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We study the quantum dynamics of a supersymmetric squashed three-sphere by dimensionally reducing
(to one timelike dimension) the action of D ¼ 4 simple supergravity for a SUð2Þ-homogeneous (Bianchi
IX) cosmological model. The quantization of the homogeneous gravitino field leads to a 64-dimensional
fermionic Hilbert space. After imposition of the diffeomorphism constraints, the wave function of the
Universe becomes a 64-component spinor of spin(8,4) depending on the three squashing parameters, which
satisfies Dirac-like, and Klein-Gordon-like, wave equations describing the propagation of a “quantum
spinning particle” reflecting off spin-dependent potential walls. The algebra of the supersymmetry
constraints and of the Hamiltonian one is found to close. One finds that the quantum Hamiltonian is built
from operators that generate a 64-dimensional representation of the (infinite-dimensional) maximally
compact subalgebra of the rank-3 hyperbolic Kac-Moody algebra AE3. The (quartic-in-fermions) squared-
mass term μ̂2 entering the Klein-Gordon-like equation has several remarkable properties: (i) it commutes
with all the other (Kac-Moody-related) building blocks of the Hamiltonian; (ii) it is a quadratic function of
the fermion number NF; and (iii) it is negative in most of the Hilbert space. The latter property leads to a
possible quantum avoidance of the singularity (“cosmological bounce”), and suggests imposing the
boundary condition that the wave function of the Universe vanish when the volume of space tends to zero
(a type of boundary condition which looks like a final-state condition when considering the big crunch
inside a black hole). The space of solutions is a mixture of “discrete-spectrum states” (parametrized
by a few constant parameters, and known in explicit form) and of continuous-spectrum states (parametrized
by arbitrary functions entering some initial-value problem). The predominantly negative values of the
squared-mass term lead to a “bottle effect” between small-volume universes and large-volume ones, and to
a possible reduction of the continuous spectrum to a discrete spectrum of quantum states looking like
excited versions of the Planckian-size universes described by the discrete states at fermionic levels NF ¼ 0

and 1.
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I. INTRODUCTION

Understanding the quantum dynamics of the spacetime
geometry near a spacelike (cosmological) singularity, such
as the big bang singularity that gave birth to our Universe,
is one of the key problems of gravitational physics. Since
the full theory of quantum gravity is still too ill understood
to allow a frontal attack on this problem, one can hope to
make progress by first studying highly symmetrical geo-
metrical models, so that the degrees of freedom of the
gravitational, and matter, fields can be reduced to a finite
number. Among such “minisuperspace models,” the
Bianchi IX model, i.e. a spatially homogeneous [SUð2Þ-
symmetric] model having spatial sections homeomorphic
to the three-sphere S3, has always played a useful role. In a
classical context, the vacuum (i.e. matter-free) Bianchi IX
model served as the paradigmatic example of the chaotic
approach towards a generic (inhomogeneous) spatial sin-
gularity conjectured by Belinskii, Khalatnikov, and Lifshitz
(BKL) [1] (see also [2]). The same model gave also a fertile
example for the quantum dynamics of space near a big bang
(or a big crunch) singularity [3].

More recently, the Bianchi IX model has served as an
important test bed for supersymmetric quantum cosmology,
that is the study of the quantum dynamics of cosmological
models, as described within supergravity theories. See
Refs. [4–11], as well as the books [12–14]. As in these
references, we consider here the original “simple” (N ¼ 1)
four-dimensional supergravity theory [15,16]. Though the
supersymmetric Bianchi IX model contains only a finite
number of bosonic and fermionic degrees of freedom, the
previous attempts [4–11] at studying its quantum dynamics
have not succeeded in fully clarifying the structure of its
allowed states, i.e. the complete set of solutions of all the
constraints.
The first aim of the present work will be to remedy this

situation, i.e. to provide a complete description of the
solution space of the quantum supersymmetric Bianchi IX
model. This will be done by using a new approach to the
quantum dynamics of supersymmetric Bianchi models that
generalizes the formalism we used in [17] to study the
quantum dynamics of Einstein-Dirac Bianchi universes. It
differs from the formalisms used in previous works [12–14]
in describing the gravity degrees of freedom entirely in
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terms of the metric components gμν, without making use of
an arbitrary, local vielbein. We use the symmetry properties
of Bianchi models to uniquely determine a specific vielbein
hα̂μ (with gμν ¼ ηα̂ β̂h

α̂
μhβ̂ν) as a local function of gμν. In

other words, we gauge-fix from the start the 6 extra degrees
of freedom contained in hα̂μ that could describe arbitrary
local Lorentz rotations. This gauge-fixing of the local
SOð3; 1Þ gauge symmetry eliminates the need of the usual
formalisms [12–14] to impose the six local Lorentz con-
straints Jα̂ β̂ ≈ 0. Another specificity of our formalism will
be to describe the degrees of freedom of the gravitino by
means of a Dirac-like gamma-matrix representation. Such a
representation was notably advocated in Refs. [11,18,19],
and was found convenient in the Einstein-Dirac case [17].
As we shall explicitly discuss below, this gamma-matrix
representation of the fermionic operators is equivalent to a
representation in terms of fermionic creation and annihi-
lation operators (which is, in turn, very close to the
Grassmann algebra-valued functional representation used
in Refs. [4–10]).
The second aim of the present work is to clarify the

occurrence of hidden hyperbolic Kac-Moody structures in
(simple, four-dimensional) supergravity, within a setting
which goes beyond previous work both by being fully
quantum, and by taking completely into account the crucial
nonlinearities in the fermions that allow supergravity to
exist. (Our main results on this hidden Kac-Moody sym-
metry were briefly announced in [20].) Let us recall that the
existence of a correspondence between various super-
gravity theories and the dynamics of a spinning massless
particle on an infinite-dimensional Kac-Moody coset space
was conjectured a few years ago [21–24]. Evidence for
such a supergravity/Kac-Moody link emerged through the
study à la BKL [1] of the structure of cosmological
singularities in string theory and supergravity, in spacetime
dimensions 4 ≤ D ≤ 11 [25–27]. For instance, the well-
known BKL oscillatory behavior [1] of the diagonal
components of a generic, inhomogeneous Einsteinian
metric in D ¼ 4 (also found in the spatially homogeneous
Bianchi IX model) was found to be equivalent to a billiard
motion within the Weyl chamber of the rank-3 hyperbolic
Kac-Moody algebra AE3 [26]. Similarly, the generic BKL-
like dynamics of the bosonic sector of maximal super-
gravity (considered either in D ¼ 11, or, after dimensional
reduction, in 4 ≤ D ≤ 10) leads to a chaotic billiard motion
within the Weyl chamber of the rank-10 hyperbolic Kac-
Moody algebra E10 [25]. The hidden role of E10 in the
dynamics of maximal supergravity was confirmed to higher
approximations (up to the third level) in the gradient
expansion ∂x ≪ ∂T of its bosonic sector [21]. In addition,
the study of the fermionic sector of supergravity theories
has exhibited a related role of Kac-Moody algebras. At
leading order in the gradient expansion of the gravitino
field ψμ, the dynamics of ψμ at each spatial point was
found to be given by parallel transport with respect to a

(bosonic-induced) connection Q taking values within the
“compact” subalgebra of the corresponding bosonic Kac-
Moody algebra: sayKðAE3Þ forD ¼ 4 simple supergravity
and KðE10Þ for maximal supergravity [22–24]. However,
the latter works considered only the terms linear in the
gravitino, and, moreover, treated ψμ as a “classical”
(i.e. Grassman-valued) fermionic field. By contrast, the
present work will treat the (spatially homogeneous) grav-
itino ψμ as a quantum fermionic operator (satisfying
anitcommutation conditions), and will keep all the non-
linearities in the fermions predicted by supergravity. This
will allow us to confirm the hidden presence of the rank-3
hyperbolic Kac-Moody algebra AE3, notably via its
“maximal compact subalgebra” KðAE3Þ.

II. CLASSICAL LAGRANGIAN FORMULATION

In this work we follow the approach and notation of our
previous work [20]. We start from the Bianchi IX metric
ansatz (i; j ¼ 1; 2; 3)

ds2 ¼ −NðtÞ2dt2 þ gijðtÞðτi þ NiðtÞdtÞðτj þ NjðtÞdtÞ;
ð2:1Þ

where, as usual, we denote by NðtÞ and NiðtÞ the lapse
and shift functions. The τi are (spatially dependent) left-
invariant 1-forms on the SUð2Þ group manifold:

dτi ¼ 1

2
Ci

jkτ
j∧τk; ð2:2Þ

where Ci
jk ¼ εijk is the usual three-dimensional Levi-

Civita symbol (ε123 ¼ þ1).
This metric represents a stack of time-dependent

squashed 3-spheres. Each of these deformed 3-spheres is
still a homogeneous space i.e. all the points on each sphere
are indistinguishable from each other. However, the local
geometry of each of these squashed 3-spheres is aniso-
tropic, the anisotropy being encoded in the time-dependent
quadratic form gijðtÞ. At each point the diagonalization of
this quadratic form with respect to the Cartan-Killing
metric

kij ≔ −
1

2
Cr

isCs
jr ¼ δij; ð2:3Þ

associated with the SUð2Þ group symmetry, defines three
special directions.
In order to represent the gravitino degrees of freedom, we

need to introduce a vielbein (“repère mobile”). We adopt a
co-frame of the form

θ0̂ ¼ NðtÞdt;
θâ ¼ hâi ðtÞðτi þ NiðtÞdtÞ;
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where ðhâi ðtÞÞ is a matrix square root of the spatial-metric
matrix ðgijðtÞÞ:

gijðtÞ ¼ hâi ðtÞδâ b̂hb̂j ðtÞ: ð2:4Þ

An important element of our formalism is to gauge-fix the
local Lorentz co-frame θα̂ by choosing as square root hâi of
gij a matrix uniquely defined from the diagonalization of gij
with respect to the SUð2Þ Cartan-Killing metric (2.3). The
latter diagonalization is equivalent to a Gauss decomposi-
tion of gij, i.e.

gij ¼
X
a

e−2β
a
Sāi S

ā
j ð2:5Þ

where Sāi is a SOð3Þ (orthogonal) matrix, depending on
three (time-dependent) Euler angles (φa), and where the
three eigenvalues of gij with respect to kij (usually denoted
a2; b2; c2 [1]) are denoted

e−2β
1 ≡ a2; e−2β

2 ≡ b2; e−2β
3 ≡ c2: ð2:6Þ

In terms of the uniquely defined elements
e−2β

1

; e−2β
2

; e−2β
3

, and Sāi of the Gauss decomposition
(2.5) of gij, we define hâi as1

hâi ≔ e−β
a
Sāi : ð2:7Þ

In addition to the co-frame θα̂, it is convenient to define a
nonorthonormal spatial co-frame θā

θā∶ ¼ τā þ Nādt∶ ¼ Sāi ðτi þ NidtÞ ð2:8Þ

such that

θ0̂ ¼ Ndt; θâ ¼ e−β
a
θā: ð2:9Þ

Viewing Sāi ðtÞ as operating a time-dependent rotation of the
spatial frame, we introduce as in Ref. [17] the correspond-
ing “angular velocity” antisymmetric tensor wā b̄ defined as

wā b̄∶ ¼ _Sāi Sib̄ ¼ −wb̄ ā: ð2:10Þ

The three independent angular velocities w12; w23; w31 are
linear combinations of _φ1; _φ2; _φ3 with φa-dependent coef-
ficients, as in the classical mechanics of a spinning rigid
body (see, e.g., [17]).
A consistent ansatz for a homogeneous gravitino field

ψA
μ in the Bianchi IX geometry is to consider that its 16

vielbein components ψA
α̂ , with respect to the orthonormal

co-frame θα̂ only depend on time. (Here A ¼ 1; 2; 3; 4

denotes a Majorana spinor index, while α̂ ¼ 0; 1; 2; 3 is a
Lorentz-four-vector frame index linked to θα̂.)
In second-order form, the Lagrangian density Ltot of the

N ¼ 1, D ¼ 4 supergravity action,

S ¼
Z

Ltotdt∧τ1∧τ2∧τ3 ð2:11Þ

is the sum of a gravitational Einstein-Hilbert part and a
Rarita-Schwinger one:

Ltot ¼ LEHðωÞ þ LRSðω∘ ; κÞ: ð2:12Þ

The connection ωα̂ β̂ γ̂ ¼ ωα̂ β̂ μθ
μ
γ̂ (note that the differ-

entiation index is the last on ω), entering the Einstein–
Hilbert action [where θ ≔ detðθα̂μÞ]

8πGLEH ¼ 1

2
θRðωÞ ¼ −

1

8
θημνρσηα̂ β̂ γ̂ δ̂θ

γ̂
ρθδ̂σRα̂ β̂

μνðωÞ;
ð2:13Þ

is the sum of the Levi-Civita connection ω
∘
α̂ β̂ γ̂ ¼ ω

∘
α̂ β̂ μθ

μ
γ̂

(viewed in the vielbein θα̂) and of a contorsion term κα̂ β̂ γ̂
quadratic in ψ ,

ωα̂ β̂ γ̂∶ ¼ ω
∘
α̂ β̂ γ̂ þ κα̂ β̂ γ̂ ð2:14Þ

with

κα̂ β̂ γ̂ ¼ κα̂ β̂ μθ
μ
γ̂ ¼

1

4
ðψ̄ β̂γα̂ψ γ̂ − ψ̄ α̂γβ̂ψ γ̂ þ ψ̄ β̂γγ̂ψ α̂Þ ð2:15Þ

corresponding to a torsion tensor equal to

T α̂
β̂ γ̂ ≔ 2κα̂½β̂ γ̂� ¼

1

2
ψ̄ β̂γ

α̂ψ γ̂ ¼ −
1

2
ψ̄ γ̂γ

α̂ψ β̂: ð2:16Þ

Here, we made use of the anticommuting character of the
(classical) Rarita–Schwinger field which implies

ψT
α̂Mψβ̂ ¼ −ψT

β̂
MTψα̂ ð2:17Þ

for any even bispinorial matrix M.
By contrast, the Rarita-Schwinger action piece involves a

connection D that is Levi-Civita (ω
∘
) with respect to the

space-time vector index of ψα̂ (here viewed in a frame) but
which is the full ω ¼ ω

∘ þ κ when acting on the spinor
index:

8πGLRS ¼ þ 1

2
θψ̄ α̂γ

α̂ β̂ γ̂Dβ̂ψ γ̂

¼ þ 1

2
θψ̄ α̂γ

α̂ β̂ γ̂

�
∇∘ β̂ψ γ̂ þ

1

4
κρ̂ σ̂ β̂γ

ρ̂ σ̂ψ γ̂

�
:

Here θ ¼ detðθα̂μÞ, and ∇∘ denotes the usual covariant
derivation with respect to the Levi-Civita connection while

1Henceforth we will not explicitly indicate the time depend-
ence (t) of the various field components.
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Dβ̂ψ γ̂ ¼ ∂ β̂ψ γ̂ þ ω
∘
γ̂ σ̂ β̂ψ

σ̂ þ 1

4
ωρ̂ σ̂ β̂ γ

ρ̂ σ̂ψ γ̂: ð2:18Þ

Let us recall that, at the classical level, the spin 3=2
gravitino field, ψα̂, satisfies the Majorana “reality”
condition:

ψ̄ α̂ ¼ ψ†
α̂β ¼ ψT

α̂C: ð2:19Þ

In general—but not always—we will not explicitly indicate
the spinorial indices. The Dirac matrix β and the charge
conjugation matrix C obey the (representation-independent)
relations γ†μ ¼ −βγμβ−1 and γTμ ¼ −CγμC−1 and may be
chosen such that β† ¼ β and CT ¼ −C (conditions which
still leave room for some arbitrariness). The latter relations
imply the (representation-independent) Dirac matrices
property

Cγμ ¼ −γTμC ¼ ðCγμÞT: ð2:20Þ

In a Majorana representation, where all the Dirac
matrices are real, and satisfy γ0̂ ¼ −γT

0̂
, γk̂ ¼ þγT

k̂
, it is

convenient to choose

β ¼ C ¼ iγ0̂ ¼ −iγ0̂:

Note that the conjugation ψ̄ ¼ ψ†iγ0̂ ¼ ψTiγ0̂ defined here
differs by a factor −i from the convention used in [24].
Finally, the explicit second-order form of the total

Lagrangian (2.12) can be expressed (up to a divergence
term) as

8πGLtot ¼ θ

�
1

2
R
∘ þ L

∘
3=2 þ

1

2
T α̂T α̂ −

1

4
T α̂ β̂ γ̂T γ̂ β̂ α̂

−
1

8
T α̂ β̂ γ̂T α̂ β̂ γ̂

�
ð2:21Þ

where R
∘

is the scalar curvature associated to the ω
∘

connection (the standard Einstein-Hilbert Lagrangian),
L
∘
3=2 is the Rarita-Schwinger Lagrangian part quadratic

into the spinorial field

L
∘
3=2 ¼

1

2
ψ̄ α̂γ

α̂ β̂ γ̂∇∘ β̂ψ γ̂; ð2:22Þ
and

T α̂ ≔ T β̂
α̂ β̂ ¼

1

2
ψ̄ α̂γ

β̂ψ β̂: ð2:23Þ
The detailed computation of the Bianchi IX reduction of

the (simpler) Einstein-Dirac Lagrangian was discussed in
[17]. Here the calculation is analogous except for the
following facts: (i) the part of the Lagrangian that is
quadratic in the fermions involves an extra contribution
due to the vectorial part of the ψα̂ field, and, (ii) there are
now terms quartic in the fermions.
The total Lagrangian (2.21) consists of three kinds of

terms: (i) a gravitational part θ
2
R
∘
; (ii) terms quadratic in

ψ∶ θL
∘
3=2; and (iii) terms quartic in ψ∶ ∝ T2. Let us look

in detail at the structure of the first two types of terms.
In terms of the rotating frame components Nā of the shift

vector and of the angular velocity components (w1∶¼w23;
w2∶ ¼ w3 1;w

3∶¼w12), see Eqs. (2.9), (2.10), the Einstein–
Hilbert Lagrangian density reads (with g ≔ det gij)

8πGL
∘
EH ¼ 1

2
N

ffiffiffi
g

p
R
∘

¼ 1

N
e−
P

a
βaf−ð _β1 _β2 þ _β2 _β3 þ _β3 _β1Þ þ ðN1̄ þ w1Þ2sinh2½β2 − β3�

þ ðN2̄ þ w2Þ2sinh2½β3 − β1� þ ðN3̄ þ w3Þ2sinh2½β1 − β2�g

− N

�
1

4
e
P

a
βa
X
b

e−4β
b −

1

2
e−
P

a
βa
X
b

e2β
b

�
:

This is conveniently rewritten as

8πGL
∘
EH ¼ 1

2 ~N
½ _βaGab

_βb þ ðNk̄ þ wkÞKklðNl̄ þ wlÞ� − ~NVgðβÞ

≡ 1

~N
½Tβ þ Tw� − ~NVgðβÞ: ð2:24Þ

Here we defined the rescaled lapse ~N ≔ N=
ffiffiffi
g

p ¼ Neβ
1þβ2þβ3 , and we introduced the quadratic form Gab defined by

Gab
_βa _βb ≔

X
a

ð _βaÞ2 −
�X

a
_βa
�

2

¼ −2ð _β1 _β2 þ _β2 _β3 þ _β3 _β1Þ; ð2:25Þ

i.e.
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Gab ¼ −

0
B@

0 1 1

1 0 1

1 1 0

1
CA ð2:26Þ

to express the kinetic terms Tβ ¼ 1
2
Gab

_βa _βb of the loga-
rithmic scale factors: β1 ¼ − log a, β2 ¼ − log b, β3 ¼
− log c, measuring the squashing of the three-geometry.
The matrix Gab has signature (−þþ) and will play a
crucial role below where it will appear as the metric of the
Cartan subalgebra of the hyperbolic Kac-Moody algebra
AE3 [27].
The kinetic term Tw is associated with the “rotational

kinetic energy of the frame,” and involves the inertia matrix

Kkl ¼ 2

0
B@

sinh2½β2 − β3� 0 0

0 sinh2½β3 − β1� 0

0 0 sinh2½β1 − β2�

1
CA

ð2:27Þ

which becomes singular on the “symmetry walls”: β1 ¼ β2,
β2 ¼ β3 or β3 ¼ β1.
The potential term VgðβÞ entering the gravitational

action is given by

Vg ¼
1

4

X
a

e−4β
a −

1

2
e−2

P
b
βb
X
a

e2β
a
: ð2:28Þ

It involves the “gravitational-wall forms” βa þ βb. (For the
general definition of symmetry walls and gravitation walls
see [27].)
Let us now consider the quadratic spinorial term L

∘
3=2.

Similar to what was used in [17] and in many previous
works, one can simplify the kinetic term of the gravitino ψα̂

by replacing it by the following rescaled gravitino fieldΨα̂:

Ψα̂ ≔ g1=4ψα̂ ð2:29Þ

where g ¼ a2b2c2 ¼ e−2ðβ1þβ2þβ3Þ denotes the determinant
of gij. This leads to

L
∘
3=2 ¼

1

2
Ψ̄p̂γ

p̂ 0̂ q̂ _Ψq̂ ð2:30Þ

þ 1

2
e
P

k
βk
�
Ψ̄0̂

X
p

e−2β
p
~σp̂Ψp̂ þ

X
p

e−2β
p
Ψ̄p̂γ⋆Ψp̂

�

þ 1

2N

X
↻fp;q;rg

Ψ̄p̂ð ~σp̂ðNq þ wqÞeβr−βp þ ~σq̂ðNp þ wpÞeβr−βq þ ð_βq − _βpÞ ~σr̂ÞΨq̂

−
1

2N

X
↻fp;q;rg

Ψ̄p̂ð ~σq̂ðNq þ wqÞeβr−βp þ ~σr̂ðNr þ wrÞeβq−βpÞΨp̂

þ 1

2N
Ψ̄0̂

X
↻fp;q;rg

½ð _βq þ _βrÞγp̂ þ sinhðβp − βrÞðNq þ wqÞγr̂

− sinhðβp − βqÞðNr þ wrÞγq̂�Ψp̂

þ 1

4
e
P

k
βk

X
↻fp;q;rg

Ψ̄p̂ðe−2βp þ e−2β
q − e−2β

rÞγr̂Ψq̂

þ 1

2N

X
↻fp;q;rg

Ψ̄p̂ coshðβp − βqÞγ0̂ðNr þ wrÞΨq̂ ð2:31Þ

where we introduced the notation X
↻fi;j;kg

AiBjCk ≔ A1B2C3 þ A2B3C1 þ A3B1C2; ð2:32Þ

to indicate a sum on all circular permutations of the indices, and

~σ î ≔
1

2
εî ĵ k̂γ

0̂γĵ k̂; γ⋆ ≔ γ1̂γ2̂γ3̂; ð2:33Þ

~σT
î
¼ C ~σ îC

−1; γT⋆ ¼ Cγ⋆C−1: ð2:34Þ
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Before discussing the full structure of the gravitino
action, let us focus on its kinetic term

T3=2 ¼ þ 1

2
Ψ̄âγ

â 0̂ b̂ _Ψb̂ ¼ −
1

2
_̄Ψâγ

â 0̂ b̂Ψb̂ ð2:35Þ

where Ψ̄â ¼ ΨT
aC. The structure of this kinetic term is

clarified by replacing the (rescaled) gravitino field Ψâ by
the new gravitino variables

Φa ≔ γâΨâ ðno sum on aÞ; ð2:36Þ

Φ̄a ¼ −Ψ̄âγ
â ð2:37Þ

that proved to be convenient in the study of fermionic Kac-
Moody billiards [28]. In terms of these new gravitino
variables (and choosing C ¼ iγ0̂) the kinetic term (2.35)
simplifies to

T3=2 ¼ þ i
2
GabΦaT _Φb: ð2:38Þ

This simple form makes more manifest the (super)sym-
metry between the βa’s and the Φa’s (and the fact that
supergravity is a “square root” of general relativ-
ity [29,30]).

III. HAMILTONIAN FORMULATION

In the following we shall use units such that c ¼ ℏ ¼ 1,
and such that the value of Einstein’s gravitational constant
ð8πGÞ−1 (which we factored out of the total supergravity
action) absorbs the spatial-volume factor V3 ¼R
SUð2Þ τ

1∧τ2∧τ3 of the undeformed three-sphere corre-
sponding to a ¼ b ¼ c ¼ 1. In view of the normalization
Ci
jk ¼ εijk of the one-forms τi, this round three-sphere

[homeomorphic to the group manifold SUð2Þ] with a ¼
b ¼ c ¼ 1 has a curvature radius equal to R ¼ 2 and hence
a volume V3 ¼ 2π2R3 ¼ 16π2. In other words, we
set 8πG ¼ V3 ¼ 16π2.
With such a choice, the bosonic momenta are

πa ¼
∂L
∂ _βa ¼

1

~N
Gab

_βb þ Πa; ð3:1Þ

pa ¼
∂L
∂wa ¼

1

~N
KabðNb̄ þ wbÞ þ Pa; ð3:2Þ

where the extra terms Πa; Pa are quadratic in Ψ and come

from velocity-dependent couplings associated with the ω
∘

part of the connection (2.14). More precisely, such velocity

couplings come from the connection terms in Ψ̄∇∘ Ψ with
(without any summation on repeated indices)

ω
∘
0̂ â b̂ ¼

1

N
ð _βaδab þ sinhðβa − βbÞðwā b̄ þ εabcNc̄ÞÞ; ð3:3Þ

ω
∘
â b̂ 0̂ ¼ −

1

N
coshðβa − βbÞðwā b̄ þ εabcNc̄Þ; ð3:4Þ

and give rise to an action contribution of the form

Lð3=2velÞ ≡ _βaΠa þ ðNā þ waÞPa: ð3:5Þ

Expressed in terms of Ψâ and Ψ0̂ the expressions of Πa
and Pa are rather complicated. They simplify when
replacing the Ψâ’s by the new gravitino variables Φa,
Eq. (2.36), and Ψ0̂ by its following shifted version

Ψ00̂∶ ¼ Ψ0̂ − γ0̂
X
a

γâΨâ ¼ Ψ0̂ − γ0̂
X
a

Φa; ð3:6Þ

whose vanishing defines a convenient “Kac-Moody coset
gauge” [24]. In terms of these variables, the spin-dependent
contributions Πa and Pa to the momenta πa, pa read

Πa ¼
1

2
GabΨ̄00Φb ð3:7Þ

and

Pa ¼
1

2

X
k;l

εâ k̂ l̂ðcoshðβk−βlÞS½kl�− Ψ̄00̂ sinhðβk−βlÞγk̂ l̂ΦlÞ

ð3:8Þ

where

S½12� ¼ 1

2

�
Φ̄3γ0̂ 1̂ 2̂ðΦ1 þ Φ2Þ þ Φ̄1γ0̂ 1̂ 2̂Φ1

þ Φ̄2γ0̂ 1̂ 2̂Φ2 − Φ̄1γ0̂ 1̂ 2̂Φ2

�
¼ −S½21�: ð3:9Þ

Similar objects S½23� and S½31� are defined by cyclic
permutations of the indices.
The spatial components of the Levi-Civita connection,

i.e. (without summation on repeated indices)

ω
∘
â b̂ ĉ ¼

1

2
e
P

d
βdðe−2βa þ e−2β

b − e−2β
cÞεabc; ð3:10Þ

give rise to velocity-independent action terms coupling the
β’s to quadratic terms in the fermions, namely2

Vs;2 ¼
1

2
Ψ̄0̂

X
p

e−2β
p
γ5Φp þ 1

2

X
p

Φ̄pe−2β
p
γ�Φp

−
1

4

X
↻fp;q;rg

Φ̄pðe−2βp þ e−2β
q − e−2β

rÞγ�Φq: ð3:11Þ

2We define γ5 ≡ γ5 ¼ γ0̂γ1̂γ2̂γ3̂ and γ� ¼ γ1̂γ2̂γ3̂.
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There are also quartic terms in the fermions, issuing from
the quadratic terms in the torsion that appears in the total
Lagrangian (2.21). They consist of terms quadratic or linear
in Ψ0̂ and of terms independent from Ψ0̂:

Vs;4 ¼
1

8
ðΨ̄0̂ΦÞ2 − 1

32

X
k;l

ðΨ̄0̂ðγk̂γ l̂Φl þ γ l̂γk̂ΦkÞÞ2

−
1

4

X
k

ðΨ̄0̂γ0̂γ
k̂ΦkÞðΦ̄kΦÞ

−
1

8

X
k;l

ðΨ̄0̂γk̂γ
l̂ΦlÞðΦ̄lγlγ0̂γkΦkÞ

þ 1

8

X
k

ðΦ̄γk̂ΦkÞðΦ̄kγk̂ΦÞ

þ 1

16

X
k;l;n

ðΦ̄kγk̂γ l̂γn̂ΦnÞðΦ̄kγk̂γn̂γ l̂ΦlÞ

−
1

32

X
k;l

ðΦ̄kγk̂γ0̂γ l̂ΦlÞðΦ̄kγk̂γ0̂γ l̂ΦlÞ

þ 1

32

X
k;l;n

ðΦ̄kγk̂γn̂γ l̂Φl̂ÞðΦ̄kγk̂γn̂γ l̂Φl̂Þ: ð3:12Þ

Here, and below, we use the shorthand notation

Φ ≔
X
a

Φa ð3:13Þ

in terms of which we have Ψ00̂ ¼ Ψ0̂ − γ0̂Φ.
Let us finally discuss the issue of the Hamiltonian

formulation of the gravitino variables. When dealing with
classical (i.e. Grassmannian) fermionic variables ΨA, the
fundamental Poisson brackets (f; gP) between them and
their canonical conjugate momenta ϖB are (see Ref. [31])

fΨA;ϖBgP ¼ −δBA: ð3:14Þ

As usual for Grassmannian degrees of freedom, the
Lagrangian is of first order in the time derivative. Let us
consider a general one given by

LF ¼ 1

2
ΨAMðABÞ _ΨB ¼ −

1

2
_ΨAMðABÞΨB: ð3:15Þ

The conjugate momenta are defined by a left derivative:

ϖA∶ ¼ ∂LLF

∂ _ΨA

¼ −
1

2
MðABÞΨB: ð3:16Þ

As a consequence we have the constraints

χA ≔ ϖA þ 1

2
MðABÞΨB ≈ 0; ð3:17Þ

and using the Poisson brackets (3.14) we obtain

fχA; χBgP ¼ −MðABÞ: ð3:18Þ

Thus, assuming the kinetic matrix MAB to be invertible,
the constraints (3.17) are of second class. Accordingly,
the Dirac brackets (f; gD) of the fermionic variables are
given by

fΨA;ΨBgD ¼ MðABÞ ð3:19Þ

whereMAB are the components of the inverse of the matrix
ðMABÞ∶ MABMBC ¼ δAC. The canonical quantization cor-
responding to these fermionic Dirac brackets will then lead
to anticommutators f; g equal to

fΨ̂A; Ψ̂Bg ¼ ifΨA;ΨBgD ¼ iMAB: ð3:20Þ

In the case that interests us here, starting from the kinetic
term (2.35) we obtain

ϖp̂
A ¼ ∂LT3=2

∂ _ΨA
p̂

¼ 1

2
ðΨT

q̂Cγ
0̂ q̂ p̂ÞA ð3:21Þ

which implies linear second-class constraints, from which
we infer

fΨA
p̂;Ψ

B
q̂gD ¼ −

1

2
ðγq̂γp̂γ0̂C−1ÞAB: ð3:22Þ

In the Majorana representation we use, this simplifies to

fΨA
p̂;Ψ

B
q̂gD ¼ −

i
2
ðγq̂γp̂ÞAB: ð3:23Þ

When using the new gravitino variables (2.36), this further
simplifies to

fΦa
A;Φ

b
BgD ¼ −iGabδAB: ð3:24Þ

After a tedious, but standard, calculation we obtain an
Hamiltonian action LH ¼ p _q −Htotðq; pÞ of the form

LH ¼ πa _β
a þ pawa þ i

2
GabΦaT _Φb

þ ~NΨ̄0A
0̂
SA − ~NH − NiHi: ð3:25Þ

Here ~N ¼ Ng−1=2 as above. The structure of the total
Hamiltonian entering (3.25) is the one expected in a theory
with local invariances. It involves eight Lagrange multi-
pliers corresponding to eight local gauge symmetries: the
four components of Ψ̄0

0̂
(local supersymmetry), the rescaled

lapse function ~N (local temporal diffeomorphisms), and the
three shift functions Ni (local spatial diffeomorphisms).
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The variation of these Lagrange multipliers leads to the
eight corresponding constraints:

(i) the four supersymmetry constraints (henceforth
often abbreviated as “SUSY constraints”)

SA ≈ 0; ð3:26Þ

(ii) the four diffeomorphisms constraints, that can be
split into the Hamiltonian constraint, linked to time
reparametrizations

H ≈ 0 ð3:27Þ

and the momentum constraints

Hi ≈ 0 ð3:28Þ

reflecting spacelike coordinate reparametrizations.
Let us note in passing the remarkable fact (already
emphasized in [32]) that, starting from Lagrangian action
that is quartic in the fermions, the Hamiltonian ends up
being linear in Ψ0̂. (The use of the shifted variable Ψ0

0̂
,

Eq. (3.6), is convenient, and linked to the Kac-Moody-coset
gauge-fixing used in [24].)
Before giving the explicit form of SA, H, and Hi, let us

note the fact that Hi has a very simple link with the
momentum pa conjugated to the angular velocity wa.
Indeed, as appears in Eqs. (2.24), (3.2), (3.5), the shift vector
enters the Lagrangian action always in the combination

wā b̄ þ εabcNc̄ ¼ εabcðwc þ Nc̄Þ

where we recall that

Nā ≡ Sāi N
i:

As a consequence, one concludes that (similarly to the
Einstein-Dirac case [17])

Hi ¼ −Sāi pa: ð3:29Þ

The coincidencebetween theseEuler-angle-relatedmomenta
and the spatial diffeomorphism constraints is the result of the
coincidence between the adjoint representation of the homo-
geneity group of theBianchi IX cosmologicalmodel, and the
SOð3Þ automorphism group of the structure constants Ca

bc
which was used in the Gauss decomposition Eq. (2.5) to
parametrize the 3-beinshk̂i . Let us emphasize that the Poisson
brackets of the pa between themselves do not vanish3

fpa; pbg ¼ −εabcpc ð3:30Þ

as is the case in general for the momenta constraint of a
diffeomorphism invariant theory of gravity coupled tomatter.
The rotating frame components of the momenta pa are
(Euler-angle-dependent) linear combinations of the
momenta conjugate to the Euler angles.
In addition, the dependence of the other constraints, i.e.

