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The discovery of a void of size ∼200h−1 Mpc and average density contrast of ∼ − 0.1 aligned with the
cold spot direction has been recently reported. It has been argued that, although the first-order integrated
Sachs-Wolfe (ISW) effect of such a void on the cosmic microwave background is small, the second-order
Rees-Sciama (RS) contribution exceeds this by an order of magnitude and can entirely explain the observed
cold spot temperature profile. In this paper we examine this surprising claim using both an exact calculation
with the spherically symmetric Lemaître-Tolman-Bondi metric, and perturbation theory about a back-
ground Friedmann-Robertson-Walker metric. We show that both approaches agree well with each other,
and both show that the dominant temperature contribution of the postulated void is an unobservable dipole
anisotropy. If this dipole is subtracted, we find that the remaining temperature anisotropy is dominated by
the linear ISW signal, which is orders of magnitude larger than the second-order RS effect, and that the total
magnitude is too small to explain the observed cold spot profile. We calculate the density and size of a void
that would be required to explain the cold spot, and show that the probability of existence of such a void is
essentially zero in ΛCDM. We identify the importance of a posteriori selection effects in the identification
of the cold spot, but argue that even after accounting for them, a supervoid explanation of the cold spot is
always disfavored relative to a random statistical fluctuation on the last scattering surface.
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I. INTRODUCTION

The existence of an anomalously cold region in the
cosmic microwave background (CMB) at galactic coor-
dinates ðl; bÞ ∼ ð209∘;−57∘Þ, known as the cold spot, was
first reported in [1] using data from the WMAP satellite
analyzed with a method based on spherical Mexican hat
wavelet (SMHW) wave functions. Several subsequent
works [2–6] have studied its statistical significance, mor-
phology and non-Gaussianity using a variety of techniques.
Analysis of data from the Planck satellite by the Planck
team [7] confirms the existence and location of the cold
spot, and quantifies its anomalousness to be about 3σ in the
standard ΛCDM model (although other authors differ on
this question [8,9]).
The existence of such a possibly anomalous structure has

led to several proposed explanations for its existence,
including a cosmic texture [10,11], a large void along
the line of sight [12–14], a rare fluctuation on the last
scattering surface or a combination of these [15]. In this
paper we restrict our attention to the supervoid hypothesis.
Several theoretical studies (e.g. [12,13,15–24]) have

been made of the secondary anisotropies on the CMB
caused by large voids or overdensities, through combina-
tions of the integrated Sachs-Wolfe (ISW) effect [25]
(which we shall henceforth take to refer to the linear-order

effect) and its second-order counterpart, the Rees-Sciama
(RS) effect [26]. However, these secondary anisotropies are
much smaller than the primary fluctuations at last scatter-
ing, and these studies have invariably found that to explain
the cold spot temperature decrement requires a supervoid of
such large size and underdensity that its probability of
existence in a ΛCDM universe is small. Of course, we must
remain open to the possibility that such unusual structures
could exist, and it is worthwhile to search for them—
especially since, if they do exist, they should produce other
detectable signatures as well [27,28].
Such structures have, however, not yet been found. A

previous claimed detection of a supervoid at high redshift
aligned with the cold spot direction [14] was later disputed
[29–31]. Claims have also been made for the existence of
other large voids and superclusters leaving large ISW
imprints on the CMB [32], in contradiction to the
ΛCDM expectation [33–35], but more recent studies using
newer data do not find the same effect [36,37].
However, recently the detection of a new large void

aligned with the cold spot direction has been reported based
on analysis of the WISE-2MASS galaxy catalogue data
[38]. This void is estimated to be centered at a redshift of
z ∼ 0.15, and have a size ∼200h−1Mpc and a top-hat-
averaged density contrast over this radius of δ̄ ∼ −0.1.
Although the estimated spatial extent of the void is large,
the density contrast is rather mild, and much smaller than
the value that has previously been estimated to be required*seshadri.nadathur@helsinki.fi
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to explain the cold spot. In fact, the linear-order estimate of
the ISW temperature shift due to such a void is only
ΔT ∼ −20 μK. Also, as we will argue in this paper, such a
combination of size and density contrast is not even
particularly unusual within the ΛCDM framework, as
∼20 such voids would be expected to exist within the
local universe (z < 0.5).
Nevertheless, it has been claimed that, if modeled using a

spherically symmetric Lemaître-Tolman-Bondi (LTB) met-
ric in a background ΛCDM model, this void can indeed
provide an explanation for the full cold spot temperature
decrement of ∼ − 150 μK [39]. This is based on the
argument that the LTB model can be described as a
perturbation about a background homogeneous
Friedmann-Robertson-Walker (FRW) metric such that,
although the linear-order ISW effect is small, the
second-order RS effect of the void is an order of magnitude
larger and can account for the observed temperature profile
around the cold spot direction. It is even claimed that a
Bayesian model comparison strongly favors such a super-
void explanation of the cold spot over the alternative
hypotheses of a cosmic texture or simply a statistical
fluctuation on the last scattering surface.
Such an inversion of the magnitudes of the ISW and RS

effects is however rather extraordinary, and appears to be
incompatible both with previous supervoid estimates and
with general perturbation theory expectations. In this paper
we examine this claim in more detail. We calculate the
temperature effect of the postulated void on the CMB both
with an exact treatment of photon propagation in the LTB
metric, and with second-order perturbation theory in
ΛCDM. We will show that results from these two
approaches agree well with each other. More importantly,
both approaches show that the dominant temperature effect
of a void such as that reported in [38] is in fact a dipole
anisotropy caused by our motion with respect to the void
center. The amplitude of this dipole contribution, while
large compared to the other multipoles, is much smaller
than other contributions to the kinetic dipole, so it would be
unobservable in dipole-subtracted CMB maps. When the
dipole contribution of the void is subtracted, we find that
the remaining temperature signal is indeed about −20 μK,
dominated by the linear-order ISW effect, and has an
angular profile ΔTðθÞ that does not match the observation.
Contrary to the claim in [39], we show that for reasonable
void parameters the RS effect is always at least an order of
magnitude smaller than the leading order ISW term.
We then turn to the issue of a fair comparison between

theoretical models purporting to explain the observed
ΔTðθÞ profile, and discuss the very important a posteriori
selection effect inherent in the identification of the cold
spot using the SMHW technique. This selection effect must
be correctly accounted for in assessing the probability of
the null hypothesis that the observed profile is simply due
to a statistical fluke. If this is done we find that in ΛCDM

the probability of existence of a void that is large enough
and deep enough to explain the cold spot temperature
anomaly is always smaller than the probability that the
original anomaly is simply due to a statistical fluctuation on
the last scattering surface. This conclusion does not change
even when combining the effect of the a posteriori
selection with the possible effect of any hypothesized void.
This means that in the absence of an actual detection of a

void of such size and density as to directly challenge the
otherwise successful ΛCDM model (or of a well-motivated
theoretical reason for its existence), a fair analysis of
Bayesian evidence will always disfavor any supervoid
explanation of the cold spot, simply because the prior
level of belief in its existence will be necessarily low. In this
sense we argue that insofar as the cold spot is anomalous,
postulating a supervoid aligned with its direction cannot
explain the anomaly.
The layout of the rest of the paper is as follows. Before

discussing the details of the calculations, in Sec. II we first
provide some simple heuristic arguments against the claim
that the secondary effect of a void on the CMB could be
large enough to explain the cold spot. In Sec. III we then
explain the details of the calculation of this effect for the
postulated void profile and parameters, both using the LTB
(Sec. III A) and perturbation theory (Sec. III B) approaches,
and present our results. In Sec. IV we then discuss the role
of the selection effect and the appropriate approach to
model comparison for competing explanations of the cold
spot. Finally, we summarize and conclude our discussion in
Sec. V. Some additional technical details and treatment of
the special case Ωm ¼ 1 are presented in the appendixes.

