

gζðkÞ ¼ −PζAþ
ðkÞ

Piso
ζ ðkÞ ¼ −Aþ

Aζ

�
k
k�

�
nþ−nisoζ

: ð38Þ

A remarkable fact is that, in the massless case, the statistical
anisotropy factor is always negative and its running can be
deduced directly from the running of the scalar and the

transverse vector perturbation spectra. It is also worth
noticing that, in this case, gζ ≥ −1.

B. Bispectrum

Now, we follow the same procedure for the evaluation of
the BS:

�Y3
i¼1

ζð~kiÞ
	

¼ ð2πÞ3δð~k123ÞBζð~k1; ~k2; ~k3Þ; ð39Þ

where ~k123 ¼ ~k1 þ ~k2 þ ~k3.
We get, from the δN formula, the tree-level expression

Bζð~k1; ~k2; ~k3Þ ¼ NINJNKBIJKð~k1; ~k2; ~k3Þ
þNINJNKL½ΠIKð~k1ÞΠJLð~k2Þ þ cyc perm�;

ð40Þ
where BIJKð~k1; ~k2; ~k3Þ is the connected part of the three-
point correlator and its components describe the primordial
BS for the different field perturbations at the time of
horizon exit. As we did with the PS, now we will impose
some extra simplifying conditions and discuss their validity
under some general grounds. First, we suppose that the
derivatives of N obey

NI ∝ ΦI; NIJ ∝ δIJ: ð41Þ
The second condition involving the second order deriva-
tives implies that the mixed interactions between scalar and
vector fields (Niϕ) are subleading order compared to the
scalar-scalar and vector-vector interactions. Although it is
not essential, we invoke this condition just to simplify the
calculations and because those mixed terms do not seem
to add significant contributions to the correlations (see,
however, Ref. [35] for a detailed calculation of the PS in the
f2ðϕÞFμνFμν þm2ðϕÞA2 curvaton model considering the
mixed scalar and vector terms). Some of the most studied
inflationary models in the presence of vector fields, such as
the vector curvaton [2], vector inflation [4], hybrid inflation
[6] and their variants, obey the conditions in Eq. (41) to a
good approximation and can be parametrized as we
do here.
With these considerations, the bispectrum reads

Bζ ≡ ð1þ ξ1ÞBiso
ζ

¼
"
1þ

P
l<mN

2þNþþPþðklÞPþðkmÞ½QðklÞðn̂ · k̂lÞ2 þQðkmÞðn̂ · k̂mÞ2�
NANBNCD

P
l<mPACðklÞPBDðkmÞ

þ
P

l<mN
2þNþþPþðklÞPþðkmÞQðklÞQðkmÞðn̂ · k̂lÞðn̂ · k̂mÞðk̂l · k̂mÞ

NANBNCD
P

l<mPACðklÞPBDðkmÞ

#
Biso
ζ ; ð42Þ
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where we have introduced the definitions

QðkÞ≡ qðkÞ − 1; Ni ≡ Nþn̂i; Nij ≡ Nþþδij; ð43Þ

and

Biso
ζ ðk1; k2; k3Þ ¼ NINJNKL½PIKðk1ÞPJLðk2Þ þ cyc perm�

¼ Nþþ
N2þ

PζAþ
ðk1ÞPζAþ

ðk2Þ þ
Nϕϕ

N2
ϕ

PζAϕ
ðk1ÞPζAϕ

ðk2Þ þ cyc perm: ð44Þ

In the previous expressions, the scale dependence coming from the statistical anisotropy parameter gζðkÞ enters through the
longitudinal to transverse factor q in the functionQðkÞ ¼ qðkÞ − 1. We stress that the only assumption that we have made in
deriving Eq. (42) is that, under the considerations and approximations that we discussed before, the second derivatives of
the amount of expansion N are such that the mixed scalar-vector components are subleading order compared to the scalar-
scalar and the vector-vector components; that is, Niϕ ≈ 0.
Now, one can use Eq. (25) to rewrite the BS also in terms of the gζ parameter instead of the q ratio to have a direct relation

between the BS and the statistical anisotropy parameter in the PS. This will allow us to identify the functional dependence of
the non-Gaussianity parameter fNL in terms of the statistical anisotropy level gζ and, therefore, to isolate the scale
dependence encoded only on the gζ parameter. The result is