SA and H, on the rotational momenta pa is found to be
quite simple; namely we have

SA ¼ Sð0Þ
A þ Srot

A ;

H ¼ Hð0Þ þHrot;

where the superscript (0) indicates a reduction to zero
rotational momenta, and where

Srot
A ¼ þ 1

4

p3

sinhðβ1 − β2Þ ðγ
1̂ 2̂ðΦ1 − Φ2ÞÞA þ cyclic123;

ð3:31Þ

Hrot ¼ 1

4

1

sinh2ðβ1 − β2Þ ðp
2
3 − 2p3 coshðβ1 − β2ÞS12Þ

þ cyclic123: ð3:32Þ

With this notation the pa-independent piece of SA explic-
itly reads

Sð0Þ
A ¼ −

1

2

X
a

πaΦa
A þ Sg

A þ Ssym
A þ Scubic

A ð3:33Þ

with

Sg
A ¼ 1

2

X
a

e−2β
aðγ5ΦaÞA; ð3:34Þ

Ssym
A ¼ −

1

4
coth½β1 − β2�S12ðγ1̂ 2̂ðΦ1 − Φ2ÞÞA þ cyclic123;

ð3:35Þ

and

Scubic
A ¼ 1

8

X
k≠l

½ðΦ̄γ0̂ k̂ l̂ΦkÞðγk̂ l̂ðΦk − ΦlÞÞA

− ðΦ̄kγ0̂ k̂ l̂ΦlÞðγk̂ l̂ΦlÞA�

þ 1

4

X
k

½ðΦ̄γ0̂ΦkÞΦk
A − ðΦ̄γk̂ΦkÞðγ0̂ k̂ΦkÞA�: ð3:36Þ

As for the pa-independent piece of H it has the structure

Hð0Þ ¼ 1

2
Gabπaπb þ Vðβ;ΦÞ ð3:37Þ

3For the interpretation of the minus sign occurring on the right-
hand side of these Poisson brackets see Ref. [17], section (3.2).
Notice that they are the typical Lie-Poisson brackets obtained
from a reduction of the soð3Þ algebra by a Poisson map. (See
Ref. [33].)
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where

ðGabÞ ¼ 1

2

0
B@

1 −1 −1
−1 1 −1
−1 −1 1

1
CA ð3:38Þ

is the inverse of the matrix (2.26), and where Vðβ;ΦÞ is a
Φ-dependent potential term of the form

Vðβ;ΦÞ ¼ VgðβÞ þ V2ðβ;ΦÞ þ V4ðβ;ΦÞ: ð3:39Þ

HereVgðβÞ is the usual, purely bosonic (i.e.Φ-independent),
Bianchi IX potential (2.28), and the potential contribution
quadratic in Φ has the structure

V2ðβ;ΦÞ ¼
1

2
e−2β

1

J11ðΦÞ þ
1

2
e−2β

2

J22ðΦÞ þ
1

2
e−2β

3

J33ðΦÞ
ð3:40Þ

where the JaaðΦÞ ∼ Φ̄Φ are some quadratic fermionic terms
that will be discussed below [see Eq. (8.10)]. The final term
in Eq. (3.39) is quartic in Φ and is made of two types of
contributions:

V4ðβ;ΦÞ¼
1

4
coth2ðβ1−β2ÞS212ðΦÞþ

1

4
coth2ðβ2−β3ÞS223ðΦÞ

þ1

4
coth2ðβ3−β1ÞS231ðΦÞþΦ4-terms: ð3:41Þ

In view of the link (3.29) and of the structure of the
rotational contribution to H and SA, the eight constraints
Eqs. (3.26), (3.27), (3.28) are equivalent to the following
eight constraints:

pa ≈ 0; ð3:42Þ

Sð0Þ
A ≈ 0; ð3:43Þ

Hð0Þ ≈ 0: ð3:44Þ

As a consequence of the classical consistency of super-
gravity, and of the consistency of its Bianchi IX reduction,
one can verify that this set of constraints defines an (open)
algebra under the classical Dirac-Poisson brackets of the
form

fpa; pbg ¼ −Cc
abpc; ð3:45Þ

fSð0Þ
A ;Sð0Þ

B gD ¼ 4LC
ABðβ;ΦÞSð0Þ

C − i
1

2
Hð0ÞδAB; ð3:46Þ

fSð0Þ
A ;Hð0ÞgD ¼ MB

AS
ð0Þ
B þ NAHð0Þ: ð3:47Þ

We will discuss below the (more demanding) quantum
analog of the above set of constraints.

IV. QUANTIZATION

We quantize the constrained dynamics defined by the
Hamiltonian action (3.25) à la Dirac, i.e. by (i) replacing
Poisson-Dirac brackets by appropriate (anti)commutators;
(ii) verifying that this allows one to construct operators
providing a deformed version of the classical algebra of
constraints; and (iii) imposing the quantum constraints Ĉ as
conditions restricting physical states jΨi: ĈjΨi ¼ 0.
For the bosonic degrees of freedom we adopt a

Schrödinger picture. The wave function of the Universe
is seen as a function of the three exponents β1, β2, and β3 of
the scale factors and of the three Euler angles φa that
parametrize the rotation matrix entering the diagonalization
Eq. (2.5) of the metric tensor gij. Accordingly the basic
conjugate quantum momenta operators are represented as
(ℏ ¼ 1)

π̂a ¼
1

i
∂βa ;

p̂φa ¼ 1

i
∂φa :

The rotational momenta pa, Eq. (3.2), associated with the
rotational velocity wa (which are linear in the _φa’s) are
quantized by the natural ordering corresponding to differ-
ential operators acting on the group manifold (see, e.g.,
[17]). This ordering guarantees that these operators satisfy a
SUð2Þ algebra:

½p̂a; p̂b� ¼ −iεabcp̂c: ð4:1Þ

The fermionic operators have to obey anticommutations
relations dictated by the Dirac brackets (3.22)–(3.23):

fΨ̂A
â ; Ψ̂

B
b̂g ¼ ifΨA

â ;Ψ
B
b̂
gD ¼ −

i
2
ðγb̂γâγ0̂C−1ÞAB ð4:2Þ

or in terms of operators associated to the new gravitino
variables (2.36):

fΦ̂a
A; Φ̂

b
Bg ¼ −iGabðγ0̂C−1ÞAB ¼ þiGabðγ0̂C−1ÞAB ð4:3Þ

where Gab is the inverse of Gab [see Eq. (3.38)].
The anticommutator (4.3) is written in a way indepen-

dent of the Dirac-matrices representation. In a Majorana
representation where C ¼ iγ0̂ it simplifies to

fΦ̂a
A; Φ̂

b
Bg ¼ GabδAB: ð4:4Þ

This shows that the 12 quantum fermionic operators Φ̂a
A

have to satisfy a Clifford algebra in a 12-dimensional
space with signature ðþ8;−4Þ. Thus the gravitino operators
can be represented by 64 × 64 Dirac matrices and the
wave function of the Universe by a 64-dimensional
spinor, depending on βa and φa: Ψ ¼ Ψσðβa;φbÞ, with
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σ ¼ 1;…; 64. The constraints (3.26), (3.27), (3.28) have to
be represented by operators ŜA, Ĥ, and p̂a and imposed à la
Dirac on the state jΨi:

ŜAjΨi ¼ 0; ĤjΨi ¼ 0; ĤijΨi ¼ 0: ð4:5Þ

Actually, it shall be more convenient to work with the
following alternative form of the constraints:

Ŝð0Þ
A jΨi ¼ 0; Ĥð0ÞjΨi ¼ 0; p̂ajΨi ¼ 0; ð4:6Þ

in which one has separated out, as in Eq. (3.42), the
“rotational” contributions to ŜA and Ĥ, and used the
(naturally ordered) quantum version of the diffeomorphism
constraint i.e.

Ĥi ¼ −Sāi p̂a: ð4:7Þ

We have checked that the two sets of quantum constraints
(4.5) and (4.6) are equivalent. This follows from the
following facts. First, Eq. (4.7) shows the equivalence of
the diffeomorphism constraints to the last constraint in
Eq. (4.6). Second, the rotational contributions to SA and H
(written, at the classical level, in Eqs. (3.31) and (3.32) are
simple and additive. At the quantum level, they do not
introduce any ordering ambiguities because the p̂a’s
commute with the β’s and Φ’s, and because the only terms
that are quadratic in the p̂a’s are their squares p̂2

a:

Ŝrot
A ¼ þ 1

4 sinhðβ2 − β3Þ p̂1ðγ2̂ 3̂ðΦ̂2 − Φ̂3ÞÞA þ cyclic123;

ð4:8Þ

Ĥrot ¼ 1

4

1

sinh2ðβ2 − β3Þ ðp̂
2
1 − 2p̂1 coshðβ2 − β3ÞŜ23Þ

þ cyclic123: ð4:9Þ

V. ORDERINGOF THEQUANTUMCONSTRAINTS

We have seen above that the ordering of the quantum
Euler-angle momenta p̂φa is naturally solved by working
with the related rotational momenta p̂a. There is no
ambiguity in the relative ordering of the βa’s and their
conjugate momenta πa because (after our choice of rescaled
lapse ~N ¼ Neβ

1þβ2þβ3) there are no mixed terms∝ πfðβÞ in
the constraints. The πa’s appear linearly with β-independent

coefficients in Sð0Þ
A , while they appear quadratically (again

with β-independent coefficients) in Hð0Þ.
Finally, the only quantum ordering ambiguity that might

a priori be present in our framework concerns the ordering
of the gravitino variables among themselves. However,
this issue is uniquely solved by imposing the following

two requests: (i) that the operators Ŝð0Þ
A satisfy the same

Hermiticity condition, say

~̂S
ð0Þ
A ¼ Ŝð0Þ

A ; ð5:1Þ

as the Φ̂ operators they are built from ( ~̂Φ
a
A ¼ Φ̂a

A) [here,
and henceforth, we use a tilde to denote the Hermitian
conjugate—in the sense of Eq. (5.8) below—of an oper-

ator]; and (ii) that the anticommutators of the Ŝð0Þ
A ’s close,

similarly to the classical result (3.46), on Ĥð0ÞδAB modulo a

linear combination of the Ŝð0Þ
A ’s. The requirement (i) will

define a unique ordering of the Ŝð0Þ
A ’s, while the require-

ment (ii) will then define a unique ordering for Ĥð0Þ.
As we shall see later, the quantum Hamiltonian operator

Ĥð0Þ, associated with the supersymmetry operators Ŝð0Þ
A

satisfying the Hermiticity condition (5.1), turns out not to

be Hermitian: ~̂H
ð0Þ

≠ Ĥð0Þ. However, the non-Hermiticity
of Ĥð0Þ is pretty mild, and can be cured by a suitable
rescaling of the wave function; see Eqs (8.5) and (8.6)

below. The effect of this rescaling on Ŝð0Þ
A would, however,

make them formally non-Hermitian. This raises the issue of
whether there might exist other nonformally Hermitian

orderings of the Ŝð0Þ
A ’s (inequivalent, modulo rescalings, to

our choice) leading to a consistent constraint algebra. We
leave this problem to future work. Our perspective in this
work is to consider that it is natural to require some form of

Hermiticity of the more basic SUSY operators Ŝð0Þ
A , and

that our discovery that the simple requirement Eq. (5.1)
leads to a closed constraint algebra is a sufficient moti-
vation for taking seriously this prescription and studying its
consequences.

The Hermiticity conditions on the Ŝð0Þ
A ’s can be imposed

purely algebraically, by using the basic rules: ~AB ¼ ~B ~A,
~i ¼ −i, ~̂πa ¼ π̂a, ~̂pa ¼ p̂a,

~̂Φ
a
A ¼ Φ̂a

A. It is, however,
important to know how it can be practically realized when
explicitly representing the Clifford-algebra elements Φ̂a

A as
64 × 64 complex matrices. Indeed, the Clifford algebra
spinð8þ; 4−Þ can be realized (after diagonalizing the quad-
ratic form GabδAB) by means of 12 Dirac matrices that
verify (M;N ¼ 1;…; 12)

ΓMΓN þ ΓNΓM ¼ 2ηMN ð5:2Þ

where ηMN ¼ diagðþ � � � þ|fflfflffl{zfflfflffl}
8

;− � � �−|fflfflffl{zfflfflffl}
4

Þ. They may be chosen

such that

Γ†
M ¼ ΓM; M ¼ 1;…; 8; ð5:3Þ

Γ†
M ¼ −ΓM; M ¼ 9;…; 12: ð5:4Þ

Here, the dagger denotes the usual matrix Hermitian
conjugation Γ† ≡ Γ̄T . If we introduce the product of the
timelike Γ’s, namely
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h ≔ Γ9Γ10Γ11Γ12; ð5:5Þ

which satisfies

h ¼ h† ¼ h̄T ; h2 ¼ 1; ð5:6Þ

we obtain

Γ†
A ¼ hΓAh−1; A ¼ 1;…; 12; ð5:7Þ

i.e. ~ΓA ¼ ΓA with

~X ≔ h−1X†h≡ h−1X̄Th: ð5:8Þ

This definition of Hermitian conjugation of the fermionic
variables is related to endowing the 64-dimensional fer-
mionic Hilbert space [i.e. the space of spinð8; 4Þ spinors]
with the pseudo-Hermitian inner product

hu∣vih ¼ ūThv ð5:9Þ

satisfying hu∣vih ¼ hv∣uih. Indeed, the Hermitian conju-
gate is easily checked to be such that

hu∣Xvih ¼ h ~Xu∣vih: ð5:10Þ

Note, however, that the sesquilinear form hu∣vih is pseudo-
Hermitian, rather than being Hermitian in the usual sense:
the norm hu∣uih is real but not positive definite. Actually, as
a real quadratic form it has signature ðþ32;−32Þ.
Similar to the usual Dirac equation case where the

Hermitian properties of the γ matrices, and the reality of
the mass term, ensure the conservation of the Dirac current
Jμ ¼ −iψ̄γμψ , the Hermiticity condition (5.1) satisfied by
the SUSY constraints ensure the conservation (in β space;
i.e. ∂βaJaA ¼ 0) of the four currents

JaAðβÞ ≔ hΨðβÞ∣Φ̂a
AΨðβÞih ¼ Ψ†hΦa

AΨ ð5:11Þ

for any solution ΨðβÞ of the SUSY constraints.
When using Lorentzian coordinates in β space, say

ξ0̂; ξ1̂; ξ2̂ [as defined below, see Eqs. (17.26) or
Eqs. (A5)], the local conservation law ∂ âJâA ¼ 0 implies
the global conservation of the four “charges”

QA ¼
Z

dξ1̂dξ2̂J0̂A: ð5:12Þ

Contrary to the usual Dirac charge Q ¼ R
d3xJ0 ¼R

d3xψ†ψ , these conserved charges are not positive-
definite sesquilinear forms in the wave function Ψ. [The
“chiral” representation of the Φa

A’s introduced below will
also make clear that the four integrated charges QA vanish
when considering a wave function having a fixed fermion
number NF (because Φ ∼ bþ ~b). On the other hand, it will

not generally vanish if one considers a wave function that
contains components within, say, two successive fermion-
number levels.] However, one should note that the system
of first-order PDE’s on the wave function ΨðβÞ defined by
the SUSY constraints,

Ŝð0Þ
A jΨi ¼ 0

constitutes, like the usual Dirac equation γμð∂μ−ieAμÞψþ
mψ¼0, a first-order symmetric-hyperbolic system. The
definition of these systems [34] is that they admit a
formulation in terms of real variables and real coeffi-
cients where the derivative terms are of the form
ðA∂ 0̂ þ Bî∂ îÞψ þ � � �, where the real matrices A and Bî

are both symmetric, and where A is positive definite. When
working with a complex system, it is easily seen (by
decomposing into real and imaginary parts) that one can
replace the conditions of symmetry by conditions of
Hermiticity: A† ¼ A, Bî† ¼ Bî for complex matrices. By
considering one particular spinor index A (say A ¼ 1), and
by multiplying the corresponding SUSY constraint on the
left by the anti-Hermitian 64 × 64 matrix Φ0̂

1, we obtain a
first-order evolution system of the type ∂ 0̂Ψ ¼ Bî∂ îΨþ � � �
where Bî ¼ Φ0̂

1Φ
î
1 is easily checked to be Hermitian. Note

in passing that this ensures that the positive-definite norm
Ψ†Ψ, though not strictly conserved, satisfies a conservation
law (involving the corresponding spatial current Ψ†BîΨ)
modulo lower-derivative terms. As a consequence, it is
natural to assume that the wave function Ψ is (at least)
square integrable (a fact that we shall exploit below).

VI. QUANTUM (ROTATONALLY REDUCED)
SUSY CONSTRAINTS

The requirement of Hermiticity of the Ŝð0Þ
A ’s determines

them to be equal to

Ŝð0Þ
A ¼ −

1

2

X
a

π̂aΦ̂
a
A þ Ŝg

A þ Ŝsym
A þ Ŝcubic

A ð6:1Þ

with

Ŝg
A ¼ 1

2

X
a

e−2β
aðγ5Φ̂aÞA; ð6:2Þ

and

Ŝsym
A ¼ −

1

8
coth½β1 − β2�½Ŝ12ðγ1̂ 2̂ðΦ̂1 − Φ̂2ÞÞA

þ ðγ1̂ 2̂ðΦ̂1 − Φ̂2ÞÞAŜ12� þ cyclic123 ð6:3Þ

where
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Ŝ12 ¼
1

2
ð ¯̂Φ3

γ0̂ 1̂ 2̂ðΦ̂1 þ Φ̂2Þ þ ¯̂Φ
1
γ0̂ 1̂ 2̂Φ̂1

þ ¯̂Φ
2
γ0̂ 1̂ 2̂Φ̂2 − ¯̂Φ

1
γ0̂ 1̂ 2̂Φ̂2Þ

¼ 1

2
ð ¯̂Φγ0̂ 1̂ 2̂ðΦ̂1 þ Φ̂2Þ − 3

¯̂Φ
1
γ0̂ 1̂ 2̂Φ̂2Þ: ð6:4Þ

The operator Ŝ12, together with similarly defined operators
Ŝ23; Ŝ31, are spinlike operators satisfying the usual suð2Þ
commutation relations: ½Ŝ23; Ŝ31� ¼ þiŜ12, etc. (The Kac-
Moody meaning of these spin operators will be further
discussed below.)
The last contribution in Eq. (6.1) is cubic in the Ψ’s and

reads

Ŝcubic
A ¼ 1

2
ðΣ̂cubic

A þ ~̂Σ
cubic
A Þ ð6:5Þ

where

Σ̂cubic
A ¼ 1

4

X
a

ðΨ̂×
0 γ

0̂Ψ̂âÞðγ0̂Ψ̂âÞA −
1

8

X
a;b

ð ¯̂Ψâγ
0̂Ψ̂b̂ÞðγâΨ̂b̂ÞA

þ 1

8

X
a;b

ðΨ̂×
0 γ

âΨ̂b̂ÞððγâΨ̂b̂ÞA þ ðγb̂Ψ̂âÞAÞ;

with Ψ̂×
0 ≔ γ0̂

P
aγ

âΨ̂â ¼ γ0̂Φ̂. In terms of the Φ’s, it reads

Σ̂cubic
A ¼ 1

16

X
k≠l

ð ¯̂Φγ0̂ k̂ l̂ðΦ̂k − Φ̂lÞÞðγk̂ l̂ðΦ̂k − Φ̂lÞÞA

þ 1

4

X
k

ð ¯̂Φγ0̂Φ̂kÞΦ̂k
A −

1

8

X
k≠l

ð ¯̂Φγ0̂ k̂ l̂Φ̂lÞðγk̂ l̂Φ̂lÞA

−
i
8
Φ̂A −

1

4

X
k

ð ¯̂Φγk̂Φ̂kÞðγ0̂ k̂Φ̂kÞA; ð6:6Þ

where the (anti-Hermitian) term − i
8
Φ̂k

A will drop out of

Ŝcubic
A . These operators completely determine the (reduced)

Hamiltonian operator that we will now discuss.

VII. SUPERSYMMETRY ALGEBRA
AND ORDERING OF THE QUANTUM

HAMILTONIAN OPERATOR

We have shown, by direct computation, that the (rota-
tionally reduced) supersymmetry operators satisfy anti-
commutation relations of the form

Ŝð0Þ
A Ŝð0Þ

B þ Ŝð0Þ
B Ŝð0Þ

A ¼ 4iL̂C
ABðcoth β; Φ̂ÞŜð0Þ

C þ 1

2
Ĥð0ÞδAB;

ð7:1Þ

where Ĥð0Þ reduces when ℏ → 0 to the classical value
(3.39) of the Hamiltonian, and where the coefficients
L̂C
ABðcoth β; Φ̂Þ are linear in the Φ̂’s, namely

L̂C
ABðcoth β; Φ̂Þ ¼ LC D

AB;aðcoth βÞΦ̂a
D;

with numerical coefficients LC D
AB;aðcoth βÞ that are linear in

the three hyperbolic cotangents

LC D
AB;aðcoth βÞ ¼ LC D

AB;a0 þ
X
b<c

LC D
AB;abc cothðβb − βcÞ:

We give in Appendix C the explicit values of the
L̂C
ABðcoth β; Φ̂Þ’s in a special (chiral) basis for the Φ0s that

will be introduced below.
Note that, in Eq. (7.1), the supersymmetry constraints

Ŝð0Þ
C entering the right-hand side appear on the right. This

shows that the four supersymmety constraints Ŝð0Þ
A jΨi ¼ 0

imply the Hamiltonian constraint Ĥð0ÞjΨi ¼ 0. It is easily
seen that Eq. (7.1) implies further commutation relations of
the form

½Ŝð0Þ
A ; Ĥð0Þ� ¼ iM̂B

AŜ
ð0Þ
B þ ibNAĤ

ð0Þ:

As the operators p̂a commute both with the Ŝð0Þ
A ’s and with

Ĥð0Þ, we conclude that the three quantum constraints Ŝð0Þ
A ,

Ĥð0Þ, p̂a entering (4.6) form an open (or “soft”) algebra,
and that the Dirac equations (4.6) are, a priori, formally
consistent.
In view of the above results, the set of quantum

constraint equations (4.6) is equivalent to the reduced set
of 3þ 4 constraints

p̂ajΨi ¼ 0; Ŝð0Þ
A jΨi ¼ 0: ð7:2Þ

The first three equations in (7.2) are equivalent to requiring
that the wave function of the Universe Ψ does not depend
on the three Euler angles, and therefore is a 64-component
spinor of spin(8,4) that only depends on the logarithms of
the scaling factors of the metric, β1, β2, and β3:

Ψ ¼ Ψσ½βa�; ðσ ¼ 1;…; 64Þ: ð7:3Þ

Then, the second set of equations in (7.2) consists, in
view of the explicit form (6.1) of the supersymmetry
operators, in imposing four simultaneous Dirac-like equa-
tions restricting the propagation of the 64-component
spinor Ψσ½βa� in the three-dimensional Minkowski space
of the β’s.
Let us add two comments concerning the structure of the

anticommutation relations (7.1):
(i) There exists a version of these anticommutation

relations of the form
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Ŝð0Þ
A Ŝð0Þ

B þ Ŝð0Þ
B Ŝð0Þ

A

¼ 2i ðL̂C
ABðcoth β;ΦÞŜð0Þ

C þ Ŝð0Þ
C L̂C

ABðcoth β;ΦÞÞ

þ 1

2
Ĥð0Þ

h δAB; ð7:4Þ

where Ĥð0Þ
h differs from Ĥð0Þ by a quantum reorder-

ing. [In this form Ĥð0Þ
h is Hermitian, while, as we

shall see later, the Ĥð0Þ defined by (7.1) contains a
non-Hermitian piece, of order OðℏÞ, that will be
conveniently reabsorbed by redefining the wave
function ΨðβÞ.]

(ii) Contrary to the usual superalgebra appearing in
supersymmetric quantum mechanics, of the form

ŜAŜB þ ŜBŜA ¼ 1

2
ĤδAB; ð7:5Þ

the presence of the supersymmetry operators Ŝð0Þ
C on

the right-hand side of Eq. (7.1) does not allow one to

use the Ŝð0Þ
A ’s as ladder operators generating new

solutions of the SUSY constraints by acting on
old ones.

VIII. EXPLICIT STRUCTURE OF THE
QUANTUM HAMILTONIAN

Similarly to the well-known fact that the (second-order)
Klein-Gordon equation ð□ − μ2Þψ is a necessary conse-
quence of the (first-order) Dirac equation ðγμ∂μ − μÞψ ¼ 0,
the Hamiltonian constraint (which is a Wheeler-DeWitt
(WDW)-type equation)

Ĥð0ÞjΨi ¼ 0 ð8:1Þ

is a necessary consequence of the four SUSY constraints

Ŝð0Þ
A jΨi ¼ 0. However, like in the Dirac and Klein-Gordon

cases, it is useful to have in hand the explicit structure of the
Hamiltonian constraint because it brings out more clearly
the physical meaning of the various interaction terms
predicted by supergravity.
The explicit expression of the (rotationally reduced)

Hamiltonian operator Ĥð0Þ [defined as the operator appear-
ing on the right-hand side of the anticommutation
relations (7.1)] is given, in the β-space Schrödinger
representation, by

2Ĥð0Þ ¼ Gabðπ̂a þ iAaðβÞÞðπ̂b þ iAbðβÞÞ þ μ̂2 þ ŴðβÞ
¼ −Gabð∂a − AaðβÞÞð∂b − AbðβÞÞ þ μ̂2 þ ŴðβÞ:

ð8:2Þ

In this equation, π̂a ¼ −i∂a (with ∂a ≔ ∂=∂βa), and the
“vector potential” AaðβÞ is a real vector field4 in β space.
(We have omitted an explicit identity operator 164 in front
of the differential operators.) One finds that the vector
potential5 AaðβÞ is a pure gradient:

AaðβÞ ¼ ∂a lnF ¼ F−1∂aF ð8:3Þ

with

FðβÞ ¼ e
3
4
β0ðsinh β12 sinh β23 sinh β31Þ−1=8; ð8:4Þ

where we introduced the convenient shorthands

β0 ≔ β1 þ β2 þ β3 ; β12 ≔ β1 − β2; etc:

As the vector potential Aa occurring in equation (8.2) is a
pure gradient, it can be eliminated, without changing the
other terms, by working with the rescaled wave function

Ψ0ðβÞ ¼ FðβÞ−1ΨðβÞ; ð8:5Þ

in terms of which the Hamiltonian operator reads

2Ĥ0Ψ0 ≔ 2F−1Ĥð0ÞðFΨ0Þ ¼ ðGabπ̂aπ̂b þ μ̂2 þ ŴðβÞÞΨ0

ð8:6Þ

Let us now comment on the structure of the “spin-
dependent” potential terms in theWDW-type equation (8.2).
Both terms, μ̂2 and ŴðβÞ, are 64 × 64 matrices acting in
spinorial space. The separation between these two types of
terms is defined so that the “mass-squared” term μ̂2 does not
depend on the β’s, and survives as a constant, but spin-
dependent, term in the limit where all the exponential terms
present in the potential ŴðβÞ tend to zero.
Indeed, the remaining potential term ŴðβÞ can be

separated into several pieces:

ŴðβÞ ¼ Wbos
g ðβÞ þ ŴJ

gðβÞ þ Ŵspin
symðβÞ: ð8:7Þ

The first one, Wbos
g is spin independent (i.e. diagonal in

spinorial space), and is simply twice the usual bosonic
potential, (2.28), describing the mixmaster dynamics of
Bianchi IX models [1,2]:

Wbos
g ðβÞ ¼ 2VgðβÞ ¼

1

2
e−4β

1 − e−2ðβ2þβ3Þ þ cyclic123:

ð8:8Þ

4This real vector field comes from the reordering of the
manifestly Hermitian anticommutation relations (7.4) into
the right-ordered form (7.1).

5Actually, in an analogy with the electromagnetically coupled
Klein-Gordon equation, the vector potential would be the purely
imaginary field iAa.
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In the framework of supergravity this potential term is
accompanied by two complementary spin-dependent
pieces that decay exponentially as some linear combina-
tions of the β’s get large and positive. The first one,

ŴJ
gðβÞ¼ e−2β

1

Ĵ11ðΦ̂Þþe−2β
2

Ĵ22ðΦ̂Þþe−2β
3

Ĵ33ðΦ̂Þ; ð8:9Þ

involves the products of exponentials of 2β1, 2β2, 2β3 (i.e.
half the linear combinations of the β’s that enter in the
dominant potential terms in Wbos

g ðβÞ, and that drive the
BKL oscillatory dynamics of the β’s) by operators that are
quadratic in the gravitino field. For example, the linear form
2β1 (gravitational-wall form) is coupled to

Ĵ11ðΦ̂Þ¼
1

2
½ ¯̂Φ1

γ1̂ 2̂ 3̂ð4Φ̂1þ Φ̂2þ Φ̂3Þþ ¯̂Φ
2
γ1̂ 2̂ 3̂Φ̂3�: ð8:10Þ

We shall discuss in the next section the Kac-Moody
meaning of the three operators Ĵ11, Ĵ22,, Ĵ33 defined by
considering cyclic permutations of Eq. (8.10).
The second spin-dependent, and β-dependent, contribu-

tion is quartic in the gravitino field. It reads (with 164
denoting the identity operator in the 64-dimensional spinor
space)

Ŵspin
symðβÞ ¼ 1

2

ðŜ12ðΦ̂ÞÞ2 − 164

sinh2ðβ1 − β2Þ þ cyclic123: ð8:11Þ

The operators Ŝ12ðΦ̂Þ, etc., whose squares enter Ŵspin
symðβÞ,

are the quadratic-in-Φ “spin operators” that were intro-
duced above in Eq. (6.4), and that entered linearly in the
supersymmetry operators Ŝ’s.
Let us now discuss the squared-mass term μ̂2 entering the

WDW equation. This term is β independent, but it is spin
dependent, i.e. it is a 64 × 64 matrix in spinorial space. It
originates from quartic fermionic contributions to the
Hamiltonian. More precisely, it comes from two types of
Φ4 contributions: (i) the original quadratic-in-torsion (and
therefore quartic-in-fermion) terms in the second-order
action; and (ii) additional terms quadratic in the spin
operators coming from Eq. (3.41) because of the iden-
tity coth2 β≡ 1þ 1= sinh2 β.
As we shall discuss in detail in the next section, the term

μ̂2 plays a crucial role when considering the quantum
billiard limit where a wave packet propagates between the
well–separated Toda-like exponential walls defined by the
various terms in Ŵspin

symðβÞ. In this regime, the wave function
far from all the exponential walls can be approximated by a
plane wave in β space:

Ψ ∝ exp½iπaβa�: ð8:12Þ

Actually, as we are discussing here the “primed” form of
the WDW equation,

2Ĥ0Ψ0 ¼ ðGabπ̂aπ̂b þ μ̂2 þ ŴðβÞÞΨ0 ¼ 0;

we need to work with the rescaled wave function
Ψ0ðβÞ, Eq. (8.5).
In view of the form (8.4) of the rescaling factor, when

one is far from all the walls, this rescaling leads to a wave
function of the form

Ψ0 ∝ exp½iπ0aβa� ð8:13Þ

involving a primed momentum differing from the original β
momentum πa by a purely imaginary shift:

πa ¼ π0a − iϖa: ð8:14Þ

The components ϖa entering this complex shift are given
by a permutation of f1; 3

4
; 1
2
g which depends on the choice

of billiard chamber (among six possibilities; see below).
For instance, when using what will be in the following
our canonical billiard (or Weyl) chamber, labeled (a),
and corresponding to the inequalities 1 ≪ β1 ≪ β2 ≪ β3,
the (covariant) components of ϖa will be fϖ1 ¼ 1;
ϖ2 ¼ 3

4
;ϖ3 ¼ 1

2
g. [In a Weyl chamber obtained by a

permutation σ of (1, 2, 3), such that 1≪βσ1 ≪βσ2 ≪βσ3 ,
they will be fϖσ1 ¼ 1;ϖσ2 ¼ 3

4
;ϖσ3 ¼ 1

2
g.]