II. HEURISTIC ARGUMENTS AGAINST
THE SUPERVOID

In [39] the authors claim that the void reported from
WISE-2MASS data [38] is capable of entirely explaining
the observed CMB temperature profile around the cold
spot, via the second-order RS effect. Before getting
immersed in the technical details of the LTB and perturba-
tion theory calculations in the next section, it is worth first
considering some simple intuitive arguments against such
a claim.
The model of the void considered in [39] has the density

profile

δðrÞ ¼ −δ0
�
1 −

2r2

3r20

�
e
−r2

r2
0 ; ð1Þ

where the best-fit parameters are claimed to be δ0 ¼ 0.25
and r0 ¼ 195h−1Mpc, while the void is centered at redshift
zc ¼ 0.155. This results in a top-hat-averaged density value
for the void (at scale r0) of δ̄ ¼ −δ0=e≃ −0.09 [39]. The
maximum linear-order ISW temperature shift due to such a
void from the linear-order ISWeffect is just ∼ − 20 μK (on
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which point we agree with [39]), whereas the cold spot
shows ΔT ∼ −150 μK at the center.
The claim that such a void can explain the cold spot

therefore relies on the argument that the second-order RS
effect is an order of magnitude larger than the first-order
ISW effect. But this seems completely at odds with the
value of the density contrast (δ̄ or δ0), which seems to lie
well within the linear regime. If the usual hierarchy of
perturbation theory effects could be inverted for such mild
density contrasts it would be hard to understand how linear
theory predictions can successfully match any cosmologi-
cal data. Nor can the large size of the void provide an easy
explanation for the relative importance of the RS term,
since simple physical arguments indicate that both first-
and second-order terms have the same dependence on void
size, ΔTISW ∝ δr30 and ΔTRS ∝ δ2r30.
The RS effect has been well studied in the literature. In

an Ωm ¼ 1 universe for reasonable choices of the other
cosmological parameters, its amplitude is known to peak at
ΔT ∼ 0.1–1 μK at multipoles l≳ 100 [40]. Several studies
have also considered the RS effect of model isolated voids
or overdense structures in an Ωm ¼ 1 background [16–21]:
typically the structures modeled here have δ̄ ∼ −1 and
size ∼10–100h−1Mpc, but produce effects of at most
ΔT ∼ 1–10 μK. In suggesting a supervoid as an explan-
ation for the cold spot, [12] used a model void with
δ̄ ∼ −0.3 at a radius > 200h−1 Mpc in a Λ ¼ 0 universe.
For Λ ≠ 0, it has since been shown [13,22] both that the RS
effect of such model voids is subdominant to the linear-
order effect, and that the magnitude of the RS effect itself
decreases as the value of Ωm decreases from 1.
Perhaps more importantly, results from N-body simu-

lations [41] show that, within ΛCDM, on degree angular
scales and at redshifts z≲ 1 the RS temperature is always
negligible compared to the first-order ISW effect, and the
maximum amplitude of the ISWþ RS effect is an order of
magnitude smaller than the ΔT ∼ −150 μK of the cold
spot. This result was obtained for a (relatively) small
simulation volume of 1h−3Gpc3, but using a simulation
volume of 216h−3 Gpc3 it has since also been shown
that the cumulative amplitude of the ISW signal of all
structures out to redshift z ¼ 1.4 is at most ∼50 μK over
the whole sky [42].
These results already suggest that any structure that

could explain the cold spot temperature must be an
extremely rare fluctuation in ΛCDM. The void reported
in [38] is however not particularly rare. Those authors
estimate it to be a 3 − 5σ fluctuation; however this refers
only to the value of δ̄ in units of the rms fluctuation
of the density field σ on the same 195h−1Mpc scale, and
not to the probability of finding such structures in a large
universe. Indeed, ∼5 voids with radii 150≲ R≲
300h−1Mpc and central underdensity δ0 < −0.7 have
already been found at redshifts z≲ 0.4 in luminous red
galaxy (LRG) catalogues from the SDSS [43]. (This

density contrast value refers to the LRG density field,
but taking a linear bias value b ∼ 2 as is appropriate for
LRGs, one would still find that these voids are both deeper
and larger than the supervoid reported in [38].1) Yet they lie
in the northern Galactic hemisphere, where no cold spot–
like CMB structures are observed. Indeed N-body simu-
lations suggest both that in a full-sky survey one would
expect to see ∼20 such voids, and that their ISW imprints
on the CMB should be small [37]. If the claimed magnitude
of the RS effect of such voids were correct, one would then
expect to see several cold spot–like structures on the sky
rather than only the one. Indeed it has been argued that
there are fewer hot and cold spots in the CMB than
expected in ΛCDM [45], an effect related to the relative
absence of power on large angular scales.
As we will show in the next section, the resolution of this

puzzle is simple: correct calculation of the gravitational
effects of the reported void shows both that the second-
order RS contribution is subdominant as expected and that
the total temperature anisotropy produced by the void is
insufficient to account for the cold spot.

III. THE IMPACT OF A VOID ON THE CMB

We will approach the calculation of the temperature
anisotropies due to the void in two separate ways: one using
an exact general relativistic calculation in the spherically
symmetric LTB metric, and the other by treating the void as
a spherically symmetric perturbation about a background
FRW metric.
Some previous works (e.g. [46,47]) have established a

procedure for mapping LTB metric solutions to the equiv-
alent perturbation in FRW, and have studied the conditions
under which the implied approximations are valid.
However, all of these mappings have been studied for
the pure dust (Λ ¼ 0) LTB model, in which case closed-
form parametric solutions to the Einstein equations are
known [48]. In the case of the LTB model with nonzero Λ,
the equations are more complex, and we are not aware of
any rigorous study of the conditions under which these
treatments are equivalent.
The authors of [39] model their void using an LTBmetric

and claim (but do not prove) that this is equivalent to a
particular form of the potential fluctuation Φ about a FRW
background. We will also not directly examine the approx-
imations under which these two approaches are equivalent.
Instead we will choose the spatial form of Φ to match, at
linear order, the density profile of the LTB void. The time
dependence of Φ will then be set by the cosmological
model, which we take to be flat ΛCDM with fiducial
parameters Ωm ¼ 0.27, ΩΛ ¼ 0.73. We then calculate the
temperature anisotropies by the two different methods and

1Note that the density profiles of such voids [44] are also
similar to that postulated by [39].
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show that—for the void parameter values given in [39]—
they give similar results.

