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We study the quantum dynamics of a supersymmetric squashed three-sphere by dimensionally reducing
(to one timelike dimension) the action of D = 4 simple supergravity for a SU(2)-homogeneous (Bianchi
IX) cosmological model. The quantization of the homogeneous gravitino field leads to a 64-dimensional
fermionic Hilbert space. After imposition of the diffeomorphism constraints, the wave function of the
Universe becomes a 64-component spinor of spin(8,4) depending on the three squashing parameters, which
satisfies Dirac-like, and Klein-Gordon-like, wave equations describing the propagation of a “quantum
spinning particle” reflecting off spin-dependent potential walls. The algebra of the supersymmetry
constraints and of the Hamiltonian one is found to close. One finds that the quantum Hamiltonian is built
from operators that generate a 64-dimensional representation of the (infinite-dimensional) maximally
compact subalgebra of the rank-3 hyperbolic Kac-Moody algebra AE5. The (quartic-in-fermions) squared-
mass term 42 entering the Klein-Gordon-like equation has several remarkable properties: (i) it commutes
with all the other (Kac-Moody-related) building blocks of the Hamiltonian; (ii) it is a quadratic function of
the fermion number N; and (iii) it is negative in most of the Hilbert space. The latter property leads to a
possible quantum avoidance of the singularity (“cosmological bounce”), and suggests imposing the
boundary condition that the wave function of the Universe vanish when the volume of space tends to zero
(a type of boundary condition which looks like a final-state condition when considering the big crunch
inside a black hole). The space of solutions is a mixture of “discrete-spectrum states” (parametrized
by a few constant parameters, and known in explicit form) and of continuous-spectrum states (parametrized
by arbitrary functions entering some initial-value problem). The predominantly negative values of the
squared-mass term lead to a “bottle effect” between small-volume universes and large-volume ones, and to
a possible reduction of the continuous spectrum to a discrete spectrum of quantum states looking like
excited versions of the Planckian-size universes described by the discrete states at fermionic levels Ny = 0

and 1.
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I. INTRODUCTION

Understanding the quantum dynamics of the spacetime
geometry near a spacelike (cosmological) singularity, such
as the big bang singularity that gave birth to our Universe,
is one of the key problems of gravitational physics. Since
the full theory of quantum gravity is still too ill understood
to allow a frontal attack on this problem, one can hope to
make progress by first studying highly symmetrical geo-
metrical models, so that the degrees of freedom of the
gravitational, and matter, fields can be reduced to a finite
number. Among such “minisuperspace models,” the
Bianchi IX model, i.e. a spatially homogeneous [SU(2)-
symmetric] model having spatial sections homeomorphic
to the three-sphere S5, has always played a useful role. In a
classical context, the vacuum (i.e. matter-free) Bianchi IX
model served as the paradigmatic example of the chaotic
approach towards a generic (inhomogeneous) spatial sin-
gularity conjectured by Belinskii, Khalatnikov, and Lifshitz
(BKL) [1] (see also [2]). The same model gave also a fertile
example for the quantum dynamics of space near a big bang
(or a big crunch) singularity [3].
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More recently, the Bianchi IX model has served as an
important test bed for supersymmetric quantum cosmology,
that is the study of the quantum dynamics of cosmological
models, as described within supergravity theories. See
Refs. [4-11], as well as the books [12—14]. As in these
references, we consider here the original “simple” (N = 1)
four-dimensional supergravity theory [15,16]. Though the
supersymmetric Bianchi IX model contains only a finite
number of bosonic and fermionic degrees of freedom, the
previous attempts [4—11] at studying its quantum dynamics
have not succeeded in fully clarifying the structure of its
allowed states, i.e. the complete set of solutions of all the
constraints.

The first aim of the present work will be to remedy this
situation, i.e. to provide a complete description of the
solution space of the quantum supersymmetric Bianchi IX
model. This will be done by using a new approach to the
quantum dynamics of supersymmetric Bianchi models that
generalizes the formalism we used in [17] to study the
quantum dynamics of Einstein-Dirac Bianchi universes. It
differs from the formalisms used in previous works [12—-14]
in describing the gravity degrees of freedom entirely in

© 2014 American Physical Society
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terms of the metric components g,,, without making use of
an arbitrary, local vielbein. We use the symmetry properties
of Bianchi models to uniquely determine a specific vielbein
h*, (with g, = n, ﬁhaﬂhﬁy) as a local function of g,,. In
other words, we gauge-fix from the start the 6 extra degrees
of freedom contained in hé‘ﬂ that could describe arbitrary
local Lorentz rotations. This gauge-fixing of the local
SO(3,1) gauge symmetry eliminates the need of the usual
formalisms [12-14] to impose the six local Lorentz con-
straints J, 5 ~ 0. Another specificity of our formalism will
be to describe the degrees of freedom of the gravitino by
means of a Dirac-like gamma-matrix representation. Such a
representation was notably advocated in Refs. [11,18,19],
and was found convenient in the Einstein-Dirac case [17].
As we shall explicitly discuss below, this gamma-matrix
representation of the fermionic operators is equivalent to a
representation in terms of fermionic creation and annihi-
lation operators (which is, in turn, very close to the
Grassmann algebra-valued functional representation used
in Refs. [4-10]).

The second aim of the present work is to clarify the
occurrence of hidden hyperbolic Kac-Moody structures in
(simple, four-dimensional) supergravity, within a setting
which goes beyond previous work both by being fully
quantum, and by taking completely into account the crucial
nonlinearities in the fermions that allow supergravity to
exist. (Our main results on this hidden Kac-Moody sym-
metry were briefly announced in [20].) Let us recall that the
existence of a correspondence between various super-
gravity theories and the dynamics of a spinning massless
particle on an infinite-dimensional Kac-Moody coset space
was conjectured a few years ago [21-24]. Evidence for
such a supergravity/Kac-Moody link emerged through the
study a la BKL [1] of the structure of cosmological
singularities in string theory and supergravity, in spacetime
dimensions 4 < D < 11 [25-27]. For instance, the well-
known BKL oscillatory behavior [1] of the diagonal
components of a generic, inhomogeneous Einsteinian
metric in D = 4 (also found in the spatially homogeneous
Bianchi IX model) was found to be equivalent to a billiard
motion within the Weyl chamber of the rank-3 hyperbolic
Kac-Moody algebra AE; [26]. Similarly, the generic BKL-
like dynamics of the bosonic sector of maximal super-
gravity (considered either in D = 11, or, after dimensional
reduction, in 4 < D < 10) leads to a chaotic billiard motion
within the Weyl chamber of the rank-10 hyperbolic Kac-
Moody algebra E|, [25]. The hidden role of Ej, in the
dynamics of maximal supergravity was confirmed to higher
approximations (up to the third level) in the gradient
expansion 0, < O of its bosonic sector [21]. In addition,
the study of the fermionic sector of supergravity theories
has exhibited a related role of Kac-Moody algebras. At
leading order in the gradient expansion of the gravitino
field y,, the dynamics of y, at each spatial point was
found to be given by parallel transport with respect to a
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(bosonic-induced) connection Q taking values within the
“compact” subalgebra of the corresponding bosonic Kac-
Moody algebra: say K(AE;) for D = 4 simple supergravity
and K(Ey) for maximal supergravity [22-24]. However,
the latter works considered only the terms linear in the
gravitino, and, moreover, treated y, as a “classical”
(i.e. Grassman-valued) fermionic field. By contrast, the
present work will treat the (spatially homogeneous) grav-
itino y, as a quantum fermionic operator (satisfying
anitcommutation conditions), and will keep all the non-
linearities in the fermions predicted by supergravity. This
will allow us to confirm the hidden presence of the rank-3
hyperbolic Kac-Moody algebra AE;, notably via its
“maximal compact subalgebra” K(AE3).

II. CLASSICAL LAGRANGIAN FORMULATION

In this work we follow the approach and notation of our
previous work [20]. We start from the Bianchi IX metric
ansatz (i,j = 1,2,3)

ds* = —=N(1)2dr* + g;;(1)(z" + N'(1)dt)(v/ + N/(1)dt),
(2.1)

where, as usual, we denote by N(7) and N'(¢) the lapse
and shift functions. The 7’ are (spatially dependent) left-
invariant 1-forms on the SU(2) group manifold:

dr' = %Cijkrj/\fk, (2.2)
where C! jk = €jjx 1s the usual three-dimensional Levi-
Civita symbol (g1,3 = +1).

This metric represents a stack of time-dependent
squashed 3-spheres. Each of these deformed 3-spheres is
still a homogeneous space i.e. all the points on each sphere
are indistinguishable from each other. However, the local
geometry of each of these squashed 3-spheres is aniso-
tropic, the anisotropy being encoded in the time-dependent
quadratic form g,;(¢). At each point the diagonalization of
this quadratic form with respect to the Cartan-Killing
metric

1

kij = _Ecriscsjr =0

J

ijs (2.3)
associated with the SU(2) group symmetry, defines three
special directions.

In order to represent the gravitino degrees of freedom, we
need to introduce a vielbein (“repere mobile”). We adopt a
co-frame of the form

6 = N(1)dt.
0% = hé(t)(v' + Ni(t)dt),

l
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where (h%(t)) is a matrix square root of the spatial-metric
matrix (g;;(1)):

9ij(t) = h{ ()8, 53 (). (2.4)
An important element of our formalism is to gauge-fix the
local Lorentz co-frame 6% by choosing as square root A% of
g;j amatrix uniquely defined from the diagonalization of g;;
with respect to the SU(2) Cartan-Killing metric (2.3). The
latter diagonalization is equivalent to a Gauss decomposi-
tion of g;;, i.e.

gij =Y e sise (2.5)

a

where S? is a SO(3) (orthogonal) matrix, depending on
three (time-dependent) Euler angles (¢“), and where the
three eigenvalues of g;; with respect to k;; (usually denoted
a2, b2, c? [1]) are denoted

_op! Yy
e =42 e = p?,

’

e =2 (26)
In terms of the uniquely defined elements
e e 2 and S% of the Gauss decomposition
(2.5) of g;;, we define hf as'

h = e 759, (2.7)
In addition to the co-frame 62, it is convenient to define a
nonorthonormal spatial co-frame 67

0%: =79+ Nidr: = S% (7' + N'dr)

1

(2.8)
such that

0 = Ndr, 0% = e 67, (2.9)
Viewing S%(¢) as operating a time-dependent rotation of the
spatial frame, we introduce as in Ref. [17] the correspond-

ing “angular velocity” antisymmetric tensor w; j defined as

wapt = SISE = —wp,. (2.10)
The three independent angular velocities w5, wa5, Wy are
linear combinations of ¢', ¢?, > with g“-dependent coef-
ficients, as in the classical mechanics of a spinning rigid
body (see, e.g., [17]).

A consistent ansatz for a homogeneous gravitino field
1;/;‘ in the Bianchi IX geometry is to consider that its 16
vielbein components y4, with respect to the orthonormal
co-frame 6% only depend on time. (Here A =1,2,3,4

'Henceforth we will not explicitly indicate the time depend-
ence (¢) of the various field components.
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denotes a Majorana spinor index, while @ =0,1,2,3 is a
Lorentz-four-vector frame index linked to 6%.)

In second-order form, the Lagrangian density £, of the
N =1, D = 4 supergravity action,

S = /Cmtdt/\’rl/\rz/\’r3 (2.11)

is the sum of a gravitational Einstein-Hilbert part and a
Rarita-Schwinger one:

Ly = Len(o) + CRS(E‘))’K)- (2.12)

The connection w,, By = Dap ﬂH’; (note that the differ-
entiation index is the last on w), entering the Einstein—

Hilbert action [where 6 := det(6%)]

1 1 5 5.5
87[G£EH = EHR((U) = —gQn””ﬂ”n&ﬁygaf,e‘;R“ﬁﬂb(w),
(2.13)

is the sum of the Levi-Civita connection (i)& b = Qapu
(viewed in the vielbein ;) and of a contorsion term B
quadratic in vy,

with

1, _ _ _
Kapy = Rapuly = 3 Wprawy = Warpwy + Wpriva) (2.15)

corresponding to a torsion tensor equal to

) ) 1 1.
Ty 3= 20y = S0 Wy = =5 W31 Ve

: (2.16)

Here, we made use of the anticommuting character of the
(classical) Rarita—Schwinger field which implies
yiMyy = —y My, (2.17)

for any even bispinorial matrix M.
By contrast, the Rarita-Schwinger action piece involves a
connection D that is Levi-Civita (w) with respect to the
space-time vector index of v (here viewed in a frame) but

which is the full ® = w + k when acting on the spinor
index:

I
87GLgs = +§9Wa}’aﬂypiﬂlf?

| B A 1 o
= +§91//&7’a/}7 (V/}l//y + ZK,;;;ﬁ}’p”l//y)-

Here 0 =det(6%), and V denotes the usual covariant
derivation with respect to the Levi-Civita connection while
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1 -
Dywy = Opy; + a)Mﬁl// +4 sept Wy (2.18)
Let us recall that, at the classical level, the spin 3/2
gravitino field, w,, satisfies the Majorana “reality”
condition:

Vo =yip=wlC (2.19)
In general—but not always—we will not explicitly indicate
the spinorial indices. The Dirac matrix f and the charge
conjugation matrix C obey the (representation-independent)
relations 7, = —fy,p~" and y, = —Cy,C~' and may be
chosen such that 7 = 8 and CT = —C (conditions which
still leave room for some arbitrariness). The latter relations
imply the (representation-independent) Dirac matrices
property
Cy, =-riC=(Cr,)".
In a Majorana representation, where all the Dirac
matrices are real, and satisfy y; = 70, 7p = —i—yk, it is
convenient to choose

(2.20)

p=C=iyy=—iy’

Note that the conjugation = y' iyy = w'iyy defined here
differs by a factor —i from the convention used in [24].

Finally, the explicit second-order form of the total
Lagrangian (2.12) can be expressed (up to a divergence
term) as

o 1 o
8”G£EH = —N\/ER

:—e LS (BP+ BE + BB +
B+ (N3 + w?)2sinh?[g! — g]}

+ (N2 +w?)2sinh? [ —
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1 1
TéT, — _TabiT,

10 o
SﬂG,Ctot—9|: R+L3/2+2 4 y/fa

(2.21)

where R is the scalar curvature associated to the @
connection (the standard Einstein-Hilbert Lagrangian),
L), is the Rarita-Schwinger Lagrangian part quadratic
into the spinorial field

(2.22)

and

(2.23)

The detailed computation of the Bianchi IX reduction of
the (simpler) Einstein-Dirac Lagrangian was discussed in
[17]. Here the calculation is analogous except for the
following facts: (i) the part of the Lagrangian that is
quadratic in the fermions involves an extra contribution
due to the vectorial part of the y, field, and, (ii) there are
now terms quartic in the fermions.

The total Lagrangian (2.21) consists of three kinds of
terms; (i) a gravitational part 5 gR (i1) terms quadratic in
|/ 0L3 /25 and (iii) terms quamc iny: o T2. Let us look
in detail at the structure of the first two types of terms.

In terms of the rotating frame components N of the shift
vector and of the angular velocity components (w! : =Ws3;
w2 = w3 w? i =wy3), see Egs. (2.9), (2.10), the Einstein—
Hilbert Lagrangian density reads (with g := det g;;)

+ (N 4 w')2sinh2[52 — f°]

1 > ] =SB 24
N{4e a zb:e 26 a zb:e .

This is conveniently rewritten as

° 1 . .
872G Ly = — |f°G o ff° +
EH N [/ b/

1

— NV, (B).

(NF+ wWh) Ko (N +w0)] = NV, (B)

(2.24)

Here we defined the rescaled lapse N := N/,/g = Nef'*#*+/' and we introduced the quadratic form G, defined by

Gab/.ja/'}b = Z

a

1.€.

P-(ZF) -

—2(B'B* + BB+ BB, (2.25)
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01 1
Gp=-|1 0 1 (2.26)
110

to express the kinetic terms Ty = lGabﬁ ,B of the loga-
rithmic scale factors: B! = —loga p?=—logh, p =
—log ¢, measuring the squashing of the three-geometry.
The matrix G,, has signature (—+ +) and will play a
crucial role below where it will appear as the metric of the
Cartan subalgebra of the hyperbolic Kac-Moody algebra
AE; [27].

The kinetic term T, is associated with the “rotational
kinetic energy of the frame,” and involves the inertia matrix
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which becomes singular on the “symmetry walls”: ! = 2,
/52 :ﬁ3 Ol‘ﬂ3 :/7)1.

The potential term V,(f) entering the gravitational
action is given by

Vy = %Z —4pt _
a

It involves the “gravitational-wall forms™ g + p°. (For the
general definition of symmetry walls and gravitation walls
see [27].)