The important point we wish to make here (anticipating
its derivation below) is that the diagonalization of the
squared-mass operator determining the mass-shell condi-
tions for the shifted β momentum entering various pieces of
the wave function Ψ0

π0aπ0a ≡Gabπ0aπ0b ¼ −μ2 ð8:15Þ

leads to the following list of eigenvalues:

μ2 ¼
�
−
59

8





1
0

;−3




6
1

;−
3

8





15
2

;þ 1

2





20
3

;−
3

8





15
4

;−3




6
5

;−
59

8





1
6

�
ð8:16Þ

Here we have given the different eigenvalues taken by the
mass-squared operator, ordered (as indicated by the sub-
script going from 0 to 6) by the value of a certain Fermion
number NF, which will be defined below. The superscript
indicates the dimensions of the various spaces having a
given value of NF. For instance, the NF ¼ 2 subspace is of
dimension 15, and this subspace is an eigenspace of μ̂2 with
eigenvalue − 3

8
. We shall discuss in detail below the

structure of the solutions of the SUSY constraints corre-
sponding to the list of eigenvalues (9.14), but we wanted to
emphasize from the start that, among the 64 dimensions of
the total spinorial space, μ̂2 is negative (i.e. tachyonic) in 44
of them!
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IX. HIDDEN KAC-MOODY STRUCTURE OF
SUPERSYMMETRIC BIANCHI IX COSMOLOGY

One of the main results of this work concerns the Kac-
Moody structures hidden in the (exact) quantum
Hamiltonian (8.2). First, let us recall that the wave function
of the Universe ΨðβÞ is a 64-component spinor of
spinð8; 4Þ which depends on the three logarithmic scale
factors β1; β2; β3. In other words, supergravity describes a
Bianchi IX Universe as a relativistic spinning particle
moving in β space. The spinorial wave function ΨðβÞ
must satisfy four separate Dirac-like equations ŜAΨ ¼
ðþ i

2
Φa

A∂a þ � � �ÞΨ ¼ 0 (where the Φa
A’s are four separate

triplets of 64 × 64 gamma matrices). As shown above,
these first-order Dirac-like equations imply that Ψ neces-
sarily satisfy the second-order, Klein-Gordon-like equa-
tion ĤΨ ¼ ð− 1

2
Gab∂a∂b þ � � �ÞΨ ¼ 0.

On the other hand, studies à la BKL of the structure of
cosmological singularities in string theory and supergravity
(in dimensions 4 ≤ D ≤ 11) have found that the chaotic
BKL oscillations could be interpreted as a billiard motion
in the Weyl chamber of an hyperbolic Kac-Moody algebra
[25–27]. This interpretation was extended by including the
dynamics of the gravitino, and led to the conjecture of a
correspondence between various supergravity theories
and the dynamics of a spinning massless particle on an
infinite-dimensional Kac-Moody coset space [21–24]. In
the particular case of pure vacuum gravity in D ¼ 4, the
conjectured Kac-Moody algebra corresponding to the
gravity dynamics is AE3 [26]. In this section, we shall
study in detail the structure of the quantum dynamics of the
64-component supergravity spinorial wave function ΨðβÞ
in β space, to exhibit to what extent it contains Kac-Moody
related elements. This will contribute to showing to what
extent the conjectured Kac-Moody coset or gravity corre-
spondence holds.
The first basic Kac-Moody feature hidden in this dynam-

ics of the Universe is the fact that the (Lorentzian-signature)
metricGab defining the kinetic term of the “β particle” is the
metric in the Cartan subalgebra of the hyperbolic Kac-
Moody algebraAE3 [26]. Second, the potential term ŴðβÞ in
Eq. (8.2) is naturally decomposed [see Eq. (8.7)] into three
different pieceswhich all carry a deepKac-Moodymeaning.
The first term, ŴgðβÞ, given by Eq. (8.8), is the well-known
bosonic potential describing the usual dynamics of Bianchi
IX oscillations [1,2]. Its Kac-Moody meaning is that it is
constructed fromToda-like exponential potentials∼e−2αabðβÞ
involving the following six linear forms in the β’s:

αgabðβÞ ≔ βa þ βb; a; b ¼ 1; 2; 3: ð9:1Þ

These six linear forms coincide with the six roots of
AE3 located at level l ¼ 1 (“gravitational walls,” linked
to the level-1 AE3 “dual-graviton” coset field ϕab ¼ ϕba
of Ref. [27]).

Third, the purely bosonic (spin-independent) potential
Wbos

g ðβÞ is accompanied, in supergravity, by a spin-
dependent complementary piece given by Eq. (8.9). This
spin-dependent potential Ŵspin

g ðβ;Φ̂Þ¼e−α
g
11
ðβÞĴ11ðΦ̂Þþ���

involves the three dominant (gravitational) Kac-Moody
roots αg11ðβÞ ¼ 2β1, etc. each one being coupled to an
operator that is quadratic in the gravitino variables,
see Eq. (8.10).
The third contribution to ŴðβÞ involves the three level-0

Kac-Moody roots

αsym12 ðβÞ ≔ β2 − β1; αsym23 ðβÞ ≔ β3 − β2;

αsym13 ≔ β3 − β1: ð9:2Þ

These three linear forms are called “symmetry-wall forms”;
each one of them is coupled to an operator that is quartic in
the Φ̂’s. See Eq. (8.11) which involves the squares of the
three spin operators Ŝ12ðΦ̂Þ, Ŝ23ðΦ̂Þ, Ŝ31ðΦ̂Þ defined in
Eq. (6.4) (modulo cyclic permutations).
A truly remarkable fact, which clearly shows the hidden

role of Kac-Moody structures in supergravity, is that the
operators entering Ĥ as (spin-dependent) basic blocks,
Ŝ12; Ŝ23; Ŝ31; Ĵ11; Ĵ22; Ĵ33 generate (via commutators) a Lie-
algebra which is a 64-dimensional representation of the
(infinite-dimensional) “maximally compact” subalgebra,
KðAE3Þ, of AE3.
Let us first indicate why such a structure is related to the

conjectured Kac-Moody or supergravity correspondence
[21–24].
According to the latter conjecture, the dynamics of the

bosonic degrees of freedom is equivalent to geodesic
motion on a coset space G=K, where G is a hyperbolic
Kac-Moody group (over the reals) and K its maximal
compact subgroup. When considering D ¼ 11, N ¼ 1
supergravity, it is conjectured that G is the group associated
with E10. In the case we are considering here of D ¼ 4,
N ¼ 1 supergravity, G gets reduced to AE3, and K to the
corresponding maximal compact subgroup of AE3, say
KðAE3Þ. A geodesic on G=K is described by a one-
parameter family of group elements gðtÞ ∈ G, considered
modulo right multiplication by an arbitrary element kðtÞ in
K. Decomposing the Lie-algebra valued “velocity” of gðtÞ
in P ∈ LieðGÞ⊖LieðKÞ and Q ∈ LieðKÞ pieces,

∂tgg−1 ¼ PðtÞ þQðtÞ; ð9:3Þ

the coset Lagrangian describing a geodesic on G=K is
simply

L ¼ 1

2nðtÞ ðP∣PÞ ð9:4Þ

where ð·∣·Þ denotes the (unique) invariant bilinear form
on LieðGÞ.

QUANTUM SUPERSYMMETRIC BIANCHI IX COSMOLOGY PHYSICAL REVIEW D 90, 103509 (2014)

103509-15



The coset “lapse” function nðtÞ is a Lagrange multiplier
enforcing the constraint that the considered geodesic is
null: ðP∣PÞ ¼ 0. The equation of motion of gðtÞ can be
written [in the coset gauge nðtÞ ¼ 1] as

∂tPðtÞ ¼ ½QðtÞ; PðtÞ� ð9:5Þ

where ½·; ·� denotes a Lie-algebra bracket. Equation (9.5)
shows that the Q piece of the velocity (i.e. the piece within
the compact algebra LieðKÞ) can be viewed as the con-
nection describing (via its Lie-bracket action) how the
(bosonic) coset velocity P rotates along the geodesic.
According to the coset or supergravity conjecture, the

same LieðKÞ-valued piece of the velocity plays also the
role of the connection describing how the fermionic degrees
of freedom rotate as some one-parameter coset fermion
ΨcosetðtÞ propagates along the considered bosonic geodesic
of the supersymmetric space G=K:

∂tΨcoset ¼ Qvs ·Ψcoset: ð9:6Þ

Here Qvs ·Ψcoset denotes the linear action of the abstract
Lie-algebra element Q ∈ LieðKÞ on a member Ψcoset of a
vector space, on which Qvs defines a representation of
LieðKÞ. In Refs. [22–24,28] the coset fermion Ψcoset was
taken as a classical, Grassmannian object living in a finite-
dimensional vector space (of dimension 12 for the KðAE3Þ
case [28]), and Qvs was, accordingly, a 12 × 12 “vector-
spinor” representation of KðAE3Þ.
Let us indicate here the Kac-Moody structures hidden

within our quantum supergravity framework which, indeed,
lead to a gravitino of motion resembling the conjectured
one, Eq. (9.6). At the quantum level, the equations of
motion of the gravitino operators Φ̂a

A derive, according to
the general Heisenberg rule, from the commutator of the
Hamiltonian operator Ĥ with the Φ̂a

A’s. In the gauge where
Ψ0

0̂
¼ 0, ~N ¼ 1, and Na ¼ 0, the Hamiltonian operator

following from Eq. (3.25) is simply Ĥ. The Heisenberg
equation of motion for the gravitino operators are

∂tΦ̂
a
A ¼ i½Ĥ; Φ̂a

A�:

For these equations to resemble the classical, coset-expected
equations of evolution (9.6), the quantum Hamiltonian
Ĥ should parallel the classical structure of the KðAE3Þ-
connection Q, which was found in previous works
[22–24,28] to be of the form

Q ¼
X
α

QαJα;

where α labels the positive roots of AE3, and where

Jα ¼ Eα − E−α ≡ Eα þ ωðEαÞ ð9:7Þ

is the generator of KðAE3Þ associated with the positive root
α. [Here, Eα denotes a generator of AE3 associated with the
root α, and ω denotes the Chevalley involution, which, by
definition, fixes the set KðAE3Þ.] In addition, the numerical
coefficients Qα are, roughly (i.e. when separately consid-
ering the effect of each root in the coset Hamiltonian) of the
form Qα ∼ e−αðβÞpαJα, where pα is the momentum con-
jugated to the variable να parametrizing the Eα-dependent
piece in the velocity ∂tgg−1 (see, e.g., Sec. 2.4 of [28]). Such
a Kac-Moody-related structure is present in our quantum
Hamiltonian Ĥ, especially if we consider it before its
reduction to zero rotational momenta.
First, Ĥ contains the following contributions that are

quadratic in the Φ̂’s and that are related to the three
dominant gravitational roots:

ĤJ
g ¼

1

2
C1

23e
−αg

11
ðβÞĴ11 þ

1

2
C2

31e
−αg

22
ðβÞĴ22

þ 1

2
C3

12e
−αg

33
ðβÞĴ33: ð9:8Þ

In addition, the terms linear and quadratic in the rota-
tional momenta pa conjugate to the angular velocities wa
[see Eq. (3.2)] contribute to the Hamiltonian terms of the
form

ĤS
sym ¼ 1

4

1

sinh2αsym12 ðβÞ ðp̂3 − coshαsym12 ðβÞŜ12Þ2 þ cyclic123:

ð9:9Þ

The terms quadratic in the Φ̂’s in the latter expression are

−
1

2
p̂3

cosh αsym12 ðβÞ
sinh2αsym12 ðβÞ Ŝ12 þ cyclic123: ð9:10Þ

When inserting these contributions in the Heisenberg
equations of motion, one will have contributions to ∂tΦ̂

a
A

of the respective form

∼C1
23e

−αg
11
ðβÞ i½Ĵ11; Φ̂a

A� þ cyclic123

and

∼ − p̂3

cosh αsym12 ðβÞ
sinh2αsym12 ðβÞ i½Ŝ12; Φ̂

a
A� þ cyclic123:

These terms will be of the expected form

Qα · Φa
A ∼ e−αðβÞpαJvsα · Φa

A

if the commutators i½Ĵ11; Φ̂a
A�, −i½Ŝ12; Φ̂a

A� (respectively
associated with the roots αg11 and αsym12 ) correctly reproduce
the corresponding actions Jvsα · Φa

A, within the vector-spinor
representation of KðAE3Þ.
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That this is indeed the case follows from the functorial
property of the second quantization of the gravitino.
Indeed, similarly to what was noticed in the spin-1

2
case

[17], the quantization conditions (4.4) ensure that if
we are given a first-quantized operation O1q, acting as a
12 × 12 matrix on the combined vector-spinor index ða; AÞ
of Φa

A, the corresponding second-quantized operator Ô2q

defined as

Ô2q ≔
1

2

X
a;b;A

GabΦa
Að dO1qΦÞbA ð9:11Þ

will generate, by commutators, the action ofO1q on Φa
A, i.e.

½Ô2q; Φ̂a
A� ¼ ð dO1qΦÞaA; ð9:12Þ

and will also satisfy quantum commutation relations that
exactly parallel the matrix commutation relations satisfied
by the first-quantized matrices O1q, i.e.

½Ô2q
1 ; Ô2q

2 � ¼ ½ dO1q
1 ;O1q

2 �: ð9:13Þ

We have checked that, modulo a conventional factor �i
needed to pass from the anti-Hermitian generators6 used in
Refs. [24,28] to the (formally) Hermitian ones used in the
present work, we had indeed such a first-quantized →
second-quantized mapping between the vector-spinor
representation generators Jvsα of previous works [24,28],
and our quantum operators Ŝ12;…; Ĵ11;… entering the
Hamiltonian Ĥ, namely

Ŝ here
12 ¼ 1

2
GabΦ̂

aTð d−iJvs
αsym
12

ΦÞb;

Ĵ here
11 ¼ 1

2
GabΦ̂

aTð dþiJvs
αg
11

ΦÞb:

As a consequence of the structure of the Lie algebra
KðAE3Þ, we can conclude from this result that the basic
blocks Ŝ12; Ŝ23; Ŝ31; Ĵ11; Ĵ22; Ĵ33 generate (via commuta-
tors) a Lie-algebra which is a 64-dimensional representa-
tion of the (infinite-dimensional) “maximally compact”
subalgebra, KðAE3Þ, of AE3. First, we note that the Ŝ’s
generate the (l ¼ 0) subalgebra SOð3Þ of KðAE3Þ:

½Ŝ12; Ŝ23� ¼ þiŜ31; etc:

Second, though the quantum Hamiltonian explicitly fea-
tures only the three gravitational-wall generators Ĵ11, Ĵ22,
Ĵ33, associated with the real roots αg11, α

g
22, α

g
33, the ones

associated with the subdominant gravitational-wall roots

αg12, α
g
23, α

g
31 are generated by acting with the Ŝab’s on the

dominant Ĵaa’s. For instance,

Ĵ12 ≔ −
i
2
½Ŝ12; Ĵ11�:

Then, having so constructed quantum generators for
KðAE3Þ at levels 0 and 1, the commutators of level-1
generators among themselves will generate (modulo
level-0 generators) the level-2 generators. By induction, all
generators can be obtained, and the consistency of the
(12-dimensional) vector-spinor representation guarantees
that one so generates a consistent (though unfaithful)
representation of the full KðAE3Þ Lie algebra by 64 × 64
matrices.
Above, we focused on the Kac-Moody meaning of the

terms in Ĥ that are quadratic in fermions. On the other
hand, we see in Eq. (9.9) an analog of a well-known fact: a
Lagrangian containing a linear coupling to velocities, say
L ¼ 1

2
_q2 þ A _q (so that p ¼ ∂L=∂ _q ¼ _qþ A), leads to the

Hamiltonian H ¼ 1
2
ðp − AÞ2, which contains, besides the

linear coupling −Ap, an extra term quadratic in A ¼ p − _q.
It was argued in Ref. [35], in the context of a coset model
including spin-1

2
fermions χ, rather than the spin-3

2
fermions

Ψ of supergravity that this mechanism will generate a
squared-mass term μ2 formally given by the quadratic
Casimir of the compact Lie-algebra K, i.e.

μ2coset ¼
1

2

X
α

ðiJsαÞ2

where the superscript s refers to a spinor representation of
K. (See also the discussion in [17].)
The extension of this result to a second quantized spin-3

2
coset model would suggest an operatorial squared-mass
term of the form

μ̂2coset ¼
1

2

X
α

ðiĴvsα Þ2;

i.e. the quantum version of the formal definition of the
(Hermitian) Casimir of K. If that were the case, we would
expect the operator μ̂2 to commute with all the generators of
the compact Lie algebra K [KðAE3Þ in our case].
It is remarkable that our (uniquely defined) result for the

squared-mass generator μ̂2 happens indeed to belong to the
center of the algebra generated by the quantum KðAE3Þ
generators Ŝab, Ĵab (i.e. it commutes with all of them). This
term gathers many complicated, quartic-in-fermions con-
tributions: not only contributions quadratic in the spin
operators Ŝab [via Eq. (9.9)], but also all the infamous ψ4

terms present in the original, second-order supergravity
action. In spite of this mixed origin, at the end of the day,
the structure of the operator μ̂2 is remarkably simple. Not

6Note also that the gravitational-root generator J11 was
denoted J1;23 in [28].
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only does it belong to the center of the algebra generated by
the KðAE3Þ generators Ŝab; Ĵab, but the quartic in fermions
operator μ̂2 can finally be expressed in terms of the square
of a very simple operator (which also commutes with
Ŝab; Ĵab), namely, we find

μ̂2 ¼ 1

2
−
7

8
Ĉ2
F ð9:14Þ

where

ĈF ≔
1

2
Gab

¯̂Φ
a
γ1̂ 2̂ 3̂Φ̂b: ð9:15Þ

As we shall discuss next, ĈF is related to the fermion
number operator N̂F by

ĈF ≡ N̂F − 3: ð9:16Þ

Let us now recall the definition of the Weyl chamber of
AE3 and show its connection with various elements of the
Bianchi IX dynamics. In Kac-Moody theory a Weyl
chamber is defined as a polyhedron of β space (identified
with the space parametrizing a Cartan subalgebra of AE3)
which is bounded by r hyperplanes αiðβÞ ¼ 0 correspond-
ing to a set of “simple” roots of AE3, i.e. a set of linear
forms αiðβÞ, i ¼ 1;…; r (where r denotes the rank; equal to
3 in the present case) such that all the other roots αðβÞ can
be written as a linear combination of the simple roots with
integer coefficients which can be taken to be either all
positive (for “positive” roots) or all negative (for “negative”
roots). In the case of AE3 one can take as simple roots
α1ðβÞ ¼ β2 − β1, α2ðβÞ ¼ β3 − β2, and α3ðβÞ ¼ 2β1. The
first two roots are symmetry-wall forms αsymab ðβÞ (modulo
some choice of signs), while the last root is a gravitational-
wall form αg11ðβÞ. The corresponding AE3 Weyl chamber is,
by definition, the polyhedron of β space where α1ðβÞ ≥ 0,
α2ðβÞ ≥ 0, and α3ðβÞ ≥ 0. In other words, it is such that
0 ≤ β1 ≤ β2 ≤ β3. We shall refer to it as being the “canoni-
cal Weyl chamber” in β space. Its boundaries are the two
symmetry walls β1 ¼ β2, and β2 ¼ β3, as well as the
gravitational wall 2β1 ¼ 0. The canonical Weyl chamber
in β space (as well as some of the equivalentWeyl chambers,
see below) is illustrated in Fig. 1.
The role, in our Hamiltonian, of the boundaries of the

Weyl chambers is somewhat dissymmetric. The three
symmetry walls β1 ¼ β2, β2 ¼ β3, and β3 ¼ β1 are such
that the terms containing hyperbolic cotangents of the
corresponding symmetry-wall forms αsymab ðβÞ (associated
with corresponding spin operators Sab) become singular on
them [see e.g. (6.3)]. By contrast, the terms containing the
gravitational-wall forms αgabðβÞ (either in the SUSY con-
straints or in theHamiltonian) do not become singular on the
gravitational walls. Rather, the corresponding gravitational-
wall potential terms are “soft” potential walls which start
being repulsive as theβ particle representing the dynamics of

the geometry starts penetrating within, say, the αg11ðβÞ
gravitational wall defining one of the boundaries of the
canonical Weyl chamber. It is only when considering the
near-singularity billiard limit, where all the β’s tend to large,
positive values, that the gravitational wall tends to define a
sharp limit similar to the sharp walls associated with the
symmetry-wall forms. [This will be seen explicitly below
when discussing the effect of μ2 on the approach to the
cosmological singularity.]
Let us further comment on the origin and structure of the

symmetry walls. It is well known that the purely bosonic,
vacuum Bianchi IX dynamics features only the gravita-
tional walls, Eq. (9.1), entering the bosonic potential
Wbos

g ðβÞ, Eq. (8.8). The absence of symmetry walls in
the bosonic Bianchi IX case follows from the fact that the
rotational-momenta contribution is, in that case, simply
given by

HS
sym ¼ 1

4

p2
3

sinh2½αsym12 ðβÞ� þ cyclic123 ð9:17Þ

where the rotational-momenta pa must vanish in view of
their link, Eq. (4.7), with the diffeomorphism constraint. On
the other hand, it has been understood since the early works
of Ryan [36,37] that the presence, besides themetric degrees
of freedom, of some “matter” content in the Universe could
introduce an additional contribution in the relation between
the momenta pa and the angular velocities wā b̄, Eq. (2.10),
and thereby modify the p2

a numerators in Eq. (9.17) into the
squares of some shiftedmomenta,pshifted

a ≔ pa − Ca, where
the shifts Ca are proportional to the spin density of the
matter. After imposing the diffeomorphism constraint, i.e.
setting pa to zero, the shifted denominators ðpshifted

a Þ2 in
Eq. (9.17) then lead to symmetry-wall potential contribu-
tions ∝ C2

3=sinh
2½αsym12 � þ cyclic123. In the work of Ryan

[36,37], these symmetry-wall contributions appeared at the

FIG. 1 (color online). β space light cone and its decomposition
in Weyl chambers separated either by symmetry (s) or gravita-
tional (g) walls. Six Weyl chambers are shown. One of them will
be used as our canonical Weyl chamber.
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classical level. It was pointed out in Ref. [17] that the
coupling of a Bianchi IX Universe to a quantum spin-1

2
field

ψ generates similar shiftsCa in the rotational momenta, with
Ca being proportional to the quantum spin density of the
Dirac field ψ . Actually, Ref. [17] found quantum shifts of
precisely the same form as the ones appearing in the
supergravity result Eq. (9.9), i.e. Ĉ3 ¼ cosh½αsym12 ðβÞ�Ŝ12,
with Ŝ12 being a spin operator quadratic in the spin-12 field ψ .
These remarks show that the presence of symmetry-wall
contributions, Eq. (8.11), in the supersymmetric Bianchi IX
case, comes from the fact that the spin-3

2
graviton fieldΨâ is a

form of spinning (quantum) matter. Let us emphasize in this
respect that, both in the spin-1

2
and the spin-3

2
cases, the shifts

are quantum effects: Ĉ3 ∼ Ŝ12 ¼ OðℏÞ, so that the corre-
sponding symmetry-wall contributions should be thought of
as being Oðℏ2Þ. [This explains why, in Eq. (8.11), Ŝ212 is
modified by the numerical constant−1, which comes from a
quantum reordering of terms quartic in Ψ̂â.] To complete our
discussion of the symmetry-wall potential terms, let us
mention that the location in β space of these (singular)
walls has an intrinsic geometrical meaning within a
Bianchi IX framework. Similarly looking potential terms
∝ p2

3=sinh
2β12 appear in other Bianchi models, say in

Bianchi I, when one uses a formal Gauss decomposition
of the metric (see, e.g., Eqs (3.13), (3.25) in Ref. [17]).
However, in such cases the location β1 ¼ β2, etc., of the
singularities of these potential terms has no intrinsic geo-
metrical meaning because it is related to the arbitrary choice
of the Euclidean metric δij used to diagonalize gij. By
contrast, aswe explained in Sec. II, theGauss decomposition
of the Bianchi IX metric gij is done with respect to the
Cartan-Killing metric kij, Eq. (2.3), intrinsically associated
with the SUð2Þ homogeneity group. As a consequence, the
various symmetry walls correspond to hypersurfaces in
moduli space where the intrinsic geometry of the Bianchi
IX model has special anisotropy features. (This can be seen
by considering the eigenvalues λa, λb, λc of the spatial Ricci
tensor 3Rij with respect to gij: one finds, e.g., that β1 ¼ β2

implies a reduced curvature anisotropy with λa ¼ λb.)
The Kac-Moody–gravity conjecture assumes that the

symmetry between symmetry walls and gravitational walls
(and thereby between all possible choices of Weyl cham-
bers) will be somehow restored when considering the
quantum dynamics of the unifying theory behind super-
gravity. In the present paper, we shall stay at the level of
the supergravity description. At this level, though there will
be a dissymmetry between symmetry roots and gravita-
tional roots, there will still be a (nearly) manifest permu-
tation symmetry between the three (or six, if we include
their sign-reversed versions) different symmetry roots
αsymab ðβÞ. This symmetry is simply the group of permutation
of three objects S3 (say of the three βa’s). This is illustrated
in Fig. 2. This figure is obtained by intersecting the

polyhedral Weyl chambers of Fig. 1 by a hyperplane
β1 þ β2 þ β3 ¼ constant. Our canonical Weyl chamber
where 0 ≤ β1 ≤ β2 ≤ β3 is labeled as “a” in this figure.
The action of the permutation group S3 maps this canonical
chamber into six equivalent chambers (labeled a, b, c, d, e,
f). In the following, because of the soft, penetrable nature of
the gravitational walls, we shall have to distinguish
between the usual Kac-Moody definition of a Weyl
chamber (which, e.g., in the case of the chamber labeled
“a” would stop at the gravitational wall β1 ¼ 0) and the
definition of the corresponding chamber of β space in
which we shall solve the SUSY constraints (which will
actually be the full dihedron between the two symmetry
walls β1 ¼ β2, and β2 ¼ β3, i.e. the domain β1 ≤ β2 ≤ β3,
without restriction on the value of β1). The permutation
symmetry S3 between the six chambers a, b, c, d, e, f in
Fig. 2 is rooted in the basic diffeomorphism symmetry of
supergravity. More precisely, S3 can be considered as a
group of “large diffeomorphisms.” The constraint linked to
small diffeomorphisms, i.e. HijΨi ¼ 0, or equivalently,
p̂ajΨi ¼ 0, was saying thatΨ does not depend on the Euler
angles. It is natural to think that the gauge invariance under
large diffeomorphisms is furthermore saying that the wave
function ΨðβÞ “lives” only in one of the six equivalent
chambers; the other ones being just gauge-equivalent
description of the same physics. In the following, we shall
therefore often restrict our study of the wave function to the
canonical chamber “a”, i.e. β1 ≤ β2 ≤ β3.

X. FERMION NUMBER OPERATORS IN
SPINORIAL SPACE

To be able to describe in detail the set of solutions of the
supersymmetry constraints

Ŝð0Þ
A jΨi ¼ 0;

β =01

β =02

β =03

β  = β 1 2

β  = β 3 1

β  = β 3 2

bc

d

e   f

a

FIG. 2 (color online). The various Weyl chambers. Chamber
“a”, where 0 ≤ β1 ≤ β2 ≤ β3, will generally be taken as our
canonical Weyl chamber.
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it will be convenient to replace the 3 × 4 “real” (i.e.
Majorana) operators Φ̂a

A, that enter both the β-derivative
terms in the supersymmetry operators, and the subsequent
potential (and mass-type) terms

Ŝð0Þ
A ¼ þ i

2
Φa

A∂βa þ V̂Aðβ;ΦÞ ð10:1Þ

by 3 × 2 complex “annihilation operators” baϵ (where the
index ϵ takes two values, say þ;−), and the corresponding
Hermitian-conjugated “creation operators” ~baϵ . (Henceforth,
to ease the notation we do not put hats on the baϵ , and ~baϵ
operators.) The definition of the b’s and ~b’s we shall use is

baþ ¼ Φ̂a
1 þ iΦ̂a

2;

ba− ¼ Φ̂a
3 − iΦ̂a

4;

~baþ ¼ Φ̂a
1 − iΦ̂a

2;

~ba− ¼ Φ̂a
3 þ iΦ̂a

4: ð10:2Þ

The various signs appearing in these combinations are
related to our convention for the value of the matrix γ5 in
the Majorana representation we use. We use the following
real γ matrices:

γ1̂¼

0
BBB@
0 1 0 0

1 0 0 0

0 0 0 1

0 0 1 0

1
CCCA; γ2̂¼

0
BBB@
−1 0 0 0

0 1 0 0

0 0 −1 0

0 0 0 1

1
CCCA; ð10:3Þ

γ3̂¼

0
BBB@

0 0 0 −1
0 0 1 0

0 1 0 0

−1 0 0 0

1
CCCA; γ0̂¼

0
BBB@

0 0 0 1

0 0 −1 0

0 1 0 0

−1 0 0 0

1
CCCA; ð10:4Þ

leading to

γ5 ¼ γ0̂γ1̂γ2̂γ3̂ ¼

0
BBB@

0 −1 0 0

1 0 0 0

0 0 0 1

0 0 −1 0

1
CCCA: ð10:5Þ

The above definition is such that the b’s correspond to a
“chiral” projection of theΦ0s in the sense that baþ and ba− are
proportional to the two independent spinor components of

ð1 − iγ5ÞΦ̂a

while ~baþ and ~ba− are proportional to those of ð1þ iγ5ÞΦ̂a.