A. Exact LTB model

The LTB metric has the spherically symmetric line
element

ds2 ¼ −dt2 þ R2
;rðr; tÞ

1þ 2EðrÞ dr
2 þ R2ðr; tÞdΩ2; ð2Þ

where dΩ2 ¼ dθ2 þ sinðθÞ2dϕ2 and R;r ≡ dR=dr. The
function EðrÞ represents a position dependent curvature,
and the line element reduces to FRW in the special case
Rðr; tÞ ¼ aðtÞr and EðrÞ ¼ − 1

2
kr2. For dust and a cosmo-

logical constant Λ, the Einstein equations reduce to

R2
;t ¼ 2EðrÞ þ 2MðrÞ

R
þ 1

3
ΛR2; ð3Þ

where MðrÞ > 0 is a free function related to the matter
density by

ρðr; tÞ ¼ M;r

4πGR2R;r
: ð4Þ

The solution to the equation of motion (3) can be written as
an integral equation

t − tBðrÞ ¼
Z

Rðt;rÞ

0

dAffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2MðrÞ
A þ 2EðrÞ þ 1

3
ΛA2

q ; ð5Þ

where tBðrÞ is another free function known as the
bang time.
The LTB model can thus be specified by the choice of

three time-independent functions EðrÞ, tBðrÞ andMðrÞ, one
of which corresponds to a gauge degree of freedom in
redefining the radial coordinate. However, a spatially
varying bang time tBðrÞ corresponds to a decaying mode
[49] which is incompatible with the standard cosmological
picture of a universe that was very close to homogeneous at
early times and is contradicted by observations of the CMB.
Therefore the bang time is homogeneous in any realistic
model, and can, without loss of generality, be set to tB ¼ 0.
We choose the curvature function EðrÞ ¼

E0r2 expð−r2=r20Þ to match that in [39], which ensures
that the LTB model asymptotically approaches a back-
ground FRWmetric at large r. Those authors do not specify
their choice of gauge, which is usually set by eitherMðrÞ ∝
r3 or Rðr; t0Þ ¼ r at the current time t0. However, they refer
to earlier work [50] which uses the second gauge choice,
and they provide an expression for the density contrast of
the void as in Eq. (1), which we take to define the density at
t0. We therefore choose the gauge by setting

MðrÞ ¼ 4πGr3

3
ρ̄ðt0Þ½1þ δðrÞ� ð6Þ

where ρ̄ðtÞ is the background FRW density. From Eq. (4),
this is equivalent to choosing Rðr; t0Þ ¼ r if δðr; t0Þ
matches Eq. (1) today.2 The constant E0 can then be
chosen to match the required value of δ0.
Given these choices of the free functions of the model,

we solve the integral equation in Eq. (5). For EðrÞ ≠ 0 and
Λ ≠ 0, it is not possible to express Rðr; tÞ in terms of
elementary functions, and one must solve an elliptic
integral numerically. We do this using Carlson’s elliptic
integrals [51], following the method outlined in [52].
Having thus obtained Rðr; tÞ and its derivatives, we may

then write the equations for a null geodesic kμ ¼ dxμ
dλ as

follows:

dt
dλ

¼ 1þ z; ð7Þ

dθ
dλ

¼ 0; ð8Þ

dϕ
dλ

¼ cϕ
R2

; ð9Þ

dz
dλ

¼ −
R;tr

R;r
ð1þ zÞ2 þ c2ϕ

R2

�
R;tr

R;r
−
R;t

R

�
; ð10Þ

d2r
dλ2

¼ −2
R;tr

R;r
ð1þ zÞ dr

dλ
−
�
ð1þ 2EÞR;rr

R
− E;r

��
dr
dλ

�
2

þ ð1þ 2EÞ c2ϕ
R3R;r

; ð11Þ

where z is the redshift measured by an observer in the dust
rest frame, 1þ z ¼ kμδ0μ, the normalization is set so that
k0 ¼ 1 at the observer, the angular coordinates are fixed by
the choice θ ¼ π=2 and cϕ is an integration constant related
to the impact parameter. The observer position is set such
that the void center lies at a distance corresponding to the
comoving distance to redshift zc in the background
FRW model.
The initial condition for the radial component of the

tangent vector can be solved from the null condition
kμkμ ¼ 0,

2It is possible that this condition and Eq. (5) cannot be
simultaneously satisfied with a homogeneous bang time. Indeed
we find that this is generally the case. For the fiducial parameter
values we consider, the deviation of the true density profile from
Eq. (1) is very small and has negligible effect. However, this
deviation increases at large δ0 and may be partially responsible
for the differences in ΔT seen in Fig. 4.
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dr
dλ

¼ � 1

R;r

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ð1þ zÞ2 − c2ϕ

R2

s
: ð12Þ

If the radial coordinate of the observer is ri and the angle
made by the photon path with respect to the center of the
void is α, then cϕ ¼ Rðt0; riÞ sinðαÞ. We solve the geodesic
equations backwards in time from today to some initial
time at which the beam is well outside the void. In practice
this was chosen to be ti ¼ 0.1t0. Since the temperature
scales as T ∝ 1þ z, the temperature shift along this
direction is then obtained from

ΔT
T

¼ 1 − ð1þ zðn̂; tiÞÞaðtiÞ; ð13Þ

where aðtÞ is the background FRW scale factor and n̂ is the
direction on the sky.
In addition to the model described above which is chosen

to match that of [39], we also calculate the temperature
anisotropies for a second choice of MðrÞ and EðrÞ to see
how the results depend on these choices. The second model
is specified by

MðrÞ ¼ 4πGr3

3
ρ̄ðt0Þ; ð14Þ

EðrÞ ¼ E0r2½1 − tanh ð35r=rb − 20Þ�; ð15Þ

tBðrÞ ¼ 0: ð16Þ

In contrast to the previous model, this describes a com-
pensated top-hat–like density profile, with compensation
radius rb. We shall refer to this model as cLTB, for

“compensated LTB.” Figure 1 shows the density profiles
for the two cases. For the cLTB model we have fixed the
value of E0 to obtain the same density contrast δ0 ¼ 0.25 in
the center, and the value of rb by requiring that the top-hat-
averaged density to radius r0 be equal to that for the density
profile of Eq. (1), i.e.,

3

Rðt0; r0Þ3
Z

r0

0

drR2ðt0; rÞR;rðt0; rÞδcLTBðrÞ ¼ −
δ0
e
: ð17Þ

This gives rb ¼ 1.72r0.