Bζ ≡ ð1þ ξ1ÞBiso
ζ

¼
"
1þ

P
l<mðNþþ

N2
þ
Þ½PζAþ

ðkmÞPiso
ζ ðklÞgζðklÞðn̂ · k̂lÞ2 þ PζAþ

ðklÞPiso
ζ ðkmÞgζðkmÞðn̂ · k̂mÞ2�

NANBNCD
P

l<mPACðklÞPBDðkmÞ

þ
P

l<mðNþþ
N2

þ
ÞPiso

ζ ðklÞPiso
ζ ðkmÞgζðklÞgζðkmÞðn̂ · k̂lÞðn̂ · k̂mÞðk̂l · k̂mÞ

NANBNCD
P

l<mPACðklÞPBDðkmÞ

#
Biso
ζ ; ð45Þ

where the 1þ ξ1 parameter has been defined and
corresponds to the expression inside the big brackets.
We can also extend our analysis to higher order NG
parameters, but our main focus here is the three-point
correlator. Higher order cases are straightforward to
generalize, but their calculations are rather lengthy
and intricate and do not contribute significantly to the
analysis presented here.

IV. SCALE AND SHAPE DEPENDENT
NON-GAUSSIANITY AND

STATISTICAL ANISOTROPY

A legitimate question, which one would like to answer
when considering models with statistical anisotropies, is if
there is any relation between the NG parameters and the
level of statistical anisotropy in the statistical distribution of

the fluctuations. In this section, we answer affirmatively to
this question and describe quantitatively the relation
between NG and statistical anisotropy, considering also
the scale (running) and shape dependence of the correlators
in the presence of inflationary vector fields.

A. Scale and shape dependence in fNL
The fNL NG parameter is defined by

6

5
fNLð~k1; ~k2; ~k3Þ≡ Bζð~k1; ~k2; ~k3Þ

Pζð~k1ÞPζð~k2Þ þ cyc perm
: ð46Þ

To calculate it, we also need the cyclic permutations of the
PS products in the denominator. Using Eqs. (21) and (35)
we obtain
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Pζð~k1ÞPζð~k2Þ þ cyc perm≡ ð1þ χ1Þ½Piso
ζ ðk1ÞPiso

ζ ðk2Þ þ cyc perm�

≡
"
1þ NINJNKNL

P
l<mPIJðklÞPKLðkmÞ½gζðklÞðn̂ · k̂lÞ2 þ gζðkmÞðn̂ · k̂mÞ2�
NANBNCND

P
l<mPABðklÞPCDðkmÞ

þ NINJNKNL
P

l<mPIJðklÞPKLðkmÞgζðklÞgζðkmÞðn̂ · k̂lÞ2ðn̂ · k̂mÞ2
NANBNCND

P
l<mPABðklÞPCDðkmÞ

#

× NANBNCND

X
l<m

PABðklÞPCDðkmÞ

¼
"
1þ

P
l<mP

iso
ζ ðklÞPiso

ζ ðkmÞ½gζðklÞðn̂ · k̂lÞ2 þ gζðkmÞðn̂ · k̂mÞ2�P
l<mP

iso
ζ ðklÞPiso

ζ ðkmÞ

þ
P

l<mP
iso
ζ ðklÞPiso

ζ ðkmÞgζðklÞgζðkmÞðn̂ · k̂lÞ2ðn̂ · k̂mÞ2P
l<mP

iso
ζ ðklÞPiso

ζ ðkmÞ

#X
l<m

Piso
ζ ðklÞPiso

ζ ðkmÞ; ð47Þ

where the 1þ χ1 parameter has been defined and it
corresponds to the expression inside the big brackets.
Now, with the expressions in Eqs. (45) and (47) we can
go into the details of the computation of the fNL parameter
for some inflationary models including vector fields. We
track the scale dependence of the anisotropy parameter
gζðkÞ and its effect on the scale and shape dependence of
fNL. The class of models that we consider in this section
can be parametrized using its first three correlation func-
tions. We recall that, for simplicity, we shall consider
models in which there is only one vector field, so there is
only one preferred direction given by the unitary vector
n̂i ¼ Ni=ðNkNkÞ1=2, the generalization for several scalar
and vector fields being straightforward (for more details,
see Ref. [34]). Having this in mind, the fNL parameter can
then be written as