Let us now consider the quadratic spinorial term £3 /2
Similar to what was used in [17] and in many previous
works, one can simplify the kinetic term of the gravitino y;
by replacing it by the following rescaled gravitino field W:

-22,/be ¥ (2.28)

sinh?[$? — /] 0 0
Ky=2 0 sinh?[* — p'] 0 U, = gy, (2.29)
0 0 sinh?[p! — p? ,
B =p where g = a?b*c? = 20" +*+°) denotes the determinant
: of g;;. This leads to
(227)  of g,;. This lead
J
[ L'y poa
e (e, et
1 S g~ _— . s~
toN W5 (65(NT+wh)el " + 6, (NP +wP)e! " + (B - p7)5:) ¥,
O{p.q.r}
N Z W5 (65(NT+wh)e? P + &,(N" + w")e?" "),
Of{p.q.r}
1 - . PO .
=Ty N [(B7+ By + sinh(BP — B (N + w)y"
2N
O{p.q.r}
—sinh(B? — p9)(N" + w’)y‘?]\lfi,
1 < = r
+Z€Ekﬂ]\ Z \I/i,(e_zﬁp + E_Zﬁq - 6_2/} )]/;\I’q
O{p.q.r}
D W cosh(BP — By (N” +w) W, (2.31)
O{p.q.r}
where we introduced the notation
Z AlBjCk = A1B2C3 + A283C1 + A331C2, (232)
O{i.j.k}
to indicate a sum on all circular permutations of the indices, and
s 0t -
Gi=senr T s (2.33)
ol =Co:C7!, =Cy,C7. (2.34)
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Before discussing the full structure of the gravitino
action, let us focus on its kinetic term

1 - A
\I'ay"‘”’\ll

5 b ,ya by, (2.35)

NI>—‘

T3, =+>

where W, = WIC. The structure of this kinetic term is
clarified by replacing the (rescaled) gravitino field ¥, by
the new gravitino variables

®%:=y*W, (no sum ona),

(2.36)

Q4 = -,y (2.37)
that proved to be convenient in the study of fermionic Kac-
Moody billiards [28]. In terms of these new gravitino
variables (and choosing C = iyy) the kinetic term (2.35)
simplifies to

LG, @b,

T p—
3/2 +2

(2.38)
This simple form makes more manifest the (super)sym-
metry between the $“’s and the ®“’s (and the fact that

supergravity is a ‘“square root” of general relativ-
ity [29,30]).

III. HAMILTONIAN FORMULATION

In the following we shall use units such that c = 72 = 1,
and such that the value of Einstein’s gravitational constant
(87G)~! (which we factored out of the total supergravity
action) absorbs the spatial-volume factor V3 =
Jsve sUR 1 AT’AT? of the undeformed three-sphere corre-
spondlng to a =b = c = 1. In view of the normalization
C;.k = ¢g;j; of the one-forms 7!, this round three-sphere
[homeomorphic to the group manifold SU(2)] with a =
b = ¢ = 1 has a curvature radius equal to R = 2 and hence
a volume V5 =27’R3=162%. In other words, we
set 827G = V5 = 1672

With such a choice, the bosonic momenta are

1 .
T, = a£ == TGabﬁb + Hav (31)
oF N
oL 1 -
= ==K, (NP +wP)+ P 2
Pa I ab(N +w )+ ar (3 )

where the extra terms I1,, P, are quadratic in ¥ and come
from velocity-dependent couplings associated with the w
part of the connection (2.14). More precisely, such velocity

couplings come from the connection terms in ¥V ¥ with
(without any summation on repeated indices)

D4 (ﬁ Sap + sinh(B = B2) (wyj + €apeN°)). (3.3)

PHYSICAL REVIEW D 90, 103509 (2014)

° 1 i
Wy50 = —]T]COSh(ﬁa _ﬂb)<wal§ + EabCNC), (3.4)
and give rise to an action contribution of the form
E(3/2vel) = Bana + (N[l + Wa)Pa' (35)

Expressed in terms of ¥, and 0 the expressions of T1,
and P, are rather complicated. They simplify when
replacing the W,’s by the new gravitino variables ¢,

Eq. (2.36), and go by its following shifted version
P — gl _ yﬁz},& g0 OZ(I)a

a
whose vanishing defines a convenient “Kac-Moody coset
gauge” [24]. In terms of these variables, the spin-dependent
contributions I, and P, to the momenta z,, p, read

1 _
Htl — EGab\IﬂO@b (37)
and
1
Po=5 eailcosh(p = p)SH — W 0sinh (5~ p'), M)
k.l
(3.8)
where
sh2 — % (@37,612((1)1 + (1)2) + (i)lyf)iﬁq)l
+<1,27,012@2 H1,01252
= s, (3.9)

Similar objects S and SB! are defined by cyclic
permutations of the indices.

The spatial components of the Levi-Civita connection,
i.e. (without summation on repeated indices)

-2 (3.10)

o 1 d a b
Wype = 562:/} (6—2/7' + 6_2/} —e Eubes
give rise to velocity-independent action terms coupling the
p’s to quadratic terms in the fermions, namely2

1.5 I -
_ g0 20 2 —2pr
Vso = 2\11 gp e P ysdr +2 gp PPy dF

1 - .
-2 Z PP (e + 7" — 7y d9. (3.11)

O{p.q.r}

2We define 75 = 15 = %1423 and 7, = y1y25.
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There are also quartic terms in the fermions, issuing from
the quadratic terms in the torsion that appears in the total
Lagrangian (2.21). They consist of terms quadratic or linear

in UY and of terms independent from o0

—22 SR (D Oy )
k,l

1

_Z (I)kyk},nqu)l (bk},k},nqu)l) (3'12)
k,l

[\)

Here, and below, we use the shorthand notation

P = Z@a

(3.13)

in terms of which we have ¥/ = w0 — yf)(I).

Let us finally discuss the issue of the Hamiltonian
formulation of the gravitino variables. When dealing with
classical (i.e. Grassmannian) fermionic variables ¥,, the
fundamental Poisson brackets ({, }») between them and
their canonical conjugate momenta w? are (see Ref. [31])

{U,, @B}, = -85, (3.14)
As usual for Grassmannian degrees of freedom, the

Lagrangian is of first order in the time derivative. Let us
consider a general one given by

1 . 1.
Lp= E\IJAM(AB>\I/B = _E\I’AM(AB)\I’B- (3.15)

The conjugate momenta are defined by a left derivative:

a0 1

~MUB 3.16
Gy =M (36)
As a consequence we have the constraints
1
=@ + M, %0, (3.17)

2
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and using the Poisson brackets (3.14) we obtain

(%Y = —MUP).

(3.18)
Thus, assuming the kinetic matrix M“8 to be invertible,
the constraints (3.17) are of second class. Accordingly,
the Dirac brackets ({, },) of the fermionic variables are
given by
{Wa. Uplp = M (4p) (3.19)
where M 4 are the components of the inverse of the matrix
(MB): MABMpe = 52. The canonical quantization cor-
responding to these fermionic Dirac brackets will then lead
to anticommutators {, } equal to
{\i’A’ \i’B} = i{Wa. Vp}p = iMyp. (3.20)

In the case that interests us here, starting from the kinetic
term (2.35) we obtain

orT
@ 2 _ L greybany,

1A
ovs 2

p_
=

(3.21)

which implies linear second-class constraints, from which
we infer

1 X
-5 (7517137/00_1)/\8' (3.22)

(s, w8}, = >

In the Majorana representation we use, this simplifies to

A T CES)

{4, \Ifg bp=~—

When using the new gravitino variables (2.36), this further
simplifies to

{94, Db}, = —iG?5 . (3.24)

After a tedious, but standard, calculation we obtain an
Hamiltonian action Ly = pg — H (g, p) of the form

['H = ”aﬁa + pawa +%Gabq)aT(i)b

+NUAS, — NH — N'H;. (3.25)
Here N = Ng~'/2 as above. The structure of the total
Hamiltonian entering (3.25) is the one expected in a theory
with local invariances. It involves eight Lagrange multi-
pliers corresponding to eight local gauge symmetries: the
four components of W, (local supersymmetry), the rescaled
lapse function N (local temporal diffeomorphisms), and the
three shift functions N’ (local spatial diffeomorphisms).
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The variation of these Lagrange multipliers leads to the
eight corresponding constraints:

(i) the four supersymmetry constraints (henceforth

often abbreviated as “SUSY constraints™)

Su =0, (3.26)

(ii) the four diffeomorphisms constraints, that can be
split into the Hamiltonian constraint, linked to time

reparametrizations

H=~0 (3.27)
and the momentum constraints

H;~0 (3.28)

reflecting spacelike coordinate reparametrizations.
Let us note in passing the remarkable fact (already
emphasized in [32]) that, starting from Lagrangian action
that is quartic in the fermions, the Hamiltonian ends up
being linear in Wg. (The use of the shifted variable \116,
Eq. (3.6), is convenient, and linked to the Kac-Moody-coset
gauge-fixing used in [24].)

Before giving the explicit form of S, H, and H;, let us
note the fact that H; has a very simple link with the
momentum p, conjugated to the angular velocity w<
Indeed, as appears in Egs. (2.24), (3.2), (3.5), the shift vector
enters the Lagrangian action always in the combination

Wab + SuthE = Sabc(wc + NZ)
where we recall that
Nt = S?N i

As a consequence, one concludes that (similarly to the
Einstein-Dirac case [17])
H;=-S%p,. (3.29)
The coincidence between these Euler-angle-related momenta
and the spatial diffeomorphism constraints is the result of the
coincidence between the adjoint representation of the homo-
geneity group of the Bianchi IX cosmological model, and the
SO(3) automorphism group of the structure constants C%..
which was used in the Gauss decomposition Eq. (2.5) to

parametrize the 3-beins h{?. Let us emphasize that the Poisson
brackets of the p, between themselves do not vanish®

*For the interpretation of the minus sign occurring on the right-
hand side of these Poisson brackets see Ref. [17], section (3.2).
Notice that they are the typical Lie-Poisson brackets obtained
from a reduction of the so(3) algebra by a Poisson map. (See
Ref. [33].)
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{pav pb} = “€abcPc (330)
as is the case in general for the momenta constraint of a
diffeomorphism invariant theory of gravity coupled to matter.
The rotating frame components of the momenta p, are
(Euler-angle-dependent) linear combinations of the
momenta conjugate to the Euler angles.

In addition, the dependence of the other constraints, i.e.
S, and H, on the rotational momenta p, is found to be
quite simple; namely we have

Sy =8V +8Sp.
H = H(O) 4 Hrot’

where the superscript (0) indicates a reduction to zero
rotational momenta, and where

1 P3

S = +Zm(712(‘1’1 — %)), + cyclicys,
(3.31)
ot — l%(p% —2pscosh(B' — 52)S1,)
4sinh?(p' — p?) ‘
+ cyclicyys. (3.32)

With this notation the p,-independent piece of S, explic-
itly reads

1 .

0 a . Sym cubic

SO = _5% TG+ S+ ST S (3.33)
with

1 a
Sh=52 (P, (3.34)

l PN
Sit = _ZCOth[ﬁl — PIS12(r' 3 (@' = @?)) 4 + cyclicyos,
(3.35)

and

cubic __
S =

& Sl ) (@ - ),
k#l
— (PO (M !) ]

1 A - .
+ ZZ[(@O‘P")‘I’/’X — (DY @h) (yP* k), ). (3.36)
k
As for the p,-independent piece of H it has the structure

1
HO = 3 G m, + V(3. ®) (3.37)
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where

(G“b):% 1 - (3.38)

is the inverse of the matrix (2.26), and where V(j, ®) is a
d-dependent potential term of the form

V(B.®) = Vy(B) + Vo (B. @) + Vu(p. ®).  (3.39)

Here V() is the usual, purely bosonic (i.e. ®-independent),
Bianchi IX potential (2.28), and the potential contribution
quadratic in ® has the structure

1 1 1
V(B @) = Ee_zﬂlfn(q)) + 56—2/}2]22(@) + §€_2ﬁ3f33(‘1’)
(3.40)

where the J,,(®) ~ & are some quadratic fermionic terms
that will be discussed below [see Eq. (8.10)]. The final term
in Eq. (3.39) is quartic in ¢ and is made of two types of
contributions:

Val5,2) = ot (5 )55 (@) + cot (57— 7)5%,()

1
+Zc0th2(ﬂ3—ﬂl)S§1(<I>)+<I>4—terms. (3.41)

In view of the link (3.29) and of the structure of the
rotational contribution to H and Sy, the eight constraints
Egs. (3.26), (3.27), (3.28) are equivalent to the following
eight constraints:

P, ~0, (3.42)
S¥ ~o0, (3.43)
HO ~0 (3.44)

As a consequence of the classical consistency of super-
gravity, and of the consistency of its Bianchi IX reduction,
one can verify that this set of constraints defines an (open)
algebra under the classical Dirac-Poisson brackets of the
form

{pa’pb} = _Ccabpc’ (345)

1
(V.8 ) =4LS,(p. 0)SY — i H6,5,  (3.46)
(SO HO}, = MBSY + N,HO.  (3.47)

We will discuss below the (more demanding) quantum
analog of the above set of constraints.

PHYSICAL REVIEW D 90, 103509 (2014)
IV. QUANTIZATION

We quantize the constrained dynamics defined by the
Hamiltonian action (3.25) a la Dirac, i.e. by (i) replacing
Poisson-Dirac brackets by appropriate (anti)commutators;
(i1) verifying that this allows one to construct operators
providing a deformed version of the classical algebra of
constraints; and (iii) imposing the quantum constraints Cas
conditions restricting physical states |¥): C|¥) = 0.

For the bosonic degrees of freedom we adopt a
Schrodinger picture. The wave function of the Universe
is seen as a function of the three exponents ', %, and > of
the scale factors and of the three Euler angles ¢ that
parametrize the rotation matrix entering the diagonalization
Eq. (2.5) of the metric tensor g;;. Accordingly the basic
conjugate quantum momenta operators are represented as
(h=1)

R 1
T, — ;8/}41,

plpu = - al/}“ .
i

The rotational momenta p,,, Eq. (3.2), associated with the
rotational velocity w* (which are linear in the ¢“’s) are
quantized by the natural ordering corresponding to differ-
ential operators acting on the group manifold (see, e.g.,
[17]). This ordering guarantees that these operators satisfy a
SU(2) algebra:

[i)av f)b] - _ieabcﬁc' (41)
The fermionic operators have to obey anticommutations
relations dictated by the Dirac brackets (3.22)—(3.23):

i

(0890} = ifwd vy, = -2

(71}7&700_1),43 (4.2)
or in terms of operators associated to the new gravitino
variables (2.36):

{84, 95} = —iGP(OC) 5 = +iGP(rgC ) ap  (43)
where G is the inverse of G, [see Eq. (3.38)].

The anticommutator (4.3) is written in a way indepen-
dent of the Dirac-matrices representation. In a Majorana
representation where C = iy; it simplifies to

{85, &5} = G84p. (4.4)

This shows that the 12 quantum fermionic operators @)X
have to satisfy a Clifford algebra in a 12-dimensional
space with signature (4%, —*). Thus the gravitino operators
can be represented by 64 x 64 Dirac matrices and the
wave function of the Universe by a 64-dimensional
spinor, depending on A and ¢ ¥ = ¥, (p% ¢"), with
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oc=1,...,64. The constrain;s (3.26), (3.27), (3.28) have to
be represented by operators Sy, H, and p, and imposed a la
Dirac on the state |¥):

Z,w) =0, AW =0, H¥) =0 (45
Actually, it shall be more convenient to work with the
following alternative form of the constraints:

0 7 A
V) =0, HON) =0, p¥) =0, (46)
in which one has separated out, as in Eq. (3.42), the
“rotational” contributions to S 4 and H, and used the
(naturally ordered) quantum version of the diffeomorphism
constraint i.e.
H; =-5%p,. (4.7)
We have checked that the two sets of quantum constraints
(4.5) and (4.6) are equivalent. This follows from the
following facts. First, Eq. (4.7) shows the equivalence of
the diffeomorphism constraints to the last constraint in
Eq. (4.6). Second, the rotational contributions to S4 and H
(written, at the classical level, in Egs. (3.31) and (3.32) are
simple and additive. At the quantum level, they do not
introduce any ordering ambiguities because the p,’s
commute with the f’s and ®’s, and because the only terms
that are quadratic in the p,’s are their squares p2:

1

) 7 23(p? D3 I
81 =+ o= 110 (@ = )+ exelien,
(4.8)
g _ 1 1 (P2 = 2p; cosh(B? — p?)5,3)
4sinh?(f2 — )
+ cyclicyys. (4.9)

V. ORDERING OF THE QUANTUM CONSTRAINTS

We have seen above that the ordering of the quantum
Euler-angle momenta p,. is naturally solved by working
with the related rotational momenta p,. There is no
ambiguity in the relative ordering of the f*’s and their
conjugate momenta r, because (after our choice of rescaled
lapse N = Ne#' +7°+7) there are no mixed terms o« 7 f(f3) in
the constraints. The z,,’s appear linearly with f-independent

coefficients in SIE‘O), while they appear quadratically (again
with f-independent coefficients) in H(©).

Finally, the only quantum ordering ambiguity that might
a priori be present in our framework concerns the ordering
of the gravitino variables among themselves. However,
this issue is uniguely solved by imposing the following

two requests: (i) that the operators :9540) satisfy the same
Hermiticity condition, say

PHYSICAL REVIEW D 90, 103509 (2014)

(5.1)

as the & operators they are built from (CTJZ = &%) [here,
and henceforth, we use a tilde to denote the Hermitian
conjugate—in the sense of Eq. (5.8) below—of an oper-

ator]; and (ii) that the anticommutators of the 320)’5 close,
similarly to the classical result (3.46), on A5, , modulo a
linear combination of the Sg))’s. The requirement (i) will

define a unique ordering of the 3&0)’5, while the require-

ment (ii) will then define a unique ordering for AHO),
As we shall see later, the quantum Hamiltonian operator

H'9), associated with the supersymmetry operators 3(0)
satisfying the Herm1t1c1ty condition (5.1), turns out not to

be Hermitian: H ;é a© ). However, the non- Hermiticity

of A is pretty mild, and can be cured by a suitable
rescaling of the wave function; see Eqs (8.5) and (8.6)

below. The effect of this rescaling on 3&0) would, however,
make them formally non-Hermitian. This raises the issue of
whether there might exist other nonformally Hermitian

orderings of the 3&0)’5 (inequivalent, modulo rescalings, to
our choice) leading to a consistent constraint algebra. We
leave this problem to future work. Our perspective in this
work is to consider that it is natural to require some form of

Hermiticity of the more basic SUSY operators 3<0), and
that our discovery that the simple requirement Eq. (5.1)
leads to a closed constraint algebra is a sufficient moti-
vation for taking seriously this prescription and studying its
consequences.