B. Perturbation theory model

We consider perturbations about a flat Robertson-Walker
space-time, for which the line element is

ds2 ≃ a2ðηÞ
�
ḡð0Þμν þ ḡð1Þμν þ 1

2
ḡð2Þμν

�
dxμdxν; ð18Þ

where η is the conformal time (dη ¼ dt=aðtÞ), and aðtÞ is
the scale factor of the Universe. The general metric can be
written as

ḡ00 ¼ −ð1þ 2ψ ð1Þ þ ψ ð2Þ þ � � �Þ; ð19Þ

ḡ0i ¼ zð1Þi þ 1

2
zð2Þi þ � � � ; ð20Þ

ḡij ¼ ð1 − 2ϕð1Þ − ϕð2ÞÞδij þ χð1Þij þ 1

2
χð2Þij þ � � � ; ð21Þ

where the functions ψ ðrÞ, zðrÞi , ϕðrÞ and χðrÞij represent the rth
order metric perturbations.
A general gauge-invariant treatment of the CMB anisot-

ropies due to such metric fluctuations up to second order in
perturbation theory was presented in [53], following [54],
and we quote here the results of relevance to this work. The
first-order temperature anisotropy δTð1Þ ≡ ΔTð1Þ=T is
given by

δTð1Þ ¼ −ψ ð1Þ
O þ vð1ÞiO ei − I1; ð22Þ

where vð1Þi is the first-order velocity perturbation, ei denote
the basis vectors, subscript O refers to the observer’s
location and we have suppressed all terms that depend
only on variables at the last scattering surface. Thus the first
term in Eq. (22) is a monopole, the second represents a
dipole due to the observer’s motion, and the first-order ISW
contribution is given by

δTISW ¼ −I1 ¼
Z

ηO

ηE

dηðψ ð1Þ0 þ ϕð1Þ0Þ ð23Þ

where the 0 denotes the derivative with respect to conformal
time. For brevity we have suppressed vector and tensor

FIG. 1 (color online). Density profiles for the two different void
models considered, at the current time t0. The blue (solid) curve is
for the fiducial void density profile of Eq. (1). The red (dashed)
curve is for an alternative model with a compensated top-hat
profile, referred to as cLTB. The x-axis shows distance from the
center of the void in units of the void size as the gauge-
independent ratio Rðr; t0Þ=Rðr0; t0Þ since the gauge choice is
different for the two models.
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contributions to this integral, since we will consider only
scalar perturbations at linear order.
The expression for the second-order anisotropy is rather

more tedious, but we will require only the part correspond-
ing to the second-order Rees-Sciama term,

δTRS ¼
1

2

Z
ηO

ηE

dηðψ ð2Þ0 þ ϕð2Þ0Þ: ð24Þ

Here again we have pre-emptively dropped the second-
order vector and tensor perturbation terms—although these
are not zero they will be negligibly small for the subhorizon
modes of interest to us [22,53].
In order to evaluate the first- and second-order contri-

butions of Eqs. (23)–(24), we require the solutions for the
perturbations ψ and ϕ. We choose to work in the Poisson
gauge [55], the second-order generalization of the longi-
tudinal gauge. The Poisson gauge solutions of the Einstein
equations up to second order were presented in [53] for the
special case of a dust universe (Λ ¼ 0), and have been used
in some previous works modeling the Rees-Sciama effect
of voids [47,56]. The general solutions for a flat universe
with nonzero Λ were first derived in [57] (see also [22]).
For this case, the relevant pieces of the first-order

solutions can be written in terms of two functions PðηÞ
and FðxÞ as

ψ ð1Þ ¼ ϕð1Þ ¼ −
1

2

�
1 −

a0

a
P0
�
F; ð25Þ

and

vð1Þi ¼ 1

2
P0F;i; ð26Þ

where the growing mode solution for P,

P ¼
Z

η

0

dη0a−2ðη0Þ
Z

η0

0

dη00a2ðη00Þ; ð27Þ

is determined by the cosmological model (i.e., the value of
ΩΛ) alone.
The second-order perturbations in the same Poisson

gauge can be written as [22,57]

ϕð2Þ ¼ ψ ð2Þ ¼ ζ1F;iF;i þ
9

2
ζ2Ψ0; ð28Þ

where

∇2Ψ0 ¼ F;ijF;ij − ð∇2FÞ2; ð29Þ

ζ1 ¼
1

4
P

�
1 −

a0

a
P0
�
; ð30Þ

and

ζ2 ¼
1

21

a0

a

�
PP0 −

Q0

6

�
−

1

18

�
Pþ ðP0Þ2

2

�
: ð31Þ

The function QðηÞ appearing in Eq. (31) is the growing-
mode solution of the equation

Q00 þ 2a0

a
Q0 ¼ 5

2
ðP0Þ2 − P: ð32Þ

Note that the equality in Eq. (28) is not exact: we have
dropped additional terms in ϕð2Þ and ψ ð2Þ which are
negligible for the subhorizon perturbations we will
consider.
To calculate the predicted secondary temperature

anisotropy pattern due to any isolated structure lying along
the line of sight it only remains to specify the correspond-
ing functional form of FðxÞ, as all the time-dependent
terms in the equations above are uniquely determined by
the choice of the background cosmology. We choose the
form of F so as to ensure that the first-order density
perturbation δ today matches the spherically symmetric
void profile specified in [39]. This is achieved by inverting
the Poisson equation,

∇2F ¼ −
3ΩmH2

0δ

ð1 − a0P0=aÞja¼1

; ð33Þ

to obtain [34]

FðrÞ ¼ 3ΩmH2
0

ð1 − a0P0=aÞja¼1

×

�Z
r

0

r02

r
δðr0Þdr0 þ

Z
∞

r
r0δðr0Þdr0

�
; ð34Þ

which is generally valid for any spherically symmetric
density perturbation δðrÞ. For the specific density profile
given in Eq. (1), this means that FðrÞ ¼ F0e−r

2=r2
0 , where

F0 ¼ −
ΩmH2

0δ0r
2
0

2ð1 − a0P0=aÞja¼1

: ð35Þ

Since at this order Φ ¼ ϕð1Þ ¼ ψ ð1Þ, our choice means that
the gravitational potential has the same spatial dependence
as in [39], but we have also explicitly specified the time
dependence.3

Given this form of FðrÞ, the model of the void is
specified by three numbers: the central underdensity δ0,

3In a later proceedings [58], the authors of [39] appear to claim
a time dependence Φ ∝ η2 for the potential, but this must be an
error as it is not consistent with the standard time evolution in a
ΛCDM background in Eq. (25) above. Indeed such a time
dependence would mean a potential fluctuation growing with
time, which would result in an ISW temperature shift of the
wrong sign.
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the physical size r0 and either the redshift of the center of
the void, zc, or the comoving distance to the center, rc. One
may use Eqs. (23), (25) and (27) to obtain the first-order
ISWanisotropy as a function of the angle θ from the center
of the void:

δTISWðθÞ ¼
Z

zLS

0

��
a00

a
− 3

a02

a2

�
P0 þ a0

a

�

×
F0 exp ð− ~r2ðz;θÞ

r2
0

Þ
HðzÞ dz; ð36Þ

where ~r2ðz; θÞ ¼ r2ðzÞ þ r2c − 2rðzÞrc cos θ with rðzÞ
being the comoving distance to redshift z, HðzÞ is the
Hubble parameter at redshift z and the integral in principle
extends to the redshift of last scattering zLS though in
practice it can be terminated much earlier for a subhorizon
sized void. Similarly, using Eqs. (24), (28) and (29), one
obtains

δTRSðθÞ ¼
Z

zLS

0

�
~r2ðz; θÞ

r20
4ζ01 þ 9ζ02

�

×
F2
0 exp ð− 2~r2ðz;θÞ

r2
0

Þ
r20HðzÞ dz; ð37Þ

where ζ01 and ζ02 are complicated functions of z, whose full
form is provided in Appendix A.
The void model that [39] claims provides an RS

temperature profile capable of fitting the cold spot has
parameters δ0 ¼ 0.25, r0 ¼ 195h−1Mpc and zc ¼ 0.155
(or rc ¼ 450h−1 Mpc), which we take as our fiducial model
parameters. Figure 2 shows the behavior of the integrands
of Eqs. (36)–(37) as functions of redshift z along the line of
sight passing through the center of the void (θ ¼ 0) for

these fiducial parameters. Three important points are clear
from this figure: the amplitude of the RS integral is much
smaller than that of the linear ISW contribution; the RS
integral receives contributions from a narrower range of
redshifts, which also means that the RS effect contributes
over a smaller angular range on the sky; and that at the void
edges the RS contribution will be slightly positive due to
the nonlinear growth of structure in the void walls. This last
point is also consistent with the discussion in [41].
It is worth noting that Eqs. (36)–(37) do not admit simple

closed-form analytic solutions in general (Λ ≠ 0), even for
θ ¼ 0, so it is not clear how the expression for δTRSðθÞ
claimed in [39] is derived. An Einstein–de Sitter universe
(Ωm ¼ 1, Λ ¼ 0) provides a special case in which such an
expression can be derived, as we discuss in Appendix B.
Note that many previous studies of the RS effect of a void
(e.g. [47,56]) also assume an Einstein–de Sitter back-
ground; their results should therefore be compared with
Eqs. (B4)–(B5).

C. Results

Figure 3 shows the temperature anisotropy profiles
ΔTðθÞ for the void defined by Eq. (1), with the fiducial
parameters given above, as calculated using both the exact
LTB and perturbation theory approaches. We also show
ΔTðθÞ for the corresponding cLTB model.
The first thing that is obvious from this figure is that the

results from the perturbation theory and LTB approaches
match each other quite well, but both differ markedly from
the claimed RS temperature profile for the same void
parameters in [39]. The amplitude of the signal we find is
approximately a factor of a third smaller, but is at least of
the same order of magnitude, Oð100 μKÞ. However, the
angular scale of the profile we find is much broader,
extending out to θ ¼ 90∘.
To understand this, let us break up the total temperature

anisotropy obtained in Sec. III B into pieces corresponding
to the monopole, dipole, first-order ISW and second-order
RS effects. Comparison of their relative amplitudes
shows that ΔTmon ¼ −0.95 μK, ΔTdipjθ¼0 ¼ −80.3 μK,
ΔTISWjθ¼0 ¼ −19.1 μK and ΔTRSjθ¼0 ¼ −0.17 μK,
where we have taken TCMB ¼ 2.7255 K [59]. That is,
for the void parameters claimed in [39], the dominant
temperature anisotropy is in fact a dipole term, and the RS
contribution is, as expected based on the arguments in
Sec. II, negligible compared to the linear ISW integral. In
the right panel of Fig. 3 we show the angular dependence of
the ISW and RS terms, with the claimed profile from [39]
included for comparison.
The origin of the dipole term itself is worth further

consideration. The void model considered here corresponds
to a density profile that is only asymptotically compensated
at infinity, as seen from Eq. (1), so the gravitational
potential Φ only approaches zero at r → ∞. In particular,
since for these void parameters rc ≃ 2.3r0, Φ is not

FIG. 2 (color online). The integrands appearing in the ISW and
RS integrals in Eqs. (36)–(37) as a function of redshift z. The RS
integrand has been multiplied by a factor of 25 for clarity. The RS
integrand is much smaller in magnitude and narrower in redshift
than its ISW counterpart, and also changes sign at the overdense
void edges.
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negligible at the observer location. In other words, the void
is so large and so close that the observer lies within its
potential and is moving appreciably with respect to its
center. On the other hand, for the compensated profile of
the cLTB model, Φ goes to zero at the compensation radius
rb so there is no dipole contribution to the temperature
profile.
The magnitude of the dipole produced by this void is

much smaller than the total kinetic dipole seen by Planck
[60], and it will not be visible in dipole-subtracted CMB
maps. All that will be left isΔTISWðθÞ þ ΔTRSðθÞ, which is
far too small to explain the observed cold spot temperature

decrement of ∼150 μK, and in any case has the wrong
angular profile.
To study the applicability of the perturbation theory

approach to calculating ISW temperature anisotropies in
more detail, we use the fiducial density profile of Eq. (1)
and fix the void radius to be r0 ¼ 195h−1 Mpc as before.
However, we place the center of the void at zc ¼ 0.4, far
enough out that the monopole and dipole contributions to
δTð1Þ are negligible. Figure 4 then shows the scaling of
ΔTjθ¼0 versus the central underdensity δ0 as calculated
using the exact LTB model and perturbation theory to
second order. Whereas the two results agree very well for
small δ0 values, for δ0 ≳ 0.5 the perturbation theory
approach is unable to match the fully nonlinear LTB result.
The importance of such nonlinear evolution for LTB
models has been noted before in other contexts [61].

D. Estimating void probabilities

Although it is clear from the results above that the specific
void claimed to have been detected by [38] cannot possibly
explain the cold spot, we are interested in the more general
question ofwhether any reasonable void can do so. To answer
this question we shall restrict ourselves to the case of the
fiducial density profile and perform a scan over parameters δ0
and r0, using the full LTB approach to calculate the temper-
ature shiftΔTjθ¼0 only.

4 In order to ensure that the unwanted

FIG. 3 (color online). Left panel: The total temperature anisotropy ΔTðθÞ due to the fiducial void profile with δ0 ¼ 0.25, r0 ¼
195h−1 Mpc and zc ¼ 0.155, as calculated with the LTB model (blue solid line), and with perturbation theory (blue dot-dashed line). In
both cases, the dominant contribution is a dipole term. The red dashed curve shows ΔTðθÞ for the cLTB model, which does not show a
dipole. Right panel: The angular dependence ofΔTISW (blue solid curve) andΔTRS (red dashed) for the fiducial void, as calculated from
Eqs. (36)–(37). The RS anisotropy is magnified by a factor of 100 for clarity. The green (dot-dashed) line shows the ΔTðθÞ claimed in
[39], multiplied by 0.1 for clarity.