6

5
fNLð~k1; ~k2; ~k3Þ ¼

ð1þ ξ1Þ
ð1þ χ1Þ

Biso
ζ ðk1; k2; k3ÞP

l<mP
iso
ζ ðklÞPiso

ζ ðkmÞ

¼ ð1þ ξ1Þ
ð1þ χ1Þ

6

5
fisoNLðk1; k2; k3Þ; ð48Þ

where fisoNL corresponds to the isotropic part of the full fNL
parameter. In general, fNL will carry some scale depend-
ence due to the length of each side of the momenta triangle,
i.e., k1; k2, and k3; when allowing for statistical anisotropy,
it also carries extra dependence due to both the orientation
of the referred triangle in momentum space, defined by
k̂1; k̂2, and k̂3, and the orientation of the vector n̂. Although
all of these parameters, k1; k2; k3; k̂1; k̂2; k̂3, and n̂, appear
both in ζ1 and χ1, these two parameters actually depend

only on ~k1; ~k2; ~k3, and n̂ (since they parametrize deviations
from statistical isotropy); meanwhile, fisoNL only receives
contributions from k1; k2, and k3. In order to deal with the
scale and shape dependence, we are going to employ the

useful and convenient set of variables introduced in
Refs. [46,72]. They will allow us to identify and separate
genuine scale effects related to the size of the momenta
triangle from nongenuine scale effects related to the shape
of the same.5 The “size” is characterized by the perimeter of
the triangle:

k≡ k1 þ k2 þ k3
3

; ð49Þ

while the shape is parametrized by the ratios (which are
related to the internal angles in the triangle):

α1 ≡ 2
k2 − k3
3k

; α2 ≡
ffiffiffi
3

p k2 þ k3 − k1
3k

: ð50Þ

The inverse transformation for the variables ðk1; k2; k3Þ reads

k1 ¼
3k
2

�
1 − α2ffiffiffi

3
p

�
; k2 ¼

3k
4

�
1þ α1 þ

α2ffiffiffi
3

p
�
;

k3 ¼
3k
4

�
1 − α1 þ

α2ffiffiffi
3

p
�
:

ð51Þ

We see from the transformation before that each side is
separated as kl ¼ kγl, where the γl coefficients depend only
on the αi variables, so they characterize the shape of the
triangle. An important and useful conclusion that we can
extract fromEq. (48) is that one can separate the isotropic part
from the terms carrying the anisotropy dependence which is
inside the ð1þ ξ1Þ=ð1þ χ1Þ ratio. Then, analogously to the
spectral index in the power spectrum in Eq. (32), we define
spectral indices for the NG parameter fNL. We can use the

5By nongenuine scale effects we mean that, although α1 and α2
in Eq. (50) seem to depend explicitly on k1; k2, and k3 (i.e., on the
size of the triangle), they actually do not since the shape of the
triangle is preserved under scaling of its size.
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variablek to define a spectral index related to the scale, and the
angles α1; α2 to define spectral indices related to the shape in
the following way:

nkfNL ≡
d lnfNL
d lnk

; nα1fNL ≡
dlnfNL
dlnα1

; and nα2fNL ≡
d lnfNL
dlnα2

:

ð52Þ
Bymeans of these expressions, we can evaluate the scale and
shape dependence of theNGparameter for general variants of
the size and the shapeof themomenta triangle.Notice that our
definitions will allow us to understand that deviations from
scale and shape invariance in fNL are interpreted as deviations
from nkfNL ¼ 0, nα1fNL ¼ 0, and nα2fNL ¼ 0.

1. Scale dependence

In particular, using Eq. (48) we derive an expression for
the spectral index measuring the scale invariance deviation:

nkfNL ¼ nkðisoÞfNL
þ 1

1þ ξ1

dξ1
d ln k

− 1

1þ χ1

dχ1
d ln k

; ð53Þ

where

nkðisoÞfNL
≡ d ln fisoNL

d ln k
: ð54Þ

As we can see, in close analogy to the spectral index in
Eq. (32), the expression in Eq. (53) allows us to separate the
scale dependence of fNL in terms of the scale dependence
related to the isotropic part in the first term on the right-
hand side of Eq. (53) and the remaining terms that include
the contributions related to the statistical anisotropy de-
pendent terms. In terms of the spectra of the scalar and
vector perturbations and their running, the expression in
Eq. (53) reads

nkfNL ¼ nkðisoÞfNL
− ξ1
1þ ξ1

�
d lnBiso

ζ ðk1; k2; k3Þ
d ln k

− d lnðNþþ=N2þÞ
d ln k

�

þ 1

Bζ

Nþþ
N2þ

X
l<m

h
PζAþ

ðkmÞPiso
ζ ðklÞgζðklÞðn̄þðkmÞ þ n̄isoζ ðklÞ þ ngðklÞ − 9Þðn̂ · k̂lÞ2

þ PζAþ
ðklÞPiso

ζ ðkmÞgζðkmÞðn̄þðklÞ þ n̄isoζ ðkmÞ þ ngðkmÞ − 9Þðn̂ · k̂mÞ2

þ Piso
ζ ðklÞPiso

ζ ðkmÞgζðklÞgζðkmÞðn̄isoζ ðklÞ þ n̄isoζ ðkmÞ þ ngðklÞ þ ngðkmÞ − 10Þðn̂ · k̂lÞðn̂ · k̂mÞðk̂l · k̂mÞ
i