The Hermiticity conditions on the S 4 s can be 1mposed
purely algebralcally, by using the basic rules: AB = BA,
i=—i, ﬂ'a = 7, pa Das <I>A = <I>A It is, however,
important to know how it can be practically realized when
explicitly representing the Clifford-algebra elements <i>f‘ as
64 x 64 complex matrices. Indeed, the Clifford algebra
spin(8™,47) can be realized (after diagonalizing the quad-
ratic form G%6,5) by means of 12 Dirac matrices that
verify (M,N =1, ...,12)

Iyl + vy = 20y (5.2)
where nyny = diag(u, ;;) They may be chosen
such that ' '

I, =Ty, M=1...8, (5.3)
I, =-Ty. M=09, .12 (5.4)
Here, the dagger denotes the usual matrix Hermitian

conjugation I'" =TT, If we introduce the product of the
timelike I"’s, namely
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h=ToI'1ol'; T2, (5.5)
which satisfies
h=ht=h", =1, (5.6)
we obtain
[ =hryh, A=1,..,12, (5.7)
ie. Iy =TI, with
X:=h"'XTh=n"'X"h. (5.8)

This definition of Hermitian conjugation of the fermionic
variables is related to endowing the 64-dimensional fer-
mionic Hilbert space [i.e. the space of spin(8,4) spinors]
with the pseudo-Hermitian inner product

(ulv), = a’hv

(5.9)
satisfying (u|v), = (v|u),. Indeed, the Hermitian conju-
gate is easily checked to be such that

(u|Xv), = (Xulv),,. (5.10)
Note, however, that the sesquilinear form (u|v), is pseudo-
Hermitian, rather than being Hermitian in the usual sense:
the norm (u|uy),, is real but not positive definite. Actually, as
a real quadratic form it has signature (+32, —%2).

Similar to the usual Dirac equation case where the
Hermitian properties of the y matrices, and the reality of
the mass term, ensure the conservation of the Dirac current
JH = —iyy*y, the Hermiticity condition (5.1) satisfied by
the SUSY constraints ensure the conservation (in f space;
i.e. dpJg = 0) of the four currents

J4(B) = (U(B)[D4W(B)), = UThd4 W

for any solution W(f) of the SUSY constraints.

~When using Lorentzian coordinates in f space, say
&gl & [as defined below, see Eqgs. (17.26) or
Egs. (A5)], the local conservation law 9,J% = 0 implies
the global conservation of the four “charges”

(5.11)

04 = / détdé’ s, (5.12)
Contrary to the usual Dirac charge Q = [d°xJ* =
[ dxy'y, these conserved charges are not positive-
definite sesquilinear forms in the wave function W. [The
“chiral” representation of the ®4’s introduced below will
also make clear that the four integrated charges Q, vanish
when considering a wave function having a fixed fermion
number N (because ¢ ~ b + b). On the other hand, it will

PHYSICAL REVIEW D 90, 103509 (2014)

not generally vanish if one considers a wave function that
contains components within, say, two successive fermion-
number levels.] However, one should note that the system
of first-order PDE’s on the wave function ¥ () defined by
the SUSY constraints,

SV =0

constitutes, like the usual Dirac equation y#(0,—ieA, )y
my =0, a first-order symmetric-hyperbolic system. The
definition of these systems [34] is that they admit a
formulation in terms of real variables and real coeffi-
cients where the derivative terms are of the form
(A0y + Bid;)y + - -, where the real matrices A and B’
are both symmetric, and where A is positive definite. When
working with a complex system, it is easily seen (by
decomposing into real and imaginary parts) that one can
replace the conditions of symmetry by conditions of
Hermiticity: A" = A, B'" = B’ for complex matrices. By
considering one particular spinor index A (say A = 1), and
by multiplying the corresponding SUSY constraint on the
left by the anti-Hermitian 64 x 64 matrix ®, we obtain a
first-order evolution system of the type 9y ¥ = B§(9;\I/ +---

where B = QJ?CI)% is easily checked to be Hermitian. Note
in passing that this ensures that the positive-definite norm
U, though not strictly conserved, satisfies a conservation
law (involving the corresponding spatial current \I/*Bz\I/)
modulo lower-derivative terms. As a consequence, it is
natural to assume that the wave function W is (at least)
square integrable (a fact that we shall exploit below).

VI. QUANTUM (ROTATONALLY REDUCED)
SUSY CONSTRAINTS

The requirement of Hermiticity of the S'g»’s determines
them to be equal to

A 1 o A ~e o~
V=) m b+ S ST L& (6)

with
e O (62)
and
& =~ comlp! — P81 (1 (@' ~ #7)),
+ (}’iﬁ(‘i)l — 8%)),81,] + cyclic;s (6.3)

where
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The operator S, together with similarly defined operators
S»3, 85, are spinlike operators satisfying the usual su(2)
commutation relations: [Sy;, S5,] = +iS), etc. (The Kac-
Moody meaning of these spin operators will be further
discussed below.)

The last contribution in Eq. (6.1) is cubic in the ¥’s and
reads

A | P X cubic
SICAublc _ E (Zgublc + ZA ) (65)
where
$cubic T% . 0, 1 308 a,
R0 = 23 (W5 ) (") — g D (Lar"Ty) (1 F5),
a a,b
I~ on o as .
+ 3 (o W) ((r"p)a + (r"Wa)a),
a,b

k#l
1 1 .
+ 3 D (BFPP)E -y (&M (D)
k k#l
I 2 1 X oia 2
5 84— D (@Y, (6.6)

where the (anti-Hermitian) term —éi)ﬁ will drop out of

S5 These operators completely determine the (reduced)
Hamiltonian operator that we will now discuss.

VII. SUPERSYMMETRY ALGEBRA
AND ORDERING OF THE QUANTUM
HAMILTONIAN OPERATOR

We have shown, by direct computation, that the (rota-
tionally reduced) supersymmetry operators satisfy anti-
commutation relations of the form

0180 4 SOZO — 4i2C (coth p, &)SY + LA
(7.1)

where H© reduces when # — 0 to the classical value
(A3.39) of thAe Hamiltonian, andA where the coefficients
LSz (coth B, @) are linear in the ®’s, namely
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LSz (coth B, &) = LE2 (coth B) &5,

with numerical coefficients L, (coth §) that are linear in

the three hyperbolic cotangents

Lig, (coth f) = LG + ZLSBZ;)abc coth(s8” — f5%).

b<c

We give in Appendix C the explicit values of the
LSz (coth B, ®)’s in a special (chiral) basis for the @'s that
will be introduced below.

Note that, in Eq. (7.1), the supersymmetry constraints

S(CO) entering the right-hand side appear on the right. This

shows that the four supersymmety constraints 3’20) W) =0

imply the Hamiltonian constraint 4 |¥) = 0. It is easily
seen that Eq. (7.1) implies further commutation relations of
the form

18 O] = B8 + iN, A,

As the operators p, commute both with the ng’s and with
H (0), we conclude that the three quantum constraints S (0>,
HO), p. entering (4.6) form an open (or “soft”) algebra,
and that the Dirac equations (4.6) are, a priori, formally
consistent.

In view of the above results, the set of quantum
constraint equations (4.6) is equivalent to the reduced set
of 3 4+ 4 constraints

) =0, SV =o. (7.2)

The first three equations in (7.2) are equivalent to requiring
that the wave function of the Universe W does not depend
on the three Euler angles, and therefore is a 64-component
spinor of spin(8,4) that only depends on the logarithms of
the scaling factors of the metric, 4!, f, and f°:

Y=, (6=1,...64). (7.3)

Then, the second set of equations in (7.2) consists, in
view of the explicit form (6.1) of the supersymmetry
operators, in imposing four simultaneous Dirac-like equa-
tions restricting the propagation of the 64-component
spinor ¥,[f] in the three-dimensional Minkowski space
of the f’s.

Let us add two comments concerning the structure of the
anticommutation relations (7.1):

(i) There exists a version of these anticommutation

relations of the form
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A,

V&Y 4 SOE0
= 2i (LS4 (coth B, )8 + SVLE (coth g, ))

1,
+-HY

) 6AB ’ (74)

where A 510) differs from A% by a quantum reorder-

ing. [In this form I:IEIO) is Hermitian, while, as we

shall see later, the A defined by (7.1) contains a
non-Hermitian piece, of order O(#), that will be
conveniently reabsorbed by redefining the wave
function W(f).]

(i) Contrary to the usual superalgebra appearing in
supersymmetric quantum mechanics, of the form

P A A 1.

SASB+SBSA :EHSAB, (75)
the presence of the supersymmetry operators S'(CO) on
the right-hand side of Eq. (7.1) does not allow one to

use the 320)’3 as ladder operators generating new
solutions of the SUSY constraints by acting on
old ones.

VIII. EXPLICIT STRUCTURE OF THE
QUANTUM HAMILTONIAN

Similarly to the well-known fact that the (second-order)
Klein-Gordon equation (L] — u?)y is a necessary conse-
quence of the (first-order) Dirac equation (y#0,, — u)y = 0,
the Hamiltonian constraint (which is a Wheeler-DeWitt
(WDW)-type equation)

HONW) =0 (8.1)

is a necessary consequence of the four SUSY constraints

3&0) |¥) = 0. However, like in the Dirac and Klein-Gordon
cases, it is useful to have in hand the explicit structure of the
Hamiltonian constraint because it brings out more clearly
the physical meaning of the various interaction terms
predicted by supergravity.

The explicit expression of the (rotationally reduced)
Hamiltonian operator H*) [defined as the operator appear-
ing on the right-hand side of the anticommutation
relations (7.1)] is given, in the p-space Schrodinger
representation, by

200 = G (7, + iA,(B)) (&, + iA,(B)) + 2% + W(B)
= =G (9, — A.(B)) (D — Ap(B)) + 12 + W(P).
(8.2)
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In this equation, #, = —id, (with 9, := 9/0p%), and the
“vector potential” A,(f) is a real vector field® in 8 space.
(We have omitted an explicit identity operator lg, in front
of the differential operators.) One finds that the vector
potential’ A,(f) is a pure gradient:

A,(p) = 0,InF = F19,F (8.3)

with

F(f) = ' (sinh 81, sinh S35 sinh 85,)"1/8,  (8.4)

where we introduced the convenient shorthands

pP=p+p+p, Pra=p' =P, etc.

As the vector potential A, occurring in equation (8.2) is a
pure gradient, it can be eliminated, without changing the
other terms, by working with the rescaled wave function

U'(p) = F(B)~"¥(p). (8.5)

in terms of which the Hamiltonian operator reads

2H'Y = 2F ' HO(FV') = (G & 2, + % + W(B)) W/
(8.6)

Let us now comment on the structure of the “spin-
dependent” potential terms in the WDW-type equation (8.2).
Both terms, fi> and W(ﬂ) are 64 x 64 matrices acting in
spinorial space. The separation between these two types of
terms is defined so that the “mass-squared” term /1> does not
depend on the f’s, and survives as a constant, but spin-
dependent, term in the limit where all the exponential terms
present in the potential W (/) tend to zero.

Indeed, the remaining potential term W(f) can be
separated into several pieces:

W(p) = Wi (B) + Wy(B) + Wim(B).  (8.7)
The first one, WSOS is spin independent (i.e. diagonal in
spinorial space), and is simply twice the usual bosonic
potential, (2.28), describing the mixmaster dynamics of
Bianchi IX models [1,2]:

1
Wi (B) = 2V, () = 5 e = 2P + cycliey.

(8.8)

“This real vector field comes from the reordering of the
manifestly Hermitian anticommutation relations (7.4) into
the right-ordered form (7.1).

Actually, in an analogy with the electromagnetically coupled
Klein-Gordon equation, the vector potential would be the purely
imaginary field iA,,.
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In the framework of supergravity this potential term is
accompanied by two complementary spin-dependent
pieces that decay exponentially as some linear combina-
tions of the f’s get large and positive. The first one,

W;(ﬁ) =e '] (®)+ e_zﬂzjzz(i)) + €_2ﬂ3333(‘1%>, (8.9)

involves the products of exponentials of 23!, 2%, 23 (i.e.
half the linear combinations of the f’s that enter in the
dominant potential terms in W{°($), and that drive the
BKL oscillatory dynamics of the f#’s) by operators that are
quadratic in the gravitino field. For example, the linear form
2p' (gravitational-wall form) is coupled to

A A 1 21 253, & A N 30 2344
J11(<I>):E[<I>1y123(4<131+(I>2+q>3)+<1>2y123(1>3]. (8.10)

We shall discuss in the next section the Kac-Moody
meaning of the three operators Ji1s Jans, J33 defined by
considering cyclic permutations of Eq. (8.10).

The second spin-dependent, and f-dependent, contribu-
tion is quartic in the gravitino field. It reads (with 1g4
denoting the identity operator in the 64-dimensional spinor
space)

(312(&\)))2 - l64

475pin 1 .
Ws?m(ﬂ) = 5 m + Cy0110123. (811)

The operators S;,(®), etc., whose squares enter W:giﬁ (B),
are the quadratic-in-® “spin operators” that were intro-
duced above in Eq. (6.4), and that entered linearly in the
supersymmetry operators Ss.

Let us now discuss the squared-mass term /i entering the
WDW equation. This term is f independent, but it is spin
dependent, i.e. it is a 64 x 64 matrix in spinorial space. It
originates from quartic fermionic contributions to the
Hamiltonian. More precisely, it comes from two types of
®* contributions: (i) the original quadratic-in-torsion (and
therefore quartic-in-fermion) terms in the second-order
action; and (ii) additional terms quadratic in the spin
operators coming from Eq. (3.41) because of the iden-
tity coth? =1+ 1/ sinh? 8.

As we shall discuss in detail in the next section, the term
i? plays a crucial role when considering the quantum
billiard limit where a wave packet propagates between the
well-separated Toda-like exponential walls defined by the

various terms in Wi (). In this regime, the wave function
far from all the exponential walls can be approximated by a
plane wave in S space:

U « expliz,f°]. (8.12)

Actually, as we are discussing here the “primed” form of
the WDW equation,
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2H'Y = (G770, + > + W(B))W =0,

we need to work with the rescaled wave function
(), Eq. (8.5).

In view of the form (8.4) of the rescaling factor, when
one is far from all the walls, this rescaling leads to a wave
function of the form

U o« explin] ] (8.13)
involving a primed momentum differing from the original j
momentum 7, by a purely imaginary shift:

r, =7, — iw,. (8.14)
The components @, entering this complex shift are given
by a permutation of {1, % ,% which depends on the choice
of billiard chamber (among six possibilities; see below).
For instance, when using what will be in the following
our canonical billiard (or Weyl) chamber, labeled (a),
and corresponding to the inequalities 1 < ! < > < f°,
the (covariant) components of w, will be {w, =1,
w, = %,w3 = %} [In a Weyl chamber obtained by a
permutation ¢ of (1, 2, 3), such that 1 K% K% K%,
they will be {w, =1,w, =3, @, =1}]

The important point we wish to make here (anticipating
its derivation below) is that the diagonalization of the
squared-mass operator determining the mass-shell condi-
tions for the shifted # momentum entering various pieces of
the wave function ¥’

't = G, = —p? (8.15)
leads to the following list of eigenvalues:

15 1 15

7+_
2 2

6 3 20 3

l’ 8

© ¥
5’ 8

3 -8

s

4

)
(8.16)

Here we have given the different eigenvalues taken by the
mass-squared operator, ordered (as indicated by the sub-
script going from 0 to 6) by the value of a certain Fermion
number N, which will be defined below. The superscript
indicates the dimensions of the various spaces having a
given value of N. For instance, the N = 2 subspace is of
dimension 15, and this subspace is an eigenspace of i> with
eigenvalue —3. We shall discuss in detail below the
structure of the solutions of the SUSY constraints corre-
sponding to the list of eigenvalues (9.14), but we wanted to
emphasize from the start that, among the 64 dimensions of
the total spinorial space, fi® is negative (i.e. tachyonic) in 44
of them!
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IX. HIDDEN KAC-MOODY STRUCTURE OF
SUPERSYMMETRIC BIANCHI IX COSMOLOGY

One of the main results of this work concerns the Kac-
Moody structures hidden in the (exact) quantum
Hamiltonian (8.2). First, let us recall that the wave function
of the Universe W(f) is a 64-component spinor of
spin(8,4) which depends on the three logarithmic scale
factors ', 2, 8. In other words, supergravity describes a
Bianchi IX Universe as a relativistic spinning particle
moving in # space. The spinorial wave function (/)
must satisfy four separate Dirac-like equations S 2=
(+£®40, +---)¥ = 0 (where the 4’s are four separate
triplets of 64 x 64 gamma matrices). As shown above,
these first-order Dirac-like equations imply that ¥ neces-
sarily satisfy the second-order, Klein-Gordon-like equa-
tion AY = (-1G*9,0, + - )V = 0.