FIG. 4 (color online). The dependence of the total temperature
anisotropy ΔTISW þ ΔTRS for the fiducial void profile, as a
function of δ0 for a void of size r0 ¼ 195h−1 Mpc, as calculated
using the full LTB approach (blue solid line) and the perturbation
theory approach (red dashed line). The redshift of the void center
is fixed at zc ¼ 0.4 so that the dipole contribution to the LTB
calculation is negligible.

4The shape of ΔTðθÞ for the fiducial profile will actually never
be able to match the observed cold spot temperature profile, since
it does not cross zero at any angle. For this a compensated void
such as the cLTB model is required. However, as a first
approximation we need only consider the magnitude of the
temperature decrement at the center, and for the same choices of
δ0 and r0 voids with compensated profiles such as cLTB produce
similar values of ΔTjθ¼0 but are far less likely in ΛCDM.
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dipole does not contribute to this value, we require that the
distance to the center rc be large enough. This is done by
setting the ratio r0=rc to be constant, such that the void
subtends an angle of ∼10∘ on the sky.
For each choice of ðδ0; r0Þ we also wish to evaluate the

likelihood of existence of such a void in a ΛCDM universe.
To do this we calculate the Gaussian-filtered density
contrast at the center of the void, when the filter width
is set equal to r0, in units of the rms density fluctuation
σðr0Þ at the same scale and using the same Gaussian filter.5

We then use standard peaks theory for a Gaussian random
field [62] to estimate the cumulative number density of
peaks of the matter density field which represent an equal
or greater negative fluctuation, quantified by ν ¼ δfilt=σ0.
By multiplying this number density by the total volume of
the Universe enclosed within redshift 0.5, we obtain an
estimate of the number of voids of equal or greater
extremeness that we should expect to observe within the
local universe in a ΛCDM cosmology.
In Fig. 5 we show the results of these two calculations:

the solid lines show contours of equal ΔTjθ¼0, and the
dashed lines contours of equal expected number of voids.
When the expected number values are < 1, they can be
regarded as representing the probability of finding a single
void of such extremeness in ΛCDM.

Note that for the likelihood calculation we use the fiducial
density profile of Eq. (1) to calculate δfilt; for a compensated
top-hat profile like the cLTB, δfilt will be much larger and
therefore the void correspondingly less likely. It is also worth
mentioning that choosing the filter radius to be equal to r0 is
a somewhat arbitrary choice. In fact the normalized void
density fluctuation jνj peaks at smaller filter radii ∼0.5r0, so
our choice is somewhat conservative and does not minimize
the void likelihood. On the other hand, our treatment is in
any case approximate and a proper calculation of the
likelihood is beyond the scope of this paper. The likelihood
contours in Fig. 5 should be treated as qualitative guides
rather than precise values.
However, some important general conclusions can be

drawn. Voids such as that postulated in [39], with δ0 ¼ 0.25
and r0 ¼ 195h−1Mpc, are not particularly unlikely in a
ΛCDM universe—we should expect to see ∼10 − 20 of
them, as argued in Sec. II. Such voids also produce a
temperature effect that is far too small to explain the cold
spot. On the other hand, the probability of existence of voids
drops off much more rapidly than the possible temperature
signal increases, such that voids capable of producing
ΔTjθ¼0 ¼ −60 μK are already exceedingly unlikely and
the probability that any void could explain the full cold spot
temperature decrement of −150 μK is very small within the
ΛCDM model. This conclusion is in agreement with the
earlier results [37,41,43,44] discussed in Sec. II.
It is also worth noting that for combinations ðδ0; r0Þ for

which voids are relatively likely to exist, not only is the ΔT
calculated with the LTB model small in absolute magni-
tude, but the result is also well approximated by perturba-
tion theory.
So far we have made the unrealistic assumption that a

single void along the line of sight contributes all the
temperature anisotropy of the cold spot, without consider-
ing the role of intrinsic fluctuations on the last scattering
surface. We turn to this in the next section.

IV. COMPARING THE SUPERVOID
HYPOTHESIS TO DATA

Given any model of a hypothesized supervoid along the
line of sight and the temperature profile δTðθÞ due to it, we
would like both to determine how good a fit to the cold spot
data this model provides, and to compare this goodness of
fit to appropriate alternative explanations for the cold spot.
In [39] the authors attempt to address this question by
constructing a χ2 statistic for the fit to the cold spot
temperature profile as

χ2 ¼
X
ij

ðδT th
i − δTCMB

i ÞC−1
ij ðδT th

j − δTCMB
j Þ; ð38Þ

where δTCMB
i represents the observed average CMB

temperature in angluar bins centered at angles θi from
the center of the cold spot, δT th

i is the theoretical prediction

FIG. 5 (color online). The color scale shows the dependence of
ΔTjθ¼0 on void parameters δ0 and r0 calculated with the LTB
model. The distance to the void center is adjusted such that voids
of different sizes subtend the same angle on the sky, and the
dipole effect is zero. Solid lines are contours of equal ΔTjθ¼0, at
values −20 μK, −60 μK, −120 μK and −200 μK (labeled on
top). The dashed lines are contours of equal “extremeness,”
labeled by the approximate number of equally extreme voids
expected to exist within z < 0.5 in a ΛCDM universe. Where
these numbers are < 1, they may be taken as the probability of
existence of a single such void.

5The use of a Gaussian filter rather than a top hat is necessary
to ensure the convergence of higher-order moments of the density
field used in the number density calculation [62].
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for the temperature at θi, Cij is the covariance matrix of the
CMB determined from simulated random maps and the
sums run over all bins.
As shown in the previous section, the estimate of the

magnitude of the RS effect of a void provided in [39] is
three orders of magnitude too large, rendering the χ2 values
they calculate using this predicted profile meaningless.
If one wants to test the hypothesis that the cold spot is
attributable in its entirety to a supervoid, one should use
δT th ¼ δTISW þ δTRS calculated from Eqs. (36)–(37); for
the void parameters claimed in [39]—and indeed for any
reasonable void parameters—this hypothesis would instead
prove a very poor fit to the data.
But there is a more subtle and general problem with using

the χ2 value obtained from (38) for model comparisons, and
that is the choice of the null hypothesis with which to
compare the supervoid hypothesis. Reference [39] assumes
as the null hypothesis the model with prediction δT thðθÞ ¼ 0