þ χ1
1þ χ1

d ln ðPl<mP
iso
ζ ðklÞPiso

ζ ðkmÞÞ
d ln k

−
1P

l<mPζð~klÞPζð~kmÞ
X
l<m

h
Piso
ζ ðkmÞPiso

ζ ðklÞgζðklÞðn̄isoζ ðkmÞ þ n̄isoζ ðklÞ þ ngðklÞ − 9Þðn̂ · k̂lÞ2

þ Piso
ζ ðklÞPiso

ζ ðkmÞgζðkmÞðn̄isoζ ðklÞ þ n̄isoζ ðkmÞ þ ngðkmÞ − 9Þðn̂ · k̂mÞ2

þ Piso
ζ ðklÞPiso

ζ ðkmÞgζðklÞgζðkmÞðn̄isoζ ðklÞ þ n̄isoζ ðkmÞ þ ngðklÞ þ ngðkmÞ − 10Þðn̂ · k̂lÞ2ðn̂ · k̂mÞ2
i
: ð55Þ

To obtain the latter formula, we have introduced n̄ ¼ nþ 3
for all the spectral indices and used the following expres-
sion, which is valid for any power spectra PðkÞ:

k
dPðklÞ
dk

¼ kl
dPðklÞ
dkl

¼ PðklÞðn̄ðklÞ − 4Þ: ð56Þ

In order to estimate the deviation from scale invariance in
fNL caused by the presence of statistical anisotropy, let us
consider an equilateral configuration so that all the spectral
indices nþ; nisoζ , and nϕ depend on the same scale. This
configuration can be achieved when α1 ¼ 0 and α2 ¼

ffiffiffi
3

p
=3,

which implies ki ¼ k. We use as a concrete example a scalar
field and a single vector field with a constant ratio
q ¼ Plong=Pþ. We recall that, in this case, we have ng − 1 ¼
nþ − nisoζ and, therefore, we get that Eq. (55) reduces to

nkfNL ¼ nkðisoÞfNL
þ ξ1
ð1þ ξ1Þ

�
2ðn̄þ− 4Þþd lnðNþþ=N2þÞ

d lnk

−
�
2ðn̄þ− 4Þþd lnðNþþ=N2þÞ

d lnk

�
Nþþ
Biso
ζ N2þ

3ðPζAþ
ðkÞÞ2

−
�
2ðn̄ϕ− 4Þþd lnðNϕϕ=N2

ϕÞ
d lnk

�
Nϕϕ

Biso
ζ N2

ϕ

3ðPζAϕ
ðkÞÞ2

�

−
χ1

1þ χ1
ðng− 1Þ

×

�
1− ðPiso

ζ ðkÞgζðkÞÞ2
X
l<m

ðn̂ · k̂lÞ2ðn̂ · k̂mÞ2
�
: ð57Þ

In this situation, we have

SCALE AND SHAPE DEPENDENT NON-GAUSSIANITY IN … PHYSICAL REVIEW D 90, 103511 (2014)

103511-9



nkðisoÞfNL
¼ −2ðn̄isoζ − 4Þ þ

�
2ðn̄þ − 4Þ þ d lnðNþþ=N2þÞ

d ln k

�
Nþþ
Biso
ζ N2þ

3ðPζAþ
ðkÞÞ2

þ
�
2ðn̄ϕ − 4Þ þ d lnðNϕϕ=N2

ϕÞ
d ln k

�
Nϕϕ

Biso
ζ N2

ϕ

3ðPζAϕ
ðkÞÞ2: ð58Þ

We can test the obtained expressions by going to some
well-known limiting cases, for instance, a single inflaton
field; in such a case, we obtain

nkfNL ¼ nkðisoÞfNL
¼ d lnðNϕϕ=N2

ϕÞ
d ln k

; ð59Þ

which is the known result for single field inflation and is a
first order quantity in the slow-roll parameters [49]. In the
same way, if vector perturbations dominate over scalar
perturbations, the result is

nkfNL ¼ nkðisoÞfNL
¼ d lnðNþþ=N2þÞ

d ln k
: ð60Þ

Scale dependent deviations in the anisotropic terms on the
right-hand side of Eq. (57) appear due to the simultaneous
presence of scalar and vector perturbations. If there were
only scalar or only vector perturbations, the anisotropic
terms on the right-hand side of Eq. (57) would be zero. We
will evaluate the weight of these deviations for different
situations and limits in Sec. V.