On the other hand, studies a la BKL of the structure of
cosmological singularities in string theory and supergravity
(in dimensions 4 < D < 11) have found that the chaotic
BKL oscillations could be interpreted as a billiard motion
in the Weyl chamber of an hyperbolic Kac-Moody algebra
[25-27]. This interpretation was extended by including the
dynamics of the gravitino, and led to the conjecture of a
correspondence between various supergravity theories
and the dynamics of a spinning massless particle on an
infinite-dimensional Kac-Moody coset space [21-24]. In
the particular case of pure vacuum gravity in D = 4, the
conjectured Kac-Moody algebra corresponding to the
gravity dynamics is AE3 [26]. In this section, we shall
study in detail the structure of the quantum dynamics of the
64-component supergravity spinorial wave function ¥ (/)
in S} space, to exhibit to what extent it contains Kac-Moody
related elements. This will contribute to showing to what
extent the conjectured Kac-Moody coset or gravity corre-
spondence holds.

The first basic Kac-Moody feature hidden in this dynam-
ics of the Universe is the fact that the (Lorentzian-signature)
metric G, defining the kinetic term of the “ff particle” is the
metric in the Cartan subalgebra of the hyperbolic Kac-
Moody algebra A E5 [26]. Second, the potential term W (/) in
Eq. (8.2) is naturally decomposed [see Eq. (8.7)] into three
different pieces which all carry a deep Kac-Moody meaning.
The first term, Wg (p), given by Eq. (8.8), is the well-known
bosonic potential describing the usual dynamics of Bianchi
IX oscillations [1,2]. Its Kac-Moody meaning is that it is
constructed from Toda-like exponential potentials ~e 2% (F)
involving the following six linear forms in the f’s:

() =+ 0. ab=12.3.

(9.1)
These six linear forms coincide with the six roots of
AE; located at level # = 1 (“gravitational walls,” linked
to the level-1 AE; “dual-graviton™ coset field ¢, = ¢p,
of Ref. [27]).
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Third, the purely bosonic (spin-independent) potential
Wg"s (f) is accompanied, in supergravity, by a spin-
dependent complementary piece given by Eq. (8.9). This
spin-dependent potential WiP"(8,®)=e1#) ], (d)+---
involves the three dominant (gravitational) Kac-Moody
roots af, () =2p', etc. each one being coupled to an
operator that is gquadratic in the gravitino variables,
see Eq. (8.10).

The third contribution to W(f) involves the three level-0
Kac-Moody roots

AFB) = =P )=

ay" = = pl. (9.2)
These three linear forms are called “symmetry-wall forms”;
each one of them is coupled to an operator that is quartic in
the &’s. See Eq. (8.11) which involves the squares of the
three spin operators S;,(®), Sy;(®), 85,(®) defined in
Eq. (6.4) (modulo cyclic permutations).

A truly remarkable fact, which clearly shows the hidden
role of Kac-Moody structures in supergravity, is that the
operators entering H as (spin-dependent) basic blocks,
S 125 3‘23, 3’3, T, j33 generate (via commutators) a Lie-
algebra which is a 64-dimensional representation of the
(infinite-dimensional) “maximally compact” subalgebra,
K(AE3), of AE3

Let us first indicate why such a structure is related to the
conjectured Kac-Moody or supergravity correspondence
[21-24].

According to the latter conjecture, the dynamics of the
bosonic degrees of freedom is equivalent to geodesic
motion on a coset space G/K, where G is a hyperbolic
Kac-Moody group (over the reals) and K its maximal
compact subgroup. When considering D =11, N =1
supergravity, it is conjectured that G is the group associated
with E|,. In the case we are considering here of D = 4,
N =1 supergravity, G gets reduced to AE3, and K to the
corresponding maximal compact subgroup of AEj, say
K(AE;). A geodesic on G/K is described by a one-
parameter family of group elements g(¢) € G, considered
modulo right multiplication by an arbitrary element k() in
K. Decomposing the Lie-algebra valued “velocity” of g(¢)
in P € Lie(G)©Lie(K) and Q € Lie(K) pieces,

digg™" = P(1) + Q(1). (9:3)
the coset Lagrangian describing a geodesic on G/K is
simply

1

L=

(P|P) (9.4)

where (:|-) denotes the (unique) invariant bilinear form
on Lie(G).
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The coset “lapse” function n(7) is a Lagrange multiplier
enforcing the constraint that the considered geodesic is
null: (P|P) = 0. The equation of motion of g(#) can be
written [in the coset gauge n(f) = 1] as

9,P(1) = [Q(1), P(1)]

(9.5)
where [-,-] denotes a Lie-algebra bracket. Equation (9.5)
shows that the Q piece of the velocity (i.e. the piece within
the compact algebra Lie(K)) can be viewed as the con-
nection describing (via its Lie-bracket action) how the
(bosonic) coset velocity P rotates along the geodesic.

According to the coset or supergravity conjecture, the
same Lie(K)-valued piece of the velocity plays also the
role of the connection describing how the fermionic degrees
of freedom rotate as some one-parameter coset fermion
peosel (1) propagates along the considered bosonic geodesic
of the supersymmetric space G/K:

a \I/coset st \choset (96)
Here QS - Wt denotes the linear action of the abstract
Lie-algebra element Q € Lie(K) on a member W' of a
vector space, on which QY defines a representation of
Lie(K). In Refs. [22-24,28] the coset fermion W was
taken as a classical, Grassmannian object living in a finite-
dimensional vector space (of dimension 12 for the K(AE;)
case [28]), and QY was, accordingly, a 12 x 12 “vector-
spinor” representation of K(AE;).

Let us indicate here the Kac-Moody structures hidden
within our quantum supergravity framework which, indeed,
lead to a gravitino of motion resembling the conjectured
one, Eq. (9.6). At the quantum level, the equations of
motion of the gravitino operators @J‘Z‘ derive, according to
the general Heisenberg rule, from the commutator of the

Hamiltonian operator H with the @jﬁ’s. In the gauge where
\116 =0, N = I, and N¢ =0, the Hamiltonian operator

following from Eq. (3.25) is simply H. The Heisenberg
equation of motion for the gravitino operators are

0,94 = i[H, d4].

For these equations to resemble the classical, coset-expected
equations of evolution (9.6), the quantum Hamiltonian

H should parallel the classical structure of the K(AE;)-
connection @, which was found in previous works
[22-24,28] to be of the form

0= ZQQJDC’

where « labels the positive roots of AE5, and where

Ja = Ea - E—a = Ea + a)(Ea) (97)
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is the generator of K(AEj3) associated with the positive root
a. [Here, E, denotes a generator of AE; associated with the
root a, and @ denotes the Chevalley involution, which, by
definition, fixes the set K(AE3).] In addition, the numerical
coefficients Q, are, roughly (i.e. when separately consid-
ering the effect of each root in the coset Hamiltonian) of the
form Q, ~ e P p_J, where p, is the momentum con-
jugated to the variable v,, parametrizing the E,-dependent
piece in the velocity 0,97 (see, e.g., Sec. 2.4 of [28]). Such
a Kac-Moody-related structure is present in our quantum
Hamiltonian A, especially if we consider it before its
reduction to zero rotational momenta.

First, H contains the following contributions that are
quadratic in the ®’s and that are related to the three
dominant gravitational roots:

N 1 ~
Hé - ECIBe_a?‘(ﬂ)JH +

C'i
+2

1 9 (A
2 C5 ey

~5(0) J 5. (9.8)

In addition, the terms linear and quadratic in the rota-
tional momenta p, conjugate to the angular velocities w,,
[see Eq. (3.2)] contribute to the Hamiltonian terms of the
form

N 1 1 A .
fym 4m ( —cosh (Xsym (ﬂ>S12)2 + CyC11C123 .
(9.9)

The terms quadratic in the ¢’s in the latter expression are

1, coshay"(B) »

P35~ 9.10
e sinh?a}" (B) (5.10)

512 =+ CyCliC123.

When inserting these contributions in the Heisenberg

equations of motion, one will have contributions to 8,94
of the respective form

~Clye” B i[T,,, B4 + cyclic)p
and

o) o L
~=p3 m i[S15. 4] + cyclicyp;.

These terms will be of the expected form

Q- (DX ~ e_(l(/})pa"lgS ’ (I)g
if the commutators i[J,;, ®%], —i[S),, ®%] (respectively
associated with the roots af, and a}}") correctly reproduce

the corresponding actions J3* - @4, within the vector-spinor
representation of K(AEj3).
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That this is indeed the case follows from the functorial
property of the second quantization of the gravitino.
Indeed, similarly to what was noticed in the spin—% case
[17], the quantization conditions (4.4) ensure that if
we are given a first-quantized operation O'9, acting as a
12 x 12 matrix on the combined vector-spinor index (a, A)
of ®4, the corresponding second-quantized operator &
defined as

n 1 —
qu = 5 ZGab¢i(01q®)Z
a,b,A

(9.11)

will generate, by commutators, the action of O'¢ on ¥4, i.e.

A 2 A —
[0, 4] = (O'1D)4, (9.12)
and will also satisfy quantum commutation relations that
exactly parallel the matrix commutation relations satisfied
by the first-quantized matrices O, i.e.

a2 g
[Olq’ qu] = [Olq’ qu]' (9.13)
We have checked that, modulo a conventional factor +i
needed to pass from the anti-Hermitian generators’ used in
Refs. [24,28] to the (formally) Hermitian ones used in the
present work, we had indeed such a first-quantized —
second-quantized mapping between the vector-spinor
representation generators J)° of previous works [24,28],
and our quantum operators Si,,...,Jqj,... entering the
Hamiltonian H, namely

. [
Slhzere — EGab(I)aT(—iJ;Equ))b’

12

. 1 i iJvs
I = 2Gu T (T @)

2 n

As a consequence of the structure of the Lie algebra
K(AEj3), we can conclude from this result that the basic

blocks 312,323,331,}11,j22,}33 generate (via commuta-
tors) a Lie-algebra which is a 64-dimensional representa-
tion of the (infinite-dimensional) “maximally compact”
subalgebra, K(AE;), of AE;. First, we note that the Ss
generate the (£ = 0) subalgebra SO(3) of K(AE;):

[:9127323] = +i3’31, etc.

Second, though the quantum Hamiltonian explicitly fea-
tures only the three gravitational-wall generators Ji1s T,
J33, associated with the real roots af, aj,, a3;, the ones
associated with the subdominant gravitational-wall roots

®Note also that the gravitational-root generator J;; was
denoted J;.p3 in [28].
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afy, a5, agl are generated by acting with the S,,’s on the
dominant J,,’s. For instance,

A

PN
Jip=—==181.J1)-
12 2[ 12911

Then, having so constructed quantum generators for
K(AE5) at levels 0 and 1, the commutators of level-1
generators among themselves will generate (modulo
level-0 generators) the level-2 generators. By induction, all
generators can be obtained, and the consistency of the
(12-dimensional) vector-spinor representation guarantees
that one so generates a consistent (though unfaithful)
representation of the full K(AE3;) Lie algebra by 64 x 64
matrices.

Above, we focused on the Kac-Moody meaning of the
terms in A that are quadratic in fermions. On the other
hand, we see in Eq. (9.9) an analog of a well-known fact: a
Lagrangian containing a linear coupling to velocities, say
L =14+ Ag (sothat p = OL/0g = ¢ + A), leads to the
Hamiltonian H = 1 (p — A)?, which contains, besides the
linear coupling —A p, an extra term quadraticin A = p — g.
It was argued in Ref. [35], in the context of a coset model
including spin—% fermions y, rather than the spin—% fermions
U of supergravity that this mechanism will generate a
squared-mass term x> formally given by the quadratic
Casimir of the compact Lie-algebra K, i.e.

1
2 _ E P 75)2
Hcoset = 5 - (l‘]tx)

where the superscript s refers to a spinor representation of
K. (See also the discussion in [17].)

The extension of this result to a second quantized spin—%
coset model would suggest an operatorial squared-mass
term of the form

. 1 A
/’lgoset = 5;(1'](\;)2,

i.e. the quantum version of the formal definition of the
(Hermitian) Casimir of K. If that were the case, we would
expect the operator > to commute with all the generators of
the compact Lie algebra K [K(AE3) in our case].

It is remarkable that our (uniquely defined) result for the
squared-mass generator 4> happens indeed to belong to the
center of the algebra generated by the quantum K(AE;)
generators S'ab, J 4 (i.e. it commutes with all of them). This
term gathers many complicated, quartic-in-fermions con-
tributions: not only contributions quadratic in the spin
operators S‘ab [via Eq. (9.9)], but also all the infamous y*
terms present in the original, second-order supergravity
action. In spite of this mixed origin, at the end of the day,
the structure of the operator /> is remarkably simple. Not
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only does it belong to the center of the algebra generated by
the K(AE3) generators S‘a,,, J ., but the quartic in fermions
operator /i’ can finally be expressed in terms of the square
of a very simple operator (which also commutes with
S‘ub, J ), namely, we find

L1 7.
0= E—gczp (9.14)
where
oo lo Faisigh
Cr :=§Gab<1)y . (9.15)

As we shall discuss next, Cj is related to the fermion
number operator N by

Cr=Np-3.

(9.16)

Let us now recall the definition of the Weyl chamber of
AE5 and show its connection with various elements of the
Bianchi IX dynamics. In Kac-Moody theory a Weyl
chamber is defined as a polyhedron of f space (identified
with the space parametrizing a Cartan subalgebra of AE;)
which is bounded by r hyperplanes a;() = 0 correspond-
ing to a set of “simple” roots of AEj3, i.e. a set of linear
forms o; (), i = 1, ..., r (Where r denotes the rank; equal to
3 in the present case) such that all the other roots a(f3) can
be written as a linear combination of the simple roots with
integer coefficients which can be taken to be either all
positive (for “positive” roots) or all negative (for “negative”
roots). In the case of AE; one can take as simple roots
ai(B) = =B\, ax(B) = — % and ay(f) = 26". The
first two roots are symmetry-wall forms azybm (f) (modulo
some choice of signs), while the last root is a gravitational-
wall form o, (8). The corresponding AE; Weyl chamber is,
by definition, the polyhedron of § space where a;(f3) > 0,
a>(B) =0, and a3(B) > 0. In other words, it is such that
0 < B! < f? < p3. We shall refer to it as being the “canoni-
cal Weyl chamber” in f space. Its boundaries are the two
symmetry walls p! = g%, and p*> =, as well as the
gravitational wall 23! = 0. The canonical Weyl chamber
in /3 space (as well as some of the equivalent Weyl chambers,
see below) is illustrated in Fig. 1.

The role, in our Hamiltonian, of the boundaries of the
Weyl chambers is somewhat dissymmetric. The three
symmetry walls ' = %, > =, and p* = ' are such
that the terms containing hyperbolic cotangents of the
corresponding symmetry-wall forms " (f) (associated
with corresponding spin operators S,;,) become singular on
them [see e.g. (6.3)]. By contrast, the terms containing the
gravitational-wall forms o, (f) (either in the SUSY con-
straints or in the Hamiltonian) do not become singular on the
gravitational walls. Rather, the corresponding gravitational-
wall potential terms are “soft” potential walls which start
being repulsive as the f particle representing the dynamics of
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<

FIG. 1 (color online). f space light cone and its decomposition
in Weyl chambers separated either by symmetry (s) or gravita-
tional (g) walls. Six Weyl chambers are shown. One of them will
be used as our canonical Weyl chamber.

the geometry starts penetrating within, say, the o, (f)
gravitational wall defining one of the boundaries of the
canonical Weyl chamber. It is only when considering the
near-singularity billiard limit, where all the #’s tend to large,
positive values, that the gravitational wall tends to define a
sharp limit similar to the sharp walls associated with the
symmetry-wall forms. [This will be seen explicitly below
when discussing the effect of x*> on the approach to the
cosmological singularity.]