[63], which amounts to assuming that the cold spot is a
randomly chosen point on theCMB.This is obviously not the
case: the cold spot direction is special by construction, having
been specifically selected because when the CMB map is
filtered using a SMHW it is the coldest direction on the sky.
This constitutes an enormous a posteriori selection effect.
To ensure a fair comparison between models the null

hypothesis must correctly account for this selection effect
on the profile. That is to say, if one wishes to test the null
hypothesis that the observed temperature profile around the
direction of the cold spot is simply due to a statistical
fluctuation, one must at the very least compare the observed
temperature profile with the average profile found around
the coldest spot obtained when random CMB maps are
filtered using the same SMHW filter with the same angular
width. Indeed one may also wish to investigate the
possibility of further a posteriori effects in the choice of
filter and angular width [8], but we will restrict ourselves to
the minimal case in this paper.
To demonstrate the importance of this selection effect,

we perform the following analysis. First we generate
10,000 random synthetic Gaussian CMB maps with the
help of the HEALPix software package [64] using the Cl
values for the best-fit Planck power spectrum [65], each at
Nside ¼ 128. To each of these random maps we apply the
Planck union (U74) sky mask, also downgraded to
Nside ¼ 128. We then filter each map using a SMHW of
width 6°, which roughly corresponds to the filter width
giving the maximum significance for the real Planck/
WMAP cold spot. We then select the pixel direction, from
the set of pixels on a HEALPix, Nside ¼ 16 map, that
corresponds to the coldest filtered temperature. To match
past convention, we wish to ensure that the significance of
the filtered signal in the chosen pixel is not dominated by
mask effects. To do this, we also filter the (Nside ¼ 128)
mask with the square of the SMHW filter and ignore any
(Nside ¼ 16) pixel direction in the filtered mask with a

value< 0.95.6 Also, note that when we downgrade the U74
mask this results in some pixels being partially masked.
We also ignore any pixel direction with a value< 0.9 in the
unfiltered, downgraded mask. We then measure the average
temperature profile in concentric rings about these coldest
spots as a function of the angular distance θ from the central
direction in each (unfiltered, Nside ¼ 128) map. Finally we
repeat exactly the same procedure for the Planck SMICA
map [66], recovering the actual temperature profile around
the cold spot and its SMHW-filtered temperature.
The mean of these profiles from random maps provides

an estimate of the effect of the selection effect on the
observed cold spot temperature. In Fig. 6 we show the
actual cold spot profile overlaid on top of the 68% and
95% C.L. (more precisely, the equivalent Gaussian 1- and
2-σ) bands determined from the random maps. This is the
correct null hypothesis to which the supervoid hypothesis
(or indeed any other proposed exotic explanation) must be
compared. The first and most important conclusion to be
drawn from this figure is that the mere fact that the cold
spot was chosen precisely because it was cold alone can
satisfactorily account for the temperature decrement at the
center of the cold spot.
Nevertheless, in agreement with the Planck analysis [7],

we find that the real cold spot is still unusual at the ∼3σ
level in ΛCDM, in that fewer than 1% of the coldest spots
in random maps have as cold a total filtered temperature.
The reason for this lies in the fact that, as also explained in
[8], the true cold spot temperature profile shows a transition
from a cold center to a hot surrounding ring at θ≃ 15∘

FIG. 6 (color online). The average temperature profile around
the cold spot direction (red dashed line) measured from the
Planck SMICA map, showing the central cold region and
the surrounding hot ring at θ ∼ 15∘. The shaded regions
show the 68% and 95% C.L. range in the temperature profiles
around the coldest spots identified in 10,000 random Gaussian
maps using the same SMHW technique.

6We use the square of the SMHW filter because it changes
sign. This means that even regions where the mask is uniformly
set to 1 could give a filtered signal < 1 unless using the squared
filter.
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which happens to roughly coincide with the change in sign
of the SMHW profile. In other words, despite the fact that
the cold spot profile does not at any point lie outside the
95.5% C.L. bands in Fig. 6, what is unusual is that it crosses
from being slightly colder than average at θ≃ 0∘ to being
slightly hotter than average at θ≃ 15∘.
To demonstrate this another way, we calculate the

cumulative filtered signal out to angle θ as

ΔTwavðθ; RÞ ¼
Z

θ

0

Z
2π

0

ΔTðθ0;ϕ0ÞΨðθ0;ϕ0;RÞdΩ0; ð39Þ

where Ψðθ0;ϕ0;RÞ is the value of the SMHWof width R at
ðθ0;ϕ0Þ. In Fig. 7 we show this cumulative signal as a
function of θ for the Planck SMICA map, compared to the
95% C.L. band obtained from the corresponding values for
the coldest spots in random maps. Our cold spot first
becomes anomalous at angles θ ∼ 15∘, showing that it is not
the central cold region that is anomalous, but the particular
combination of the cold region and the hot surround-
ing ring.
From Figs. 5–6 we conclude that the temperature

contribution to the cold spot of any supervoid is dwarfed
by the selection effect inherent in identifying the cold spot
direction. Nevertheless, a void aligned along the line of
sight could still contribute part of the temperature effect
seen, and perhaps this could help to explain the residual
anomaly discussed above.
At first sight, it may appear that evaluating the likelihood

of such a scenario has become more complicated, since one
must now estimate the expected temperature profile due to
the coldest fluctuation on the last scattering surface (in the
absence of a void), estimate the additional contribution that
could arise from the most extreme supervoid that one could
expect to be present in a ΛCDM universe and also estimate

the probability that this supervoid is by chance aligned such
as to enhance the effect of the rare fluctuation on the last
scattering surface.
However, we find that for combinations of void param-

eters that are likely to occur within ΛCDM, the standard
linear ISW treatment represents a good approximation to
the full nonlinear treatment of the resulting temperature
anisotropy using the LTB model. The Cl values used to
generate the random maps used in producing Figs. 6–7
already include this secondary linear ISW contribution.7

Therefore comparing the coldest spots in random CMB
maps to our own cold spot as is usually done already
accounts for the contribution of any possible supervoid
along the line of sight. Therefore, within ΛCDM, insofar as
the cold spot is anomalous, the additional hypothesis of a
supervoid cannot help resolve this anomaly.

V. DISCUSSION

In this paper we have explored the possibility that the
cold spot seen in the CMB is the result of a large void along
the line of sight. In particular we have examined in detail
the claim in [39] that a recently reported void found in the
WISE-2MASS galaxy data [38] is capable of accounting
for the cold spot temperature profile through the second-
order Rees-Sciama effect. We find this claim to be
mistaken. We have calculated the true temperature effect
of the postulated void in two different ways, using an exact
LTB solution and perturbation theory. We find that the
second-order Rees-Sciama effect is much smaller than the
linear-order ISWanisotropy. The total temperature effect of
such a void is in fact dominated by a dipole due to the
observer’s motion with respect to its center, but this
contribution is small enough to be unobservable in
dipole-subtracted CMB maps. When the dipole effect is
subtracted, the remaining ISW contribution is far too small
to account for the cold spot, and in any case produces a
temperature profile of the wrong shape. We have further
shown that in order to produce ΔT ∼ −150 μK as seen at
the cold spot location a void would need to be so large and
so empty that within the standard ΛCDM framework the
probability of its existence is essentially zero.
Note that we have not at any point questioned the claim

in [38] that a large void actually exists at this location in the
direction of the cold spot. Indeed we have argued that the
size and density contrast values reported for this void are
not extraordinary, and that one should expect to find several
such voids within the reasonably local universe (i.e. at
redshifts < 0.5). Some earlier examples of such voids have
already been reported [43]. Instead our argument is based
on the fact that even if such a void does exist, the maximum

FIG. 7 (color online). The red dashed line shows the cumulative
filtered temperature ΔTwavðθÞ [Eq. (39)] using a SMHWof width
6° for the cold spot in the Planck SMICA map. The shaded
regions indicate the 68% and 95% confidence limits determined
from applying the same procedure to the coldest spots in 10,000
random CMB maps. The filtered temperature for the real cold
spot only becomes statistically significant at θ ∼ 15∘.