2. Shape dependence

In the same way, we can evaluate the shape dependence
through the spectral indices in the angular parameters α1
and α2. For simplicity, we can choose α1 ¼ 0while keeping
α2 as a variable which corresponds to an isosceles con-
figuration. Thus, we can easily go to the squeezed limit
(α2 ¼

ffiffiffi
3

p
), the equilateral limit (α2 ¼

ffiffiffi
3

p
=3), and the

folded limit (α2 ¼ 0). Then, analogously to the running
with the scale, we calculate

nα2fNL ¼ nα2ðisoÞfNL
þ 1

1þ ξ1

dξ1
d ln α2

− 1

1þ χ1

dχ1
d ln α2

: ð61Þ

In this case, we have that the logarithmic derivatives of the
spectra with respect to the angular variable α2 are calculated
by means of the formula

α2
dPðklÞ
dα2

¼ α2
dkl
dα2

dPðklÞ
dkl

¼ α2
γl
kl
PðklÞðn̄ðklÞ − 4Þ;

ð62Þ

where the γl constant coefficients are derived directly from
the change of coordinates in Eq. (51), being γl ¼ ∂kl=∂α2.
Besides the dependence of the spectra, we should also

evaluate the derivatives of the scalar products n̂ · k̂l and
k̂l · k̂m, which leads to long analytic expressions for the
spectral indices; then, instead of writing the analytic
expressions, we will evaluate some of their important
limits in Sec. V.

V. EVALUATION OF THE SCALE
AND SHAPE DEPENDENCE

In the following, we will use the parameters represented
in Fig. 1. As shown in the figure, due to the momentum
conservation (or equivalently, due to statistical homo-
geneity), the momentum vectors ~ki are restricted to form
a closed triangle and the vector n̂ is described by their polar
and azimuthal angles θ and ϕ, respectively. Then, the BS
and fNL are functions of the angles that define the
orientation of n̂, and of the parameters of the triangle
formed by the momentum vectors, i.e., k; α1, and α2
defined in Eq. (51); thus, fNL ¼ fNLðk; α1; α2; θ;ϕÞ. Of
course, the expression for fNL depends on the derivatives of
N and on the amplitudes and the spectral indices of the
scalar and vector perturbations. In order to perform our
evaluations, we will follow the configuration represented in
Fig. 1 and specialize to the massless vector case in which
q ¼ 0 and −1 ≤ gζ < 0 [see Eq. (25)]. The fðϕÞF2 model
of Ref. [11] enters in this category.

FIG. 1. Parameters for the size and shape of the momenta
configuration.
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A. fNL=f isoNL ratio

To estimate the contribution of the anisotropic terms
to the non-Gaussianity parameter fNL, which is present in
Eq. (48), we first evaluate the dependence of the ratio
fNL=fisoNL on the size and shape of the momenta triangle
from the expression in Eq. (48). In Figs. 2, 3 and 4 we show
the results of the evaluation of Eq. (48) in the flattened
(or folded), equilateral, and squeezed configurations,

respectively. We see that the deviations from the value
in the isotropic case are significant for specific configura-
tions of the n̂ and the k̂i. In all the plots in Figs. 2, 3 and 4,
we use θ ¼ φ ¼ π=2. For this set of parameters, which
represents the case where the vector n̂ coincides with the
vector k̂1, the effects of the anisotropic terms are maxi-
mized. The fNL parameter and the ratio fNL=fisoNL are
sensitive to many details, mainly to the spectral indices
of the scalar and vector perturbations and the ratios of the

g 0.01, niso 0.96238

n 0.962, n 1

0 2 4 6 8 10
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iso k

Equilateral: 2 3 3

g 0.1, niso 0.9622

n 0.958, n 1

0 2 4 6 8 10
k
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fNL k

fNL
iso k

Equilateral: 2 3 3

FIG. 3 (color online). The same as in Fig. 2 but for the equilateral configurations. In this case, the ratio is suppressed so that the
enhancement of the fNL parameter is about 1% for (a) g�ζ ¼ −0.01 and over 10% for (b) g�ζ ¼ −0.1.