The definitions above are such that the b’s and ~b’s satisfy
usual-type anitcommutation relations for annihilation and
creation operators, modulo the replacement of the expected
Euclidean metric, by the Lorentzian-signature β-space
metric Gab

fbkϵ ; ~blϵ0g ¼ 2Gklδϵϵ0 ; ð10:6Þ

fbkϵ ; blϵ0 g ¼ f ~bkϵ ; ~blϵ0g ¼ 0: ð10:7Þ

As indicated here, we shall henceforth indicate the β-space
indices (either on β, Φ, b, G, etc.) by arbitrary latin indices,
a; b; c;…; k; l; m;…, without limiting ourselves (as we did
up to now) to the first part of the Latin alphabet. Note that
the position (up or down) of these β-space indices is
meaningful, and should be respected. For instance, the
indices on the Φ’s, and therefore on the b’s, are contra-
variant. This is why it is the inverse metric Gkl which
appears in the anticommutation relations (10.6).
The operators b’s and ~b’s are useful because they allow

one to decompose the 64-dimensional spinorial space H on
which they act into “slices” corresponding to the usual
Fock-type construction of a fermionic Hilbert space. More
precisely, there exists a unique “vacuum state” such that

bkϵ j0i− ¼ 0 ð10:8Þ

or, equivalently (in terms of the real Clifford algebra Φ’s)

ð1 − iγ5ÞΦ̂kj0i− ¼ 0: ð10:9Þ

We then obtain a basis of the whole space H by acting
on j0i− with the 64 possible products of all different ~bkϵ
operators. This construction defines a bigrading ðNFþ; NF

−Þ
on H, defined by (separately) counting the number of
operators ~bkþ and ~bk− that act on j0i−. In other words we
obtain two fermionic number operators bNF

�, that can be
represented as

bNF
ϵ ¼ 1

2
Gkl

~bkϵblϵ: ð10:10Þ

These operators satisfy the commutation relations

½bNF
ϵ ; bkϵ0 � ¼ −δϵϵ0bkϵ0 ; ½bNF

ϵ ; ~b
k
ϵ0 � ¼ þδϵϵ0 ~b

k
ϵ0 ð10:11Þ

and their eigenvalues run from 0 to 3.
We also consider the total fermionic number operator

bNF ¼ bNF
þ þ bNF

− ð10:12Þ

whose eigenvalues vary from 0 to 6. This operator will play
an important role in the structure of the solution space
because, as we shall soon see, it has nice commutation
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relations with the chiral components of the supersymmetry
operators.
As was already mentioned above, the fermion-number

operator bNF is very simply related to a remarkably simple
quadratic fermion operator ĈF that crucially enters in the
“squared-mass term” μ̂2 occurring in the Hamiltonian Ĥ0.
Namely,

ĈF ¼ bNF − 3 ¼ 1

2
Gkl

¯̂Φ
k
γ1̂ 2̂ 3̂Φ̂l: ð10:13Þ

It is worthwhile to notice that the ladder compact
generators Ĵ11, Ĵ22, and Ĵ33 that occur in the V̂J part
(8.9) of the potential (8.7) commute both with bNF and thebNF

� operators while the spin operators (6.4) only commute
with bNF, except for Ŝ12 that commutes with bNF

�.
As we shall use it systematically in the following, let us

describe in detail the decomposition of the 64-dimensional
space H first into eigenspaces H½NF� of the total fermion

number operator bNF, and then into common eigenspaces
HðNF

þ;N
F
−Þ of the two separate fermion number operators bNF

þ,bNF
− (with NF ¼ NFþ þ NF

−). To do that, one must take into
account both the bNF

ϵ eigenvalues and the symmetry (or lack
of symmetry) of the Lorentzian indices k; l;… of the
products of the ~bkϵ operators acting on j0i−.
The NF ¼ 0 space is the one-dimensional space gen-

erated by j0i−:
H½0� ¼ Hð0;0Þ ¼ spanCj0i−: ð10:14Þ

Here spanCfBg denotes the vector space generated by all
complex linear combinations of elements of the set fBg.
The NF ¼ 1 subspace H½1� is six dimensional, and splits

into two three-dimensional subspaces H½1�¼Hð1;0Þ⊕Hð0;1Þ
with

Hð1;0Þ ¼ spanCf ~bkþj0i−g;
Hð0;1Þ ¼ spanCf ~bk−j0i−g:

The NF ¼ 2 eigenspace H½2� is 15 dimensional. It
naturally decomposes itself into 3þ 3þ 3þ 6 dimensional
subspaces:

Hð2;0Þ ¼ spanCf ~bkþ ~blþj0i−g;
Hð0;2Þ ¼ spanCf ~bk− ~bl−j0i−g;
Hð1;1ÞA ¼ spanCf ~b½kþ ~bl�−j0i−g;
Hð1;1ÞS ¼ spanCf ~bðkþ ~blÞ−j0i−g:

In the first three spaces we have (either naturally, or by
explicit projection7) antisymmetry over the two indices kl,

corresponding to three independent possibilities. By con-
trast, the symmetry over kl in Hð1;1ÞS leads to a six-
dimensional space.
The next level, NF ¼ 3, H½3�, is 20 dimensional. It splits

into two 10-dimensional subspaces that themselves decom-
pose into 1-, 3-, and 6-dimensional subspaces:

Hð3;0Þ ¼ spanCf ~b1þ ~b2þ ~b3þj0i−g;

Hð2;1ÞA ¼ spanC

�
1

2
η½kpq ~bl�− ~b

p
þ ~b

q
þj0i−

�
;

Hð2;1ÞS ¼ spanC

�
1

2
ηðkpq ~blÞ− ~b

p
þ ~b

q
þj0i−

�
;

and similarly for Hð0;3Þ, Hð1;2ÞA , and Hð1;2ÞS . Above, we have
used the Levi-Civita tensor ηlpq in β space (with one index
raised by Gkl).
At this stage we have described half of the H space. The

second half can be obtained in two equivalent ways: either
(i) by continuing to act on the “minus” vacuum state j0i−
by means of creation operators ~bk�, or, (ii) by exchanging
the roles of the ~bkϵ operators and bkϵ operators and by
starting from the “filled” fermionic state

j0iþ ¼ 1

4

Y
ϵ

Y
k

~bkϵ j0i−

i.e. the (unique) state8 that is annihilated by all ~bkϵ operators:

~bkϵ j0iþ ¼ 0: ð10:15Þ

In the second construction (from the filled state), we have
Hð3;3Þ ¼ spanCfj0iþg, Hð2;3Þ ¼ spanCfbkþj0iþg, etc. Note
that the filled state is also uniquely fixed (modulo an
arbitrary factor) by the opposite-chirality condition that
fixed the empty state, namely

ð1þ iγ5ÞΦ̂kj0iþ ¼ 0: ð10:16Þ

In many developments in the rest of this paper, it will be
useful to have in mind the main characteristics of each one
of the subspaces of HðNþ

F ;N
−
FÞ that we have just considered,

notably their dimensions, the corresponding eigenvalue of
μ2, as well as the spectrum of the Kac-Moody-related
operators Jab and Sab in these spaces. Actually, it happens
that while the Jab’s are block diagonal with respect to
(w.r.t.) the above defined subspaces, this is not generally
true for the Sab’s (which are only block diagonal in larger
subspaces of H½NF�). However, the squared-spin operators
S2ab, which crucially enter the symmetry walls of the
Hamiltonian operator turn out to be simpler, and to be
block diagonal w.r.t. the above defined subspaces of each

7With T ½kl� ≔ 1
2
ðTkl − TlkÞ and TðklÞ ≔ 1

2
ðTkl þ TlkÞ.

8Here normalized so that b1þb2þb3þj0iþ coincides with
~b1þ ~b

2
þ ~b

3
þj0i−.
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fermion level. For the convenience of the reader, we shall
gather this information in Appendix B.

XI. EXPLICIT STRUCTURE OF THE
SUPERSYMMETRY OPERATORS IN THE

CHIRAL BASIS

The main point established in the previous sections is
that, in the minisuperspace framework in which we con-
sider the quantization of N ¼ 1, D ¼ 4 Bianchi IX
cosmological supergravity model, the relevant equations
to be solved are

Ŝð0Þ
A jΨi ¼ 0: ð11:1Þ

These equations constitute a system of four simultaneous
Dirac equations in a three–dimensional “space-time” (the β
space) for a 64-component spinorial wave function ΨσðβÞ.
The number and structure of the solutions of this heavily
overconstrained system of partial differential equations is
a priori unclear (and was left in great part undecided by
previous work on quantum supersymmetric Bianchi IX
cosmology [4,6,7,10]). Here, we shall bring a rather
complete answer to this issue by using the simplifications
obtained by projecting the supersymmetry operators in the
chiral basis of the b’s and ~b’s introduced above.
Similarly to the definition of the b operators [see

Eqs (10.2)], we define (omitting the operatorial hats) the
(annihilation-type) chiral components of the supersym-
metry operators as

Sð0Þ
þ ¼ Sð0Þ

1 þ iSð0Þ
2 ; ð11:2Þ

Sð0Þ
− ¼ Sð0Þ

3 − iSð0Þ
4 : ð11:3Þ

The two non-Hermitian operators Sð0Þ
� represent half of the

content of the four original Hermitian Sð0Þ
A ’s. The other half

is described by the Hermitian-conjugated operators ~Sð0Þ
� .

With respect to such a chiral basis the supersymmetry
operators have a rather simple structure. They read

Sð0Þ
ϵ ¼ i

2
bkϵ∂βk þ αkðβÞbkϵ þ

1

2
μ½kl�mðβÞB½kl�m

ϵ

þ ρklmðβÞCklm
ϵ þ 1

2
ν½kl�mðβÞD½kl�m

ϵ ð11:4Þ

where the B’s, C’s, and D’s are cubic in the fermion
operators, and, more precisely, are of the ~bbb type, with
always an annihilation operator on the right (so that B, C,
D, and therefore S, acting on j0i− yield zero). In addition,
the B’s and the D’s are antisymmetric in the first two upper
indices kl (while the C’s do not have such a symmetry
property). Their explicit expressions are

Bklm
ϵ ¼ ~bmϵ bkϵblϵ þGlmbkϵ −Gkmblϵ

¼ bkϵblϵ ~b
m
ϵ −Glmbkϵ þ Gkmblϵ; ð11:5Þ

Cklm
ϵ ¼ ~bm−ϵbkϵbl−ϵ þ Glmbkϵ

¼ bkϵbl−ϵ ~b
m
−ϵ − Glmbkϵ ; ð11:6Þ

Dklm
ϵ ¼ ~bmϵ bk−ϵbl−ϵ

¼ bk−ϵbl−ϵ ~b
m
ϵ : ð11:7Þ

As for the (ϵ-independent) β-dependent coefficients αðβÞ,
μðβÞ, ρðβÞ, and νðβÞ entering Sð0Þ

ϵ , they can be written as
rational functions of the new variables

x ≔ e2β
1 ¼ 1

a2
; y ≔ e2β

2 ¼ 1

b2
; z ≔ e2β

3 ¼ 1

c2
:

ð11:8Þ

Namely (denoting the derivatives ∂βk by ∂k; note that
∂1 ¼ 2x∂x, etc.),

αk ¼
i
2

�
1

x
;
1

y
;
1

z

�
¼ i∂kα with α ¼ −

1

4

�
1

x
þ 1

y
þ 1

z

�
; ð11:9Þ

μklm ¼ μ½kGl�m with μk ¼ i∂kμ; μ ¼ 1

8
ln





 ðx − yÞ
x2y2z2





; ð11:10Þ

νklm ¼ ν½kGl�m with νk ¼ i∂kν; ν ¼ 1

8
ln





 x − z
y − z





; ð11:11Þ

ρklm ¼ 1

10
ðð4 ρð1Þk − ρ

ð2Þ
k − ρ

ð3Þ
kÞGlm þ ð4 ρð2Þl − ρ

ð3Þ
l − ρ

ð1Þ
lÞGkm þ ð4 ρð3Þm − ρ

ð1Þ
m − ρ

ð2Þ
mÞGklÞ þ τðklmÞ ð11:12Þ

where τðklmÞ is a completely symmetric traceless tensor, whose explicit form is displayed in Appendix D, and
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ρkl
l ¼ ∶ ρ

ð1Þ
k ¼ i∂kr1 where r1 ¼

1

16
ln

�ðx − yÞðx − zÞ3ðy − zÞ3
ðxyzÞ6

�
; ð11:13Þ

ρlk
l ¼ ∶ ρ

ð2Þ
k ¼ i∂kr2 where r2 ¼

1

16
ln

�ðx − yÞ3ðx − zÞðy − zÞ
ðxyzÞ2

�
; ð11:14Þ

ρl
l
k ¼ ∶ ρ

ð3Þ
k ¼ i∂kr3 where r3 ¼

3

16
ln

�ðx − yÞðx − zÞðy − zÞ
ðxyzÞ2

�
: ð11:15Þ

Let us notice that r1 þ r2 ¼ 4
3
r3. Note also that all the

coefficient functions αkðx; y; zÞ, μklmðx; y; zÞ, νklmðx; y; zÞ,
ρklmðx; y; zÞ are purely imaginary, i.e. they are of the form i
times some real (rational) functions of x; y; z. As a
consequence, the Hermitian-conjugate of the chiral super-
symmetry constraints reads

~Sð0Þ
ϵ ¼ þ i

2
~bkϵ∂k − αkðβÞ ~bkϵ −

1

2
μ½kl�mðβÞ ~B½kl�m

ϵ

− ρklmðβÞ ~Cklm
ϵ −

1

2
ν½kl�mðβÞ ~D½kl�m

ϵ : ð11:16Þ

Here, all operators have tildes, and all coefficients have
changed sign, except the first which originally read
− 1

2
bkϵ π̂k, and for which we used the fact that ~̂πk ¼ þπ̂k.
Globally, because of the structure Sð0Þ ∼ bþ ~bbb, Sð0Þ

decreases the total fermion number NF by one unit, while
~Sð0Þ increases NF by one unit. But there are also some
similar conservation laws (modulo 2) when considering the
finer decomposition of H½NF � into sums of HðNF

þ;N
F
−Þ ’s with

NF ¼ NFþ þ NF
−. Indeed, because of the specific values of

the ϵ indices entering the B’s, C’s, and D’s above, the
various terms appearing in (11.4) act differently on the
subspaces HðNF

þ;N
F
−Þ, labeled by the separate NF

� ¼ 0;…; 3
eigenvalues. For instance we have

bkþ∶HðNF
þ;N

F
−Þ → HðNF

þ−1;NF
−Þ;

~bkþ∶HðNF
þ;N

F
−Þ → HðNF

þþ1;NF
−Þ; ð11:17Þ

Bklmþ ∶HðNF
þ;N

F
−Þ → HðNF

þ−1;NF
−Þ;

~Bklm
þ ∶HðNF

þ;N
F
−Þ → HðNF

þþ1;NF
−Þ; ð11:18Þ

Cklmþ ∶HðNF
þ;N

F
−Þ → HðNF

þ−1;NF
−Þ;

~Cklm
þ ∶HðNF

þ;N
F
−Þ → HðNF

þþ1;NF
−Þ; ð11:19Þ

but

Dklmþ ∶HðNF
þ;N

F
−Þ → HðNF

þþ1;NF
−−2Þ;

~Dklm
þ ∶HðNF

þ;N
F
−Þ → HðNF

þ−1;NF
−þ2Þ ð11:20Þ

and similarly for the minus chirality operators, by exchang-
ing the role of the labels NFþ and NF

−.

The supersymmetry operators Sð0Þ
ϵ (respectively, ~Sð0Þ

ϵ )
satisfy the following commutation relations with the total
fermionic number bNF:

½bNF;S
ð0Þ
ϵ � ¼ −Sð0Þ

ϵ ; ½bNF; ~S
ð0Þ
ϵ � ¼ ~Sð0Þ

ϵ : ð11:21Þ

Moreover, apart for their Dklm
ϵ contribution, the various

terms in Sð0Þ
ϵ (respectively, ~Sð0Þ

ϵ ) act separately on each ϵ
species of fermions.
As as been previously noticed [4,6,7,10], the fact that the

Sð0Þ
ϵ and ~Sð0Þ

ϵ change the fermionic number by one unit,
allows one to look for solutions of the supersymmetry
constraints at each fixed total fermion level NF. A simple
proof of this fact reads as follows. The commutation
relations (11.21) show that if Ψ is a solution of Sð0Þ

ϵ Ψ ¼
0 and ~Sð0Þ

ϵ Ψ ¼ 0, then bNFΨ is also a solution. By iterating
the action of N̂F, bNn

FΨ will be a solution for any integer n.
If we then decompose Ψ in NF levels, i.e. Ψ ¼ P

NF
ΨNF

,
we see that, for any n

bNn
FΨ ¼

X
NF

NF
nΨNF

;

will be a solution. Because of the nonvanishing of a
corresponding Vandermonde determinant, we see that each
separate state ΨNF

must be a solution. This remark
facilitates the study of the solution space. It is enough to
look for solutions of the supersymmetry constraints having
a fixed fermion level NF.
In addition, though the Sð0Þ

ϵ and ~Sð0Þ
ϵ operators do not

commute with the separate fermionic numbers NF
�, these

operators and the parity indicators ð−ÞNF
� are found to

verify the relations

fSð0Þ
� ; ð−ÞNF

�g ¼ f ~Sð0Þ
� ; ð−ÞNF

�g ¼ ½Sð0Þ
� ; ð−ÞNF∓ �

¼ ½ ~Sð0Þ
� ; ð−ÞNF∓ � ¼ 0: ð11:22Þ

Accordingly, at a given level, decomposing ΨNF
þþNF

−
¼P

p ΨðNF
þ−p;N

F
−þpÞ (setting to zero components with neg-

ative NF
� index, or index greater than 3), we obtain that
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Sð0Þ
�
X
p

ΨðNF
þ−p;N

F
−þpÞ ¼ 0⇒ Sð0Þ

�
X
p

ð−ÞpΨðNF
þ−p;N

F
−þpÞ ¼ 0;

~Sð0Þ
�
X
p

ΨðNF
þ−p;N

F
−þpÞ ¼ 0⇒ ~Sð0Þ

�
X
p

ð−ÞpΨðNF
þ−p;N

F
−þpÞ ¼ 0:

As a consequence if ΨNF
þþNF

−
¼ P

pΨðNF
þ−p;N

F
−þpÞ is a

solution of the four supersymmetry constraints equations,
so are the partial sums

P0
pΨðNF

þ−p;NF
−þpÞ where p is

restricted to even or odd values. In other words we may,
without loss of generality, look for solutions in the
subspaces (when considering NF ≤ 3):

Hð0;0Þ; Hð1;0Þ; Hð0;1Þ; Hð2;0Þ ⊕ Hð0;2Þ; Hð1;1Þ;

Hð3;0Þ ⊕ Hð1;2Þ; Hð0;3Þ ⊕ Hð2;1Þ:

In addition solutions belonging to the subspace Hð1;1Þ may
be decomposed into symmetric and antisymmetric ones. To
summarize we obtain eight different classes of possible
solutions. We shall consider them in turn.
It is to be noted that, when looking for a solution at some

fixed fermionic level NF ¼ N, say

ΨðNÞ ¼ fϵ1ϵ2���ϵNa1a2���aN ðβÞ ~ba1ϵ1 � � � ~baNϵN j0i−; ð11:23Þ

the components fϵ1ϵ2���ϵNa1a2���aN ðβÞ of the wave function satisfy
[because of (11.1)] a set of partial differential equations
whose explicit expression is equivalent to

−iSð0Þ
ϵ ΨðNÞ ¼ 0; −i ~Sð0Þ

ϵ ΨðNÞ ¼ 0: ð11:24Þ

We have written these equations with an extra factor −i, so
that, in view of the explicit expressions of the chiral Sð0Þ

ϵ ’s
given above, all the coefficients appearing in these equa-
tions become real. In addition, as the commutation rela-
tions of the b’s and ~b’s are also real, we see that the set of
partial differential equations satisfied by the wave-function
components fϵ1ϵ2���ϵNa1a2���aN ðβÞ will be real. One can therefore
construct a basis of solutions of the set of supersymmetric
solutions at level NF made of real wave functions
fϵ1ϵ2���ϵNa1a2���aN ðβÞ.

XII. UP-DOWN SYMMETRY IN
FERMIONIC SPACE

Before discussing explicit solutions in detail, let us note
in what sense there is a symmetry between the lower
(NF ≤ 3) and the upper (NF ≥ 3) parts of fermionic space.
At the kinematical level, there is, as we have seen above,
the usual symmetry in the Fock construction of the state
space, under which

j0i− → j0iþ
and

baϵ → ~baϵ :

But the issue is to know whether this kinematical symmetry
extends to the dynamics, i.e. whether there is a one-to-one
map between solutions of the supersymmetry constraints at
the levels NF and 6 − NF. A (positive) answer to this
question is obtained by first recalling that the difference
between j0i−, baϵ and j0iþ, ~baϵ is connected to a choice in
the chiral projection

baϵ ∝ ð1 − iγ5ÞΦ̂a

versus

~baϵ ∝ ð1þ iγ5ÞΦ̂a:

We need therefore to see whether there is a symmetry of the
constraint equations (11.1) which involves a flip in the sign
of γ5 ¼ γ0̂γ1̂γ2̂γ3̂. We note that the appearance of the γ

matrices in Ŝð0Þ
A ðβ;ΦÞ has a special structure. In particular,

after the choice of a Majorana representation with

β ¼ C ¼ iγ0̂, all the cubic terms in Ŝð0Þ
A ðβ;ΦÞ involve only

the spatial gamma matrices γâ. As a consequence, γ0̂ only
appears in the gravitational-wall term

Sg
A ¼ 1

2

X
k

e−2β
kðγ0̂γ1̂γ2̂γ3̂ΦkÞA: ð12:1Þ

Given an initial Majorana representation for ðγ0̂; γ1̂; γ2̂; γ3̂Þ,
the new matrices ðγ00̂; γ01̂; γ02̂; γ03̂Þ ¼ ð−γ0̂; γ1; γ2̂; γ3̂Þ, form
a second Majorana representation (which differs by a
conjugation with γ1̂γ2̂γ3̂). This change of representation

will leave the expressions of the Ŝð0Þ
A ðβ;ΦÞ invariant if we

additionally perform the following complex shift of the β
variables:

βa → βa þ i
π

2
: ð12:2Þ

Indeed, this shift changes the sign of the gravitational
potentials e−2β

a
, while leaving invariant all the terms related

to the symmetry walls [which are ∝ cothðβa − βbÞ]. In
terms of the variables x ¼ e2β

1 ¼ 1=a2, y ¼ e2β
2 ¼ 1=b2,

z ¼ e2β
3 ¼ 1=c2, the above complex shift of the β’s means

x → −x; y → −y; z → −z: ð12:3Þ

Summarizing, the usual (kinematical) up-down fermionic
symmetry (mapping NF to 6 − NF) extends to the dynami-
cal level (i.e. maps a solution on a solution), at the cost,
however, of the change (12.2), i.e. (12.3), of the bosonic
coordinates. We note in passing that, when NF ¼ 3, we
have a map between solutions at the same level.
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XIII. SOLUTIONS AT THE FERMIONIC
LEVEL NF ¼ 0

It is particularly easy to obtain the general solution at this
level. The subspace is one dimensional; thus any putative
solution must be described by a single (scalar) amplitude
fðβÞ with

Ψð0Þ ¼ fðβÞj0i−: ð13:1Þ

As there is no subspace of level NF ¼ −1, the SUSY
constraints of the annihilation-type (bþ ~bbb) are identi-
cally satisfied:

Sð0Þ
ϵ Ψð0Þ ≡ 0: ð13:2Þ

On the other hand the conditions linked to the creation-type
SUSY constraints ( ~bþ ~b ~b b)

~Sð0Þ
þ Ψð0Þ ¼ 0 and ~Sð0Þ

− Ψð0Þ ¼ 0 ð13:3Þ

lead to twice the same three equations:

i
2
∂kf − ðαk þ μk þ ρð1Þk Þf ¼ 0: ð13:4Þ

Equations (11.9), (11.10), and (11.13) showed that each of
the factors αk, μk, and ρð1Þk is i times the gradient of a real
function. Therefore the equations for fðβÞ are (locally)
trivially integrable. The general NF ¼ 0 solution is then
found to be of the form:

f ¼ Cð0Þ½ðy − xÞðz − xÞðz − yÞ�3=8 e
−1
2
ð1xþ1

yþ1
zÞ

ðxyzÞ5=4 : ð13:5Þ

In terms of the β’s it reads

f ∝ exp

�
−
7

4
β0
�
ðsinh β12 sinh β23 sinh β31Þ3=8

× exp

�
−
1

2

X
a

expð−2βaÞ
�

ð13:6Þ

where β0 ≡ β1 þ β2 þ β3, β12 ≡ β1 − β2, etc.
This solution, which depends on a single multiplicative

constant, deserves some comments. First, if Cð0Þ is taken to
be real, the solution is real. More precisely, we have written
it so that it is real in our canonical Weyl chamber (a) where
x ≤ y ≤ z. As was argued above, it is natural to interpret the
symmetry of supergravity under large diffeomorphisms as
implying that we can restrict the moduli space (i.e. the
space of the β’s) to only one Weyl chamber. With this
interpretation, the expression (13.5), considered only for
x ≤ y ≤ z, would be a full description of the NF ¼ 0
solution space. If, on the other hand, one wanted to extend
the wave function to the six different Weyl chambers

(represented in Fig. 2), it might be natural to continue it
analytically by passing through the successive symmetry
walls where either x ¼ y, y ¼ z, or z ¼ x. This would lead
to a global wave function of the form

fðx; y; zÞ ¼ Cð0Þ½jðx − yÞðy − zÞðz − xÞjeinπ�3=8 e
−1
2
ð1xþ1

yþ1
zÞ

ðxyzÞ5=4
ð13:7Þ

where the index n counts modulo 6 the number of
symmetry walls crossed when turning around the β1 ¼
β2 ¼ β3 axis (see Fig. 2).
Independently of the way we wish to view this solution,

let us note that it vanishes on the symmetry walls, and
decays under the gravitational walls, i.e. when βa → −∞,
for each given index a. We recall that e−2β

1 ¼ a2 ¼ 1=x, so
that going under the 2β1 gravitational wall (e−2β

1

→ þ∞)
means a2 → þ∞ or x → 0þ. The exponential factor by
which the NF ¼ 0 solution decays under the gravitational
walls (i.e. for large, anisotropic universes) is

e−
1
2
ða2þb2þc2Þ ≡ e−

1
2
ð1xþ1

yþ1
zÞ: ð13:8Þ

Ground-state solutions, incorporating such a (real) expo-
nential factor, of either the ordinary bosonic Bianchi IX
WDW equation [38], or its supersymmetric extension
[4,7,10], have been discussed in previous works.
However, our new (unique) ground-state solution further
incorporates the nontrivial extra factor

½ðy − xÞðz − xÞðz − yÞ�3=8
ðxyzÞ5=4

∝ exp

�
−
7

4
β0
�
ðsinh β12 sinh β23 sinh β31Þ3=8 ð13:9Þ

which necessary follows from the presence of the
symmetry-wall contributions (6.3) in the SUSY constraints.

XIV. SOLUTIONS AT THE LEVEL NF ¼ 6

The subspace Hð3;3Þ is also one dimensional:

Ψð6Þ ¼ ~fðβÞj0iþ ð14:1Þ

where j0iþ is annihilated by all the ~bkϵ operators, defined in
Eq. (10.15). When imposing the SUSY constraints
Eqs. (11.1) (in chiral form), the creation-type constraints

~Sð0Þ
ϵ Ψð6Þ ≡ 0 ð14:2Þ

are identically satisfied, while the annihilation-type ones

Sð0Þ
ϵ Ψð6Þ ¼ 0 ð14:3Þ
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yield twice the equations

i
2
∂k

~f þ ðαk − μk − ρð1Þk Þ ~f ¼ 0: ð14:4Þ

As in the NF ¼ 0 case, the (imaginary) gradient nature of
the vectors αk, μk, ρ

ð1Þ
k implies the existence of a unique

solution (modulo an arbitrary multiplicative factor Cð6Þ)

~f ¼ Cð6Þ½ðy − xÞðz − xÞðz − yÞ�3=8 e
þ1

2
ð1xþ1

yþ1
zÞ

ðxyzÞ5=4 : ð14:5Þ

Here, we have an explicit example of the general property
we explained above. One maps a solution at level NF to a
solution at level 6 − NF by exchanging b → ~b, j0i− → j0iþ
and ðx; y; zÞ → ð−x;−y;−zÞ. [Here, we need to absorb a
phase factor expðiπÞð3=8−5=4Þ in the multiplicative
constants.]
Note that the transformation rule ðx; y; zÞ →

ð−x;−y;−zÞ (which was seen above to be connected with
the nature of the gravitational-wall contributions (6.2) to
the SUSY constraints, and especially their proportionality
to γ5Φa) “explains” why the (unique) NF ¼ 6 solution
grows exponentially under the gravitational walls, propor-
tionally to

eþ1
2
ða2þb2þc2Þ ≡ eþ

1
2
ð1xþ1

yþ1
zÞ ð14:6Þ

while the NF ¼ 0 solution was exponentially decaying
under the gravitational walls.
Though we are not a priori sure of what kind of physical

requirements should be imposed on the wave function of
the Universe, we shall tentatively assume in the following
that one should only retain wave functions that do not
exhibit a growth for large values of a2; b2; c2 as violent
as Eq. (14.6).

XV. SOLUTIONS AT THE LEVEL NF ¼ 1

A general Ψ in H½1� ¼ Hð1;0Þ ⊕ Hð0;1Þ is given by a
superposition:

Ψð1Þ ¼
X
ϵ¼�

fϵk ~b
k
ϵ j0i−: ð15:1Þ

The Sð0Þ
ϵ operators project Ψð1Þ onto Hð0;0Þ. The image of

this projection vanishes if the divergence conditions

i
2
∂kfkϵ þ φkfkϵ ¼ 0 ð15:2Þ

are satisfied. Here fkϵ ≔ Gklfϵl and φk is defined by

φk∶ ¼ αk þ μk þ ρð1Þk ¼ i
2
∂kφ; ð15:3Þ

where φ is defined as the logarithm of the NF ¼ 0 solution
f, Eq. (13.5) (with Cð0Þ ¼ 1). In what follows β indices are

raised or lowered with the metric (2.26); the positions of the
NF

� indices (ϵ; ϵ0;… ¼ �) are indifferent, and will be
dictated by writing facilities. The ~Sð0Þ

ϵ operators lead to
two (similar) sets of three equations. Indeed ~S maps Hð1;0Þ
(and Hð0;1Þ) into Hð2;0Þ, Hð1;1Þ, and Hð0;2Þ. Explicitly we
obtain

ν½kfϵl� ¼ 0; ð15:4Þ

i
2
∂kfϵl − φkfϵl þ 2ρmklfϵm ¼ 0; ð15:5Þ

i
2
∂ ½kfϵl� − φ½kfϵl� þ μ½kfϵl� ¼ 0: ð15:6Þ

We see explicitly here the consequence of the commutation
relations Eq. (11.22) that was anticipated above: because of
parity properties at the NF ¼ 1 level, there is a complete
decoupling of the modes of different partial fermionic
number NFþ, NF

−.
It is not a priori clear that the overconstrained set of

equations (15.2)–(15.6) admit any nonzero solutions.
Because we have shown above that our way of quantizing
supergravity led to a consistent algebra of constraints, we,
however, expect that the structure of the above equations
will be special enough to admit nontrivial solutions. We
have explicitly verified this for all the levels that will be
discussed here in full detail.
In the present NF ¼ 1 case, the use of the algebraic

constraint Eq. (15.4) immediately reduces the degrees of
freedom of the “vectorial” wave functions f�k to scalar
ones:

f�k ¼ f�νk: ð15:7Þ

Inserting this factorized form in the remaining Eqs. (15.5)
and (15.6) leads to three integrable equations (plus some
identities). The general solution at level NF ¼ 1 is then
found to be

f�k ¼ C�
ð1Þfxðy − zÞ; yðz − xÞ; zðx − yÞg

×
e−

1
2
ð1xþ1

yþ1
zÞ

ðxyzÞ3=4ððx − yÞðy − zÞðz − xÞÞ3=8 ð15:8Þ

where C�
ð1Þ are two arbitrary constants. Each constant

parametrizes the unique solution having either NFþ ¼ 1
or NF

− ¼ 1.
Note that each one of the basic solutions (which have the

same amplitude fk, but correspond to different quantum
states) can be taken as being real. Like at level NF ¼ 0 the
solutions decay exponentially under the gravitational wall,
with the same (WKB) exponential decay (13.8). By
contrast to the NF ¼ 0 case where the solution vanished
on the symmetry walls, these NF ¼ 1 solutions become
singular on the symmetry walls, but in a rather mild
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(square-integrable) way. (More about this below.) Let us
finally remark that all previous works on supersymmetric
Bianchi IX (and other minisuperspace) models [4–12] have
stated that it was impossible to construct solutions of
the SUSY constraints at odd fermion levels. This difference
might be due to a difference in the quantization scheme
used. However, we rather think that it is due to the fact that
previous work considered a too restrictive class of ansätze
when trying to construct putative odd-level states. In our
construction, the odd fermion levels do not introduce any
special difficulty.