Let us further comment on the origin and structure of the
symmetry walls. It is well known that the purely bosonic,
vacuum Bianchi IX dynamics features only the gravita-
tional walls, Eq. (9.1), entering the bosonic potential
W5s(B), Eq. (8.8). The absence of symmetry walls in
the bosonic Bianchi IX case follows from the fact that the
rotational-momenta contribution is, in that case, simply
given by

P3

1
s )] o

H;gym = + CycliC123

where the rotational-momenta p, must vanish in view of
their link, Eq. (4.7), with the diffeomorphism constraint. On
the other hand, it has been understood since the early works
of Ryan [36,37] that the presence, besides the metric degrees
of freedom, of some “matter” content in the Universe could
introduce an additional contribution in the relation between
the momenta p, and the angular velocities w; 5, Eq. (2.10),
and thereby modify the p2 numerators in Eq. (9.17) into the
squares of some shifted momenta, p$hifed .= p — C,, where
the shifts C, are proportional to the spin density of the
matter. After imposing the diffeomorphism constraint, i.e.
setting p, to zero, the shifted denominators (pShifed)? in
Eq. (9.17) then lead to symmetry-wall potential contribu-
tions o« C3/sinh?[a}}"] + cyclicjys. In the work of Ryan
[36,37], these symmetry-wall contributions appeared at the
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classical level. It was pointed out in Ref. [17] that the
coupling of a Bianchi IX Universe to a quantum spin—% field
y generates similar shifts C,, in the rotational momenta, with
C, being proportional to the quantum spin density of the
Dirac field y. Actually, Ref. [17] found quantum shifts of
precisely the same form as the ones appearing in the
supergravity result Eq. (9.9), i.e. C3 = cosh[a)"(8)]S12,
with 8, being a spin operator quadratic in the spin—% field y.
These remarks show that the presence of symmetry-wall
contributions, Eq. (8.11), in the supersymmetric Bianchi IX
case, comes from the fact that the spin—% graviton field U, is a
form of spinning (quantum) matter. Let us emphasize in this
respect that, both in the spin—% and the spin—% cases, the shifts

are quantum effects: Cy ~ S, = O(h), so that the corre-
sponding symmetry-wall contributions should be thought of
as being O(A2). [This explains why, in Eq. (8.11), 8%, is
modified by the numerical constant —1, which comes from a
quantum reordering of terms quartic in ] -] To complete our
discussion of the symmetry-wall potential terms, let us
mention that the location in f space of these (singular)
walls has an intrinsic geometrical meaning within a
Bianchi IX framework. Similarly looking potential terms
o p3/sinh?B;, appear in other Bianchi models, say in
Bianchi I, when one uses a formal Gauss decomposition
of the metric (see, e.g., Eqs (3.13), (3.25) in Ref. [17]).
However, in such cases the location ! = 2, etc., of the
singularities of these potential terms has no intrinsic geo-
metrical meaning because it is related to the arbitrary choice
of the Euclidean metric §;; used to diagonalize g;;. By
contrast, as we explained in Sec. II, the Gauss decomposition
of the Bianchi IX metric g;; is done with respect to the
Cartan-Killing metric k;;, Eq. (2.3), intrinsically associated
with the SU(2) homogeneity group. As a consequence, the
various symmetry walls correspond to hypersurfaces in
moduli space where the intrinsic geometry of the Bianchi
IX model has special anisotropy features. (This can be seen
by considering the eigenvalues 4, 4,, 4. of the spatial Ricci
tensor *R;; with respect to g;;: one finds, e.g., that ! = 2
implies a reduced curvature anisotropy with 4, = 4;.)

The Kac-Moody—gravity conjecture assumes that the
symmetry between symmetry walls and gravitational walls
(and thereby between all possible choices of Weyl cham-
bers) will be somehow restored when considering the
quantum dynamics of the unifying theory behind super-
gravity. In the present paper, we shall stay at the level of
the supergravity description. At this level, though there will
be a dissymmetry between symmetry roots and gravita-
tional roots, there will still be a (nearly) manifest permu-
tation symmetry between the three (or six, if we include
their sign-reversed versions) different symmetry roots
a" (). This symmetry is simply the group of permutation
of three objects S5 (say of the three f*’s). This is illustrated
in Fig. 2. This figure is obtained by intersecting the
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FIG. 2 (color online). The various Weyl chambers. Chamber
“a”, where 0 < ' <> </, will generally be taken as our
canonical Weyl chamber.

polyhedral Weyl chambers of Fig. 1 by a hyperplane
p' + B* + p° = constant. Our canonical Weyl chamber
where 0 < ! < 2 < is labeled as “a” in this figure.
The action of the permutation group S3 maps this canonical
chamber into six equivalent chambers (labeled a, b, ¢, d, e,
f). In the following, because of the soft, penetrable nature of
the gravitational walls, we shall have to distinguish
between the usual Kac-Moody definition of a Weyl
chamber (which, e.g., in the case of the chamber labeled
“a” would stop at the gravitational wall ' = 0) and the
definition of the corresponding chamber of S space in
which we shall solve the SUSY constraints (which will
actually be the full dihedron between the two symmetry
walls ! = %, and *> = 8, i.e. the domain ' < > < f°,
without restriction on the value of f!). The permutation
symmetry S; between the six chambers a, b, c, d, e, f in
Fig. 2 is rooted in the basic diffeomorphism symmetry of
supergravity. More precisely, S; can be considered as a
group of “large diffeomorphisms.” The constraint linked to
small diffeomorphisms, i.e. H;|¥) =0, or equivalently,
D.|¥) = 0, was saying that ¥ does not depend on the Euler
angles. It is natural to think that the gauge invariance under
large diffeomorphisms is furthermore saying that the wave
function W(f) “lives” only in one of the six equivalent
chambers; the other ones being just gauge-equivalent
description of the same physics. In the following, we shall
therefore often restrict our study of the wave function to the
canonical chamber “a”, i.e. p! < > < p>.

X. FERMION NUMBER OPERATORS IN
SPINORIAL SPACE

To be able to describe in detail the set of solutions of the
supersymmetry constraints

5w =0,
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it will be convenient to replace the 3 x4 “real” (i.e.
Majorana) operators <i>f,, that enter both the f-derivative
terms in the supersymmetry operators, and the subsequent
potential (and mass-type) terms

i N
5 P40 + Va(B. @)

30 _
A + 2

(10.1)

by 3 x 2 complex “annihilation operators” b¢ (where the
index € takes two values, say +, —), and the corresponding
Hermitian-conjugated “creation operators” b“ (Henceforth,
to ease the notation we do not put hats on the b¢, and b”
operators.) The definition of the b’s and b’s we shall use is

bt = ¢ + ids,
b = &Y — idg,
bt = &f — idS,

bt = &% 4 id5. (10.2)

The various signs appearing in these combinations are
related to our convention for the value of the matrix > in

the Majorana representation we use. We use the following
real y matrices:

0100 ~10
- [1o000 , o 103
““looo1|” " loo-10|
0010 000 1
000 -1 000 1
- loo1 o loo-10
3o L= (104
7 0100 4 0100 (104)
100 0 100 0
leading to
0 -1 0 0
.. |1 0 o o
5 _,0,1,2,3 _ 10.5
r =7y 0 0 o0 1 (10.5)
0 0 -1 0

The above definition is such that the b’s correspond to a
“chiral” projection of the ®'s in the sense that 5% and b* are
proportional to the two independent spinor components of

(1—iy*)d

while b% and b” are proportional to those of (1 + iy®)®“.
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The definitions above are such that the b’s and b’s satisfy
usual-type anitcommutation relations for annihilation and
creation operators, modulo the replacement of the expected
Euclidean metric, by the Lorentzian-signature f-space
metric G*

{bk, b} =2G¥65,,, (10.6)

{bk.bLy = {BLBLY = (10.7)
As indicated here, we shall henceforth indicate the f-space
indices (either on 3, @, b, G, etc.) by arbitrary latin indices,
a,b,c,....k, I,m, ..., without limiting ourselves (as we did
up to now) to the first part of the Latin alphabet. Note that
the position (up or down) of these p-space indices is
meaningful, and should be respected. For instance, the
indices on the ®’s, and therefore on the b’s, are contra-
variant. This is why it is the inverse metric G which
appears in the anticommutation relations (10.6).

The operators b’s and b’s are useful because they allow
one to decompose the 64-dimensional spinorial space H on
which they act into “slices” corresponding to the usual
Fock-type construction of a fermionic Hilbert space. More
precisely, there exists a unique “vacuum state” such that

bk|0)_ =0 (10.8)

or, equivalently (in terms of the real Clifford algebra ®’s)

(1—iy®)d*|0y_ =0 (10.9)

We then obtain a basis of the whole space H by acting
on |0)_ with the 64 possible products of all different b*
operators. This construction defines a bigrading (N%, N%)
on H, defined by (separately) counting the number of
operators b* and b that act on |0)_
obtain two fermionic number operators Ni that can be
represented as

. In other words we

1

NF = inlé’;bg. (10.10)

These operators satisfy the commutation relations

INE,BE] = =6.0bh;  [NE,BE) = 46,005 (10.11)
and their eigenvalues run from O to 3.
We also consider the total fermionic number operator
N = NP + NF (10.12)
whose eigenvalues vary from O to 6. This operator will play
an important role in the structure of the solution space

because, as we shall soon see, it has nice commutation
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relations with the chiral components of the supersymmetry
operators.

As was already mentioned above, the fermion-number
operator N £ 1s very simply related to a remarkably simple
quadratic fermion operator Cp that crucially enters in the

“squared-mass term” 1> occurring in the Hamiltonian H’.

Namely,

~ ~ 1 Xk "544
CF :NF—3 :Ele@k}/123®l. (1013)
It is worthwhile to notice that the ladder compact
generators Jy;, Jo,, and J3; that occur in the V’ part
(8 9) of the potential (8.7) commute both with N r and the
NE 4 operators while the spin operators (6.4) only commute

with N r, except for S 1> that commutes with NE L.

As we shall use it systematically in the following, let us
describe in detail the decomposition of the 64-dimensional
space H first into eigenspaces Hjy,) of the total fermion

number operator N r» and then into common eigenspaces
Hyr nr) of the two separate fermion number operators N JFF,

NE (with Np = N i + NF). To do that, one must take into

account both the N, 5 eigenvalues and the symmetry (or lack
of symmetry) of the Lorentzian indices k,I, ... of the

products of the b* operators acting on |0)_.
The N =0 space is the one-dimensional space gen-
erated by [0)_:
H[O] = H(O,O) = Spanc|0>_. (1014)
Here spanc{B} denotes the vector space generated by all

complex linear combinations of elements of the set {3}.
The N = 1 subspace Hyyj is six dimensional, and splits

into two three-dimensional subspaces Hjjj=H ;0@ H o )
with

H10) = spanc{5i|0>_},

Ho,1) = spanc{l;]i|0>_}.

The Np =2 ecigenspace Hp is 15 dimensional. It
naturally decomposes itself into 3 + 3 + 3 + 6 dimensional
subspaces:

Hio) = = spanc{b* b'.|0)_},
Hip) = spanc{bkbl |0)_},
H1,1), = spang {b Tloy_3,
H1,1), = spang {b “b(0)_1.

In the first three spaces we have (either naturally, or by
explicit projecti0n7) antisymmetry over the two indices kl,

"With Ty =3 (T = Ty) and Ty 2= 3 (T + ).
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corresponding to three independent possibilities. By con-
trast, the symmetry over k/ in H ;) leads to a six-
dimensional space.

The next level, Ny = 3, Hyz), is 20 dimensional. It splits
into two 10-dimensional subspaces that themselves decom-
pose into 1-, 3-, and 6-dimensional subspaces:

Hi0) = spanC{l;Ll;iiqu)_},

1w oo o

Hey, = Spanc{gﬂ[';qbﬂbﬁbKIOL}
1 o oene

He, = Spme{iﬂ(ﬁqbl—)bibmm—}’

and similarly for Hg 3), H(; 2),, and H(; 5).. Above, we have
used the Levi-Civita tensor 7, in f# space (with one index
raised by G*).

At this stage we have described half of the H space. The
second half can be obtained in two equivalent ways: either
(i) by continuing to act on the mmus vacuum state |0)_
by means of creat10n operators bi, or, (ii) by exchanging
the roles of the b operators and b¥ operators and by
starting from the “filled” fermionic state

1 -
= TTTT 50
e k
i.e. the (unique) state® that is annihilated by all I;f operators:

bt|0), = (10.15)
In the second construction (from the filled state), we have
H3) = spanc{|0), }, H(23) = spanc{b%|0), }, etc. Note
that the filled state is also uniquely fixed (modulo an
arbitrary factor) by the opposite-chirality condition that
fixed the empty state, namely
(14 iy%)®%0), = (10.16)
In many developments in the rest of this paper, it will be
useful to have in mind the main characteristics of each one
of the subspaces of Hy: y-) that we have just considered,
notably their dimensions, the corresponding eigenvalue of
u?, as well as the spectrum of the Kac-Moody-related
operators J,;, and S,;, in these spaces. Actually, it happens
that while the J,,’s are block diagonal with respect to
(w.r.t.) the above defined subspaces, this is not generally
true for the S,;,’s (which are only block diagonal in larger
subspaces of Hyy,)). However, the squared-spin operators
S2,, which crucnally enter the symmetry walls of the
Hamiltonian operator turn out to be simpler, and to be
block diagonal w.r.t. the above defined subspaces of each

*Here normalized so that b b253|0), coincides with
717273
bybib1|0)_.
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fermion level. For the convenience of the reader, we shall
gather this information in Appendix B.

XI. EXPLICIT STRUCTURE OF THE
SUPERSYMMETRY OPERATORS IN THE
CHIRAL BASIS

The main point established in the previous sections is
that, in the minisuperspace framework in which we con-
sider the quantization of A =1, D =4 Bianchi IX
cosmological supergravity model, the relevant equations
to be solved are

SV ) =o. (11.1)
These equations constitute a system of four simultaneous
Dirac equations in a three—dimensional “space-time” (the 8
space) for a 64-component spinorial wave function W (/).
The number and structure of the solutions of this heavily
overconstrained system of partial differential equations is
a priori unclear (and was left in great part undecided by
previous work on quantum supersymmetric Bianchi IX
cosmology [4,6,7,10]). Here, we shall bring a rather
complete answer to this issue by using the simplifications
obtained by projecting the supersymmetry operators in the
chiral basis of the b’s and b’s introduced above.

Similarly to the definition of the b operators [see
Egs (10.2)], we define (omitting the operatorial hats) the
(annihilation-type) chiral components of the supersym-
metry operators as

SO =8 4 s, (11.2)
SO =850 _ s, (11.3)

The two non-Hermitian operators 89 represent half of the

content of the four original Hermitian Sgo) ’s. The other half

is described by the Hermitian-conjugated operators S(f).

i1 11 . . 1/1 1 1
@=5\17 =i0a with a=——-(-+—-+—-],
Xy z 4\x y z

Hiim = M[kGl]m

Viim = l/[kGl]m

1 (1) (2) (3) 2 3
Pkim :E(("'pk_ Pi=PK)Gim+ @i =p1=P1)Gim+ 4P w—Pm—

with  p, = iOu, u=-In

with v, =0,
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With respect to such a chiral basis the supersymmetry
operators have a rather simple structure. They read

i 1 m
s = Eble(aﬂ" + o (B)bE + Ell[kz]m(ﬂ)BLkl]

1 m
+ Piim (B) CE™ + iy[kl]m(ﬁ) M (11.4)

where the B’s, C’s, and D’s are cubic in the fermion
operators, and, more precisely, are of the bbb type, with
always an annihilation operator on the right (so that B, C,
D, and therefore S, acting on |0)_ yield zero). In addition,
the B’s and the D’s are antisymmetric in the first two upper
indices k/ (while the C’s do not have such a symmetry
property). Their explicit expressions are

Bkm — l;?blgbé + GImpk — kabé

= bEBLD™ — GImbk + GRmpl, (11.5)
Ckm = b” bkb!  + G bk
= bkpL b™, — GI™ b, (11.6)
DK™ = p'bk bl
= bk bl D" (11.7)

As for the (e-independent) f-dependent coefficients a(f),

u(p), p(p), and v(p) entering SY, they can be written as
rational functions of the new variables

1 1 1

— 26 — 2P — 2P
x.-eﬁ—;, y-—eﬁ—ﬁ, Z~—eﬁ—c—2.
(11.8)

Namely (denoting the derivatives Oy by O;; note that
0, = 2x0,, etc.),

(11.9)

L] (x=y)
s 11.10
3 | 22 ( )

1. [x—z2
v=—In , 11.11
(1) (3) (1) (2)

P m)Git) + T(kim) (11.12)

where 7, is a completely symmetric traceless tensor, whose explicit form is displayed in Appendix D, and
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()

pul = i pr=i0r; where r; =
2

plkl = :(p)k = iakrz where ry
3) .

pilv = 1py = i0rs

Let us notice that r{ +r, = %r3. Note also that all the
coefficient functions oy (x,y,2), fiim (X, ¥, 2), Vigm (X, ¥, 2),
Prim (X, v, 2) are purely imaginary, i.e. they are of the form i
times some real (rational) functions of x,y,z. As a
consequence, the Hermitian-conjugate of the chiral super-
symmetry constraints reads

S(U) kljm

[ ~ 1
= + 5080, = ()bt = S (BB

=~ [kllm

— PunB)E S v (D (11.16)
Here, all operators have tildes, and all coefficients have
changed sign, except the first which originally read

—1bk#,;, and for which we used the fact that 77, = +7rk

Globally, because of the structure SO ~p+ bbb SO
decreases the total fermion number N by one unit, while
SO increases N r by one unit. But there are also some
similar conservation laws (modulo 2) when considering the
finer decomposition of Hy, into sums of Hyr yr)’s with
Ny = NE + NE. Indeed, because of the specific values of
the € mdlces entering the B’s, C’s, and D’s above, the
various terms appearing in (11.4) act differently on the
subspaces I]'I](Ni"NI_"), labeled by the separate N§ =0, ...,3
eigenvalues. For instance we have

b Hvr nry = Hive_n),s

bﬁiﬂ'ﬂ(wiwf) = Hir v, (11.17)
Bilm . H(Nﬁ,Nf) - [H](Nfr—l.Nf)’
Blilmlﬂ'ﬂ(NiNf) - [H](NiH,Nf), (11'18)
CH™ - Hwr wry = Hiwr_1 nr)s
é"ﬁm:U-I](Ni,Nf) = Hinr 1148y, (11.19)
but
Dkim: Hnr ey = Hive 187 -2)
prim Hovr vy = Hove i) (11.20)

and similarly for the minus chirality operators, by exchang-
ing the role of the labels N and NE.

where r; = —
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(x=y)(x—2)*(y—=z)?
16111[ e ] (11.13)
1 [(x=y)Px—2)(y-2)
_ 16111[ oo ] (11.14)
3. [(x=y)(x=2)(y—-2)
1611{ o } (11.15)

The supersymmetry operators S§0> (respectively, Séo))
satisfy the following commutation relations with the total
fermionic number N:

Np SO = =89 Nn891 =89 (11.21)

Moreover, })art for their Dkl’" contribution, the various
terms in Se (respectively, S ( ) act separately on each e
species of fermions.