g 0.01, niso 0.96238

n 0.962, n 1
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n 0.958, n 1
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k
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FIG. 2 (color online). Ratio fNL=fisoNL for flattened configurations (α2 ¼ 0; k1 ¼ k2 þ k3) with values (a) g�ζ ¼ −0.01 and
(b) g�ζ ¼ −0.1. We choose the spectral indices such that vector perturbations are scale invariant, nþ ¼ 1, and for scalar perturbations
we set nϕ ¼ 0.962 for g�ζ ¼ −0.01 and nϕ ¼ 0.958 for g�ζ ¼ −0.1 so that the spectral index of the primordial curvature perturbation is
close to the current observed value nζ ¼ 0.962 [73,74]. In both plots, we have set θ ¼ φ ¼ π=2 because the ratio is maximized at these
values, i.e., when n̂ coincides with k̂1. We see that, for this configuration and for g�ζ ¼ −0.01, fNL is enhanced around 2%, while for
g�ζ ¼ −0.1 the enhancement is around 20% with respect to the isotropic value.
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amplitudes Aþ and Aϕ. We choose g�ζ ¼ −0.01 (at the
pivot scale k ¼ k�) for the appropriate Aþ=Aϕ ratio,
which is still within the margin allowed by Planck, once
the effects of the asymmetric beams have been removed
[44]. We also choose an almost scale invariant spectrum so
that we set the spectral indices of the scalar perturbations
close to the current observational value for the spectral
index of the primordial curvature perturbation
nisoζ ≈ 0.962. This results in an enhancement of the fNL
parameter, which for all the configurations is around the
0.1 to 1 percent-level order. We also plot the deviations
with g�ζ ¼ −0.1. For this case, we get an enhancement of
over 20% for the flattened configuration in which we
obtain the maximum effect. For equilateral and squeezed
configurations, we obtain around 10% and 2% enhance-
ments, respectively. Certainly, g�ζ ¼ −0.1 is excluded by
current observations, and our intention here with this
evaluation is to test the sensitivity of the fNL=fisoNL quotient
with respect to g�ζ . As a result, we get that g�ζ ¼ −0.1
produces a significant enhancement of fNL inducing a
significant level of anisotropic NG. This enhancement
could be important if fisoNL is big enough to be detected;
otherwise, even a 20% enhancement would turn out to be
difficult to discern from the full signal. In order to do a
precise statement about the detectability of the anisotropic
signal, it would be important to use the primordial shape
correlator defined in [46]. Such a correlator allows us to
determine the independence of different shapes of non-
Gaussianity in terms of the bispectrum. In our case,
we should evaluate the correlation of the isotropic BS
with respect to the anisotropic BS, using Eq. (42).
Nevertheless, a crude estimate of the correlation between

the isotropic and the anisotropic BS tells us that both
forms are closely correlated, the level of independence
being the order of the statistical anisotropy parameter g�ζ.
Even for a very high value such as g�ζ ¼ −0.1, we would
need a very high precision, several σ detection, in order to
detect an anisotropic signal. Certainly, for more realistic
values, such as g�ζ ¼ −0.01, the detection of an anisotropic
signal seems to be practically impossible to achieve.
The fNL parameter is also sensitive to the ratio of the

fractions ðNþþ=N2þÞ and ðNϕϕ=N2
ϕÞ, but this sensitivity is

negligible unless the difference between both fractions is
such that ðNþþ=N2þÞ ≫ Nϕϕ=N2

ϕ (a difference that is at
least bigger than 2 orders of magnitude) and for vector
perturbations with spectra far from being scale invariant.
This situation can be realized if we had strongly scale
dependent vector perturbations which strongly dominated
over scalar perturbations in the bispectrum [see Eq. (44)],
which does not seem to be too realistic; as a result, in such a
situation, we would obtain large values of anisotropic
non-Gaussianity which, being above the observed limits
for the isotropic case, are hardly credible, although there are
actually no data analyses of non-Gaussianity involving
anisotropy (however, see Ref. [23]); for this reason, we will
not consider this case here. If some phenomenological or
observational evidence appeared that supported the pres-
ence of strongly scale dependent vector perturbations
dominating the bispectrum, it would be interesting to
consider this case seriously. In the meantime, we will keep
both fractions within the same order of magnitude and, as a
result, the fNL=fisoNL ratio will remain stable, allowing us to
obtain practically the same results for all the configurations
studied.
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FIG. 4 (color online). The same as in Fig. 2 but for the squeezed configurations. In this case, the ratio is even more suppressed so that
the ratio is around 0.1% for (a) g�ζ ¼ −0.01 and around 2% for (b) g�ζ ¼ −0.1.
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To summarize, in Fig. 5 we plot the fNL=fisoNL ratio for all
the values of the shape parameter α2 with both g�ζ ¼ −0.01
and g�ζ ¼ −0.1.