XVI. SOLUTIONS AT LEVEL NF ¼ 5

The general solution at this level can be either built in
analogy with the one just obtained, or simply by using the
NF → 6 − NF rules given above. We have checked that this
yields the same solutions. Writing Ψ as

Ψð5Þ ¼
X
ϵ¼�

fϵkb
k
ϵ j0iþ ð16:1Þ

we obtain (consistently with changing x → −x, etc. in the
NF ¼ 1 solutions),

f�k ¼ C�
ð5Þfxðy − zÞ; yðz − xÞ; zðx − yÞg

×
eþ

1
2
ð1xþ1

yþ1
zÞ

ðxyzÞ3=4ððx − yÞðy − zÞðz − xÞÞ3=8 ð16:2Þ

depending on the two constants C�
ð5Þ parametrizing the

separate unique states with NF
� ¼ 5.

Like the solutions at level NF ¼ 6, these solutions grow
exponentially under the gravitational walls. We shall there-
fore tentatively reject them.

XVII. SOLUTIONS AT LEVEL NF ¼ 2

So far, i.e. for NF ¼ 0; 1; 5; 6, the solutions we obtained,
which were the most general at these levels, only consisted
of “discrete solutions,” containing arbitrary multiplicative
factors, but having fixed shapes as functions of the β’s. The
situation will change in the middle of the fermionic Fock
space, i.e. for NF ¼ 2; 3; 4, where we will find solutions
depending also on arbitrary “initial” functional data. Our
findings are qualitatively consistent with the finding of
Refs. [6,7] that there exist supersymmetric Bianchi IX
solutions at fermion levels 2 and 4 depending on as many
data as a solution of the usual bosonic WDW equation.
However, as we shall comment below, our results differ also
significantly (both qualitatively and quantitatively) from
previous results. Most notably, we shall construct
“continuous” solutions at the odd fermionic level
NF ¼ 3, which was considered as being impossible in
previous works.
We study the solution space at level NF ¼ 2 by extend-

ing the procedure used at lower levels. The dimension of

H½2� is 15, so that we are a priori dealing with a
15-component wave function, say

Ψð2Þ ¼
1

2

X
ϵ;ϵ0¼�

k;k0¼1;2;3

fϵϵ
0

kk0 ðβÞ ~bkϵ ~bk
0
ϵ0 j0i−: ð17:1Þ

The wave function fϵϵ
0

kk0 ðβÞ must verify the symmetry
relation

fϵϵ
0

kk0 ¼ −fϵ0ϵk0k; ð17:2Þ

which indeed implies that it contains 15 independent
components. Note in passing that while (17.2) imposes
an antisymmetry on the k; k0 “tensorial” indices when
ϵ ¼ ϵ0, it does not restrict the tensorial symmetry of the
wave function in the opposite case where ϵ ≠ ϵ0. In the
latter case, it only says that fþ−

pq and f−þpq are not
independent (fþ−

pq ≡ −f−þqp ).
By projecting the equations Sð0Þ

ϵ Ψð2Þ ¼ 0 on the sub-
space of level NF ¼ 1, we obtain two sets of equations

i
2
∂kGkpfϵ;−ϵpn þ φkfϵ;−ϵkn − 2ρklnf

ϵ;−ϵ
kl ¼ 0; ð17:3Þ

and

i
2
∂kGkpfϵ;ϵpn þ ðφk − μk − νkÞfϵ;ϵkn ¼ 0: ð17:4Þ

The projection on the level NF ¼ 3 of the equations
~Sð0Þ
ϵ Ψ ¼ 0 leads to four additional sets of equations

ν½pf
ϵ;−ϵ
qr� ¼ 0; ð17:5Þ

i
2
∂ ½pf

ϵ;−ϵ
q�r − φ½pf

ϵ;−ϵ
q�r þ μ½pf

ϵ;−ϵ
q�r þ 2ρ½pjrjsf

ϵ;−ϵ
q�s ¼ 0; ð17:6Þ

i
2
∂pf

ϵ;ϵ
qr − φpf

ϵ;ϵ
qr − 4ρp½qsf

ϵ;ϵ
r�s þ 2ν½qf

−ϵ;−ϵ
r�p ¼ 0; ð17:7Þ

i
2
∂ ½pf

ϵ;ϵ
qr� − φ½pf

ϵ;ϵ
qr� þ 2μ½pf

ϵ;ϵ
qr� ¼ 0: ð17:8Þ

It is not a priori evident how to deal with this
complicated, redundant set of (partial differential, and
algebraic) equations. A first simplification comes from
the fact (mentioned above) that, under the decomposition
Eq. (10.15) of H½2� into its ðNFþ; NF

−Þ subspaces, there
should be a decoupling between Hð2;0Þ ⊕ Hð2;0Þ and Hð1;1Þ.
In terms of the components fϵ;ϵ

0
pq this means a decoupling

between ðfþþ
pq ; f−−pq Þ on one side, and fþ−

pq ≡ −f−þqp on the
other side. And, indeed one easily sees that Eqs. (17.4),
(17.7), (17.8) contain only the fϵ;ϵpq components, while
Eqs. (17.3), (17.6), (17.5) involve only the fϵ;−ϵpq compo-
nents. Actually, there is even a further simplification, in
that, among the fþ−

pq components (parametrizing Hð1;1Þ) the
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three fþ−
½pq� components (parametrizing Hð1;1ÞA ) decouple

from the six fþ−
ðpqÞ components (parametrizing Hð1;1ÞS ).

Summarizing, one can separately look for solutions in
the subspaces ½Hð2;0Þ ⊕ Hð2;0Þ�3þ3

, ½Hð1;1ÞA �3 and ½Hð1;1ÞS �6,
where the subscripts indicate the dimensions (i.e. the
number of components of the wave function). Let us also
recall that all the equations we are dealing with are real
after multiplying them by a common i. We can therefore
look for real solutions in each subspace (even, if we later
build general complex combinations of basic solutions). In
the following we consider in turn each one of the above
separated problems.

A. Level NF ¼ 2: Solutions in the
Hð2;0Þ ⊕ Hð0;2Þ subspace

By subtracting the trace of Eq. (17.7) from Eq. (17.4) we
obtain an extra algebraic equation that can be written as

ð2αk þ μk þ ρð1Þk − ρð3ÞkÞfϵϵkl ¼ 0: ð17:9Þ

As fϵϵkl ¼ fϵϵ½kl�, its explicit solution is immediate. It is given
by (εklp ¼ ε½klp� with ε123 ¼ þ1)

fϵϵkl ¼ fϵϵεklpð2αp þ μp þ ρð1Þp − ρð3ÞpÞ: ð17:10Þ

Inserting these components in Eqs. (17.7) we obtain six
coupled equations, one for each partial derivative of the two
unknown functions fþþ and f−−. These equations are
integrable and provide the general expression of the
solution of the Eqs. (11.1) restricted to the subspace
Hð2;0Þ ⊕ Hð0;2Þ. This general solution depends on two
arbitrary constants and can be explicitly written as

ffϵϵ12; fϵϵ23; fϵϵ31g ¼
�
xðy − zÞ − yzþ xyz

2
; yðz − xÞ − zxþ xyz

2
; zðx − yÞ − xyþ xyz

2

�
fϵϵ ð17:11Þ

where the two independent scalar functions fϵϵ ¼
ðfþþ; f−−Þ are given by

fϵϵ ¼ e−
1
2
ð1xþ1

yþ1
zÞðxyzÞ−3=4½ðx − yÞðy − zÞðx − zÞ�−1=8

× ½C1ðx − zÞ−1=2 þ ϵC2ðy − zÞ−1=2� ð17:12Þ

with two arbitrary constants C1 and C2. Note that both
constants appear in fþþ and f−−, though in a different way
[because of the sign ϵ in front of C2 in Eq. (17.12)].

B. Level NF ¼ 2: Solutions in the Hð1;1ÞA subspace

Solutions living in Hð1;1ÞA are similar to the ones just
discussed, and are even easier to obtain. They a priori
involve three arbitrary components, say

ΨA
ð2Þ ¼

1

2
fþ−
½pq� ~b

p
þ ~b

q
−j0i−: ð17:13Þ

From the general equations at level NF ¼ 2 above, one
finds that the antisymmetric tensor fþ−

½pq� has to satisfy two
sets of algebraic equations (besides some differential
equations). The first one is Eq. (17.5), the second one,
similar to Eq. (17.9), is

ð2αk þ μk þ ρð1Þk − ρð2ÞkÞfþ−
½kl� ¼ 0; ð17:14Þ

as results from the difference between Eq. (17.6) evaluated
with ϵ ¼ þ and ϵ ¼ − [taking into account the symmetry
relation (17.2)]. The linear system constituted of these four
equations is found to be of rank 2. Accordingly we
conclude that the tensor fþ−

½pq� is parametrized by a single
independent function:

ffþ−
½12�; f

þ−
½23�; f

þ−
½31�g ¼

�
xðy − zÞ − yzþ xyz

2
; yðz − xÞ − zx

þ xyz
2

; zðx − yÞ − xyþ xyz
2

�
× fþ−ðx; y; zÞ: ð17:15Þ

The β-space dependence of the function fþ−ðx; y; zÞ is then
determined by using the differential Eq. (17.6). The general
solution of the latter differential equation reads

fþ− ¼ C3e
−1
2
ð1xþ1

yþ1
zÞðxyzÞ−3=4½ðx − yÞðy − zÞðx − zÞ�−1=8

× ðx − yÞ−1=2: ð17:16Þ

The result (17.15) is found to also satisfy Eq. (17.4), for an
arbitrary value of the constant C3. It therefore describes the
general solution within the Hð1;1ÞA subspace.
It is interesting to note that the three-dimensional set of

solutions obtained by combining the solutions in the
subspaces Hð2;0Þ ⊕ Hð0;2Þ and Hð1;1ÞA have a precisely
similar structure as functions of x; y; z. Actually, they
define a three-dimensional representation of the permuta-
tion group of the three variables x; y; z.
Similarly to the solutions found at levels NF ¼ 0 and

NF ¼ 1, all these solutions exponentially decay under the
gravitational walls, with the basic WKB behavior (13.8).
However, contrary to what happened at lowerNF levels, the
solutions (17.11), (17.15) exhibit now a more singular
(nonsquare-integrable) behavior when they approach the
symmetry walls, say ∼ðx − yÞ−5=8 ∼ ðβ1 − β2Þ−5=8. We
would tentatively conclude that such solutions cannot be
physically retained.

THIBAULT DAMOUR AND PHILIPPE SPINDEL PHYSICAL REVIEW D 90, 103509 (2014)

103509-28



C. Level NF ¼ 2: Solutions in the Hð1;1ÞS subspace

We now turn to the more involved, and physically richer,
case of solutions belonging to the subspace Hð1;1ÞS . On the
one hand, contrary to the previous cases, here we have to
satisfy less (namely, 11) equations than the number (18) of
partial derivatives ∂kf

þ−
ðpqÞ of the corresponding tensorial

wave function. On the other hand, we have more differ-
ential equations to satisfy than the number (6) of
unknowns: 11 > 6. The number of solutions of such an
overconstrained system is a priori unclear, and depends on
its precise structure. We shall be able to give precise
answers by mixing various approaches: (i) a precise study
of the set of partial differential equations satisfied by the
wave function; (ii) a detailed mathematical discussion of
the corresponding “initial value problem”; and (iii) com-
plementary studies of the general solution of our system in
various asymptotic regimes.
We are interested in states of the form

ΨS
ð1;1Þ ¼ fþ−

ðpqÞðβÞ ~bpþ ~bq−j0i−; ð17:17Þ

parametrized by a symmetric β-space tensorial wave
function fþ−

ðpqÞðβÞ. In the following, we shall ease the
notation by denoting the latter symmetric tensor as

kpq∶ ¼ fþ−
ðpqÞ: ð17:18Þ

This tensor wave function has to satisfy Eqs. (17.3) and
(17.6). By taking the difference of these equations for
ϵ ¼ þ and ϵ ¼ −, we obtain the complete set of differential
equations that kpqðβÞ has to satisfy:

i
2
∂sksq þ φsksq − 2ρrsqkrs ¼ 0; ð17:19Þ

i
2
∂ ½pkq�r − φ½pkq�r þ μpq

sksr þ 2ρ½pjrjskq�s ¼ 0: ð17:20Þ

These equations are similar to the Maxwell equations; the
first one being of the “div” type and the second of the “curl”
type. From a more formal point of view, they generalize the
PDE systems linked to the N ¼ 2 supersymmetric quan-
tum mechanics of a particle in external potentials. Witten
[39,40] (see also [41]) has shown how such supersym-
metric quantum mechanical systems yield generalizations
of the De Rham-Hodge theory of p forms on manifolds,
satisfying the first-order (div and curl) equations δωp ¼ 0
and dωp ¼ 0. Our supersymmetric Bianchi IX system can
be viewed as a special N ¼ 4 (rather than N ¼ 2) super-
symmetric quantum mechanical system. This explains why
our NFþ ¼ 1, NF

− ¼ 1 Eqs. (17.19), (17.20) generalize the
1-form δω1 ¼ 0 and dω1 ¼ 0 system. (Our symmetric
wave function kpq can be roughly viewed as being
separately 1-form-like on each index.) This raises the issue
of the analogs of the well-known compatibility condition

for De Rham-Hodge theory encoded in the Cartan identities
d2 ≡ 0, δ2 ≡ 0. We expect to have similar identities in our
context, as a consequence of the basic identity (7.1) that we
have proven to hold within our quantization scheme [and
which generalizes the simpler identity (7.5) holding in
ordinary supersymmetric quantum mechanics]. To display
these identities, let us rewrite the equations of our system
(17.19), (17.20) as

Ep ≔ ∂sksp − Δp½x; y; z; kab�; ð17:21Þ

Ersp ≔ ∂rksp − ∂skrp − Rrsp½x; y; z; kab�: ð17:22Þ

We recall in passing that, in this form, all those equations
have real coefficients.
We have explicitly checked that the system of

Eqs. (17.21), (17.22) satisfy a certain number of
Bianchi-like9 identities that guarantee their compatibility.
The first such identity is an algebraic one. Indeed, because,
on the one hand, of the symmetry of kab, and, on the other
hand, of the specific structure of the μklm and ρklm tensors
[see Eqs. (11.9)–(11.12)], we have

εpqrEpqr ≡ 0: ð17:23Þ

It is because of this identity that we said above that our
system contained 11 equations, rather than the 3þ 3 × 3 ¼
12 it seems to contain. We have also checked that our
equations verify identities of the form

εtrs∂tErsp ¼ OðEabc; EdÞ; ð17:24Þ

∂pEq − ∂qEp − ∂sEpqs ¼ OðEabc; EdÞ; ð17:25Þ

where, the right-hand sides (r.h.s.’s) are (linear) combina-
tions of the equations Ep, Ersp of the system.
These Bianchi-like identities, like their general-

relativistic analogs, allow one to show the consistency of
separating our system of equations Ep ¼ 0, Ersp ¼ 0 into
“evolution equations” and “constraint equations.” To dis-
cuss such a (2þ 1) split of our system, it is convenient to
replace the original β-space coordinates βa by the following
Lorentzian-type combinations:

ξ0̂∶ ¼
ffiffiffi
6

p

2
ðβ1 þ β2 þ β3Þ; ð17:26Þ

ξ1̂∶ ¼
ffiffiffi
2

p

2
ðβ2 − β3Þ; ð17:27Þ

9Here, the name Bianchi alludes to the (contracted) Bianchi
identities that underlie the consistency of the Einstein equations,
and is disconnected from the denomination “Bianchi IX”.
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ξ2̂∶ ¼
ffiffiffi
6

p

6
ð2β1 − β2 − β3Þ: ð17:28Þ

In these coordinates, the β-space metric Gab takes the usual
Lorentz-Poincaré-Minkowski form diagð−1; 1; 1Þ. Using
such coordinates, our system of equations (which was
written in a β-space covariant way) implies the following
system of first order in ξ0̂-time evolution equations:

∂ 0̂k0̂ 0̂ ¼ ∂ 1̂k1̂ 0̂ þ ∂ 2̂k2̂ 0̂ þ Δ0̂; ð17:29Þ

∂ 0̂k0̂ î ¼ ∂ îk0̂ 0̂ þ R0̂ î 0̂ ðî ¼ 1̂; 2̂Þ; ð17:30Þ

∂ 0̂kî ĵ ¼ ∂ îk0̂ ĵ þ R0̂ î ĵ ðî; ĵ ¼ 1̂; 2̂Þ: ð17:31Þ

This system of (2þ 1) evolution equations must be
supplemented by a system of initial constraints. Indeed,
the following combinations of our equations do not contain
any “time” derivatives of the k’s [ðp̂ ¼ 1̂; 2̂Þ]

C0̂ ≔ ∂ 1̂k0̂ 2̂ − ∂ 2̂k0̂ 1̂ − R1̂ 2̂ 0̂ ¼ 0;

Cp̂ ≔ ∂ 1̂kp̂ 2̂ − ∂ 2̂kp̂ 1̂ − R1̂ 2̂ p̂ ¼ 0;

C0p̂ ≔ ∂ 1̂kp̂ 1̂ þ ∂ 2̂kp̂ 2̂ − ∂p̂k0̂ 0̂ − Δp̂ − R0̂ p̂ 0̂ ¼ 0. ð17:32Þ

Summarizing, a general solution for kðabÞ at level Hð1;1ÞS
is obtained by (i) finding the most general solution of the
five equations of constraints (17.32) for the six initial data
kðabÞ considered on a spacelike hypersurface ξ0̂ ¼ t ¼ Cst

in β space, and, then (ii) evolving these initial data in ξ0̂

time by integrating the six evolution equa-
tions (17.29)–(17.31).
We have checked that, as in Maxwell or Einstein

theories, the Bianchi-like identities given above insure that
if the constraints are satisfied on an initial spacelike β-space
section they will remain verified for all values of ξ0̂. To
express the above results in a proper mathematical way one
should prove that the evolution system for k is well posed
(as well as the evolution system for the constraints).
However, as we know that the full system governing the
ξ0̂-time evolution of the complete (64-component) spinorial
wave function ΨσðβÞ is well posed,10 it is clear that there is
a way to rewrite our evolution system (17.29)–(17.31) in a
well-posed way. [The evolution system for the constraints
should also be a consequence of our general consistency
result (7.1), which shows that all the constraints are “in
involution,” in the sense of Cartan.]
At this stage, we have reduced the problem of para-

metrizing the set of solutions at level Hð1;1ÞS to the problem
of parametrizing the set of solutions of the initial constraint
equations (17.32). Though this is a linear problem, it is a

highly nontrivial one, notably because of the complicated
(and singular) β dependence of the coefficients φ; ρ; μ
entering the basic system (17.19), (17.20). We have
succeeded in showing, by a detailed analysis, that the
general solution of the five real PDE’s (17.32) (in any initial
two-plane ξ1̂, ξ2̂) for the six real unknowns kabðξ1̂; ξ2̂Þ is
parametrized by two arbitrary real functions of the two
variables (ξ1̂, ξ2̂), together with an arbitrary constant C4

[entering the initial value of a certain projected component
k0̂ 0̂ of kabðξ1̂; ξ2̂Þ, see below]. In order not to interrupt the
logical flow of this paper, we relegate our proof of this
result (as well as the boundary conditions we imposed in
looking for solutions) to Appendix E. Let us, however, give
here some brief indications about the counting of free
functions in the general solution. First, it would seem that
having five constraints for six unknowns will only leave
one free function in the general solution. The reason why it
is not so, is that there is actually one identity satisfied by the
constraints. It is of the form

∂ 1̂C1̂ þ ∂ 2̂C2̂ þ ∂ 2̂C
0
1̂
− ∂ 1̂C

0
2̂
≡OðC0̂; Cp̂; C0p̂Þ: ð17:33Þ

Second, let us make plausible our result by considering the
trivial case where one keeps only the derivative terms in the
constraints, neglecting the effect of the β-dependent coef-
ficients φ; ρ; μ. In that case, one immediately sees that the
C0̂ constraint implies that k0̂ p̂ is (at least locally) a gradient:
k0̂ p̂ ¼ ∂p̂ψ . This accounts for one free function. Then, the
two Cp̂ constraints imply that kp̂ q̂ is a gradient w.r.t the
second index: kp̂ q̂ ¼ ∂ q̂ϕp̂. Using now the symmetry
kp̂ q̂ ¼ kq̂ p̂, one sees that the vector potential ϕp̂ must also
be (at least locally) a gradient ϕp̂ ¼ ∂p̂ϕ. Finally, we have
kp̂ q̂ ¼ ∂p̂∂ q̂ϕ which accounts for the second free function.
(One then checks that the remaining constraints C0p̂ ¼ 0 can
be solved for k0̂ 0̂.)
Note that an equivalent result would follow from

analyzing the system of Eq (17.19), (17.20), directly in
2þ 1 dimensions. Considering only the symbols (the
derivative terms) of Eqs. (17.19), (17.20), we obtain from
the latter equation that kpq ¼ ∂p∂qΦ. The former equation
then yields ∂p□Φ ¼ 0 i.e. □Φ ¼ C. Accordingly the
general solution will depend on the constant C and on
the two arbitrary functions defining Cauchy data for
□Φ̄ ¼ 0, where Φ̄ ≔ Φ − C

2
Gabβ

aβb.
In summary, the present section has shown that, at level

NF ¼ 2 the full set of solutions of the supersymmetry
constraints (11.1) was parametrized by

(i) three arbitrary constants C1; C2; C3 parametrizing
three “discrete-spectrum states” belonging to the
subspaces Hð2;0Þ ⊕ Hð0;2Þ and Hð1;1ÞA ;

(ii) two arbitrary (real) functions of two variables (and
one real constant C4) parametrizing a general
“continuous-spectrum state” living in the Hð1;1ÞS
subspace [i.e. having a symmetric-tensor wave
function kpqðβÞ∶ ¼ fþ−

ðpqÞðβÞ].

10Indeed, given consistent initial data forΨσðβÞ, any of the four
simultaneous Dirac-like equations (11.1) yields a well-posed
symmetric-hyperbolic evolution system for its β0-time evolution.

THIBAULT DAMOUR AND PHILIPPE SPINDEL PHYSICAL REVIEW D 90, 103509 (2014)

103509-30



In view of the boundary conditions we incorporated in
the analysis of the initial-value problem in Appendix E, one
can check that, by appropriately choosing the two arbitrary
functions parametrizing the initial data (e.g. with compact
support, or, at least, with fast enough decay in the spacelike
directions spanned by ξ1̂; ξ2̂), one can ensure that all the
components of kpqðβÞ∶ ¼ fþ−

ðpqÞðβÞ initially decay under
the gravitational walls (or, simply, under the gravitational
wall 2β1 when working within our canonical chamber). As
the evolution of these initial data in β space (in both
directions of β0 off the initial Cauchy slice) is given (when
considering any of the Dirac-like SUSY constraints) by a
(well-posed) first-order symmetric-hyperbolic system, the
property of fast decay under the gravitational walls will be
preserved by the β0-time evolution. Our construction
therefore leads to solutions of the NF ¼ 2 SUSY con-
straints which decay (rather than grow) under the gravita-
tional walls (and which are square-integrable at the
symmetry walls). [As in the usual Dirac-equation case,
the property of conservation of the current(s) JaA ensures a
preservation of the integrability of any of its β0-time
component.]
As already explained, one can deduce from these results

what are the solutions at the up-down symmetric level
NF ¼ 4. This is straightforward for the discrete-spectrum
states which are given by explicit analytic functions of
x; y; z. (One then sees that the transformation x → −x etc.
will induce an exponentially growing behavior of these
modes under the gravitational walls, and will leave their
behavior under the symmetry walls as singular as it is at
level 2.) This is less straightforward for the continuous-
spectrum states. One should carefully redo the analysis
given in Appendix E with the system of equations obtained
by the changes ðx; y; zÞ → ð−x;−y − zÞ. Clearly the count-
ing of free functions will be the same, but one may have to
modify our reasoning by choosing appropriately modified
Green’s functions in the proof of Appendix E. We,
however, expect that this is possible, and that, by choosing
initial data which appropriately decay under the initial
location of the gravitational walls, they will continue to do
so under the (well-posed) β0-time evolution.

XVIII. SOLUTIONS AT LEVEL NF ¼ 3

The set of equations at level NF ¼ 3 is similar to the one
at level NF ¼ 2. It, however, involves more degrees of
freedom, and extra complications. The most general
NF ¼ 3 state is given by

Ψð3Þ ≡Ψþ
ð3Þ þΨ−

ð3Þ

¼
X
ϵ¼�

�
1

3!
fϵ½klm� ~b

k
ϵ
~blϵ ~b

m
ϵ þ 1

2
hϵ½kl�;m ~b

k
−ϵ ~b

l
−ϵ ~b

m
ϵ

�
j0i−:

ð18:1Þ

Here the decomposition inþ and − is done according to the
values indicated by the ϵ’s. Note that there is a multipli-
cative conservation law for them: þ ×þ counts like − × −
[see Eq. (11.22)].
As already mentioned above, there is a complete

decoupling between the dynamics of Ψþ
ð3Þ (belonging to

Hð3;0Þ ⊕ Hð1;2Þ) and that of Ψ−
ð3Þ (belonging to

Hð0;3Þ ⊕ Hð2;1Þ). Because of the þ ↔ − symmetry, we
shall henceforth only consider the ϵ ¼ þ case, and drop
the ϵ index on the wave functions. The fully antisymmetric
tensor fklm contains only one independent component, say
f123 ¼

ffiffiffi
2

p
f such that

f½klm� ¼ fηklm: ð18:2Þ

On the other hand, the nine independent components of
h½kl�;q can be conveniently rewritten in terms of a dualized,
asymmetric two-index β-space tensor hmq:

h½kl�;q ≡ ηklmhmq; hpq ¼ −
1

2
ηklqh½kl�;q: ð18:3Þ

Notice that we use the β-space Levi-Civita tensor,
with [because of detðGabÞ ¼ −2] ηklm ¼ ffiffiffi

2
p

εklm and
ηklm ¼ − 1ffiffi

2
p εklm, with ε123 ¼ ε123 ¼ 1. Moreover, we

move indices by means of Gab and Gab. We also introduce
the notation h for the G trace of hpq, i.e.

h ≔ Gpqhpq: ð18:4Þ

As we have chosen ϵ ¼ þ, the considered Ψþ
ð3Þ state

belongs to Hð3;0Þ ⊕ Hð1;2Þ. The operator S
ð0Þ
þ projects Hð3;0Þ

on Hð2;0Þ and Hð1;2Þ on Hð0;2Þ ⊕ Hð2;0Þ. As a consequence

the constraint Sð0Þ
þ Ψþ

ð3Þ ¼ 0 leads to the two equations:

�
i
2
∂p þ αp − μp þ ρ

ð1Þ
p

�
f þ hpkνk − νph ¼ 0; ð18:5Þ

i
2
∂ ½phq�r þ α½phq�r þ ρ

ð1Þ
½phq�r − 2ρ½p∣ar∣hq�

a þ δr½pνq�f ¼ 0.

ð18:6Þ

On the other hand Sð0Þ
− projects Hð3;0Þ on the zero vector but

Hð1;2Þ on Hð1;1Þ. Thus acting on Ψþ
ð3Þ it leads to the equation�

i
2
∂k þ αk þ μk − ρ

ð1Þ
k

�
hpk þ 2ρkplhlk ¼ 0: ð18:7Þ

Acting with ~Sð0Þ
þ , Hð3;0Þ is mapped onto Hð2;2Þ via the ~Dklm

þ
term (and thus in the spinor ~Sð0Þ

þ Ψþ
ð3Þ, the f term only

appears in conjunction with νk), while Hð1;2Þ is projected on

the same subspace via the action of all the terms of ~Sð0Þ
þ ,
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except the one proportional to νk. The corresponding

equation obtained from ~Sð0Þ
þ Ψþ

ð3Þ ¼ 0 is

i
2
∂ ½phrq� − α½phrq� þ ρ

ð1Þ
½phrq� − 2ρ½p∣arhaq� þ δ½prνq�f ¼ 0:

ð18:8Þ

Finally ~Sð0Þ
− maps Hð3;0Þ onto Hð3;1Þ, while it maps Hð1;2Þ

both onto Hð3;1Þ (coupling again f and hpq) and onto Hð1;3Þ.
The corresponding two equations are�

i
2
∂p − αp − μp þ ρ

ð1Þ
p

�
f þ νahap − νph ¼ 0 ð18:9Þ

and�
i
2
∂k − αk þ μk − ρ

ð1Þ
k

�
hkp þ 2ρkplhkl ¼ 0: ð18:10Þ

We have thereby obtained a heavily overconstrained
system of differential equations for the ten unknowns
f; hpq. To make progress with this system, it is useful to
separate the asymmetric tensor hpq into antisymmetric (A)
and symmetric (S) parts (we do not subtract the trace
h ¼ GpqSpq from the symmetric part):

Apq ≔ h½pq�; Spq ≔ hðpqÞ: ð18:11Þ

Let us briefly indicate the results obtained by using such
a decomposition in the previous equations, when consid-
ering appropriate combinations of various equations. First,
by comparing the derivatives of f given by Eq. (18.5) with
those given by Eq. (18.9) we obtain an algebraic relation
between Apq and the scalar f

νkA½kp� ¼ 2αpf ð18:12Þ

(whose compatibility is guaranteed by the rela-
tion νpαp ≡ 0).
The latter constraint tells us that the three components of

the antisymmetric part A½pq� only depend on one unknown
function, say λðβÞ, and that we can replace Apq by the
following tensorial combination (with known coefficients)
of the two scalar unknowns f and λ:

A½pq� ¼
2

ν2
ðνpαq − αpνqÞf þ ηpqrν

rλ: ð18:13Þ

Here, νp and αp are explicitly known, and we denoted

ν2∶ ¼ νkνk ¼
xyz2 þ yzx2 þ zxy2 − x2y2 − y2z2 − z2x2

8ðx − zÞ2ðy − zÞ2 :

ð18:14Þ

The next step is to compare two different expressions for
the gradient of the trace h: one expression is obtained by
taking the trace of Eq. (18.6) and subtracting it from the
divergence Eq. (18.7); the second one is obtained by doing
the same operations for the Eqs. (18.8) and Eq. (18.10).
Finally, by equating the two different values of i

2
∂ph so

obtained, we get an algebraic relation between h and Apq,
namely

2αph ¼ ðμk − ρ
ð1Þk þ ρ

ð2ÞkÞA½kp�: ð18:15Þ

But, from the definitions (11.10), (11.13), (11.14), (11.11),
one finds that

μk − ρ
ð1Þk þ ρ

ð2Þk ¼ ð2z − x − yÞ
ðx − yÞ νk; ð18:16Þ

so that the previous relation νkA½kp� ¼ 2αpf yields a simple
proportionality between f and h:

f ¼ ðx − yÞ
ð2z − x − yÞ h: ð18:17Þ

In other words, at this stage we can eliminate the four
functions f and Apq in terms of the two scalar functions λ
and h ¼ GpqSpq. The final problem is then to obtain
differential equations for the remaining unknowns, namely
λ and the six components of Spq.
We can first obtain a differential equation for λ (con-

taining Spq in its lower-order coefficients) in the following
way. The difference between Eqs. (18.6) and (18.8) yields a
partial differential equation (PDE) for Apq of the form

i
2
∂ ½pAq�r þ ρ

ð1Þ
½pAq�r − 2ρ½p∣ar∣Aq�a þ α½pSq�r ¼ 0. ð18:18Þ

Introducing in this equation the expression above of Apq in
terms of λ and f, and projecting the indices pqr of this
equation by a combination of the type

ηpqsνsδ
r
t −

1

2
ηpqrνt;

yields an equation for λ of the form

i
2
e−~ξ∂pðeþ~ξλÞ þ ΛpðSkl; x; y; zÞ ¼ 0 ð18:19Þ

where

~ξ ¼ ln
ðy − xÞ3=8ðxyzÞ1=4
ðz − xÞ5=8ðz − yÞ5=8 ; ð18:20Þ

and where ΛpðSkl; x; y; zÞ denotes an expression linear in
the Spq components, that we do not explicitly write here. In
deriving this equation for λ, one must make use of an
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equation for the gradient of f obtained by summing
Eqs. (18.5), (18.9); namely

e−ξ
i
2
∂pðeξfÞ þ νkhðkpÞ ¼ 0 ð18:21Þ

with ξ given by [from Eqs. (11.10), (11.13), (11.14)]

ξ ¼ 4ðr1 − μÞ − 2r2

¼ 1

8
ln





 ðz − xÞ5ðz − yÞ5
ðy − xÞ5x2y2z2





: ð18:22Þ

To close the system, we need a set of differential
equations for Spq. Such a system is obtained from
Eqs. (18.7), (18.10), (18.6), and (18.8). It reads

i
2
∂ ½pSq�rþ ρ

ð1Þ
½pSq�r− 2ρ½p∣ar∣Sq�aþα½pAq�rþGr½pνq�f¼ 0;

ð18:23Þ

i
2
∂kSkp þ 2ρk

p
lSkl þ ðμk − ρ

ð1Þ
kÞSkp − αkAkp ¼ 0: ð18:24Þ

In the r.h.s.’s one should replace Apq and f in terms of λ and
h ¼ GabSab, using the algebraic relations found above.
To summarize, at level NF ¼ 3, we have two indepen-

dent sectors (þ or −) which are totally equivalent to each
other. In each sector, the problem is reduced to the coupled
dynamics of seven unknown functions: the symmetric
components Spq of the dual of the original h½pq�;r wave
function, and the scalar function λ parametrizing part of the
antisymmetric components Apq. These seven unknown
functions must satisfy 12 first-order partial differential
equations, namely (18.23), (18.24) and (18.19). We have
checked the consistency of this system (which satisfies
Bianchi-like identities similar to the ones discussed at level
NF ¼ 2). Note that the two equations (18.23) and (18.24)
for Spq are of the “curl” and “div” type. A new feature,
however, is the coupling between Spq and the scalar degree
of freedom λ (which had no analog at level 2). A rough
counting of the free data in the general solution (which
would need to be firmed up by a detailed analysis of the
type we gave at level 2) is that the general solution in each
independent (þ or −) sector at level 3 depends on two (real)
functions of two variables, to which must be added an
arbitrary constant entering the integration of the (gradient)
equation for λ.