As as been prev1ously noticed [4,6,7,10], the fact that the
5£ and S change the fermionic number by one unit,
allows one to look for solutions of the supersymmetry
constraints at each fixed total fermion level Np. A simple
proof of this fact reads as follows. The commutatlon
relatlons (11 21) show that if ¥ is a solution of S Iy —
0 and S Iy =0, then N W is also a solution. By iterating
the action of N, N '+ will be a solution for any integer n.
If we then decompose W in N levels, ie. ¥ =)y Wy,
we see that, for any n

NPW = "N/ Wy .

Np

will be a solution. Because of the nonvanishing of a
corresponding Vandermonde determinant, we see that each
separate state Wy must be a solution. This remark
facilitates the study of the solution space. It is enough to
look for solutions of the supersymmetry constraints having
a fixed fermion level Np.

In addition, though the S and Sé()) operators do not
commute with the separate fermionic numbers N, these
operators and the parity indicators (—)Ni are found to
verify the relations

(S, (M) = {8V (M) = ST, (-)MF]
(11.22)

Accordingly, at a given level, decomposing Wy, yr =
Zp \I/(Ni_p’Nf +p) (setting to zero components with neg-
ative Ni index, or index greater than 3), we obtain that
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(0) _ (0)
SN Wit prpy =0= 80D ()P Wiy nrip) =0,
P P

-0 <0
SN Wit vt =02 8L () Wiyr i) =0.
P P

As a consequence if Wyr, yr = ZP‘I](NIi_p‘Nf_‘_p) is a
solution of the four supersymmetry constraints equations,
so are the partial sums Z; \I/(Ni_p_Nfﬂ,) where p is
restricted to even or odd values. In other words we may,
without loss of generality, look for solutions in the

subspaces (when considering Ny < 3):

Hio.0)» H(1.0)» Hio.1), Hiz.0) © Hio2). Hirpys
Hiz0) @ Hiiz). Hios) @ Hizy-

In addition solutions belonging to the subspace H(; ;) may
be decomposed into symmetric and antisymmetric ones. To
summarize we obtain eight different classes of possible
solutions. We shall consider them in turn.

It is to be noted that, when looking for a solution at some
fixed fermionic level N = N, say
b”N|0> . (11.23)

the components f3\%.% () of the wave function satisfy
[because of (11.1)] a set of partial differential equations
whose explicit expression is equivalent to

—isPwy =0,  —i8VW,, =o0. (11.24)
We have written these equations with an extra factor —z so
that, in view of the explicit expressions of the chiral S

given above, all the coefficients appearing in these equa—
tions become real. In addition, as the commutation rela-
tions of the b’s and b’s are also real, we see that the set of
partial differential equations satisfied by the wave-function
components ¢\ ‘a (f) will be real. One can therefore
construct a basis of solutions of the set of supersymmetric

solutions at level N, made of real wave functions

€162 €N
Ay (P)-

XII. UP-DOWN SYMMETRY IN
FERMIONIC SPACE

Before discussing explicit solutions in detail, let us note
in what sense there is a symmetry between the lower
(Nr < 3) and the upper (Ny > 3) parts of fermionic space.
At the kinematical level, there is, as we have seen above,
the usual symmetry in the Fock construction of the state
space, under which

0)_ — 10)

and
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But the issue is to know whether this kinematical symmetry
extends to the dynamics, i.e. whether there is a one-to-one
map between solutions of the supersymmetry constraints at
the levels Np and 6 — Np. A (positive) answer to this
question is obtained by first recalling that the difference
between |0)_, b¢ and |0),, b¢ is connected to a choice in
the chiral projection

b (1 — iy3)d
versus
be o (1 + iy%)de.

We need therefore to see whether there is a symmetry of the
constraint equations (11.1) which involves a flip in the sign
of > = y! y y3 We note that the appearance of the y

matrices in S\ A (ﬂ, ®) has a special structure. In particular,
after the choice of a Majorana representation with

p=C
the spatial gamma matrices y%. As a consequence, 7" only
appears in the gravitational-wall term

= iy, all the cubic terms in :SE‘(» (p, @) involve only

1
= 526‘2” Py P ed),. (12.1)
k

Given an initial Majorana representanon for (y y y ' )

the new matrices (y",y",y’ y) (=% 7", y y) form
a second Majorana representation (which differs by a

conjugation with yiyﬁyé). This change of representation
will leave the expressions of the 3}&0) (p, @) invariant if we
additionally perform the following complex shift of the f

variables:

B i

. (12.2)

Indeed, this shift changes the sign of the gravitational
potentials e~ while leaving invariant all the terms related
to the symmetry walls [which are « coth(*—p?)]. In
terms of the variables x = ¢¥' = 1/a2, y = ¢’ = 1/b?,
z = e’ = 1/¢2, the above complex shift of the ’s means

X = —Xx, y = -y, 7= —z. (12.3)
Summarizing, the usual (kinematical) up-down fermionic
symmetry (mapping Ny to 6 — Np) extends to the dynami-
cal level (i.e. maps a solution on a solution), at the cost,
however, of the change (12.2), i.e. (12.3), of the bosonic
coordinates. We note in passing that, when Ny = 3, we
have a map between solutions at the same level.
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XIII. SOLUTIONS AT THE FERMIONIC
LEVEL N, = 0

It is particularly easy to obtain the general solution at this
level. The subspace is one dimensional; thus any putative
solution must be described by a single (scalar) amplitude

f(p) with
V() = f(p)|0)_. (13.1)

As there is no subspace of level Ny = —1, the SUSY
constraints of the annihilation-type (b + bbb) are identi-
cally satisfied:

(13.2)

On the other hand the conditions linked to the creation-type
SUSY constraints (b + b b b)

SO0 =0 and S99y =0  (133)
lead to twice the same three equations:
i
Eakf_(ak + Hi ‘H’;(l))f:()- (13.4)

Equations (11.9), (11.10), and (11.13) showed that each of
the factors ay, uy, and p;  is i times the gradient of a real
function. Therefore the equations for f(f) are (locally)
trivially integrable. The general Ny = 0 solution is then
found to be of the form:

s k)
f=Colly—x)z—x)(z-y)¥ Toya) (13.5)
In terms of the f’s it reads
f o exp _Zﬁ (sinh f31, sinh 3,5 sinh f33;)
1 a
X exp <—§za:exp(—2ﬂ )> (13.6)

where 0 = ' + > + 2, pio =B - B2, etc.

This solution, which depends on a single multiplicative
constant, deserves some comments. First, if C 0) is taken to
be real, the solution is real. More precisely, we have written
it so that it is real in our canonical Weyl chamber (a) where
x <y < z. As was argued above, it is natural to interpret the
symmetry of supergravity under large diffeomorphisms as
implying that we can restrict the moduli space (i.e. the
space of the f’s) to only one Weyl chamber. With this
interpretation, the expression (13.5), considered only for
x <y<z would be a full description of the N =0
solution space. If, on the other hand, one wanted to extend
the wave function to the six different Weyl chambers

PHYSICAL REVIEW D 90, 103509 (2014)

(represented in Fig. 2), it might be natural to continue it
analytically by passing through the successive symmetry
walls where either x = y, y = z, or z = x. This would lead
to a global wave function of the form

=33+

f(x,9.2) = Col|(x = y)(y = 2) (z — x) | 7]3/3 e(xyw

(13.7)

where the index n counts modulo 6 the number of
symmetry walls crossed when turning around the f' =
p* = B axis (see Fig. 2).

Independently of the way we wish to view this solution,
let us note that it vanishes on the symmetry walls, and
decays under the gravitational walls, i.e. when ¢ — —oo0,
for each given index a. We recall that e = 42 = 1/x, so
that going under the 28! gravitational wall (¢=%' — +o0)
means a> — +oco or x — 0F. The exponential factor by
which the Ny = 0 solution decays under the gravitational
walls (i.e. for large, anisotropic universes) is

G

a? b +ct) — e 2yt

el (13.8)
Ground-state solutions, incorporating such a (real) expo-
nential factor, of either the ordinary bosonic Bianchi IX
WDW equation [38], or its supersymmetric extension
[4,7,10], have been discussed in previous works.
However, our new (unique) ground-state solution further

incorporates the nontrivial extra factor

[(y =) (z=x)(z=y)**
(xyz)>/4

7
X €Xp (- Zﬁ0> (Sinhﬂ12 Sinhﬁ23 Sinhﬁ31 )3/8 (139)

which necessary follows from the presence of the
symmetry-wall contributions (6.3) in the SUSY constraints.

XIV. SOLUTIONS AT THE LEVEL Ny =6

The subspace His 3) is also one dimensional:
) = f(P))0) (14.1)
where |0), is annihilated by all the b* operators, defined in

Eq. (10.15). When imposing the SUSY constraints
Egs. (11.1) (in chiral form), the creation-type constraints

(14.2)

(14.3)

103509-25



THIBAULT DAMOUR AND PHILIPPE SPINDEL

yield twice the equations

i~ s~
Eakf + (o — i —ﬂ§< ))f =0. (14.4)
As in the Nr = 0 case, the (imaginary) gradient nature of
the vectors ay, y;, p, ' implies the existence of a unique
solution (modulo an arbitrary multiplicative factor Cg))

5 E(i*ﬁ;)
F=Col ===

o7 (14.5)

Here, we have an explicit example of the general property
we explained above. One maps a solution at level N to a
solution at level 6 — Nz by exchanging b — b, [0)_ — [0) .
and (x,y,z) = (—x,—y,—z). [Here, we need to absorb a
phase factor exp(iz)®/8-5/4) in the multiplicative
constants. |

Note that the transformation rule (x,y,z) —
(—x, —y,—z) (which was seen above to be connected with
the nature of the gravitational-wall contributions (6.2) to
the SUSY constraints, and especially their proportionality
to y>®“) “explains” why the (unique) Ny = 6 solution
grows exponentially under the gravitational walls, propor-
tionally to

etH@ b +e?) — Y

=e (14.6)
while the Ny =0 solution was exponentially decaying
under the gravitational walls.

Though we are not a priori sure of what kind of physical
requirements should be imposed on the wave function of
the Universe, we shall tentatively assume in the following
that one should only retain wave functions that do not
exhibit a growth for large values of a?, b?, c? as violent
as Eq. (14.6).

XV. SOLUTIONS AT THE LEVEL Ny =1

A general ¥ in Hp;p =H( ) @ H,) is given by a
superposition:
Uy = Zf21;]§|0>—- (15.1)
e==+

The 520’ operators project W;y onto Hygp). The image of
this projection vanishes if the divergence conditions

%3kf]e(+(ﬂkf’e‘:0 (15.2)

are satisfied. Here f* := G f¢ and ¢, is defined by

i
P = QT py +P1<<l) :58%07 (15.3)

where ¢ is defined as the logarithm of the Ny = 0 solution
/5 Eq. (13.5) (with Cgy = 1). In what follows f indices are
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raised or lowered with the metric (2.26); the positions of the
N% indices (e, ¢, ... = £) are indifferent, and will be
dictated by writing facilities. The S§°> operators lead to
two (similar) sets of three equations. Indeed S maps H; )
(and H 1)) into Hp o), Hyp 1y, and Hgp). Explicitly we
obtain

vy =0, (15.4)
i i .
Eakf§ oS+ 20" ufm =0, (15.5)
i
Ea[kff] = oufy + upf) = 0. (15.6)

We see explicitly here the consequence of the commutation
relations Eq. (11.22) that was anticipated above: because of
parity properties at the Np = 1 level, there is a complete
decoupling of the modes of different partial fermionic
number N%, NE.

It is not a priori clear that the overconstrained set of
equations (15.2)—(15.6) admit any nonzero solutions.
Because we have shown above that our way of quantizing
supergravity led to a consistent algebra of constraints, we,
however, expect that the structure of the above equations
will be special enough to admit nontrivial solutions. We
have explicitly verified this for all the levels that will be
discussed here in full detail.

In the present Ny = 1 case, the use of the algebraic
constraint Eq. (15.4) immediately reduces the degrees of
freedom of the “vectorial” wave functions f,f to scalar
ones:

ft = Fou (15.7)
Inserting this factorized form in the remaining Eqgs. (15.5)
and (15.6) leads to three integrable equations (plus some
identities). The general solution at level Ny =1 is then
found to be

fe=Chyix(y = 2).y(z = x), z(x — )}
e 20D

X (y2) 4 (x = y)(y — 2)(z — x))?/8 (15.8)

where Cztl) are two arbitrary constants. Each constant
parametrizes the unique solution having either N{ =1
or Nf =1.

Note that each one of the basic solutions (which have the
same amplitude f}, but correspond to different quantum
states) can be taken as being real. Like at level Ny = 0 the
solutions decay exponentially under the gravitational wall,
with the same (WKB) exponential decay (13.8). By
contrast to the N = 0 case where the solution vanished
on the symmetry walls, these Ny =1 solutions become
singular on the symmetry walls, but in a rather mild
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(square-integrable) way. (More about this below.) Let us
finally remark that all previous works on supersymmetric
Bianchi IX (and other minisuperspace) models [4—12] have
stated that it was impossible to construct solutions of
the SUSY constraints at odd fermion levels. This difference
might be due to a difference in the quantization scheme
used. However, we rather think that it is due to the fact that
previous work considered a too restrictive class of ansitze
when trying to construct putative odd-level states. In our
construction, the odd fermion levels do not introduce any
special difficulty.

XVI. SOLUTIONS AT LEVEL Np =5

The general solution at this level can be either built in
analogy with the one just obtained, or simply by using the
N — 6 — N rules given above. We have checked that this
yields the same solutions. Writing ¥ as

Uis) = > fibklo),
e=+

we obtain (consistently with changing x — —x, etc. in the
Np =1 solutions),

(16.1)

fl? = CE){X(Y - Z),y(z — x)’ Z(x _ y)}
ettty
X (xyz)3/4((x_y)(y_z)(z_x>)3/g (162)

depending on the two constants C@ parametrizing the

separate unique states with N = 5.

Like the solutions at level N = 6, these solutions grow
exponentially under the gravitational walls. We shall there-
fore tentatively reject them.

XVII. SOLUTIONS AT LEVEL Ny =2

So far, i.e. for N = 0, 1, 5, 6, the solutions we obtained,
which were the most general at these levels, only consisted
of “discrete solutions,” containing arbitrary multiplicative
factors, but having fixed shapes as functions of the f’s. The
situation will change in the middle of the fermionic Fock
space, i.e. for Ny = 2,3,4, where we will find solutions
depending also on arbitrary “initial” functional data. Our
findings are qualitatively consistent with the finding of
Refs. [6,7] that there exist supersymmetric Bianchi IX
solutions at fermion levels 2 and 4 depending on as many
data as a solution of the usual bosonic WDW equation.
However, as we shall comment below, our results differ also
significantly (both qualitatively and quantitatively) from
previous results. Most notably, we shall construct
“continuous” solutions at the odd fermionic level
Nr =3, which was considered as being impossible in
previous works.

We study the solution space at level N = 2 by extend-
ing the procedure used at lower levels. The dimension of
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Hpy is 15, so that we are a priori dealing with a
15-component wave function, say

Z (B

ed =+
kk’ 123

(B)bEDE|0)_. (17.1)

The wave function fii’,(ﬁ) must verify the symmetry
relation

kk’ = fk’k’ (17.2)
which indeed implies that it contains 15 independent
components. Note in passing that while (17.2) imposes
an antisymmetry on the k, k' “tensorial” indices when
e = ¢, it does not restrict the tensorial symmetry of the
wave function in the opposite case where € # ¢’. In the
latter case, it only says that f)- and f,+ are not
independent (f;, = —f;1).

By projecting the equatlons sV V) =0 on the sub-
space of level N = 1, we obtain two sets of equations

i €,—€ €,—€ €,—€
Eakapfp’n + @ i S = 20" 1 =0, (17.3)

and

LGS+ (o =t =N =0, (174
The projection on the level Np =3 of the equations
8( W — 0 leads to four additional sets of equations

vpfoi© =0, (17.5)

i €,—€ €,—€ €,—€ § LE€,—€
Ea[PfQ]V N q)[pfq]r +ﬂ[l’fq]r + 2/)[17\’\ fq]s =0, (]7'6)

—Ap i o =0, (177)

i €,€
Eapfq,r - q”pf

i e e e
Ea[pf;’;] - (p[pf;’f] + 2ﬂ[pf;’:] =0 (17.8)
It is not a priori evident how to deal with this
complicated, redundant set of (partial differential, and
algebraic) equations. A first simplification comes from
the fact (mentioned above) that, under the decomposition
Eq. (10.15) of Hpy into its (N%,N) subspaces, there
should be a decoupling between H2.0) @ Hi20) and Hyy p)-
In terms of the components f5g th1s means a decoupling
between (f, . fps) on one 51de and f) =—f,' on the
other side. And, indeed one easily sees that Eqs (17.4),
(17.7), (17.8) contain only the f; components, while
Egs. (17.3), (17.6), (17.5) involve only the f7,;¢ compo-
nents. Actually, there is even a further simplification, in
that, among the f components (parametrizing Hy; 1)) the

103509-27



THIBAULT DAMOUR AND PHILIPPE SPINDEL

three f[;;] components (parametrizing Hy; 1),) decouple
from the six f 1g) COMponents (parametnzmg H1n,)-

Summarlzmg, one can separately look for solutions in
the subspaces [H;0) @ Hpo)l5. 5. [Hi11),l; and [Hi e
where the subscripts indicate the dimensions (i.e. the
number of components of the wave function). Let us also
recall that all the equations we are dealing with are real
after multiplying them by a common i. We can therefore
look for real solutions in each subspace (even, if we later
build general complex combinations of basic solutions). In
the following we consider in turn each one of the above
separated problems.