B. Scale dependence

Now, we plot the results of the deviations from scale
invariance of the fNL parameter derived from the expres-
sion in Eq. (57). In Fig. 6 we see the evaluation for the
deviation of the spectral index nkfNL with respect to the

isotropic case:ΔnkfNL ≡ nkfNL − nkðisoÞfNL
derived from Eq. (57)

in the equilateral limit. In this case, we perceive that the
deviation from the isotropic case is modified by the terms
on the right-hand side of Eq. (57) which are strongly
dependent on the configuration of the k̂ and n̂ vectors. The
deviation is suppressed by the statistical anisotropy level gζ
and the slow-roll parameters within the spectral indices
nþ; nϕ, and ng. We neglect the second order contributions

in slow roll coming from the scale derivatives of the
Nþþ=N2þ and Nϕϕ=N2

ϕ terms. As we can perceive, the
modifications of the scale dependence are negligible for
scale invariant vector perturbations and for −0.1 < g�ζ <
−0.01. Again, as in the evaluation of the fNL=fisoNL ratio, the
spectral index would acquire significant corrections if we
went to configurations with strongly scale dependent vector
perturbations and high values of the statistical anisotropy
parameters, and if vector perturbations strongly dominated
the bispectrum of the primordial curvature perturbation.
We will not exhibit these cases here.

C. Shape dependence

The spectral index for the shape dependence described
by the angular parameter α2 is more complicated and, at
the same time, is potentially more interesting due to the
intricate structure of the logarithmic derivatives of
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FIG. 6 (color online). Deviation of the spectral index nkfNL with respect to the isotropic case with (a) g
�
ζ ¼ −0.01 and (b) g�ζ ¼ −0.1 for

equilateral configurations.
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the scalar products ðk̂l · n̂Þ and ðk̂l · k̂mÞ. For instance, the
squeezed limit (α2 ¼

ffiffiffi
3

p
) is complicated to work with

since the γ1=k1 coefficient in Eq. (62) is singular at
α2 ¼

ffiffiffi
3

p
. There are more configurations which greatly

enhance the isotropic index even for g�ζ ≈ −0.01 and a
nearly scale invariant spectrum of scalar and vector
perturbations.

In Fig. 7, we see the evaluation of nα2fNL − nα2ðisoÞfNL ,
coming from Eq. (61), in equilateral configurations for
the same values of the level of statistical anisotropy and the
spectral indices used in the evaluations of fNL=fisoNL and

nkfNL − nkðisoÞfNL
, whereas, in Fig. 8, we go to the squeezed

configuration with g�ζ ¼ −0.01. As said before, in the latter
limit, the modification is noticeable and gives Δnα2fNL ≈−0.1 even though the level of statistical anisotropy is small.

To conclude this section, we would like to point out that
there are several generalizations and variants to the calcu-
lations we did here. For instance, it would be instructive,
and rather straightforward, to generalize our results to
include multiple scalars and vector fields. It would also be
interesting to consider a general curved metric in the field
space as discussed in Ref. [58], where the authors show that
it induces scale dependent effects in the correlators, in
particular, in the fNL parameter. Our results here constitute
another source of scale and shape dependence besides those
considered in that reference. Another approach regarding
scale dependent anisotropic NG without invoking vector
fields, but using instead noncommutativity of space-time to
generate anisotropic correlators, was discussed in Ref. [61].
Finally, it would also be very interesting to study the
parametrization of the BS presented in Ref. [29] in terms of
a series of Legendre polynomials PL:

Bζð~k1; ~k2; ~k3Þ ¼
X
L

X
l<m

cLPLðk̂l · k̂mÞPζðklÞPζðkmÞ;

ð63Þ

where the cL’s are constant weight coefficients which
depend on the particular model. It has been discussed in
Ref. [29] that the cL coefficients are sensitive to the
presence of vector fields, and it was shown that models
in which ζ is sourced by the anisotropic stress of large-scale
magnetic fields, models with an fðϕÞF2 interacting term
(see, e.g., Ref. [24] and references therein), and the “solid
inflation” model [75,76] are particular examples of this
parametrization producing specific nonzero values for the
cL coefficients. The analysis done in Ref. [29] assumes
the cL’s are scale independent, making it interesting to
consider models with solid motivations for the introduction
of scale dependent effects.
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FIG. 8 (color online). Deviation of the spectral index nα2fNL with
respect to the isotropic case with g�ζ ¼ −0.01 for squeezed
configurations.
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VI. RESULTS AND DISCUSSION