XIX. ASYMPTOTIC PLANE-WAVE-TYPE
SOLUTIONS AT LEVELS NF ¼ 2 AND NF ¼ 3

As explained in the previous sections, while there exist
only discrete states at levels NF ¼ 0; 1; 5; 6, at the inter-
mediate levels NF ¼ 2; 3; 4, there exists a mixture of
discrete-states and continuous states (parametrized by

arbitrary functions). We have proven the existence of the
latter states by studying the Cauchy problem for the PDE’s
satisfied by the wave function at levelNF ¼ 2 (arguing that
the similar PDE systems at levels NF ¼ 3; 4 will feature
similar solutions). However, it was evidently impossible to
express these continuous states in closed form. In the
present section, we try to get some familiarity with the
structure, and physical meaning, of these states by approxi-
mating them (in some asymptotic regime) by plane-wave
type solutions. This could be done in the high-frequency,
WKB approximation, but, we shall actually study a regime
where one can use a better approximation than the usual
WKB one.
We recall that a solution at some fixed fermionic level

NF ¼ N, has the general structure

ΨðNÞ ¼ fϵ1ϵ2���ϵNa1a2���aN ðβÞ ~ba1ϵ1 � � � ~baNϵN j0i− ð19:1Þ

where the components fϵ1ϵ2���ϵNa1a2���aN ðβÞ of the wave function
satisfy a set of (Dirac-like) first-order partial differential
equations implied by the SUSY constraints (11.1). In
addition, they also satisfy a more familiar second-order
Klein-Gordon-type spin-dependent WDW equation.
The WKB approximation would consist in looking for

solutions where the tensorial wave function fϵ1ϵ2���ϵNa1a2���aN ðβÞ
would be the product of a slowly varying tensorial
amplitude, and of a high-frequency scalar phase-factor
eiSðβÞ=ε, with ε → 0. This high-frequency limit would
mean that we consider the limit of large momenta
πa ≈ ∂aS=ε → ∞. Here, we shall instead consider a regime
where the momenta are not required to tend to infinity, so
that we will be able to simultaneously retain effects linked
to various powers of the momenta. To do that, we consider
the quantum analog of the classical BKL approximation,
i.e. we take the formal “far-wall” limit where the various
exponential potential walls entering either the SUSY
constraints, or the WDW equation become small. To be
in such a regime, one needs all the β’s to be large and
positive, keeping also large and positive some of their
differences. Geometrically, this corresponds to being deep
in the middle of a Weyl (or billiard) chamber, far from all its
boundary walls. For instance, if we are within our canonical
Weyl chamber β1 ≤ β2 ≤ β3, we need to have β1 ≫ 1,
β2 − β1 ≫ 1, and β3 − β2 ≫ 1. Note that this implies
β0 ≔ β1 þ β2 þ β3 ≫ 1.
In this limit, the SUSY constraint operators simplify to

Ŝð0Þ
A ¼ i

2
Φa

A∂βa þ iΦΦΦ ð19:2Þ

where the terms cubic in Φ have two origins: the super-
gravity cubic terms Ŝcubic

A , Eq. (6.5), and the (Weyl-
chamber-dependent) far-wall limit of the symmetry-wall
hyperbolic-cotangent contribution Eq. (6.3).
Correspondingly, the far-wall limit of the Hamiltonian

constraint has the structure
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2Ĥð0Þ ¼ −Gabð∂a −ϖaÞð∂b −ϖbÞ þ μ̂2 ð19:3Þ

where ϖa is the Weyl-chamber-dependent limit of
AaðβÞ ¼ ∂a lnF ¼ F−1∂aF. We recall that

FðβÞ ¼ e
3
4
β0ðsinh β12 sinh β23 sinh β31Þ−1=8: ð19:4Þ

In our canonical Weyl chamber, β1 ≤ β2 ≤ β3, we have

ðϖaÞ ¼
�
1;
3

4
;
1

2

�
: ð19:5Þ

We shall therefore be considering plane-wave-type
solutions having wave functions of the form

fϵ1ϵ2���ϵNa1a2���aN ðβÞ ¼ Aϵ1ϵ2���ϵN
a1a2���aN exp½iπaβa� ð19:6Þ

where Aϵ1ϵ2���ϵN
a1a2���aN is some β-independent tensorial amplitude.

We recall that it is convenient to rescale the wave function
according to

Ψ0ðβÞ ¼ FðβÞ−1ΨðβÞ ∼ e−ϖaβ
a
ΨðβÞ: ð19:7Þ

This implies that the corresponding primed plane-wave-
type wave function

f0ϵ1ϵ2���ϵNa1a2���aN ðβÞ ¼ Aϵ1ϵ2���ϵN
a1a2���aN exp½iπ0aβa� ð19:8Þ

has the same tensorial amplitude A but features a primed
momentum π0a which differs from the momentum πa
entering the original wave function

π0a ¼ πa þ iϖa: ð19:9Þ

It was shown above that the equations satisfied by the
wave function fϵ1ϵ2���ϵNa1a2���aN ðβÞ could be written in a purely real
form. When looking, as we do here, for plane-wave
solutions it will be necessary to consider complex tensorial
amplitudes A. We recall also that (as is clear from the
expression above of the Hamiltonian constraint) it is the
primed momentum π0a, rather than πa which has to satisfy
the (real) mass-shell condition

Gabπ0aπ0a þ μ2 ¼ 0: ð19:10Þ

In most of this section, we shall assume that we are
interested in real solutions of this mass-shell condition,
i.e. real values of the π0a’s, corresponding to propagating
waves. This implies that the original πa’s are complex.

A. NF ¼ 2 asymptotic plane-wave solutions

In the NF ¼ 2 case, one can look for plane-wave
solutions in the Hð1;1ÞS subspace, i.e.

ΨS
ð1;1Þ ¼ kðpqÞðβÞ ~bpþ ~bq−j0i−; ð19:11Þ

with

kðpqÞðβÞ ¼ Kpqeiπ
0
kβ

k
eþϖkβ

k ð19:12Þ

and with a primed momentum satisfying the NF ¼ 2
(tachyonic) mass-shell condition

Gabπ0aπ0b ¼ π0aπ0a ¼ þ 3

8
: ð19:13Þ

If, as we are mainly assuming, the components π0a are real,
the 3-vector π0a must be spacelike. Note that kðpqÞðβÞ
denotes the wave function of the original, unprimed, stateΨ.
The tensorial amplitude Kpq has to satisfy the two

equations that result from the plane-wave and far-wall
limits of Eqs. (17.19) and (17.20), i.e.

1

2
ðπ0k − iϖkÞKkp − φ̄kKkp þ 2ρ̄klpKkl ¼ 0 ð19:14Þ

1

2
ðπ0 − iϖÞ½pKq�r þ φ̄½pKq�r − μ̄½pKq�r − 2ρ̄ k

½p∣r∣Kq�k ¼ 0:

ð19:15Þ

Here the overbar indicates that one must take the far-wall
limit of the various coefficient functions φðβÞ; ρðβÞ; μðβÞ.
The values of these limits generally depend on the
considered Weyl chamber. However, whatever the Weyl
chamber is, the asymptotic values of αk are always
f0; 0; 0g. On the other hand, the limit of μk is either
i=2f1;−1=2; 1g or i=2f−1=2; 1;−1g according to whether
y ≥ x or x ≥ y, irrespectively of the value of z. Another

example is provided by the asymptotic behavior of ρ
ð1Þ

k. In
the canonical Weyl chamber ðaÞ, where z ≥ y ≥ x, it goes
to i=2f−3;−5=2; 0g, but in the Weyl chamber ðeÞ, where
x ≥ z ≥ y, its limit is i=4f−1;−3;−1=2g. This lack of
obvious symmetry with respect to permutations of x, y, and
z is not a problem. The equations will remain invariant only
if an exchange between the k indices is accompanied by a
redefinition of the Φk

A matrices that represent the Rarita-
Schwinger field. Regardless, their physical consequences
will be the same in all Weyl chambers.
In the present case, we find that the linear system

satisfied by the six tensorial amplitude Kpq is of rank five;
its general solution therefore depends on only one arbitrary
constant, say C2. It can be written as

Kpq ¼ C2ðπ0pπ0q þ Lk
pqπ

0
k þmpqÞ ð19:16Þ

where, after performing some linear algebra, and working
in Weyl chamber ðaÞ, the two 3 × 3 matrices Lpqðπ0Þ ¼
Lk
pqπ

0
k and mpq are given by
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Lk
pqπ

0
k ¼ −i

0
BB@

3π01 þ π02 þ π03
3
2
ðπ01 þ π02Þ 1

2
ðπ01 þ 3π03Þ

3
2
ðπ01 þ π02Þ 2π02 þ π03

1
2
ðπ02 þ π03Þ

1
2
ðπ01 þ 3π03Þ 1

2
ðπ02 þ π03Þ π03

1
CCA

ð19:17Þ

and

mpq ¼ −
1

4

0
B@

13 9 3

9 5 1

3 1 1

1
CA: ð19:18Þ

In this case, the expressions of the analog of the matrices
Lpqðπ0Þ and mpq in the other Weyl chambers are simply
obtained from this one by the permutation of the indices
corresponding to the ordering of the scale factors of the
considered Weyl chamber, with respect to the refer-
ence one.
Several comments on these plane-wave solutions are in

order. First, the fact that they depend only on one (complex)
amplitude (for each momentum direction), is the plane-
wave transcription of our general finding that the continu-
ous states at level NF ¼ 2 depend on two (real) arbitrary
functions of two variables. (In both cases, this represents
one scalar degree of freedom; corresponding to the general
solution of a Klein-Gordon- like equation.) Second, if we
consider real momenta π0a with parametrically large com-
ponents, the mass-shell condition (19.13) reduces to the
constraint that π0a be approximately null: π02 ≈ 0. In that
(WKB) limit we recover the plane-wave analog of the
classical cosmological-billiard dynamics [1,2,27]: the
Universe is represented by a massless particle moving
along a straight line within a (Kac-Moody) billiard. At the
classical level, we know that when this particle will
approach one of the potential walls defining the boundary
of this billiard chamber, it will “bounce” on that wall and be
reflected back within the central region of that chamber. At
the quantum level, if we consider the full WDW equation,
i.e. the Hamiltonian constraint (8.1), with Hamiltonian
(8.2) or (8.6), it is clear that, in the high-frequency WKB
limit, the wave (or wave packet) (19.12) will also bounce
and reflect on the quantum analogs of the potential walls, if
we decide to impose the boundary condition that the wave
function must exponentially decay (rather than grow) under
the potential walls. For an explicit proof of this (expected)
behavior, see, e.g., Ref. [17] which considered the coupling
of Bianchi universes to a spin-1

2
field. (Though this case is

technically simpler than the spin-3
2
we are now considering,

it has many similarities with it.) We leave to future work a
detailed study of how, within the present supergravity
framework, the tensorial wave (19.16) reflects on a poten-
tial wall, and of the relation between the incident and
outgoing “polarization tensors” Kpq.

In the case where the π0a’s are parametrically large
components, it is instructive to see how the restricted
structure (19.16) of the plane wave solutions follows from
the supersymmetry constraints. In that limit the SUSY
constraints approximately reduce to

Ŝð0Þ
A ≈ −

1

2
Φa

Aπ
0
a ð19:19Þ

which is simply the Fourier-space massless Dirac operator
in β space. In this limit, the anticommutator identity (7.1)
simplifies to a usual supersymmetric quantum mechanical
identity

Ŝð0Þ
A Ŝð0Þ

B þ Ŝð0Þ
B Ŝð0Þ

A ≈
1

4
Gabπ0aπ0bδAB ð19:20Þ

which clearly exhibits the necessity of the approximate
mass-shell condition π02 ≈ 0. In this limit it is easy to find
the general solution of the chiral-basis SUSY constraints

0 ¼ −2Sð0Þ
ϵ jΨi ¼ π0abaϵ jΨi; ð19:21Þ

0 ¼ −2 ~Sð0Þ
ϵ jΨi ¼ π0a ~b

a
ϵ jΨi: ð19:22Þ

Indeed, starting from the null vector π0a in β space, one can
define a (real) null basis of β space made of two null vectors
and a spacelike one, say π0a, qa, and ra, such that the only
nonzero G-scalar-products between these vectors are π0 ·
q ¼ 1 and r · r ¼ 1. One can then replace the original βa-
coordinate-based annihilation and creation operators baϵ , ~b

a
ϵ

by their projections on this null basis, i.e. bϵðπ0Þ ≔ baϵπ0a,
bϵðqÞ ≔ baϵqa, bϵðrÞ ≔ baϵra, etc. Writing a general state at
level 2 in terms of the corresponding null-basis creation
operators, and using the basic anticommutation relations
fbϵðuÞ; ~bϵ0 ðvÞg ¼ 2u · vδϵϵ0 , etc., it is easily found that the
general solution of the conditions bϵðπ0ÞjΨi ¼ 0 ¼
~bϵðπ0ÞjΨi is

C2
~bþðπ0Þ ~b−ðπ0Þj0i− ð19:23Þ

which is equivalent to the leading-order term in the more
general far-wall solution (19.16) in the limit where the π0a’s
are parametrically large. Let us note in passing that the
approximate form (19.23) can also be written (in the same
approximation) as ~Sð0Þ

þ ~Sð0Þ
− j0i−, which is reminiscent of an

ansatz suggested by Csordas and Graham [6]. However, we
have shown that, within our framework, such an ansatz
(saying that the general NF ¼ 2 solution is obtained by
acting on some NF ¼ 0 scalar state fðβÞj0i− by ~Sð0Þ

þ ~Sð0Þ
− ) is

not correct beyond the high-frequency, plane-wave limit.
Here, we focused on asymptotic far-wall waves having a

real (shifted) momentum π0a, because this looks most
natural in view of the formal Hermiticity of the
Hamiltonian operator H0, Eq. (8.6), corresponding to the
rescaled state Ψ0, Eq. (8.5). However, it might also be
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possible to consider far-wall solutions where the compo-
nents π0a are complex, say π0a ¼ pa − iqa, where the two
real 3-vectors pa, qa would satisfy Gabpaqb ¼ 0 and
Gabpapb − Gabqaqb ¼ þ 3

8
. The wave function of such

waves would be of the type

kðpqÞðβÞ ¼ Kpqeipaβ
a
eþðqaþϖaÞβa : ð19:24Þ

A particular case would be the situation where π0a is purely
imaginary, i.e. pa ¼ 0 and π0a ¼ −iqa, corresponding to
real, exponentially behaving (nonoscillating) plane waves
of the type

kðpqÞðβÞ ¼ KpqeþðqaþϖaÞβa : ð19:25Þ

In that case, the real vector qa must satisfy Gabqaqb ¼ − 3
8
,

and therefore it must be timelike.
We have seen above that the covariant components ϖa

are given by Eq. (19.5). The corresponding contravariant
components Gabϖb read

ϖa ¼
�
−
1

8
;−

3

8
;−

5

8

�
: ð19:26Þ

If we conventionally define the “future” in β space as the
direction in which β0 ¼ β1 þ β2 þ β3 increases (in other
words the direction of decreasing volume of the Universe,
i.e. towards the cosmological singularity), the vector ϖa is
past directed (and eϖaβ

a
increases toward the future). Then,

focusing on the case where π0a is purely imaginary, if the
real timelike 3-vector qa is also past directed, the sum
qa þϖa will be timelike and past directed, so that the real
factor eþðqaþϖaÞβa will increase towards the cosmological
singularity. On the other hand, if we consider a timelike
vector qa which is future directed, the sum qa þϖa may
have several different types of β-space orientations. Let us
only note here the fact that the squared length of ϖa is

ϖ2 ¼ Gabϖ
aϖb ¼ −

23

32
: ð19:27Þ

This is larger (in absolute value) than the squared magni-
tude of q: q2 ¼ Gabqaqb ¼ − 3

8
. Therefore, in the particular

case where qa would be taken to be proportional to ϖa, the
sum �qa þϖa would remain future directed whatever
the sign � is, i.e. the direction of qa. In the general case
where we retain a nonzero real part pa in π0a there are even
more possibilities. However, before considering more
seriously all those possibilities involving complex values
of the shifted momentum, one should study whether, when
they impinge on one of the gravitational or symmetry walls,
they can be matched to a reflected wave, modulo the
presence of an exponentially decaying wave under the
considered wall (as was shown to be the case for real-π0a
waves coupled to a spin-1

2
field [17]).

B. NF ¼ 3 asymptotic plane-wave solutions

The study of plane-wave solutions at level NF ¼ 3 leads
to similar conclusions. One finds that the general structure
describing such plane waves is either

Ψþ
ð3Þ ¼

� ffiffiffi
2

p
fþ ~b1þ ~b

2
þ ~b

3
þ þ Sþpq

�
1

2
ηpkl ~b

k
− ~b

l
− ~b

q
þ

��
j0i−:

ð19:28Þ

or a similar Ψ−
ð3Þ state. Each such state is parametrized by a

symmetric tensorial wave function Sþpq, or S−pq. Indeed, the
scalar fþ or f− is not independent from Sϵpq, but is
proportional to its trace: fϵ ¼ σGpqSϵpq, where the factor
σ is equal either to 0, þ1, or −1, depending on the
considered Weyl chamber.
Indeed, by taking the plane-wave limit of our general

NF ¼ 3 analysis above, one finds that the antisymmetric
components A½pq� must vanish. For instance, when working
in our canonical Weyl chamber (or, more generally in any
chamber where z ¼ e2β

3

is larger than x or y), one first
notices [from its definition in Eq. (11.11)] that all the
components of the vector νk vanish. Therefore, the second
contribution to Apq in Eq. (18.13) (proportional to ηpqrν

rλ)
vanish. On the other hand, in the first contribution (propor-
tional to fν½pαq�=ν2), one finds that the factor ν½pαq�=ν2 has
a finite, nonzero limit (recall that αp → 0 far from the
gravitational walls). However, Eq. (18.17) shows that, in
the case we are considering (z dominant), the scalar f tends
to zero with respect to h ¼ GpqSpq. Finally, in this case (z
dominant), both Apq and f vanish (in the notation above,
we have σ ¼ 0). If we are in a different Weyl chamber (with
a subdominant z), neither f nor the components of νk will
vanish. Instead, they will have some finite limits. First,
Eq. (18.17) shows that f ¼ σh, where σ ¼ þ1 if y is
dominant, and σ ¼ −1 if x is dominant. Second, in such
cases, the first contribution to Apq in Eq. (18.13) will again
vanish (now because ν½pαq�=ν2 → 0). As for the second
contribution, it will again vanish, but now because λ → 0 in
the considered cases. Indeed, the equation

i
2
∂kAkp þ ðμk − ρ

ð3Þ
kÞAkl − αkSkl ¼ 0; ð19:29Þ

which follows from the general NF ¼ 3 equations, implies,
asymptotically, the constraint

λ

�
−
1

2
π0k þ μk − ρ

ð3Þk
�
ηkplν

l ¼ 0 ð19:30Þ

which can only be satisfied, for an arbitrary π0k on its mass
shell, if λ vanishes.
To derive the asymptotic structure of the symmetric part

SðpqÞ, we have to deal (as we did in the NF ¼ 2 case) with
the div þ curl system satisfied by SðpqÞ: namely, the
divergence Eq. (18.24) (where the last term can be
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neglected) and the curl Eq. (18.23) where one should use
f ¼ σGpqSpq in the last term. The final result for the
structure of SðpqÞ depends on the considered Weyl chamber
(both because of the different values of σ, and of the
different far-wall limits of the coefficients entering the div
þ curl system).
For instance, in the Weyl chamber (a), we obtain plane-

wave amplitudes of the form

Spq ¼ C3ðπ0pπ0q þ Lk
pqπ

0
k þmpqÞ; f ¼ 0;

h ¼ C3

�
−
1

2
þ i
2
ðπ02 − π03Þ

�
; ð19:31Þ

with, now,

Lk
pqπ

0
k ¼ i

0
BB@

−π01 þ π02 þ π03 − 1
2
π02 þ π03 − 1

2
ðπ01 − π03Þ

− 1
2
π02 þ π03 −π02 þ π03 − 1

2
π02

− 1
2
ðπ01 − π03Þ − 1

2
π02 −π03

1
CCA

ð19:32Þ

and

mpq ¼ þ 1

4

0
BB@

5 2 1

2 2 0

1 0 −1

1
CCA: ð19:33Þ

By contrast, in, say, Weyl chamber (b), the corresponding
amplitudes are given by

Spq ¼ C3ðπ0pπ0q þ Lk
pqπ

0
k þmpqÞ;

f ¼ C3

�
1

4
þ i
2
ðπ02 − π03Þ

�
¼ h; ð19:34Þ

with

Lk
pqπ

0
k ¼ i

0
BB@

−π01 þ π02 þ π03 − 1
2
ðπ01 − π03Þ 1

2
π02

− 1
2
ðπ01 − π03Þ −π02 − 1

2
π02

1
2
π02 − 1

2
π02 π02 − π03

1
CCA;

ð19:35Þ

mpq ¼
1

4

0
BB@

5 0 1

0 −1 −1
1 −1 2

1
CCA: ð19:36Þ

Contrary to what occurred at level NF ¼ 2, the trans-
formation rules of these amplitudes, when swapping Weyl
chambers, is far from obvious.
Most of the comments we made above in the NF ¼ 2

case apply mutatis mutandis. In particular, the fact that the

general plane-wave solution at level NF ¼ 3 depends on
only two complex constants Cþ

3 , C
−
3 is the plane-wave

transcription of our finding above that there are, in each �
sector, two arbitrary (real) functions of two variables. In
addition, it is also an instructive exercise to see how the
special structure of the NF ¼ 3 plane-wave solution
emerges from the SUSY constraints in the limit where
the components π0a get large. In this limit, π0a is approx-
imately null (π02 ≈ 0), and one can again conveniently
introduce a null basis π0a; qa; ra, and corresponding pro-
jected annihilation operators bϵðπ0Þ ≔ baϵπ0a, bϵðqÞ ≔ baϵqa,
bϵðrÞ ≔ baϵra. Using their anticommutation relations it is
then easy to find the general solution, at level NF ¼ 3
of the conditions bϵðπ0ÞjΨi ¼ 0 ¼ ~bϵðπ0ÞjΨi. One finds
that it is obtained by acting on the NF ¼ 2 solution
~bþðπ0Þ ~b−ðπ0Þj0i− by arbitrary combinations of the “trans-
verse” creation operators ~bϵðrÞ, i.e.

ðcþ ~bþðrÞ þ c− ~b−ðrÞÞ ~bþðπ0Þ ~b−ðπ0Þj0i−: ð19:37Þ

It is easy to see that such a solution is equivalent to the
above results in the limit where the components π0a get
large. The factorized form (19.37) suggests that one might
obtain the general NF ¼ 3 solutions by acting on the
general NF ¼ 2 solution by some suitable raising operator.
However, we have shown that this was not true beyond the
high-frequency plane-wave limit.
Finally, let us note that the NF ¼ 4 plane-wave solutions

can be easily obtained from the NF ¼ 2 ones by the
exchange j0i− → j0iþ and ba� → ~ba�. (As the gravita-
tional-wall terms are negligible in the considered limit,
one does not need to worry about the additional complex
shift of the β’s.)

XX. BOUNCING UNIVERSES AND BOUNDARY
CONDITIONS IN QUANTUM COSMOLOGY

Since the pioneering work of DeWitt [42], the issue of
boundary conditions (near big bangs or big crunches) in
quantum cosmology has been much discussed. Several
proposals have been made. In particular, DeWitt has
suggested to impose the vanishing of the wave function
of the Universe on the singular “zero-volume” boundary of
superspace, Vilenkin [43,44] suggested a boundary con-
dition selecting a wave function tunneling from “nothing”
into superspace, while Hartle and Hawking [45] have
suggested determining a unique wave function for the
Universe by considering a path integral over compact
Euclidean geometries. See [46] for a comparison of the
predictions from the latter two different choices within a
restricted two-dimensional minisuperspace model, and see
Refs. [47–51] for studies of the wave function of the
(bosonic) Bianchi IX model.
Another context within which the issue of boundary

condition at a spacelike singularity is important is that of
evaporating black holes. In particular, Horowitz and
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Maldacena [52] have suggested the need of imposing a
“final state boundary condition” at a black hole singularity
in order to make sure that no information is absorbed by an
evaporating black hole.
We wish to point out here that our finding that super-

gravity predicts the presence (in the major part of our
Hilbert space) of a tachyonic (i.e. negative) squared-mass
μ2 in the WDW Eq. (8.1) naturally leads to a kind of final-
state boundary condition at the singularity that might be
relevant to the black hole information-loss problem.
Let us start by explaining in simple terms the origin of

the squared-mass term μ2, and its a priori importance near
the singularity. It is well known that the supergravity
Lagrangian density L (per unit proper spacetime volume)
contains terms quartic in the fermions: L4 ∼ ψ4. Such terms
will correspond to a proper energy density ρ4 ∼ ψ4. We
have seen above that, when quantizing the spatial zero
modes of ψ the variables Ψ satisfying a Clifford algebra
(with a numerically fixed r.h.s. of order unity in Planck
units) are obtained by rescaling ψ according to
ψ ¼ g−1=4Ψ, Eq. (2.29), where g ¼ ða b cÞ2 denotes the
determinant of the spatial metric. As a consequence the
proper energy density linked to the quartic fermionic terms
scales with the proper spatial volume V3 ¼ abc as

ρ4 ∼ g−1 ¼ ðV3Þ−2 ¼ ða b cÞ−2 ¼ ā−6 ð20:1Þ

where ā ≔ ðabcÞ1=3 denotes the geometric average of the
three scale factors. As the volume ā3 of the Universe
decreases, the energy density ρ4 increases faster than the
other well-known contributions to the energy density, such
as the energy density ρ ∼ ðabcÞ−ð1þwÞ ¼ ā−3ð1þwÞ associ-
ated with a fluid with the equation of state p ¼ wρ, with
w < 1. Well-known examples are (i) a cosmological con-
stant (w ¼ −1) with ρ ¼ Cst; and (ii) thermal radiation
(w ¼ 1

3
) with ρ ∼ ā−4. The anisotropy energy associated

with the Bianchi IX curvature, namely ρcurv ∼ a2=ðb2c2Þ þ
cyclic plays initially a special role because of the Kasner
oscillations which can make, e.g., a ≫ b; c, thereby
allowing (as proven in Ref. [1]) the anisotropic curvature
energy ρcurv to be more important than any ordinary fluid-
type energy (having w < 1). However, when averaging
over the billiard motion of β1 ¼ − ln a, β2 ¼ − ln b,
β3 ¼ − ln c, within some chamber, all the separate scale
factors a; b; c will eventually decrease and formally tend
toward zero (though at different, and chaotically changing
speeds), so that the ratio ρcurv=ρ4 ∼ a4 þ b4 þ c4 will
eventually decrease and tend toward zero as
V3 ¼ a b c → 0. This reasoning shows that, when going
toward the singularity, the anisotropic potential VgðβÞ ¼
1
4
ða4 þ b4 þ c4Þ − 1

2
ðb2c2 þ c2a2 þ a2b2Þ will initially

dominate over usual energy densities (such as thermal
energy, when included), but will ultimately be dominated
by the effect of the squared-mass term μ2. The latter
conclusion does not depend on the sign of μ2. We are,

however, going to see that the sign of μ2 has crucial
consequences for the issue of boundary conditions at the
singularity. Let us also note that the dependence of the
fermionic energy density (20.1) on the spatial volume
formally corresponds to a stiff equation of state p ¼ ρ, with
index w ¼ þ1 (as that corresponding to a massless sca-
lar field).
After these heuristic considerations, let us consider the

technical aspects of the behavior of the quantum wave
function near the singularity. As is well known from the
study of the classical Bianchi IX dynamics [2,53] and its
generalizations [27,54,55], the asymptotic behavior of the
dynamics of the scale factors near the singularity is best
exhibited by replacing the flat Lorentzian coordinates βa by
the corresponding (hyperbolic) polar coordinates ρ, γa:

βa ¼ ργa with ρ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
−Gabβ

aβb
q

; Gabγ
aγb ¼ −1:

ð20:2Þ

In other words, the variable ρ (which should not be confused
with the notation used above for the proper energy density) is
the Lorentzian radius, while the corresponding Lorentzian
“angular coordinates” are encoded in the two independent
components of the vector γa running on the unit hyperboloid,
which is a realization of the Lobachevski plane. (The unit-
hyperboloid vector γa should be distinguished from the
notation γâ used for Dirac matrices.) In terms of these
“polar” coordinates, the metric in β space becomes

Gabdβadβb ¼ −dρ2 þ ρ2dσ2 ð20:3Þ

where dσ2 is the constant-curvature (K ¼ −1) metric on the
unit γ hyperboloid. The corresponding d’Alembertian oper-
ator in β space reads

□β ¼ þGab∂a∂b ¼ −Gabπ̂aπ̂b

¼ −
1

ρd−1
∂ρðρd−1∂ρÞ þ

1

ρ2
Δγ ð20:4Þ

where, for more generality, we have provisionally considered
the case of any β-space dimension d (¼ the number of spatial
dimensions). In our case, d ¼ 3 and we have

1

ρ2
∂ρðρ2∂ρÞ ¼ ∂2

ρ þ
2

ρ
∂ρ ¼

1

ρ
∂2
ρρ: ð20:5Þ

In terms of the rescaled wave function Ψ0 and of these polar
coordinates, the WDW Eq. (8.6) reads�

1

ρ
∂2
ρρ −

1

ρ2
Δγ þ μ̂2 þ ŴðβÞ

�
Ψ0ðρ; γaÞ ¼ 0: ð20:6Þ

Leaving to future work a study of the near-singularity limit
of the first-order SUSY constraints (17.32), we shall only
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give here an approximate treatment of the asymptotic
behavior of the solutions of the second-order WDW equa-
tion. When approaching the cosmological singularity we
have ρ → þ∞, and all the potential terms in ŴðβÞ ¼ ŴðργÞ
become very sharp functions of γ on Lobachevski space
(because of the factor ρ multiplying the argument of Ŵ). In
the interior of the intersection of a Weyl chamber of AE3

on the unit γ hyperboloid, i.e. when, say, 0 < γ1 < γ2 < γ3,
the potential ŴðργÞ will tend toward zero as ρ → þ∞. On
the other hand, when one goes on the other side of the
gravitational wall (i.e. when, say, γ1 < 0) the relevant
bosonic gravitational-wall term ∝ þe−4ργ

1

tends toward
þ∞, and dominates the spinorial J-dependent term
∝ J11e−2ργ

1

. This suggests (as in the purely bosonic case)
that we can replace the gravitational-wall terms by an
infinite, sharp wall located at γ1 ¼ 0. The case of the
symmetry walls is a a priori more subtle because they
are purely quantum (and spin dependent), and also because
they are not exponential, but proportional to 1=sinh2βab.
However, a local analysis of the regular solutions near these
walls shows that the exact wave function Ψ0 (as well as Ψ)
vanish on the symmetry walls. Finally, we can impose, in the
asymptotic limit ρ → þ∞ that the wave function Ψ0
vanishes on all the boundaries of each Weyl chamber, while,
in the interior, it satisfies the equation�

1

ρ
∂2
ρρ −

1

ρ2
Δγ þ μ̂2

�
Ψ0ðρ; γaÞ ¼ 0: ð20:7Þ

As μ̂2 is a c number at each fermionic level, and as we have
just seen that Ψ0ðρ; γaÞ satisfies Dirichlet boundary con-
ditions on the γ-space walls γ1 ¼ 0, γ1 ¼ γ2, and γ2 ¼ γ3,
we can expand (at each level NF) the general solution of
(20.7) in a series of separated modes of the form

Ψ0ðρ; γaÞ ¼
X
n

RnðρÞYnðγaÞ: ð20:8Þ

Here, the “angular factors” YnðγaÞ’s are eigenmodes, with
Dirichlet boundary conditions, of the Laplace-Beltrami
operator on, say, the triangular billiard chamber with
boundaries γ1 ¼ 0, γ1 ¼ γ2, and γ2 ¼ γ3 on the unit hyper-
boloid, while RnðρÞ is a corresponding radial factor. The
latter Dirichlet billiard is the quantum version of the so-
called Artin billiard, whose domain is half the famous
keyhole-shaped fundamental domain of the modular group
SLð2;ZÞ. The spectrum of our quantum triangular Dirichlet
billiard corresponds to the spectrum of odd cusp automor-
phic forms. See, e.g., [56,57] for nice accounts of the theory
of such Maass automorphic waveforms. The eigenvalues
λn, with

ΔγYnðγaÞ ¼ −λnYnðγaÞ ð20:9Þ

are often written as λn ¼ 1
4
þ r2n. The fundamental

Dirichlet eigenmode has r1 ¼ 9.5336952613536…, which

corresponds to the surprisingly large lowest eigen-
value λ1 ¼ 91.14134533635….
The differential equation that each radial factor RnðρÞ

must satisfy reads�
1

ρ
∂2
ρρþ

λn
ρ2

þ μ2
�
RnðρÞ ¼ 0: ð20:10Þ

As for ordinary three-dimensional quantum mechanical
spherically symmetric problems we can consider the
rescaled radial function unðρÞ ≔ ρRnðρÞ, which satisfies
a one-dimensional Schrödinger equation. However, as ρ is a
timelike, rather than a spacelike, variable, we must reverse
the sign of the analog one-dimensional potential. In other
words, one can think of ρ as the position of a quantum
particle moving, with zero energy, in the potential (modulo
a factor 2)

UðρÞ ¼ −
λn
ρ2

− μ2 ð20:11Þ

with a wave function satisfying

ð−∂2
ρ þ UðρÞÞunðρÞ ¼ 0: ð20:12Þ

The qualitative features of this quantum problem near the
singularity (i.e. as ρ → þ∞) crucially depend on the sign of
μ2, because limρ→þ∞UðρÞ ¼ −μ2. [We are aware of the fact
that all the solutions we are going to discuss can be written
in terms of (suitably modified) Bessel functions. However,
it is more illuminating for our purpose to focus on the
approximate analytic expressions that are relevant near the
singularity.]
If μ2 is strictly positive (which happens only at fermionic

level NF ¼ 3 where μ2 ¼ 1
2
), UðρÞ becomes negative near

the singularity (ρ → þ∞). The general solution near the
singularity will then be a superposition of incoming and
outgoing waves

ρRnðρÞ≡unðρÞ≈ aneiμρþbne−iμρ; as ρ→þ∞: ð20:13Þ

The frequency of these waves only depends on μ ¼
ffiffiffiffiffi
μ2

p
and not on the spatial eigenvalues λn. The possibility of
such incoming or outgoing waves near the singularity
signals a possible information loss (or information gain) at
the singularity. At the classical level, the presence of such
oscillating modes means that a positive μ2 ultimately
quenches the BKL chaotic oscillations of the scale factors,
and (as would the presence of a massless scalar field) leads
to a final, monotonic, power-law approach toward a zero-
volume singularity.
In our supergravity context, μ2 never vanishes. Let us,

however, allow comparison of our results with those
obtained in previous works, where μ2 ¼ 0 was generally
assumed, and discuss what happens when μ2 ¼ 0 in the
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quantum problem (20.12). In that case, it is the subdomi-
nant term − λn

ρ2
in the potential that matters. The fact that it is

negative leads again to a wavelike behavior near the
singularity, with the presence of both positive and negative
frequencies. However, in that case one should take as
position variable ln ρ. One easily finds that the general
solution of (20.12) then reads [58]

RnðρÞ ¼ anρ−1=2eirn ln ρ þ bnρ−1=2e−irn ln ρ ð20:14Þ

where rn ¼
ffiffiffiffiffiffiffiffiffiffiffiffi
λn − 1

4

q
is the eigenvalue parametrization

introduced above. Again the simultaneous possibility of
such incoming or outgoing waves signals a possible
information loss (or information gain) at the singularity.
At the classical level, the presence of such oscillating
modes means that a vanishing μ2 leads to unending BKL
chaotic oscillations of the scale factors, toward a zero-
volume singularity.
Let us now consider the case where μ2 is strictly negative

(which happens at all fermionic levels, apart from NF ¼ 3).
In that case UðρÞ becomes positive (i.e. repulsive) near the
singularity so that the general solution is a superposition of
exponentially decreasing or increasing solutions:

ρRnðρÞ≡ unðρÞ ≈ ane−jμjρ þ bneþjμjρ; as ρ → þ∞

ð20:15Þ

where jμj ≔
ffiffiffiffiffiffiffiffi
−μ2

p
. The presence of possible solutions that

are exponentially growing as ρ → þ∞ suggests (similarly
to the case of a quantum particle impinging on a repulsive
potential wall) that we should impose as boundary con-
dition at the singularity the absence of such growing
modes, i.e. the vanishing of all the coefficients bn. In other
words, it is natural to require that ρRnðρÞ ∼ e−jμjρ → 0 as
ρ → þ∞. At the classical level the absence of oscillating
solutions near the singularity tells us that a negative
μ2, i.e. a negative fermionic energy density ρ4 ∼
−jμj2ðV3Þ−2 ∼ −jμj2ða b cÞ−2, has the effect not only of
stopping the chaotic BKL oscillations, but even of stopping
the collapse of the Universe toward small volumes, and to
naturally force the Universe to “bounce” toward large
volumes. It is interesting to see that supergravity naturally
predicts (in most cases) that quartic-in-fermion terms
(linked to spatial zero modes) lead to such a stopping,
and reversal, of the collapse. Though these negative
fermionic energy densities are of quantum origin, it seems
consistent (within our fully quantum framework) to take
them into account and to conclude that they indeed allow
for cosmological bounces. In other words, our work
realizes (within our minisuperspace context) a wish
expressed by DeWitt [42], namely showing the dynamical
consistency of imposing the vanishing of the wave function
of the Universe at the zero-volume boundary of superspace.
For completeness, let us give the exact solution of the

separated quantum radial Eq. (20.10), corresponding to one

spatial mode YnðγÞ. When imposing our suggested
decaying boundary condition at the singularity, it is of
the form

RnðρÞ ¼
a0n
ρ1=2

KirnðjμjρÞ ð20:16Þ

where rn ¼
ffiffiffiffiffiffiffiffiffiffiffiffi
λn − 1

4

q
and where KiνðzÞ is the K-Bessel

function for a pure imaginary order. The latter imaginary-
order, real-argument K-Bessel function is real, exponen-
tially decaying for large argument, and real oscillatory
when jμjρ≲ rn. Viewed from a classical limit standpoint,
the above radial wave function describes a bounce of ρ
around the minimal value ρmin ≈ rn=jμj.
If we come back for a moment to the classical dynamics

of (diagonal) Bianchi IX cosmological models, it is
interesting to note that the effect of adding a negative
μ2 to the ordinary (classical) bosonic potential
WgðβÞ ¼ 2VgðβÞ, with Eq. (2.28), has been studied in
the literature. Indeed, Refs. [59] and [60] have considered a
modification of the usual BKL dynamics equivalent to
adding a negative μ2, with the motivation that such a
“physically unacceptable” negative energy term had been
unwittingly included in some previous numerical studies of
BKL chaos, thereby leading to unexpected, erratic oscil-
lations of the three-volume. In a follow-up paper [60], it
was further noted that the Bianchi IX dynamics modified
by a negative μ2 contains numerous closed orbits in β
space, i.e. Universes that bounce periodically. The exist-
ence of such classical cyclically bouncing Universes (of the
type of the old cycloid-based Friedman Universe, but with a
regular minimum volume state) is intuitively understand-
able in view of the closed-Universe-recollapse property of
classical Bianchi IX models. Let us recall that Lin andWald
[61] have proven that vacuum Bianchi IX models cannot
expand for an infinite time, but must recollapse. [The later
reference [62] has extended this result to the nonvacuum
case, under the condition that the matter content satisfies
the dominant energy condition, and that the average
pressure is non-negative. Strictly speaking, their results
do not apply to our case, but, as our negative energy (and
pressure) fermionic term ρ4 ¼ p4 decreases very fast ∝
ða b cÞ−2 during the expansion, we are considering here that
the recollapse is actually induced by the large-volume limit
of the bosonic Bianchi IX potential VgðβÞ (which, modulo a
rescaling by g ¼ ðabcÞ2 is the anisotropic equivalent of the
well-known Friedman curvature-potential term ∝ −k=a2,
with k ¼ þ1, responsible for the recollapse of closed
Friedman Universes).]
In Fig. 3 we sketch (in β space, indicating the Lorentzian

coordinates ξ0̂; ξ1̂; ξ2̂ defined in Appendix A below) two of
the simplest cyclically bouncing Bianchi IX models (with
an additional negative μ2) found in Ref. [60]: namely the
ones labeled (i) and (vii) in Table 1 there. (They refer to a
diagonal Bianchi IX model, without the symmetry walls
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present in our supergravity framework.) The funnel-type
structure surrounding these periodic curves is a sketchy
representation of the bosonic potential VgðβÞ; it indicates
the locus of the β-space points where VgðβÞ ¼ þ1. For
values of order unity of the momenta πa ¼ Gab

_βb, the level
set VgðβÞ ¼ þ1 represents the approximate location of the
potential wall which confines βðτÞ motions oriented in
spacelike or null directions, and leads to the usual billiard
description. What is not represented (and must be mentally
added by the reader) is the fact that, both in the upper part
[where the negative μ2 term dominates over VgðβÞ] and in
the lower part of the funnel [where the potential VgðβÞ
becomes deeply negative because, for large, nearly iso-
tropic spaces a ≈ b ≈ c we have VgðβÞ ≈ − 3

4
a4] there are

other potential walls that can confine βðτÞmotions oriented
in a timelike direction, and make it bounce backwards in β0

“time”. Indeed, we have seen above that, for instance, the
potential UðρÞ, Eq. (20.11), describing the motion in a β-
space timelike direction (like the ρ one) was the opposite of
the usual potential VgðβÞ (augmented by the μ2 term), so
that a negative VgðβÞ wall approached in a timelike
direction is roughly equivalent to a positive VgðβÞ wall
approached in a spacelike direction. In other words, we
should think of the funnel represented in Fig. 3 as being a
kind of closed “bottle” (in the sense of “magnetic bottles”)
within which a β-space motion is confined in all directions.
Evidently, the periodic curves confined within such a β-

space bottle (and sketched in Fig. 3) are just fine-tuned
examples of generic classical orbits, which will chaotically
[59,60] oscillate up and down (as well as sideways, as in
standard BKL chaos) in this bottle. We have explicitly
checked, by numerically integrating the classical β-particle

equations of motion, in presence of an additional negative
μ2 term, that, indeed, generic classical orbits tend to fill in a
chaotic way the funnel represented in Fig. 3. Note,
however, that if one considers motions having, at some
point, very large momenta πa ¼ Gab

_βb their confining
funnel will be correspondingly larger (though only loga-
rithmically so). However, we think that the existence of a
(presumably infinite) number of periodic β-space orbits is
conceptually important for the following reason. Studies of
the relation between classical chaos and quantum chaos
(notably through the basic contributions of Selberg [63] and
Gutwiller [64]) have shown that there is an intimate link
(embodied in some trace formula) between the closed orbits
of a classical system, and the eigenvalue spectrum of the
corresponding quantum dynamical system. This classical
versus quantum correspondence suggests that the existence
of a discrete spectrum of periodic orbits in β space (when
μ2 < 0) signals the presence of a corresponding discrete set
of quantum states confined within the bottle of Fig. 3, i.e.
describing quantum bouncing universes, satisfying the
boundary condition that the wave function Ψ vanishes
exponentially both when β0 → þ∞ (small volumes) and
when β0 → −∞ (large volumes). Our results above for
fermionic levels NF ¼ 0 and 1 has rigorously established
(by explicit construction) the existence of three such
(square-integrable) discrete states (confined in all direc-
tions). (They might be considered as the first three states in
the expected tower of discrete states.) On the other hand,
our results on continuous11 states at levels NF ¼ 2, 3, and 4
has shown that one could construct continuous families
(parametrized by several arbitrary functions of two varia-
bles) of square-integrable states, that exponentially decayed
when going under the gravitational walls (i.e. sideways in
Fig. 3). Among these, our emphasis on the importance of
having a negative μ2 suggests that we should restrict our
attention to the cases NF ¼ 2 and 4 for which μ2 ¼ − 3

8
.

However, our construction did not give us any freedom of
imposing boundary conditions either as β0 → þ∞, or as
β0 → −∞. Our discussion above of the behavior of
quantum billiards (with μ2 < 0) at the singularity, suggests
that the imposition of the condition that Ψ vanishes
exponentially when β0 → þ∞ will eliminate half of the
solution space (by setting all the bn’s to zero). This roughly
leaves a solution space containing only one arbitrary
function of two variables. [Indeed, each sequence fang
or fbng parametrizes an arbitrary function of two variables,P

nanYnðγÞ, satisfying Dirichlet conditions on our γ-space
Weyl chamber.] The imposition of a similar exponential
decay of Ψ when β0 → −∞ (i.e. for large volumes) might
further restrict the arbitrariness described by the sequence
fang to leave only a much sparser discrete sequence of
states, conceivably equivalent to having, say, only one

FIG. 3. Two examples of periodically bouncing Universes
confined within the Lorentzian β-space “bottle” made by the
bosonic Bianchi IX potential VgðβÞ augmented by a negative
μ2 term.

11The discrete states at level 2 were found to be nonsquare
integrable.
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arbitrary function of one variable. (Though, at this stage,
we cannot discard the possibility that this second restriction
might eliminate all discrete states.) A toy model showing
the subtleties involved in such a reduction follows.
Let us consider a simple model of a Lorentzian dynamics

within a potential that confines motions both in spacelike
and in timelike directions, namely, a simple WDW-type
equation representing a two-dimensional Lorentzian har-
monic oscillator,

HΨðt; xÞ ¼ 0 ð20:17Þ

with

2H ¼ þ∂2
t − ∂2

x − ω2
t t2 þ ω2

xx2: ð20:18Þ

We have H ¼ −Ht þHx where both Ht ¼ 1
2
ð−∂2

t þ ω2
t t2Þ

and Hx ¼ 1
2
ð−∂2

x þ ω2
xx2Þ are usual, confining harmonic

oscillators. The harmonic frequency for timelike motions
(in the t direction) is ωt > 0, while the harmonic frequency
for spacelike motions (in the x direction) is ωx > 0. The
eigenvectors of H can be looked for in a factorized form
Ψðt; xÞ ¼ fðtÞgðxÞ. As both fðtÞ and gðxÞ must be eigen-
functions of confining-type harmonic oscillators, they will
be both restricted to a discrete spectrum if we impose that
Ψðt; xÞ exponentially decays both in timelike and spacelike
directions (and for both signs of these two axes). Under
these conditions, we must have Ψðt; xÞ ¼ hmðtÞhnðxÞ
(where m; n denote natural integers, and hn are the usual
Hermite eigenmodes), and the eigenvalues of the total H
(HΨ ¼ EmnΨ) are restricted to the values

Emn ¼ −
�
mþ 1

2

�
ωt þ

�
nþ 1

2

�
ωx: ð20:19Þ

The WDW equation demands that we only consider states
such that Emn ¼ 0. As a consequence, we see that (i) if the
ratio of the two frequenciesωt, ωx is rational there will exist
a restricted set of modes satisfying all our conditions [e.g.,
in the simple case where ωt ¼ ωx we get the one-integer
sequence Ψnðt; xÞ ¼ hnðtÞhnðxÞ of solutions]; (ii) on the
other hand, if the ratio ωt=ωx is irrational, there does not
exist any solution satisfying our conditions [though, there
exists modes of the type fðtÞhnðxÞ that will decay in both
spatial directions, as well as when t → −∞, but that blow
up when t → þ∞.] In our case, we can hope that
supersymmetry will relate the behavior in timelike and
spacelike directions and allow for the existence of a final,
sparse discrete set of solutions decaying in all directions.
The fact that we have proven the existence of such states at
levels NF ¼ 0 and NF ¼ 1 is a good indication in
this sense.
We initially hoped that the existence of classical bounc-

ing solutions (as sketched in Fig. 3) might entail the
existence of corresponding quantum states. In particular,

it is tempting to interpret the lowest classical periodic
solution, labeled 1 in Fig. 3, as corresponding to the unique
quantum ground-state at level NF ¼ 0. [As sketched in the
figure, the latter classical solution describes a universe
which has a nearly constant Planck-size volume (nearly

constant ξ0̂ ¼
ffiffi
6

p
2
β0), but whose “shape” oscillates. This

roughly fits with the wave function (13.5) of the NF ¼ 0
state.] However, the toy model (20.18) shows (when a=b is
irrational) that the existence of classical bouncing and
confined solutions does not guarantee the existence of
corresponding quantum states. We leave to future work a
study of the existence of quantum bouncing solutions at
levels NF ¼ 2 and NF ¼ 4.
In this work, we only considered the dynamics of pure

supergravity, without extra matter content. Our aim was not
to suggest a phenomenological description of early cosmol-
ogy that might later turn into our observed Universe, but
rather to investigate the conceptual role of supergravity in the
dynamics close to a big bang or big crunch singularity. If,
however, we contemplate an extension of our model con-
taining, say, some type of inflationary sector (with an
inflaton field ϕ), we will have a modification of the
WDW Eq. (20.6) consisting (notably) of adding both a
derivative term proportional to −∂2

ϕ and an additional
contribution to the potential term WðβÞ proportional to
þðabcÞ2VðϕÞ, where VðϕÞ denotes the inflationary poten-
tial (which is chosen to be positive so as to be able to mimic a
positive cosmological constant). When considering the
dynamics of a timelike (i.e. volumelike) gravitational degree
of freedom [such as β0 ¼ − lnðabcÞ)] the additional term
Wϕ ¼ þðabcÞ2VðϕÞ ¼ e−2β

0

VðϕÞ must be considered (as
explained above) as being a downfalling cliff rather than a
repulsive wall. Therefore, from the point of view of the
quantum dynamics of β0 the confining (near isotropic
metrics) wall WgðβÞ that led to the above recollapse at
large volumes will be eventually counteracted (on the large
volume side) by the deconfining, attractive effect of Wϕ. In
other words, we have here a situation where the wave
function for β0 can tunnel through the potential barrier linked
toWgðβÞ, to emerge on the inflationary sidewhere it can lead
to an exponentially expanding space. (In picturesque terms
the “bottle” of Fig. 3 should be thought of as leaking, by a
quantum tunnel effect, on its bottom side, corresponding to
large volumes.) Such models have been often considered in
the literature, see, e.g., [43–46,49]. The new aspect that our
work might provide is a specific proposal for the “initial
wave function of the Universe,” describing a sort of quantum
storage ring within the upper part of the bottle of Fig. 3,
corresponding to Planckian-size universes.

XXI. SUMMARY AND CONCLUSIONS

Let us summarize our main results:
(1) We have studied the dynamics of a triaxially

squashed 3-sphere (a.k.a. Bianchi IX model) in
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D ¼ 4, N ¼ 1 supergravity by means of a new
approach that gauge fixes, from the start, the 6
degrees of freedom describing possible local Lorentz
rotations of the tetrad. In our approach, the only
constraints to consider are the four SUSY con-
straints, SA ≈ 0, the Hamiltonian constraint
H ≈ 0, and the three diffeomorphism con-
straints Hi ≈ 0.

(2) The quantization of this constrained Hamiltonian
system has been done by first canonically quantizing
the 6 bosonic [gijðtÞ], and 12 fermionic (ψA

â ) gauge-
fixed degrees of freedom. The 6 metric degrees of
freedom are parametrized by means of three loga-
rithmic scale factors β1 ¼ − log a, β2 ¼ − log b,
β3 ¼ − log c measuring the squashing of the
three-geometry, and by three Euler angles
φ1;φ2;φ3 parametrizing the orientation of the quad-
ratic form gij w.r.t. the Cartan-Killing metric kij
associated with the SUð2Þ homogeneity symmetry
of the squashed 3-sphere. The canonical quantiza-
tion of the gravitino leads (similarly to the Ramond
string) to a spin(8, 4) Clifford algebra for a suitably
rescaled, and linearly transformed, gravitino zero-
mode Φ̂a

A (a ¼ 1; 2; 3;A ¼ 1; 2; 3; 4); see Eq. (4.4).
This implies that the wave function of the Universe
is a 64-dimensional spinor depending on six bosonic
variables Ψσðβa;φaÞ, ðσ ¼ 1;…; 64Þ.

(3) The constraints are then imposed à la Dirac as
restrictions on the state: ŜAjΨi ¼ 0, ĤjΨi ¼ 0,
ĤijΨi ¼ 0. Because of our choice of parametriza-
tion of the Euler angles [connecting gijðtÞ to the
Cartan-Killing metric kij associated with the Bianchi
IX structure constants], one finds that the diffeo-
morphism constraints are equivalent to requiring that
the wave function Ψσðβa;φaÞ does not depend on
the three Euler angles φa. The remaining constraints
are uniquely ordered by requiring that they be
Hermitian, and are found to consistently close;
see Eq. (7.1).

(4) The (rotationally reduced) SUSY constraints
ŜAjΨi ¼ 0 yields four simultaneous Dirac-like
equations, ŜAΨ¼ðþ i

2
Φa

A∂βa þ���ÞΨðβÞ¼0 (where
the Φa

A’s are four separate triplets of 64 × 64 gamma
matrices) describing the propagation of the 64-
component spinorial wave function ΨðβÞ in the
three-dimensional space of the logarithmic scale
factors β1 ¼ − loga, β2 ¼ − logb, β3 ¼ − log c.
The latter β space is endowed with the Lorent-
zian-signature metric Gab, Eq. (2.26), induced
by the kinetic terms of the Einstein-Hilbert action.
Each one of the Dirac-like equations ŜAΨðβÞ ¼ 0
forms a first-order symmetric hyperbolic system.
In addition, ΨðβÞ satisfies initial-value-type
constraints in β space, and a second-order
Klein-Gordon-type Wheeler-DeWitt equation,

ĤΨ ¼ ð− 1
2
Gab∂a∂b þ � � �ÞΨ ¼ 0, which is a con-

sequence of the SUSY constraints.
(5) The operatorial content of the ŜA’s and of Ĥ reveals

a hidden hyperbolic Kac-Moody structure which
confirms (and extends at the fully quantum level)
previous conjectures about a correspondence be-
tween supergravity and the dynamics of a spinning
particle on an infinite-dimensional coset space
[AE3=KðAE3Þ in our present context]. The newest
aspect of this hidden Kac-Moody structure is the fact
that all the terms in Ĥ that are quartic in fermions
give rise to a “squared-mass term” μ̂2 in the
Wheeler-DeWitt equation which commutes with
all the operators Ŝ12; Ŝ23; Ŝ31; Ĵ11; Ĵ22; Ĵ33 that
are the building blocks of the quantum Hamiltonian
Ĥ [and which are second-quantized versions of the
generators of the Lie algebra KðAE3Þ, i.e. the
maximally compact subalgebra of the hyperbolic
Kac-Moody algebra AE3]. In addition, the
operator μ̂2 is found to be expressible in terms of
the square of a certain (centered) fermion
number bNF − 3≡ ĈF ≔ 1

2
Gab

¯̂Φ
a
γ1̂ 2̂ 3̂Φ̂b, which

also commutes with all the operators
Ŝ12; Ŝ23; Ŝ31; Ĵ11; Ĵ22; Ĵ33.

(6) Representing the Clifford gravitino generators Φ̂a
A in

terms of two sets of annihilation and creation
fermionic operators baþ, ba−, ~baþ, ~ba− (where
~b≡ b†) allows one to decompose the fermionic
Hilbert space into various fermion-number levels,
HðNF

þ;N
F
−Þ. These correspond to constructing the 64

states of spin(8, 4) by acting with a certain number
of ba†� operators on the empty state j0i− (annihilated
by the six baϵ ’s). Actually, bNF ¼ ĈF þ 3 counts the
total number NFþ þ NF

− of b†� operators. The use of
the “chiral” operators baþ, ba−, ~b

a
þ, ~b

a
− allows one to

write explicitly the SUSY constraints in a convenient
form; see Eq. (11.4). One of the main new results of
our approach is that we succeeded in describing in
detail the complete solution space, say VðNFÞ, of the
SUSY constraints ŜAΨðβÞ ¼ 0, at fermionic level
NF ¼ NFþ þ NF

−. It is a mixture of discrete-spectrum
states (parametrized by a few constant parameters,
and known in explicit form) and of continuous-
spectrum states (parametrized by arbitrary functions
entering some initial-value problem): Vð0Þ ¼ Vð0Þ

1 is
one dimensional; Vð1Þ ¼ Vð1Þ

2 is two dimen-
sional; Vð2Þ ¼ Vð2Þ

3 ⊕ Vð2Þ
1;∞2 is the direct sum of a

three-dimensional space Vð2Þ
3 and of an infinite-

dimensional space Vð2Þ
1;∞2 parametrized by one con-

stant and two (real) functions of two (real) variables
(together with an additional arbitrary constant);
Vð3Þ ¼ Vð3Þ

2;∞2 ⊕ Vð3Þ
2;∞2 is the direct sum of two

infinite-dimensional spaces, each one of which
involves as free data two parameters and two func-
tions of two variables. Moreover, when 4 ≤ NF ≤ 6,
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there is a duality under which VðNFÞ is one-to-one
mapped to Vð6−NFÞ. Our results significantly differ
from the conclusions of previous works.

(7) At fermionic levels 2 ≤ NF ≤ 4, where there are
continuous-spectrum states, we have explicitly de-
scribed the kind of plane-wave states they give rise
to in the asymptotic far-wall limit where the various
exponential potential terms in the SUSY constraints
are small. In this regime, the wave function of the
Universe looks like a spinorial plane-wave that
bounces between well-separated spin-dependent po-
tential walls, probably leading to a spinorial arith-
metic chaos linked to the Weyl group of AE3.

(8) A surprising result is that supergravity predicts that
the squared-mass term μ̂2 entering the Wheeler-
DeWitt equation is negative over most of the
fermionic Hilbert space. This is a quantum effect
(quartic in the fermions) which has important
implications for the dynamics of the geometry near
the big bang, or big crunch, (small-volume) singu-
larity. Indeed, the corresponding contribution to the
energy density, ρ4 ∼ μ2ðV3Þ−2 ¼ μ2ða b cÞ−2, domi-
nates the other contributions when the spatial vol-
ume V3 ¼ abc tends toward zero. When considered
at the classical level, such a negative ρ4 necessarily
leads to a halting of the collapse of the Universe, and
makes its volume bounce back toward larger vol-
umes. We suggest, at the quantum level, to require
that the wave function ΨðβÞ satisfy the correspond-
ing quantum boundary condition to vanish for small
volumes. When considering a big crunch, this
boundary condition is a kind of final-state boundary
condition, that might be important for the resolution
of the information-loss problem in black hole
evaporation. We also suggest that this quantum
avoidance of zero-volume singularities would lead
to a “bottle effect” between small-volume-Universes
and large-volume ones, and to a corresponding
storage-structure made of a discrete spectrum of
quantum states (starting with the Planckian-size
universes described by the discrete SUSY states at
levels NF ¼ 0 and 1).