A. Level N = 2: Solutions in the
H(2.0) ® H(p2) subspace
By subtracting the trace of Eq. (17.7) from Eq. (17.4) we

obtain an extra algebraic equation that can be written as
|

XyzZ
{15, 155 §i}—{X(y—Z)—yZ+7,y

where the two

AR

fee = A ey R (x - y) (v = ) (x = )]
X [Ci(x = 2)7* +eCy(y — 2)7'7] (17.12)

independent scalar functions f =
) are given by

with two arbitrary constants C; and C,. Note that both
constants appear in f* and f~, though in a different way
[because of the sign € in front of C, in Eq. (17.12)].

B. Level Ny = 2: Solutions in the H(; ;), subspace

Solutions living in H, ), are similar to the ones just
discussed, and are even easier to obtain. They a priori
involve three arbitrary components, say

|

\11?2) zif[;q]bﬁbﬂO)_. (17.13)
From the general equations at level Ny =2 above, one
finds that the antisymmetric tensor f; . has to satisfy two
. . 7 [pd] . .
sets of algebraic equations (besides some differential
equations). The first one is Eq. (17.5), the second one,
similar to Eq. (17.9), is

(20 + pk + p(Dk (17.14)

) fla k] =
as results from the difference between Eq. (17.6) evaluated
with € = + and e = — [taking into account the symmetry
relation (17.2)]. The linear system constituted of these four
equations is found to be of rank 2. Accordingly we
conclude that the tensor fJr is parametrized by a single
independent function:

XyZ Xyz
(e—x)— v+ 27, Z(x—y)—Xy+%}f“
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(2t + pt +pE = pPR) e =0 (17.9)

As fi5 = ] its explicit solution is immediate. It is given
by (ex1p = €prip) With £153 = +1)

W= fCenpar +pP +pr —pOP) (17.10)

Inserting these components in Eqgs. (17.7) we obtain six
coupled equations, one for each partial derivative of the two
unknown functions f** and f~~. These equations are
integrable and provide the general expression of the
solution of the Eqgs. (11.1) restricted to the subspace
H2.0) ® Hip2)- This general solution depends on two
arbitrary constants and can be explicitly written as

5 (17.11)

_ _ _ XyzZ
{fﬁQ]s [+23]vf?j;1]} = {x(y_Z) _yZ+_7y(Z_x) — X

2
+¥,Z(X y) —w—#%}
X fT(x,y,2). (17.15)

The f-space dependence of the function £+~ (x, y, z) is then
determined by using the differential Eq. (17.6). The general
solution of the latter differential equation reads

£ = Ce ) (xyz) 4 (x = ) (v — 2) (x — 2)] /8
x (x —y)~12. (17.16)

The result (17.15) is found to also satisfy Eq. (17.4), for an
arbitrary value of the constant Cs. It therefore describes the
general solution within the Hy, ;), subspace.

It is interesting to note that the three-dimensional set of
solutions obtained by combining the solutions in the
subspaces Hi;0) @ H(oz and H ), have a precisely
similar structure as functions of x,y,z. Actually, they
define a three-dimensional representation of the permuta-
tion group of the three variables x, y, z.

Similarly to the solutions found at levels Ny = 0 and
Np =1, all these solutions exponentially decay under the
gravitational walls, with the basic WKB behavior (13.8).
However, contrary to what happened at lower N levels, the
solutions (17.11), (17.15) exhibit now a more singular
(nonsquare-integrable) behavior when they approach the
symmetry walls, say ~(x—y)™/8 ~ (B! =)/, We
would tentatively conclude that such solutions cannot be
physically retained.
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C. Level Ny = 2: Solutions in the H(; ;) subspace

We now turn to the more involved, and physically richer,
case of solutions belonging to the subspace Hy; ;),. On the
one hand, contrary to the previous cases, here we have to
satisfy less (namely, 11) equations than the number (18) of
partial derivatives O, f/ . of the corresponding tensorial
wave function. On the other hand, we have more differ-
ential equations to satisfy than the number (6) of
unknowns: 11 > 6. The number of solutions of such an
overconstrained system is a priori unclear, and depends on
its precise structure. We shall be able to give precise
answers by mixing various approaches: (i) a precise study
of the set of partial differential equations satisfied by the
wave function; (ii) a detailed mathematical discussion of
the corresponding “initial value problem™; and (iii) com-
plementary studies of the general solution of our system in
various asymptotic regimes.

We are interested in states of the form

U8y = f o (B BEDTI0)_, (17.17)
parametrized by a symmetric [-space tensorial wave
function fz;_)(/)’). In the following, we shall ease the
notation by genoting the latter symmetric tensor as

kpq: :f(t;q). (17.18)
This tensor wave function has to satisfy Eqgs. (17.3) and
(17.6). By taking the difference of these equations for

€ = + and € = —, we obtain the complete set of differential
equations that k() has to satisfy:

i
50kt @'k =207k, =0, (17.19)

i
5 Owkar = @ipkar + Hpg ke + 29151 kgs = 0. (17.20)

2
These equations are similar to the Maxwell equations; the
first one being of the “div”’ type and the second of the “curl”
type. From a more formal point of view, they generalize the
PDE systems linked to the N = 2 supersymmetric quan-
tum mechanics of a particle in external potentials. Witten
[39,40] (see also [41]) has shown how such supersym-
metric quantum mechanical systems yield generalizations
of the De Rham-Hodge theory of p forms on manifolds,
satisfying the first-order (div and curl) equations éw, =0
and dw, = 0. Our supersymmetric Bianchi IX system can
be viewed as a special N = 4 (rather than N = 2) super-
symmetric quantum mechanical system. This explains why
our N{ =1, Nf =1 Egs. (17.19), (17.20) generalize the
I-form déw; =0 and dw; =0 system. (Our symmetric
wave function k,, can be roughly viewed as being
separately 1-form-like on each index.) This raises the issue
of the analogs of the well-known compatibility condition
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for De Rham-Hodge theory encoded in the Cartan identities
d> =0, 5 = 0. We expect to have similar identities in our
context, as a consequence of the basic identity (7.1) that we
have proven to hold within our quantization scheme [and
which generalizes the simpler identity (7.5) holding in
ordinary supersymmetric quantum mechanics]. To display
these identities, let us rewrite the equations of our system
(17.19), (17.20) as

E, = 0%kgy — Aplx, y. 2z k), (17.21)

Ersp = 6rksp - 8skrp - Rrsp [X, Vs 25 kab]‘ (1722)
We recall in passing that, in this form, all those equations
have real coefficients.

We have explicitly checked that the system of
Egs. (17.21), (17.22) satisfy a certain number of
Bianchi-like’ identities that guarantee their compatibility.
The first such identity is an algebraic one. Indeed, because,
on the one hand, of the symmetry of k,;,, and, on the other
hand, of the specific structure of the y;,,, and py,,, tensors
[see Egs. (11.9)—(11.12)], we have

par =
errrE ., =0.

(17.23)

It is because of this identity that we said above that our
system contained 11 equations, rather than the 3 43 x 3 =
12 it seems to contain. We have also checked that our
equations verify identities of the form

8”38,5”], = 0<5abm£d)v (1724)

0,y = 0,8, = FEpys = O(Euper Ea)- (17.25)
where, the right-hand sides (r.h.s.’s) are (linear) combina-
tions of the equations &,, £,, of the system.

These Bianchi-like identities, like their general-
relativistic analogs, allow one to show the consistency of
separating our system of equations £, =0, £,, = 0 into
“evolution equations” and “‘constraint equations.” To dis-
cuss such a (2 4 1) split of our system, it is convenient to
replace the original -space coordinates 3 by the following

Lorentzian-type combinations:

&0 :\f(ﬁ‘ + B+ ), (17.26)
b= (o). (17.27

°Here, the name Bianchi alludes to the (contracted) Bianchi
identities that underlie the consistency of the Einstein equations,
and is disconnected from the denomination “Bianchi IX”.
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5. V6
6

3 2p =B = B). (17.28)

In these coordinates, the f-space metric G, takes the usual
Lorentz-Poincaré-Minkowski form diag(—1,1,1). Using
such coordinates, our system of equations (which was
written in a #-space covariant way) implies the following
system of first order in &-time evolution equations:

Opkyo = Oikip + Osks g + Ag, (17.29)
Bokor = Dikoo + Rorp (1=1,2),  (17.30)
Ookis = Dika; + Ryzs (1,7 =1.2). (17.31)

This system of (2+ 1) evolution equations must be
supplemented by a system of initial constraints. Indeed,
the following combinations of our equations do not contain
any “time” derivatives of the k’s [(p = 1,2)]

Co = Oikgs — Oskyi — Risp = 0,
Cp = Oikps = 05k i = Ry, =0,
le’ = aikﬁi —+ 821%2 — (9[,/(0() - Ai’ - R()i)() = 0. (17.32)

Summarizing, a general solution for k() at level H(; j),
is obtained by (i) finding the most general solution of the
five equations of constraints (17.32) for the six initial data
k(ap) considered on a spacelike hypersurface OL=r=c"
in f# space, and, then (ii) evolving these initial data in £°
time by integrating the six evolution equa-
tions (17.29)—(17.31).

We have checked that, as in Maxwell or Einstein
theories, the Bianchi-like identities given above insure that
if the constraints are satisfied on an initial spacelike $-space
section they will remain verified for all values of &. To
express the above results in a proper mathematical way one
should prove that the evolution system for k is well posed
(as well as the evolution system for the constraints).
However, as we know that the full system governing the
&0-time evolution of the complete (64-component) spinorial
wave function W (f) is well posed,'” it is clear that there is
a way to rewrite our evolution system (17.29)—(17.31) in a
well-posed way. [The evolution system for the constraints
should also be a consequence of our general consistency
result (7.1), which shows that all the constraints are “in
involution,” in the sense of Cartan.]

At this stage, we have reduced the problem of para-
metrizing the set of solutions at level H(; ;) to the problem
of parametrizing the set of solutions of the initial constraint
equations (17.32). Though this is a linear problem, it is a

"Indeed, given consistent initial data for ¥, (3), any of the four
simultaneous Dirac-like equations (11.1) yields a well-posed
symmetric-hyperbolic evolution system for its °-time evolution.
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highly nontrivial one, notably because of the complicated
(and singular) f dependence of the coefficients ¢, p,u
entering the basic system (17.19), (17.20). We have
succeeded in showing, by a detailed analysis, that the
general solution of the five real PDE’s (17.32) (in any initial

two-plane &l €2 for the six real unknowns kab(fi, fﬁ) is
parametrized by rwo arbitrary real functions of the two

variables (51, 52), together with an arbitrary constant C,
[entering the initial value of a certain projected component

koo of kap(E', £), see below]. In order not to interrupt the
logical flow of this paper, we relegate our proof of this
result (as well as the boundary conditions we imposed in
looking for solutions) to Appendix E. Let us, however, give
here some brief indications about the counting of free
functions in the general solution. First, it would seem that
having five constraints for six unknowns will only leave
one free function in the general solution. The reason why it
is not so, is that there is actually one identity satisfied by the
constraints. It is of the form

81Ci + 8262 + 826’1 - 616’2 = O(Cﬁ,Cﬁ,C},). (17.33)

Second, let us make plausible our result by considering the
trivial case where one keeps only the derivative terms in the
constraints, neglecting the effect of the f-dependent coef-
ficients ¢, p, u. In that case, one immediately sees that the
Cy constraint implies that kg ; is (at least locally) a gradient:
ko, = 0. This accounts for one free function. Then, the
two C; constraints imply that k;, is a gradient w.r.t the
second index: kj, = 0,;¢;,. Using now the symmetry
kf, G = kq > OneE sees that the vector potential ¢ 5 must also
be (at least locally) a gradient ¢p;, = 0;¢. Finally, we have
kj, 4 = 0;0,¢ which accounts for the second free function.
(One then checks that the remaining constraints C}, = 0Ocan
be solved for kg.)

Note that an equivalent result would follow from
analyzing the system of Eq (17.19), (17.20), directly in
241 dimensions. Considering only the symbols (the
derivative terms) of Eqgs. (17.19), (17.20), we obtain from
the latter equation that k,, = 9,0,®. The former equation
then yields 9,01 =0 ie. [1® = C. Accordingly the
general solution will depend on the constant C and on
the two arbitrary functions defining Cauchy data for
O® = 0, where & := ® —%Gabﬁ“/ﬁb.

In summary, the present section has shown that, at level
Np =2 the full set of solutions of the supersymmetry
constraints (11.1) was parametrized by

(i) three arbitrary constants C;,C,,C3 parametrizing
three “discrete-spectrum states” belonging to the
subspaces Hz,0) @ H(oz) and H(y p),;

(i1) two arbitrary (real) functions of two variables (and
one real constant C,) parametrizing a general
“continuous-spectrum  state” living in the Hy
subspace [i.e. having a symmetric-tensor wave

function k,,(f): = fz;p B
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In view of the boundary conditions we incorporated in
the analysis of the initial-value problem in Appendix E, one
can check that, by appropriately choosing the two arbitrary
functions parametrizing the initial data (e.g. with compact
support, or, at least, with fast enough decay in the spacelike
directions spanned by &!, 252) one can ensure that all the
components of k,,(f): = (ﬁ) initially decay under
the gravitational Walls (or, 51mply, under the gravitational
wall 28! when working within our canonical chamber). As
the evolution of these initial data in S space (in both
directions of 3° off the initial Cauchy slice) is given (when
considering any of the Dirac-like SUSY constraints) by a
(well-posed) first-order symmetric-hyperbolic system, the
property of fast decay under the gravitational walls will be
preserved by the p-time evolution. Our construction
therefore leads to solutions of the Ny =2 SUSY con-
straints which decay (rather than grow) under the gravita-
tional walls (and which are square-integrable at the
symmetry walls). [As in the usual Dirac-equation case,
the property of conservation of the current(s) /4 ensures a
preservation of the integrability of any of its B%-time
component.]

As already explained, one can deduce from these results
what are the solutions at the up-down symmetric level
N = 4. This is straightforward for the discrete-spectrum
states which are given by explicit analytic functions of
X, y, 2. (One then sees that the transformation x — —x etc.
will induce an exponentially growing behavior of these
modes under the gravitational walls, and will leave their
behavior under the symmetry walls as singular as it is at
level 2.) This is less straightforward for the continuous-
spectrum states. One should carefully redo the analysis
given in Appendix E with the system of equations obtained
by the changes (x,y, z) = (—x, —y — z). Clearly the count-
ing of free functions will be the same, but one may have to
modify our reasoning by choosing appropriately modified
Green’s functions in the proof of Appendix E. We,
however, expect that this is possible, and that, by choosing
initial data which appropriately decay under the initial
location of the gravitational walls, they will continue to do
so under the (well-posed) °-time evolution.

XVIII. SOLUTIONS AT LEVEL Ny =3

The set of equations at level N = 3 is similar to the one
at level Ny = 2. It, however, involves more degrees of
freedom, and extra complications. The most general
Np = 3 state is given by

\IJ( =
1 ~ o~
Tk7l7m k 7.1 Tm
= ( klmbbb +5 M, beb_gbe)O)_.

(18.1)
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Here the decomposition in + and — is done according to the
values indicated by the €’s. Note that there is a multipli-
cative conservation law for them: + x + counts like — x —
[see Eq. (11.22)].