The results obtained here allow us to conclude that the
presence of vector fields during inflation introduces several
interesting and appealing features, not only for fundamental
theoretical reasons, but also from the quantitative point
of view. Their presence offers us new challenges for the
precise interpretation and, hopefully, the measurement of
observables related to the presence of inflationary vector
fields. The first and most evident manifestation of vector
fields appears in the form of statistical anisotropy in the
correlation functions of the primordial curvature perturba-
tion. Here, we consider models which exhibit statistical
anisotropy in the power spectrum of a quadrupolar form
which allows us to quantify the level of statistical
anisotropy by the single parameter gζ. With this starting
point, we study the consequences of this type of statistical
anisotropy in the higher order correlators, particularly in the
bispectrum and in the NG parameter fNL.
We first take into account that, generically, these models

introduce a level of scale dependence in the gζ parameter if
the spectral indices of scalar and vector perturbations are
different; then, we evaluate the consequences of such scale
dependence in the bispectrum and in fNL. We must also
take into account that the presence of statistical anisotropy
is characterized by a privileged direction n̂ which, in turn,
introduces a nontrivial structure in the higher order
correlators that depends on the relative orientations of
the wave vectors with respect to n̂. These relative orienta-
tions introduce a series of terms which modify and
modulate the form of the higher order correlators and
the levels of non-Gaussianity associated with them. We
expect these terms and structures to encode potentially
useful information about the presence of vector fields
during inflation and to possibly leave signatures which
hopefully could be significant from the observational point
of view. If observed, these signatures would certainly give
us clues about the role of vector fields during inflation.
Quite to the contrary, the lack of these signatures would
allow us to constrain and, eventually, rule out the vector
fields as sources of the primordial curvature perturbation
and as relevant pieces for the inflationary mechanism.
In this paper, we have focused mainly on the relation

between the fNL NG parameter (and the bispectrum) and
the level of statistical anisotropy gζ and its running with the
scale k. To enter into the quantitative details of this relation,
we have given expressions for the scale and shape depend-
ence of fNL due to a scale dependent gζ and evaluated
the departure from the isotropic case through Eq. (48). We
have defined and evaluated the spectral indices in Eqs. (53)
and (61) which measure the deviations from the scale and
shape invariance in fNL. These evaluations are the main
result of this article. Measuring the impact of the statistical
anisotropy in the bispectrum is a nontrivial task due to the

richer structure and dependence on the configuration of the
wave vectors in Fourier space, which indeed leads to
several dependences that we should consider. In this regard,
we have been rather conservative in our calculations and
remained close to the current observational limits for some
of the most relevant parameters, namely, gζ and the spectral
index of the primordial curvature perturbation nζ. We have
worked in detail on the massless vector field case and, as an
extra consideration, we have set the vector perturbations to
be scale invariant, which is a condition easy to reach in
general inflationary vector field models. This condition is,
however, not essential, the only necessary assumption
being that nζ ≈ 0.96, as suggested by observations. As a
result, within these limits, we have obtained that the
departures from the isotropic case are strongly suppressed
by gζ and by the slow-roll parameters present in the spectral
indices of the perturbations. The latter strongly suggests
that a small level of statistical anisotropy in the power
spectrum implies a small level of statistical anisotropy in
the bispectrum and in higher order correlators as well.
We need to go a bit farther from statistical isotropy, for
instance, around gζ ≈ −0.1, and for certain configurations,
to obtain a significant effect in the bispectrum and in fNL.
Certainly, if those effects were not detected, the statistical
anisotropy would be jgζj≲ 0.01 or even smaller, meaning
that there is no evidence for the breaking of rotational
symmetry or, at least, not in the PS and the BS.
To conclude, we would like to emphasize and recall that

the statistical anisotropy may have its origin in the infla-
tionary vector fields which introduce a rich and nontrivial
structure in the correlators of the primordial curvature
perturbation. We tried, in this paper, to go a step further in
the direction of a precise characterization of the effects
related to the statistical anisotropy by studying their impact
on the correlation functions. It remains to be seen if the
effects discussed here are relevant for modern high pre-
cision cosmology and if there is some possibility to perform
measurements oriented to the detection of signatures of
statistical anisotropy in the correlators associated with
inflationary vector fields.
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