Our results open new perspectives that we hope to
discuss in future work. Among them, let us mention:

(i) studying the quantum fermionic billiard defined by
the reflection of the plane-wave states discussed
above on the various potential walls;

(ii) discussing the existence of a discrete set of quantum
states confined within the Lorentzian “bottle” asso-
ciated with a negative eigenvalue of μ̂2, and their
eventual link with the classical periodic orbits in
β space;

(iii) defining a norm on the solutions of the SUSY
constraints;

(iv) discussing the matching of our early Bianchi IX
dynamics to a later inflationary era;

(v) generalizing theN ¼ 1,D ¼ 4 case considered here
to more supersymmetric cases, and in particular to
theN ¼ 8,D ¼ 4 case, or, theN ¼ 1,D ¼ 11 one,
where the relevant Kac-Moody algebra should
be E10;

(vi) including the effect of inhomogeneous modes on the
dynamics of the spatial zero modes consid-
ered above.
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APPENDIX A: SUMMARY OF NOTATION

To facilitate the reading let us recap below the definitions
of the different variables parametrizing the metric degrees
of freedom.
Scale factors of the metric:

a ¼ e−β
1

; b ¼ e−β
2

; c ¼ e−β
3

;

abc ¼ e−ðβ1þβ2þβ3Þ ≡ e−β
0

: ðA1Þ

Note that the billiard limit β0 ≡ β1 þ β2 þ β3 → þ∞
corresponds to the small three-volume limit a b c → 0.
Diagonal metric components are

e−2β
1 ≡ a2 ≡ 1

x
; e−2β

2 ≡ b2 ≡ 1

y
; e−2β

3 ≡ c2 ≡ 1

z
:

ðA2Þ

Let us note also the definitions

β12 ¼ β1 − β2 ¼ −u; β23 ¼ β2 − β3;

β31 ¼ β3 − β1 ¼ −v; ðA3Þ

β0 ¼ β1 þ β2 þ β3; ðA4Þ

ξ0̂ ¼
ffiffiffi
6

p

2
β0; ξ1̂ ¼

ffiffiffi
2

p

2
β23; ξ2̂ ¼

ffiffiffi
6

p

6
ðβ12 − β31Þ;

ðA5Þ

T ¼ eβ
0

; X ¼ eβ23 ; Y ¼ eβ12−β31 ðA6Þ
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U ¼ −
1

2
coth β12 ¼

1

2
coth u;

V ¼ −
1

2
coth β31 ¼

1

2
coth v: ðA7Þ

Let us also recall

θ ¼ detðθα̂μÞ ¼ N
ffiffiffi
g

p
;

g ¼ det½ðgijÞ� ¼ det½ðhâi Þ�2 ¼ ða b cÞ2; ðA8Þ

ψα̂ ¼ g−
1
4Ψα̂; Ψ̄ ¼ iΨTγ0̂; ðA9Þ

Φk ¼ γk̂Ψk; Φ̄k ¼ −Ψ̄kγk̂; ðA10Þ

γ1̂ ¼

0
BBB@

0 1 0 0

1 0 0 0

0 0 0 1

0 0 1 0

1
CCCA; γ2̂ ¼

0
BBB@

−1 0 0 0

0 1 0 0

0 0 −1 0

0 0 0 1

1
CCCA;

ðA11Þ

γ3̂ ¼

0
BBB@

0 0 0 −1
0 0 1 0

0 1 0 0

−1 0 0 0

1
CCCA; γ0̂ ¼

0
BBB@

0 0 0 1

0 0 −1 0

0 1 0 0

−1 0 0 0

1
CCCA;

ðA12Þ

γ5 ¼ γ0̂γ1̂γ2̂γ3̂ ¼

0
BBB@

0 −1 0 0

1 0 0 0

0 0 0 1

0 0 −1 0

1
CCCA: ðA13Þ

APPENDIX B: CHARACTERISTICS
OF FERMIONIC SUBSPACES

The following two tables summarize the dimensions and
eigenvalues of the quadratic fermionic operators ∼ψ̄ψ that
play a basic role in underlying the quantum dynamics
discussed in the text.
The first table displays the decomposition of the

64-dimensional spin(8, 4) spinorial space into the irreducible
subspaces defined in Sec. X, as well as into eigensubspaces
of the fermion number operators bNF and bNF

þ. It provides the
dimensions of these subspaces, the eigenvalues of bNF, of its
centered version ĈF ¼ bNF − 3, of the squared-mass oper-
ator μ̂2 ¼ 1=2 − ð7=8ÞĈ2

F [see Eqs (9.14)–(9.16)], and of the
partial ~bþ number operator bNF

þ.

dim NF CF μ2 NFþ
1 0 −3 − 59

8
0

3 ⊕ 3 1 −2 −3 1 ⊕ 0
6 ⊕ 3 ⊕ 3 ⊕ 3 2 −1 − 3

8
1 ⊕ 2 ⊕ 1 ⊕ 0

10 ⊕ 10 3 0 1
2

ð2j9 ⊕ 0Þ ⊕ ð1j9 ⊕ 3Þ
3 ⊕ 3 ⊕ 3 ⊕ 6 4 1 − 3

8
3 ⊕ 1 ⊕ 2 ⊕ 2

3 ⊕ 3 5 2 −3 3 ⊕ 2
1 6 3 − 59

8
3

The second table provides the eigenvalues of the Kac-Moody-related operators Ĵ11, Ŝ12, and Ŝ212 that are the building
blocks of the SUSY constraints and of the Hamiltonian. It displays how these eigenvalues are split along the irreducible
subspaces of the total 64-dimensional fermionic space defined in Sec. X. Let us notice that the operators Ĵ11, Ĵ22, Ĵ33, and
Ŝ12 commute with N̂F and bNF

þ, while only the squares of the other spin operators Ŝ23 and Ŝ31 commute with N̂F. The finer
subspace decompositions of the 15-dimensional spaces NF ¼ 2 or 4 in 6þ 3þ 3þ 3-dimensional subspaces provide
invariant subspaces only for Ĵ11, Ĵ22, Ĵ33, and Ŝ212.

dim NF J11 S12 S212

1 0 ð− 1
2
Þ (0) (0)

3 ⊕ 3 1 ð1;−1j2Þ ⊕ ð1;−1j2Þ ð− 1
2
j2; 32 ; Þ ⊕ ð− 3

2
; 1
2
j2Þ ð9

4
; 1
2
j2Þ ⊕ ð9

4
; 1
2
j2Þ

6 ⊕ 3 ⊕ 3 ⊕ 3 2 ð− 3
2
j3; 12 j2; 52Þ ⊕ ð− 3

2
; 1
2
j2Þ ð−2j2;−1j1; 1j2; 0j5; 2j2Þ ð0j4; 4j2Þ ⊕ ð1j3Þ

⊕ ð− 3
2
; 1
2
j2Þ ⊕ ð− 3

2
; 1
2
j2Þ ⊕ ð1;−1j2Þ ⊕ ð0; 4j2Þ ⊕ ð1j3Þ

10 3 ðð−2j2; 0j5; 2j2Þ ⊕ 0Þ ðð− 5
2
;− 1

2
j4; 32 j4Þ ⊕ − 1

2
Þ ðð1

4
j4; 94 j4; 254 Þ ⊕ 1

4
Þ

⊕ 10 ⊕ ð−2j2; 0j5; 2j2Þ ⊕ 0Þ ⊕ ðð− 3
2
j4; 12 j4; 52Þ ⊕ 1

2
Þ ⊕ ðð1

4
j4; 94 j4; 254 Þ ⊕ 1

4
Þ

3 ⊕ 3 ⊕ 3 ⊕ 6 4 ð− 1
2
j2; 32Þ ⊕ ð− 1

2
j2; 32Þ ð−1; 1j2Þ ð1j3Þ ⊕ ð1j3Þ

⊕ ð− 1
2
j2; 32Þ ⊕ ð− 5

2
; 3
2
j3; 12 j2Þ ⊕ ð−2j2;−1j2; 1j1; 0j5; 2j2Þ ⊕ ð4j2; 0Þð4j2; 0j4Þ

3 ⊕ 3 5 ð−1; 1
2
j2Þ ⊕ ð−1; 1

2
j2Þ ð− 1

2
j2; 32Þ ⊕ ð− 3

2
; 1
2
j2Þ ð9

4
; 1
4
j2Þ ⊕ ð9

4
; 1
4
j2Þ

1 6 ðþ 1
2
Þ (0) (0)
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APPENDIX C: LC
AB OPERATOR COMPONENTS

When working in the chiral basis [i.e. replacing the original Majorana indices A;B;C ¼ 1; 2; 3; 4 by a pair of indices ϵ; ~ϵ
referring, on the model of (10.2) to the combinations þ ¼ 1þ i2, − ¼ 3 − i4, ~þ ¼ 1 − i2, ~− ¼ 3þ i4] the operators LC

AB
occurring in our basic anticommutation relations Eq. (7.1) read (with ϵ; σ; ρ ¼ �)

Lρ
ϵσ ¼ −i½μkbkϵδσϵδρϵ þ

1

2
ð ρð1Þk − ρ

ð2Þ
kÞðbk−ϵδ−σϵ δρϵ þ bkϵδ−σϵ δ−ρϵ Þ þ νkbk−ϵδσϵδ

−ρ
ϵ �; ðC1Þ

L~ρ
ϵσ ¼ 0; ðC2Þ

Lρ
ϵ ~σ ¼

i
2
½μk ~bkσδσϵδρϵ þ ð ρð3Þk − ρ

ð2Þ
kÞ ~bk−σδσϵδ−ρϵ þ νk ~b

k
σδ

−σ
ϵ δ−ρϵ þ ð ρð1Þk − ρ

ð3Þ
kÞ ~bk−σδ−σϵ δρϵ �: ðC3Þ

APPENDIX D: EXPLICIT TENSOR COMPONENTS

The components of the completely symmetric, traceless object τabc introduced in Eq. (11.12) are given by

τ111 ¼
iðxðyþ zÞ − 2yzÞ
4ðx − yÞðx − zÞ ; τ222 ¼

iðyðzþ xÞ − 2zxÞ
4ðy − xÞðy − zÞ ; τ333 ¼

iðzðxþ yÞ − 2xyÞ
4ðz − xÞðz − yÞ ;

τ112 ¼ −
iðxðy − 4zÞ þ 3yzÞ
20ðx − yÞðx − zÞ ; τ113 ¼ −

iðxðz − 4yÞ þ 3zyÞ
20ðx − zÞðx − yÞ ;

τ122 ¼ −
iðyðx − 4zÞ þ 3xzÞ
20ðy − xÞðy − zÞ ; τ223 ¼ −

iðyðz − 4xÞ þ 3zxÞ
20ðy − zÞðy − xÞ ;

τ133 ¼ −
iðzðx − 4yÞ þ 3xyÞ
20ðz − xÞðz − yÞ ; τ233 ¼ −

iðzðy − 4xÞ þ 3yxÞ
20ðz − yÞðz − xÞ ;

τ123 ¼ −
i
20

APPENDIX E: Hð1;1ÞS SPACE: SOLVING THE
CONSTRAINT EQUATIONS

Let us show why the general solution of the constraint
equations (17.32) [arising from the 2þ 1 decomposition of
the Maxwell-like equations (17.19), (17.20) for the sym-
metric tensor kpq arising at level NF ¼ 2] can be para-
metrized by two arbitrary functions of two variables
(together with an additional constant).
A preliminary useful observation is that, when reex-

pressed in the Lorentzian coordinates (17.26), (17.27),
(17.28), some components of τklm vanish, namely,

τp̂ 0̂ 1̂ ¼ 0 ¼ τp̂ 0̂ 2̂: ðE1Þ

As a consequence the constraint C0̂ only involves k0̂ 1̂
and k0̂ 2̂

∂ 1̂k0̂ 2̂ − ∂ 2̂k0̂ 1̂ ¼ ð∂ 1̂γÞk0̂ 2̂ − ð∂ 2̂γÞk0̂ 1̂ ðE2Þ

where γ ¼ 2iðρð1Þ þ μ − αÞ [see Eqs (11.9)–(11.12)].

Therefore, the general solution for k0̂ 1̂, k0̂ 2̂ (considered
at some given initial “time” ξ0̂) can be parametrized as

k0̂ p̂ ¼ eγ∂p̂K½ξ1̂; ξ2̂�; ðE3Þ

where K½ξ1̂; ξ2̂� is a first arbitrary function of two variables.
In this section, it will be often useful to give special

names to the following exponential form of the Lorentzian
coordinates ξ0̂; ξ1̂; ξ2̂:

T ¼ e
ffiffi
6

p
ξ0̂

3 ¼ eðβ1þβ2þβ3Þ;

X ¼ e
ffiffi
2

p
ξ1̂ ¼ eðβ2−β3Þ;

Y ¼ e
ffiffi
6

p
ξ2̂ ¼ eð2β1−β2−β3Þ:

In terms of these exponentiated Lorentzian coordinates, the
explicit expression of the integrating factor eγ entering the
parametrization (E3) of k0̂ 1̂, k0̂ 2̂ reads
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eγ ≔
ðX − YÞ3=8ð1 − XYÞ3=8ð1 − X2Þ3=8

X3=4Y3=8 e−ð
1

2TY2=3
þð1þX2ÞY1=3

2TX Þ:

ðE4Þ

Let us now consider the remaining constraints Cp̂, and C0p̂,
p̂ ¼ 1; 2. Because of the vanishing, indicated above, of
several relevant components of the tensor τklm, one finds that
the two constraints Cp̂ do not involve k0̂ 0̂. [Because of the
identity (17.33) between the constraints, the two constraints
C0p̂ will provide a way to consistently determine k0̂ 0̂ once we
will have determined the “spatial” components kp̂ q̂ (with
p̂; q̂ ¼ 1; 2) of the tensor kâ b̂ (see below).] The essential
issue is then to parametrize the general solution of the two
constraints Cp̂, p̂ ¼ 1; 2, viewed as equations for the three
unknowns k1̂ 1̂; k1̂ 2̂; k2̂ 2̂. There are many ways of doing so.
By assuming that some linear combination of these three
components is known, the constraints Cp̂ ¼ 0 will give two
equations for two other (linearly independent) combinations
of the three kp̂ q̂. Surprisingly, we found that the so-obtained
system of two equations for two unknowns can be elliptic or
hyperbolic, depending on the choice of combination that is
assumed to be known. Among possible choices, we found
one which has nice properties. (We shall see below that these
special properties are linked to a corresponding special
arrangement of the characteristic lines entering the initial-
constraints system with respect to the symmetry walls.) It
consists in taking the particular combination

k2̂ 2̂ − 3k1̂ 1̂ ¼ Hðξ1̂; ξ2̂Þ: ðE5Þ

as second arbitrary function parametrizing the solution of the
constraints. Using this combination to eliminate k2̂ 2̂, the two
constraints Cp̂ ¼ 0 then give a linear system of equations for
k1̂ 1̂ and k1̂ 2̂, with source terms depending on the given
functions Hðξ1̂; ξ2̂Þ and Kðξ1̂; ξ2̂Þ (that enter the k0̂ p̂’s). It is
convenient to rewrite this system in terms of suitably
rescaled versions of all the kâ b̂’s. Namely, we set

kâ b̂ ≡ eλ ~kâ b̂; â; b̂ ¼ 0̂; 1̂; 2̂ ðE6Þ

where the rescaling factor eλ is defined as

eλ ≔ eγ
X1=2ðX − YÞ1=2ð1 − XYÞ1=2

ð1 − X2ÞY1=3 ðE7Þ

where eγ is the integrating factor (E4) introduced above.
In terms of such rescaled versions of the kâ b̂’s (and a

correspondingly rescaled version of H), one gets the
following system of two equations for ~k1̂ 2̂, and ~k1̂ 1̂:

∂ 1̂
~k1̂ 2̂ − ∂ 2̂

~k1̂ 1̂ ¼ s1 ðE8Þ

−ð∂ 2̂ þ ∂ 2̂ðμþ λÞÞ~k1̂ 2̂ þ 3ð∂ 1̂ þ ∂ 1̂ðμþ λÞÞ~k1̂ 1̂ ¼ s2:

ðE9Þ

Here, the new function μ is defined as

eμ ¼ e−γ
ðX − YÞ1=2ð1 − XYÞ1=2

X1=2Y2=3 ; ðE10Þ

while the (known) source terms appearing on the r.h.s.’s are
given by

s1 ¼ −
ffiffiffi
6

p

3
~k0̂ 2̂ þ c ~H; ðE11Þ

s2 ¼
ffiffiffi
6

p

3
~k0̂ 1̂ þ ðr ~H − ∂ 1̂

~HÞ ðE12Þ

where

c ¼ Yð1þ X2Þ þ 2Xð1− 2Y2Þ
2

ffiffiffi
6

p ðX − YÞð1− XYÞ ¼
ffiffiffi
6

p

12

xðyþ zÞ þ 2yz− 4x2

ðx− yÞðx− zÞ
ðE13Þ

and

r ¼ −
4Xð1þ X2Þð1þ Y2Þ þ Yð1 − 18X2 − X4Þ

2
ffiffiffi
2

p ð1 − X2ÞðX − YÞð1 − XYÞ

¼ −
ffiffiffi
2

p �
4ðx2 þ yzÞðyþ zÞ þ xðy2 þ z2Þ − 18xyz

4ðz − yÞðz − xÞðy − xÞ
�
:

ðE14Þ

The system (E8), (E9), can be viewed as a Dirac
equation for the “spinor” ψ ¼ ð~k1̂ 2̂;

ffiffiffi
3

p
~k1̂ 1̂ÞT , with source

s ¼ ðs1;− 1ffiffi
3

p s2ÞT , namely,

Dμþλψ ¼ s ðE15Þ

with a Dirac operator (coupled to a “connection” ωp̂ ¼
∂p̂ω given by the gradient of a function ω) of the general
form

Dω ¼
� ∂ 1̂ − 1ffiffi

3
p ∂ 2̂

þ 1ffiffi
3

p ð∂ 2̂ þ ω2̂Þ −ð∂ 1̂ þ ω1̂Þ

�
ðE16Þ

with the function ω given [in the case of our specific
Eq. (E15)] by the sum ω ¼ μþ λ.
It happens that, in our case, the Dirac-like Eq. (E15) has

special properties that allows one to control its solutions,
and even to explicitly compute its relevant Green’s func-
tion. Let us start by noting that it is a Dirac equation of the
hyperbolic (rather than elliptic) type. Indeed, if we absorb
the factors 1ffiffi

3
p in a rescaling of ξ2̂ (say ξ2

0 ≔
ffiffiffi
3

p
ξ2̂) the

derivative terms in our Dirac equation take the form
γ1̂∂ 1̂ þ γ2

0∂20 , where the 2 × 2 matrices γp
0
are given in

terms of the standard Pauli matrices σPaulii by
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γ1 ≡ γ1
0 ¼ σPauli3 ; γ2

0 ¼ −iσPauli2 : ðE17Þ

This shows that these two gamma matrices define a Clifford
algebra of Lorentzian signature: γp

0
γq

0 þ γq
0
γp

0 ¼ 2ηp
0q0 ,

with ηp
0q0 ¼ diagðþ1;−1Þ. The Dirac equation (E15) is

therefore (as any Lorentzian Dirac equation) equivalent to a
symmetric-hyperbolic first-order system for the unknowns
ψ ¼ ð~k1̂ 2̂;

ffiffiffi
3

p
~k1̂ 1̂ÞT , with known sources s¼ ðs1;− 1ffiffi

3
p s2ÞT .

In addition, as the gamma matrices γp
0
are real, we are

discussing here a real Dirac equation. From the point of
view of looking for solutions of the constraints (E8), (E9),
we can think of the 2-plane ξ1̂; ξ2̂ as being a 2-dimensional
Lorentzian spacetime (though, with respect to the Gab
metric in β space, it is a spacelike hypersurface, which we
are using as initial Cauchy slice.) These remarks suffice to
prove that, locally, a general solution of the constraints [i.e.
of Eq. (E15)] is determined by the two arbitrary functions
of two variables H;K (which enter the source term s),
modulo some “initial conditions” in the auxiliary
2-dimensional Lorentzian space ξ1̂; ξ2̂ (which might
involve arbitrary functions of one variable, but no other
arbitrary functions of two variables).
Surprisingly, it is possible to be more precise, and to

solve globally the Dirac Eq. (E15) when incorporating
boundary conditions that are natural for our problem. This
arises because two remarkable facts happen to be true:
(i) the first-order system (E15) is directly related to the
well-known second-order Euler-Poisson-Darboux (EPD)
equation; and (ii) the characteristics lines, as well as the
singular line, of this auxiliary EPD equation coincide with
the trace of the symmetry walls βa ¼ βb on the 2-plane
ξ1̂; ξ2̂. Let us briefly explain these facts, and how they allow
one to solve Eq. (E15).
Let us start by exhibiting the connection of the character-

istic lines of our Dirac Eq. (E15) to the symmetry walls.
This follows simply from the fact that we have seen above
that ξ1

0 ≔ ξ1̂ and ξ2
0 ≔

ffiffiffi
3

p
ξ2̂ were Lorentzian coordinates,

so that the corresponding null coordinates read

u ¼ ξ1̂ −
ffiffiffi
3

p
ξ2̂ffiffiffi

2
p ¼ β2 − β1; v ¼ ξ1̂ þ ffiffiffi

3
p

ξ2̂ffiffiffi
2

p ¼ β1 − β3:

ðE18Þ

This result shows that the two symmetry walls β1 ¼ β2

and β1 ¼ β3 are characteristic for the Dirac equation.
As for the third symmetry wall, β2 ¼ β3, it enters our
Dirac equation through a singularity of the connection
terms ωp̂ ¼ ∂p̂ω ¼ ∂p̂ðμþ λÞ. Indeed, by inserting the
(several) changes of variables introduced above, one
finds that

e−ω ¼ e−ðμþλÞ ¼ 1

2
ðcoth½u� þ coth½v�Þ: ðE19Þ

This formula shows that the gradients of ω have (polelike)
singularities not only when either u or v vanish, but also
along the line where u ¼ −v, i.e., in view of the definitions
(E18) of u and v, along the line where β2 ¼ β3.
Summarizing, we have the following correspondences
between the symmetry walls [which are singular lines
for the Dirac equation (E15)] and some special lines in the
Lorentzian 2-plane ξ1̂; ξ2̂ [coordinatized by the null coor-
dinates (E18)]

ðu ¼ 0Þ ↔ ðβ1 ¼ β2Þ; ðv ¼ 0Þ ↔ ðβ1 ¼ β3Þ;
ðuþ v ¼ 0Þ ↔ ðβ2 ¼ β3Þ: ðE20Þ

What is remarkable in these simple correspondences is not
that the symmetry walls are singular lines for our Dirac
equation (indeed, they were singular planes already in the
original SUSY constraints), but that their traces on the
Lorentzian 2-plane ξ1̂; ξ2̂ have a special orientation with
respect to the null coordinates (E18). Let us henceforth
consider that we work within our canonical chamber a, i.e.
β1 ≤ β2 ≤ β3. This chamber has two boundaries: the null
boundary u ¼ 0 (β1 ¼ β2), and the timelike boundary uþ
v ¼ 0 (β2 ¼ β3). In rescaled Lorentzian coordinates
ξ1

0 ≔ ξ1̂, ξ2
0 ≔

ffiffiffi
3

p
ξ2̂, these two boundaries are, respec-

tively, the diagonal ξ1
0 ¼ ξ2

0
, and the vertical axis ξ1

0 ¼ 0. If
we give ourselves some boundary conditions for ψ on these
boundaries, and if we can construct a Green’s function G
(satisfying these boundary conditions) for our Dirac equa-
tion, we can conclude that the convolution G⋆s of the
Green’s function with the sources s will define the (unique)
solution ψ satisfying the boundary conditions. (We are
assuming here for simplicity that the data H;K have a
compact support, away from the boundaries, so that the
source s is regular and compact supported.)
Natural boundary conditions for ψ are obtained as

follows. A local analysis, near a symmetry wall βab ≡ βa −
βb of the solutions of the Hð1;1ÞS -sector SUSY constraints
shows that the general solution is a superposition of two
types of solutions: a regular solution where the symmetric
tensor kpq behaves like βþ3=8

ab as βab → 0, and a singular
solution where kpq behaves like β−5=8ab . As was already
mentioned above, the fact that there exist conserved Dirac-
like currents that are bilinear in the wave function (i.e.
bilinear in kpq for the present case) suggests that we should
impose that kpq is square integrable when integrated over a
spacelike section in β space (say

R
dξ1̂dξ2̂ ∼

R
dudv).

Imposing such a square-integrability requirement leads
us to keeping, at each symmetry wall, only the solutions
where kpq behaves like βþ3=8

ab . We shall use this restriction
in solving our Dirac-like system, and, in particular, in
constructing a Green’s function incorporating these boun-
dary conditions.
We succeeded in constructing a Green’s function G for

our Dirac-like system, incorporating such boundary con-
ditions, in the following way. As the source s has two
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independent components, we can separately consider the
two problems where one of the two components of s vanish
(and, when looking for a Green’s function, where the
remaining component is a δ function). Let us first consider
the case where s1 ¼ 0. In that case, the explicit form of the
first equation of our system, namely Eq. (E8), says that
there exists a scalar field Φ such that

~k1̂ 2̂ ¼ ∂ 2̂Φ and ~k1̂ 1̂ ¼ ∂ 1̂Φ: ðE21Þ

Inserting this form in the second equation of our system,
namely Eq. (E9), leads to a second-order equation for the
potential Φ. This second-order equation remarkably hap-
pens to be equivalent to an EPD equation. This equivalence
occurs because the function e−ω ¼ e−ðμþλÞ happens to
enjoy the following special separation property:

e−ω ¼ e−ðμþλÞ ¼ 1

2
ðcoth½u� þ coth½v�Þ≡ UðuÞ þ VðvÞ:

ðE22Þ

In the last equation, we have introduced the new null
coordinates U and V, defined as

U ≔
1

2
coth½u� ¼ 1

2

�
X þ Y
X − Y

�
;

V ≔
1

2
coth½v� ¼ 1

2

�
XY þ 1

XY − 1

�
: ðE23Þ

In terms of these transformed null coordinates, the equation
for the potential Φ becomes

∂U
1

ðU þ VÞ ∂VΦþ ∂V
1

ðU þ VÞ ∂UΦ

¼ 4s2
3ð1 − 4U2Þð1 − 4V2Þ : ðE24Þ

Let us recall that the general form of the homogeneous EPD
equation is

�
∂U∂V þ m

U þ V
∂U þ n

U þ V
∂V

�
F ¼ 0: ðE25Þ

It is easily seen that the differential operator appearing in
the equation for Φ is of the EPD type withm ¼ n ¼ − 1

2
. As

we are in the case wherem ¼ n, one can explicitly compute
the Green’s fuction for this differential operator. This is best
seen by rescaling the potential Φ by a factor ðU þ VÞ1=2.
Namely, if we set

Φ ¼ ðU þ VÞ1=2 ~Φ ðE26Þ

we find that the differential operator acting on ~Φ reads

�
∂U∂V −

3

4

1

ðU þ VÞ2
�
~Φ: ðE27Þ

In terms of the new null coordinates U;V the two
boundaries where we can impose boundary conditions are

ðβ1 ¼ β2Þ ↔ ðU ¼ ∞Þ; ðβ2 ¼ β3Þ ↔ ðU þ V ¼ 0Þ:
ðE28Þ

In the auxiliary 2-dimensional Minkowski space spanned
by the null coordinates U;V, we can think of the first
boundary U ¼ ∞ as being past null infinity (I−), while the
second boundary U þ V ¼ 0 would be the spatial origin.
(In terms of auxiliary “time” and “radius” coordinates T
and R, with U ¼ R − T , and V ¼ Rþ T , this interpre-
tation would, respectively, correspond to the boundaries
T → −∞ with T þR ¼ Cst, and R ¼ 0.) By going
through the various redefinitions of independent and
dependent variables, it is straightforward to relate the
boundary conditions (at the two relevant symmetry walls
β12, β23) on kpq discussed above to corresponding boun-
dary conditions on ~Φ at the corresponding boundaries U ¼
∞ (I−), and U þ V ¼ 2R ¼ 0. More precisely, a local
analysis of the equation for ~Φ at these boundaries yields the
following. First, near I− an incoming-radiation behavior
for ~Φ, i.e. ~ΦðU;VÞ ∼ ϕinðVÞ þOðU−1Þ would correspond
to a singular solution kpq ∼ β−5=812 . Therefore, in terms of ~Φ
we should impose a no-incoming-radiation condition at I−

(in the U;V plane). Second, a local Fuchs-type analysis of
the equation for ~Φ at the regular singular point U þ V ¼
2R ¼ 0 leads to an indicial equation for the exponents s in
~Φ ∼ ðU þ VÞs ∼Rs of the form sðs − 1Þ ¼ 3

4
. The solutions

of this indicial equation are s ¼ 3
2
and s ¼ − 1

2
. As the

difference between these two exponents is an integer, the
(more regular) solution built around s ¼ 3

2
will be unam-

biguously defined, while the (more singular) solution built
around s ¼ − 1

2
will contain logarithmic terms (and an

arbitrary constant). Similarly to what happened at the other
boundary, one finds that the logarithmic-free, more regular
solution around R ∼ β23 ¼ 0 corresponds to a square-
integrable solution kpq ∼ βþ3=8

23 , while the more singular
solution (containing logarithms) corresponds to a non-
square-integrable kpq ∼ β−5=812 . Summarizing, our boundary
conditions lead us to select solutions (and, in particular, a
Green’s function) for ~Φ which satisfy the two conditions:
(i) absence of incoming radiation on I−, and (ii) vanishing
of ~Φ at the spatial origin R ¼ 0 according to ~Φ ∼R3=2.
These conditions uniquely select a Green’s function for the
~Φ equation of the reflected-retarded form

G−3
4
½UP;VP;U;V� ¼ θ½UP þ V�θ½U − UP�θ½VP − V�

× R−3
4
½UP;VP;U;V�: ðE29Þ

Here, the field point is denoted UP;VP; U;V denotes the
source point on which one will integrate after the inclusion
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of the source term, and θ denotes Heaviside’s step function.
In addition, the “Riemann” function R−3

4
is explicitly given

by a Legendre function of index þ 1
2
. More generally, we

have

R−1
4
∓1

2
½UP;VP;U;V� ¼ P�1

2

�
1 − 2

ðUP − UÞðV − VPÞ
ðUP þ VPÞðU þ VÞ

�
;

ðE30Þ

where the upper-sign case corresponds to R−3
4
, while the

lower-sign (defining Rþ1
4
) will correspond to the other EPD

equation considered below, and where we adopt the
following definition of Legendre functions:

Pν½z� ¼ 2F1

�
−ν; 1þ ν; 1;

1 − z
2

�
:

These two Green’s functions satisfy

�
∂UP

∂VP
−

3

4ðUP þ VPÞ2
�
G−3=4½UP;VP;U;V�

¼ −δ½UP − U�δ½VP − V�; ðE31Þ
�
∂UP

∂VP
þ 1

4ðUP þ VPÞ2
�
G1=4½UP;VP;U;V�

¼ −δ½UP − U�δ½VP − V�: ðE32Þ

These reflected-retarded Green’s functions include three
Heaviside step functions θ. The two step functions θ½U −
UP�θ½VP − V� are the usual step functions defining a retarded
Green’s function, having a support (w.r.t. the source point, for
a given field point P) in the past light cone of UP;VP. The
additional step function θ½UP þ V� geometrically corre-
sponds to restricting the support of the Green’s function to
whatwould be the image in theT ;R plane of a past light cone
in a, say, four-dimensionalMinkowski spacetime T ;X ;Y;Z

(withR ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
X2 þ Y2 þ Z2

p
). Indeed, the line UP þ V ¼ 0

is easily seen to be the image in the T ;R plane of the
continuation of the radial null geodesic emitted (toward the
past) by the field point UP;VP and reflected toward positive
values of R after it encounters the origin R ¼ 0. Such
reflected-retarded Green’s functions (solutions of the EDP
equation) are also uniquely selected when considering the
T ;R-plane Green’s function for the radial equation describ-
ing the propagation of massless scalar waves having a fixed
multipolarity Ylmðθ;φÞ. In the latter case, it has been found
that the (retarded, multipolar) Green’s function in the T ;R
plane was given by Eq. (E29) with a Riemann function Rl
given byEq. (E30)with aLegendre functionPl instead ofP�1

2

(see Appendix D in Ref. [65]). [In both cases, the regularity
condition at the radial origin R ¼ 0 selects a Pν solution
instead of a Qν one (which would contain logarithms).]

Let us briefly discuss the case where it is the second
component of the source s which vanishes, i.e. s2 ¼ 0. In
that case, the second equation of our system, namely
Eq. (E9), says that there exists a scalar field Ψ such that

eðμþλÞ ~k1̂ 2̂ ¼ 3∂ 1̂Ψ and eðμþλÞ ~k1̂ 1̂ ¼ ∂ 2̂Ψ: ðE33Þ

Inserting this form in the first equation of our system,
namely Eq. (E8), leads to a second-order equation for the
potential Ψ. This second-order equation again happens to
be equivalent to an EPD equation. When using the trans-
formed null coordinates (E23), it is an EPD equation with
m ¼ n ¼ þ 1

2
, of the form

∂UðU þ VÞ∂VΨþ ∂VðU þ VÞ∂UΨ

¼ 4s1
3ð1 − 4U2Þð1 − 4V2Þ : ðE34Þ

Using the rescaled potential

Ψ ¼ ðU þ VÞ−1=2 ~Ψ ðE35Þ

we now get the differential operator

�
∂U∂V þ 1

4

1

ðU þ VÞ2
�
~Ψ: ðE36Þ

The discussion of the boundary conditions for this equation
is entirely analogous, mutatis mutandis, to the one above.
The two exponents at U þ V ¼ 2R ¼ 0 are now 1

2
; 1
2
þ 0

(where the þ0 indicates a logarithmic correction
R1=2 lnR). Again, one finds that one must select as a
regular solution the solutions of the ~Ψ equation that contain
no incoming radiation on I−, and which are regular on the
axis R ¼ 0 (this excludes the solution containing a
logarithm). At the end of the day, this selects again a
reflected-retarded Green’s function, which is now of the
form

Gþ1
4
½UP;VP;U;V� ¼ θ½UP þ V�θ½U − UP�θ½VP − V�

× Rþ1
4
½UP;VP;U;V� ðE37Þ

with a Riemann function Rþ1
4
given by the lower-sign case

of Eq. (E30), i.e. given by a Legendre function of index − 1
2
.

The matricial Green’s function for the original Dirac
equation (E15) can finally be read off from the following
explicit solution for ψ in terms of the two components of
the source s, i.e. the solution of the system (E8)–(E9):
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�
k1̂ 1̂
k1̂ 2̂

�
¼

�
3e−μ∂ 1̂e

ðλþμÞ=2 eλ∂ 2̂e
−ðλþμÞ=2

e−μ∂ 2̂e
ðλþμÞ=2 eλ∂ 1̂e

−ðλþμÞ=2

�

×

�
G1=4⋆σ1
G−3=4⋆σ2

�
ðE38Þ

where the ⋆ denotes an integration over U;V. Here, the new
source terms σ1 and σ2 [which differ from s1; s2 by factors
related to our redefinitions above, and notably by a Jacobian
linked to du=dU ¼ 1=ð2U2 − 1=2Þ�, etc.) are given by

σ1 ≔
2s1

3ð1 − 4U2Þð1 − 4V2Þ ffiffiffiffiffiffiffiffiffiffiffiffiffi
U þ V

p ;

σ2 ≔
2

ffiffiffiffiffiffiffiffiffiffiffiffiffi
U þ V

p
s2

3ð1 − 4U2Þð1 − 4V2Þ :

Note that the presence of derivatives acting on the scalar
Green’s functions G1=4, G−3=4 (which contain step

functions) means that the matricial Green’s function
for our Dirac system contains δ functions having their
support on the (reflected) past light cone, in addition to
step functions with support within the interior of the latter
light cone.
Finally, having (uniquely) obtained k1̂ 1̂, k1̂ 2̂, and

k2̂ 2̂ in terms of the two arbitrary functions H and K, it
only remains to determine k0̂ 0̂ (on our chosen initial
Cauchy slice of constant ξ0̂). This is done by integrating
the two constraints C0p̂. We already mentioned that this
system is integrable. It therefore determines k0̂ 0̂ by
a line integral, modulo an arbitrary solution of the homo-
geneous system that involves one free constant, C4,
namely,

kðhomÞ
00 ¼ C4

ð1 − X2Þ3=4ðX − YÞ3=8ð1 − XYÞ3=8
X3=2 e−

ð1þX2ÞY1=3
2TX :

ðE39Þ
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