7In fact, removing this contribution by hand hardly affects the
results, demonstrating the miniscule probability of having a
suitable supervoid aligned by chance with the direction of the
appropriate fluctuation on the last scattering surface.
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temperature effect it could produce on the CMB is still
insufficient to explain the cold spot.
In fact our results provide a more general argument

against any supervoid explanation of the cold spot. This is
because we find that for density contrasts and sizes of voids
that are compatible with their existence in a ΛCDM
universe, the linear-theory calculation of the induced
ISW temperature shifts is sufficient, and that these temper-
ature shifts are small. Therefore the standard estimation of
the statistical significance of the cold spot anomaly, which
makes use of the CMB power spectrum in a ΛCDM model
that includes a linear ISW contribution, already self-
consistently incorporates the possible contribution of any
void along the line of sight within the ΛCDM framework.
This means the existence of any structure capable of
explaining the cold spot must be at least as anomalous
in ΛCDM as the existence of the cold spot itself.
Of course the ΛCDMmodel may be incomplete, and rare

supervoids at odds with its predictions may in principle
exist, so it is worth searching for them in observational
data. However, if such a supervoid did exist, it would point
to a significant failure of our theories of structure formation
or initial conditions, which have been otherwise successful
in fitting a variety of cosmological data. Therefore, unless
and until such a structure is actually found, or a good
theoretical motivation for it is provided, the sensible choice
of priors must reflect a presumption against its existence.
Any comparison of the Bayesian evidence for a hypotheti-
cal supervoid model must then also account for these priors.
We argue that doing so correctly will disfavor the supervoid
over random statistical fluctuations on the last scattering
surface as an explanation for the cold spot anomaly.
In the process of making this argument, we have also

shown that it is actually not the coldness of the temperature
fluctuation at the center of the Cold Spot which is
anomalous. The mere fact that the cold spot was specifi-
cally selected as the coldest spot in our CMB (after
applying an SMHW filter) is already a sufficient explan-
ation of this: Figure 6 shows that at its center our cold spot
is well within the expected range of temperatures of the
coldest spots on random CMB maps. Instead it is the
combination of the cold center and the hot ring at larger
angles which makes our cold spot unusual. This was
perhaps not entirely unknown—for instance, it is the reason
that the cold spot looks anomalous when using a SMHW
but not under other filters [8]—but it provides an alternative
interesting perspective to the problem.
To achieve such cold centers and hot rings through the

ISW effect requires voids with the extreme compensated
top-hat type of density profile shown in the cLTB model we
consider. This is the theoretically motivated end-state
profile for highly evolved and nonlinear voids on very
small scales [67]; however for voids on ≳100h−1Mpc
scales such a density distribution is exceedingly unlikely,
thus further disfavoring a supervoid explanation.

Note added.—After preparation of this manuscript, we
became aware of another preprint [68], which appeared
on the arXiv almost simultaneously and independently
examines some of these same issues. Despite small
differences in approach, including the choice of gauge
and the mapping between LTB and perturbed FRWmodels,
in the region of overlap the broad conclusions of that
work—that the dominant contribution of the void proposed
by [38] is a dipole anisotropy, the second-order RS term is
subdominant to the ISW term and the total ISWþ RS
effect is much smaller than claimed by [39]—closely match
those presented here.
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APPENDIX A: TIME-DEPENDENT TERMS
IN δTISW AND δTRS

The functions ζ01 and ζ02 appearing in Eq. (37) can be
written as [22]

ζ01 ¼
1

4

�
P0 −

a0

a
ðPþ P02Þ þ

�
3
a02

a2
−
a00

a

�
PP0

�
; ðA1Þ

and

ζ02 ¼ −
1

9
P0 þ 1

18

a0

a
Pþ 5

36

a0

a
P02

þ 1

21

�
a00

a
− 3

a02

a2

��
PP0 −

Q0

6

�
; ðA2Þ

where we have used Eq. (32) and the fact that

P00 þ 2

�
a0

a

�
P0 − 1 ¼ 0: ðA3Þ

Some additional useful relations are

a0

a
¼ aH ¼ aH0

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Ωma−3 þΩΛ

q
; ðA4Þ

and

a00

a
¼ H2

0

2a
ðΩm þ 4ΩΛa3Þ: ðA5Þ

APPENDIX B: AN Ωm ¼ 1 BACKGROUND

A background Einstein–de Sitter cosmology (Ωm ¼ 1,
Λ ¼ 0) represents a special case in which the general
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equations presented above simplify appreciably [53]. First,
we have

P0 ¼ 2

5aH
; ðB1Þ

so that the first-order potential terms ϕð1Þ and ψ ð1Þ are time
independent and δTISW vanishes, as expected. In addition,
we obtain ζ1 ¼ 3

200
η2 and ζ2 ¼ − 1

210
η2, so that for our

fiducial profile Eq. (37) reduces to

δTRS ¼
Z

η0

0

3η

25

�
~r2

r20
−
5

7

�
F2
0

r20
e
−2~r2

r2
0 dη; ðB2Þ

where

~r2ðθ; ηÞ ¼ r2 þ r2c − 2rrc cos θ ðB3Þ
as before, and rðηÞ ¼ η0 − η ¼ 2=H0 − η.
Even in this simplified case, the full θ-dependent integral

is very tedious and is better evaluated numerically.

However, by making some judicious approximations
regarding the ratios η0=r0 and rc=r0, we can obtain a
simple expression for the maximum amplitude of the RS
signal through the line passing through the void center,

δTRSjθ¼0 ¼ −
13

168

ffiffiffi
π

2

r
δ20ðr0H0Þ3

�
1 −

rcH0

2

�
: ðB4Þ

For the fiducial void parameters δ0 ¼ 0.25,
r0 ¼ 195h−1 Mpc, zc ¼ 0.155, one can check that this
leads to an amplitude of the RS signal

ΔTRSjθ¼0 ≃ −4.2 μK; ðB5Þ

which is still orders of magnitude smaller than the value
claimed in [39]. This value is in good agreement with
previous results which also assume Ωm ¼ 1, e.g. [56]. Also
note that the magnitude of the RS term is maximum in the
case Ωm ¼ 1 and will be smaller than this for any model
with nonzero Λ [22].
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