As already mentioned above, there is a complete
decouphng between the dynamics of ‘;[/+ (belonging to

Hizo) © Hpo) and  that  of \Il( (belongmg to
I]-I] (03) D I]-I] (2.1))- Because of the + <—> — symmetry, we
shall hencefonh only consider the € = + case, and drop
the € index on the wave functions. The fully antisymmetric
tensor f;,, contains only one independent component, say
f123 = V2f such that

f[kzm] = fkim- (18.2)

On the other hand, the nine independent components of
hjx 4 can be conveniently rewritten in terms of a dualized,
asymmetric two-index f-space tensor h™ ;:

1

ik .q = Mamh™ g g = _Eﬂquh[kl].q' (18.3)

Notice that we use the p-space Levi-Civita tensor,
with [because of det(Gu,) = =21 Hum = V2€u, and

nkim = —%ekl’", with &3 = €' = 1. Moreover, we

move indices by means of G, and G“h We also introduce
the notation & for the G trace of h,,, i

h=GPih,, (18.4)

As we have chosen ¢ = +, the considered \I/<+3> state

belongs to H3 g) @ H(; ). The operator SS?) projects Hy3 o)
on Hpg) and Hy; 5) on Hioz) @ Hz0)- As a consequence
the constraint 89\11(*3) = 0 leads to the two equations:

i (1) .
(E(?p—i—ap—up—l—pp)f—i—hpku -v,h=0 (18.5)

i r r (1) r r a r
Ealphq] Taphg” + piphg” = 2ppa" hg " + 8,vef = 0.
(18.6)

On the other hand 8% projects H 3,0y on the zero vector but

H(12) on H(y 1y. Thus acting on \Ilzg) it leads to the equation

i (1)
<§ O +a+m—p k) hyk + 2pp ™ = 0. (18.7)

Acting with S’SB), Hp) 18 mapped onto [I-[I(z 2) via the Dk’m

term (and thus in the spinor S , the f term only
appears in conjunction with v;), whlle I]-I](l.z) is projected on

the same subspace via the action of all the terms of 5‘9,
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except the one proportional to v;. The corresponding

equation obtained from :95?)\1/;5) =0is

i r r (1) r rla r
Ea[ph a Al g T P ph g = 2P B g 6 v f = 0.
(18.8)

Finally SO maps Hs o) onto Hz 1), while it maps Hy; )
both onto H3 1y (coupling again f and ,,) and onto H; 3).
The corresponding two equations are

i () .
(zap—ap—ﬂp—i- pp>f+vah »—Vpyh =0 (18.9)

and

[ (1
(E(?k—ak +ﬂk— pk>l’lkp +2pkplhkl = O (1810)

We have thereby obtained a heavily overconstrained
system of differential equations for the ten unknowns
f>hp,q- To make progress with this system, it is useful to
separate the asymmetric tensor /,,, into antisymmetric (A)
and symmetric (S) parts (we do not subtract the trace
h = GP1S,, from the symmetric part):

Apy = hy S

v = h (18.11)

pal> rq rq)*

Let us briefly indicate the results obtained by using such
a decomposition in the previous equations, when consid-
ering appropriate combinations of various equations. First,
by comparing the derivatives of f given by Eq. (18.5) with
those given by Eq. (18.9) we obtain an algebraic relation
between A, and the scalar f

Ay, = 2a,f (18.12)

(whose compatibility is rela-
tion v’a, = 0).

The latter constraint tells us that the three components of
the antisymmetric part A, only depend on one unknown
function, say A(f3), and that we can replace A,, by the
following tensorial combination (with known coefficients)
of the two scalar unknowns f and A:

guaranteed by the

2
Alpg) = 5 Wty = ag)f + gt 2 (18.13)

Here, v, and a, are explicitly known, and we denoted

2. k

Xy 4y 4 zxy? — a2y — 272 — 22
v =y = .

8(x—2)*(y—2)?

(18.14)
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The next step is to compare two different expressions for
the gradient of the trace h: one expression is obtained by
taking the trace of Eq. (18.6) and subtracting it from the
divergence Eq. (18.7); the second one is obtained by doing
the same operations for the Egs. (18.8) and Eq. (18.10).
Finally, by equating the two different values of £0,h so
obtained, we get an algebraic relation between h and A,
namely

(D (2)k

2a,h = (W —p + p )Apy- (18.15)

But, from the definitions (11.10), (11.13), (11.14), (11.11),
one finds that

Wk @k (2z-x—y
p= G e

) (18.16)

so that the previous relation XA (kp] = 2a, [ yields a simple
proportionality between f and h:

(x-v)

f:(ZZ—x—y) '

(18.17)

In other words, at this stage we can eliminate the four
functions f and A,, in terms of the two scalar functions 4
and h = GP4S,,. The final problem is then to obtain
differential equations for the remaining unknowns, namely
A and the six components of .

We can first obtain a differential equation for 1 (con-
taining S, in its lower-order coefficients) in the following
way. The difference between Eqs. (18.6) and (18.8) yields a
partial differential equation (PDE) for A, of the form

i M) )
Ea[pAq]r + 0 pAgr = 200" Agla + @pSqr = 0. (18.18)

Introducing in this equation the expression above of A ,, in
terms of A and f, and projecting the indices pgr of this
equation by a combination of the type

1
nPPvsor — 5",
yields an equation for 4 of the form
l' ~ ~
Ee_'fap(eﬁl) + A, (S, x,y.2) =0 (18.19)

where

(v = x)*/ (xyz)

O P T

(18.20)

and where A, (S, x,y,z) denotes an expression linear in
the §,,, components, that we do not explicitly write here. In
deriving this equation for A, one must make use of an
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equation for the gradient of f obtained by summing
Egs. (18.5), (18.9); namely

e—ééap(e«ff) T uhtke) =0 (18.21)

with & given by [from Egs. (11.10), (11.13), (11.14)]

E=4(r —p)—2n,

G- y)
- Q 5.2.2.2 |

R e (18.22)

To close the system, we need a set of differential
equations for S,,. Such a system is obtained from
Eqgs. (18.7), (18.10), (18.6), and (18.8). It reads

i (1) )
Ea[psq]r + P pSqr =201 Sqla T ApAgr + Gipprgf =0,
(18.23)

] 1
%akskp + 27 S+ (g — (;)>k)skp — AP = 0. (18.24)

In the r.h.s.’s one should replace A ,, and f in terms of 4 and
h = GS,,, using the algebraic relations found above.

To summarize, at level N = 3, we have two indepen-
dent sectors (+ or —) which are totally equivalent to each
other. In each sector, the problem is reduced to the coupled
dynamics of seven unknown functions: the symmetric
components S,, of the dual of the original A, , wave
function, and the scalar function A parametrizing part of the
antisymmetric components A,,. These seven unknown
functions must satisfy 12 first-order partial differential
equations, namely (18.23), (18.24) and (18.19). We have
checked the consistency of this system (which satisfies
Bianchi-like identities similar to the ones discussed at level
Np = 2). Note that the two equations (18.23) and (18.24)
for §,, are of the “curl” and “div” type. A new feature,
however, is the coupling between S ,, and the scalar degree
of freedom A (which had no analog at level 2). A rough
counting of the free data in the general solution (which
would need to be firmed up by a detailed analysis of the
type we gave at level 2) is that the general solution in each
independent (+ or —) sector at level 3 depends on two (real)
functions of two variables, to which must be added an
arbitrary constant entering the integration of the (gradient)
equation for A.

XIX. ASYMPTOTIC PLANE-WAVE-TYPE
SOLUTIONS AT LEVELS Ny =2 AND Ny =3

As explained in the previous sections, while there exist
only discrete states at levels Np =0, 1,5, 6, at the inter-
mediate levels Np = 2,3,4, there exists a mixture of
discrete-states and continuous states (parametrized by

PHYSICAL REVIEW D 90, 103509 (2014)

arbitrary functions). We have proven the existence of the
latter states by studying the Cauchy problem for the PDE’s
satisfied by the wave function at level Ny = 2 (arguing that
the similar PDE systems at levels Ny = 3,4 will feature
similar solutions). However, it was evidently impossible to
express these continuous states in closed form. In the
present section, we try to get some familiarity with the
structure, and physical meaning, of these states by approxi-
mating them (in some asymptotic regime) by plane-wave
type solutions. This could be done in the high-frequency,
WKB approximation, but, we shall actually study a regime
where one can use a better approximation than the usual
WKB one.

We recall that a solution at some fixed fermionic level
N = N, has the general structure

Wiy = FOEA B - BRI (19.1)

where the components fq' Y (8) of the wave function
satisfy a set of (Dirac-like) first-order partial differential
equations implied by the SUSY constraints (11.1). In
addition, they also satisfy a more familiar second-order
Klein-Gordon-type spin-dependent WDW equation.

The WKB approximation would consist in looking for
solutions where the tensorial wave function fg %" ()
would be the product of a slowly varying tensorial
amplitude, and of a high-frequency scalar phase-factor
eSP/e with ¢ — 0. This high-frequency limit would
mean that we consider the limit of large momenta
7, ~ 0,5/e — oo. Here, we shall instead consider a regime
where the momenta are not required to tend to infinity, so
that we will be able to simultaneously retain effects linked
to various powers of the momenta. To do that, we consider
the quantum analog of the classical BKL approximation,
i.e. we take the formal “far-wall” limit where the various
exponential potential walls entering either the SUSY
constraints, or the WDW equation become small. To be
in such a regime, one needs all the #’s to be large and
positive, keeping also large and positive some of their
differences. Geometrically, this corresponds to being deep
in the middle of a Weyl (or billiard) chamber, far from all its
boundary walls. For instance, if we are within our canonical
Weyl chamber ' < > <, we need to have f' > 1,
p>—p'>1, and B> —p>> 1. Note that this implies
=g+ B+ 5> 1.

In this limit, the SUSY constraint operators simplify to

3V = 2090, + i0DD

5 (19.2)

where the terms cubic in ® have two origins: the super-
gravity cubic terms S$¢, Eq. (6.5), and the (Weyl-
chamber-dependent) far-wall limit of the symmetry-wall
hyperbolic-cotangent contribution Eq. (6.3).

Correspondingly, the far-wall limit of the Hamiltonian
constraint has the structure
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2f{<0) = _Gab(aa - wa)(ab - wb) + ﬁz (193)

where @, is the Weyl-chamber-dependent limit of
A () =0,InF = F'0,F. We recall that
F(B) = ¥’ (sinh 8, sinh 3 sinh #5,)~/8. (19.4)

In our canonical Weyl chamber, ' < ?> < 83, we have

(w,) = (1%%)

We shall therefore be considering plane-wave-type
solutions having wave functions of the form

(19.5)

dad (B) = AdZ L, explin,pY)
where Ag\7, ", is some f-independent tensorial amplitude.
We recall that it is convenient to rescale the wave function
according to

(19.6)

() = F(B)~ () ~ e/ W(p).  (19.7)
This implies that the corresponding primed plane-wave-
type wave function

dydyay (B) = Aajdy iy explizp?]  (19.8)
has the same tensorial amplitude A but features a primed
momentum 7/, which differs from the momentum r,
entering the original wave function

r, =rm, +iw,. (19.9)

It was shown above that the equations satisfied by the
wave function f'2 2 () could be written in a purely real
form. When looking, as we do here, for plane-wave
solutions it will be necessary to consider complex tensorial
amplitudes A. We recall also that (as is clear from the
expression above of the Hamiltonian constraint) it is the
primed momentum 7}, rather than z, which has to satisfy
the (real) mass-shell condition

Gnnl, + > = 0. (19.10)
In most of this section, we shall assume that we are
interested in real solutions of this mass-shell condition,
i.e. real values of the z,’s, corresponding to propagating
waves. This implies that the original z,’s are complex.

A. Ny = 2 asymptotic plane-wave solutions

In the Np =2 case, one can look for plane-wave
solutions in the H(; 1), subspace, i.e.

Ul 1) = kipg) (B)B1D210)._, (19.11)

Ly —

PHYSICAL REVIEW D 90, 103509 (2014)
with

kipg)(B) = quem;‘ﬂk etms (19.12)

and with a primed momentum satisfying the Np =2
(tachyonic) mass-shell condition

3
Grl ), = n''n, = +§. (19.13)

If, as we are mainly assuming, the components z/, are real,
the 3-vector z'* must be spacelike. Note that &, (/)
denotes the wave function of the original, unprimed, state W.

The tensorial amplitude K,, has to satisfy the two
equations that result from the plane-wave and far-wall
limits of Eqgs. (17.19) and (17.20), i.e.

(n* — iw") Ky, — 9" Ky, + 29 Ky =0 (19.14)

NSRR

(7" = i@), Ky + PpKgr = HpK gy = 2/‘_’[p\rf{Kq]k =0.

N =

(19.15)

Here the overbar indicates that one must take the far-wall
limit of the various coefficient functions ¢(f3), p(f), u(f).
The values of these limits generally depend on the
considered Weyl chamber. However, whatever the Weyl
chamber is, the asymptotic values of «; are always
{0,0,0}. On the other hand, the limit of g, is either
i/2{1,—-1/2,1} ori/2{—1/2,1,—1} according to whether
y > x or x >y, irrespectively of the value of z. Another

example is provided by the asymptotic behavior of %)k. In
the canonical Weyl chamber (a), where z > y > x, it goes
to i/2{-3,-5/2,0}, but in the Weyl chamber (¢), where
x>z >y, its limit is i/4{—1,-3,—1/2}. This lack of
obvious symmetry with respect to permutations of x, y, and
zis not a problem. The equations will remain invariant only
if an exchange between the k indices is accompanied by a
redefinition of the ®X matrices that represent the Rarita-
Schwinger field. Regardless, their physical consequences
will be the same in all Weyl chambers.

In the present case, we find that the linear system
satisfied by the six tensorial amplitude K ,, is of rank five;
its general solution therefore depends on only one arbitrary
constant, say C,. It can be written as

K,, = Cy(n,x, + LY, 7} +m,,) (19.16)
where, after performing some linear algebra, and working
in Weyl chamber (a), the two 3 x 3 matrices L ,,(7') =

k -/ H
Ly,m, and m,, are given by
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37 + 7y + 1y S(ny+my) 5 () + 3mh)

Li=—i| 3m+m)  omtm Y+
3(#) +375)  3(7 + ) s
(19.17)
and
. 13 9 3
mpq*—z—L 9 5 1 (19.18)
3 1 1

In this case, the expressions of the analog of the matrices
L,,(7') and m,, in the other Weyl chambers are simply
obtained from this one by the permutation of the indices
corresponding to the ordering of the scale factors of the
considered Weyl chamber, with respect to the refer-
ence one.

Several comments on these plane-wave solutions are in
order. First, the fact that they depend only on one (complex)
amplitude (for each momentum direction), is the plane-
wave transcription of our general finding that the continu-
ous states at level Ny = 2 depend on two (real) arbitrary
functions of two variables. (In both cases, this represents
one scalar degree of freedom; corresponding to the general
solution of a Klein-Gordon- like equation.) Second, if we
consider real momenta z], with parametrically large com-
ponents, the mass-shell condition (19.13) reduces to the
constraint that 7/, be approximately null: #'> ~ 0. In that
(WKB) limit we recover the plane-wave analog of the
classical cosmological-billiard dynamics [1,2,27]: the
Universe is represented by a massless particle moving
along a straight line within a (Kac-Moody) billiard. At the
classical level, we know that when this particle will
approach one of the potential walls defining the boundary
of this billiard chamber, it will “bounce” on that wall and be
reflected back within the central region of that chamber. At
the quantum level, if we consider the full WDW equation,
i.e. the Hamiltonian constraint (8.1), with Hamiltonian
(8.2) or (8.0), it is clear that, in the high-frequency WKB
limit, the wave (or wave packet) (19.12) will also bounce
and reflect on the quantum analogs of the potential walls, if
we decide to impose the boundary condition that the wave
function must exponentially decay (rather than grow) under
the potential walls. For an explicit proof of this (expected)
behavior, see, e.g., Ref. [17] which considered the coupling
of Bianchi universes to a spln—— fleld (Though this case is
technically simpler than the spm—— we are now considering,
it has many similarities with it.) We leave to future work a
detailed study of how, within the present supergravity
framework, the tensorial wave (19.16) reflects on a poten-
tial wall, and of the relation between the incident and
outgoing “polarization tensors” K ,,
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In the case where the #’s are parametrically large
components, it is instructive to see how the restricted
structure (19.16) of the plane wave solutions follows from
the supersymmetry constraints. In that limit the SUSY
constraints approximately reduce to

>0
El) ~ _7CI)A”a

(19.19)
which is simply the Fourier-space massless Dirac operator
in S space. In this limit, the anticommutator identity (7.1)
simplifies to a usual supersymmetric quantum mechanical
identity
500 5(0) |, &(0)2
5‘)82)—1—82)82)

G“bﬂaﬂbéAB (19.20)

4
which clearly exhibits the necessity of the approximate
mass-shell condition 7’2 = 0. In this limit it is easy to find
the general solution of the chiral-basis SUSY constraints

0= -25"|w)

— 7, b W), (19.21)

0= -289w) = 7,52 |¥). (19.22)
Indeed, starting from the null vector 7, in  space, one can
define a (real) null basis of  space made of two null vectors
and a spacelike one, say 7}, g,, and r,, such that the only
nonzero G-scalar-products between these vectors are 7’ -
g =1 and r-r = 1. One can then replace the original -
coordinate-based annihilation and creation operators b¢, by
by their projections on this null basis, i.e. b.(7') := bz,
b.(q) = b%q,, b.(r) = blr,, etc. Writing a general state at
level 2 in terms of the corresponding null-basis creation
operators, and using the basic anticommutation relations
{b(u),bs(v)} = 2u - 8.0, etc., it is easily found that the
general solution of the conditions b (7')|¥) =0 =

be(n')[¥) is

Cab, (2')b_(2')[0) -
which is equivalent to the leading-order term in the more
general far-wall solution (19.16) in the limit where the 7},’s
are parametrically large. Let us note in passing that the
approximate form (_19 23) can also be written (in the same
approximation) as S 150 |0)_, which is reminiscent of an
ansatz suggested by Csordas and Graham [6]. However, we
have shown that, within our framework, such an ansatz
(saying that the general N = 2 solution is obtamed by
acting on some Ny = 0 scalar state f()|0)_ by S 150y is
not correct beyond the high-frequency, plane-wave limit.
Here, we focused on asymptotic far-wall waves having a
real (shifted) momentum 7/, because this looks most
natural in view of the formal Hermiticity of the
Hamiltonian operator H', Eq. (8.6), corresponding to the
rescaled state U’, Eq. (8.5). However, it might also be

(19.23)
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possible to consider far-wall solutions where the compo-
nents 7/, are complex, say 7, = p, — iq,, where the two
real 3-vectors p,, g, would satisfy G*p,q, =0 and
G"p.p, — Gq,q, = +%. The wave function of such
waves would be of the type

ki

)(ﬂ) _ queipaﬂtle‘F(CIu"!‘wa)ﬂa. (1924)

Pa
A particular case would be the situation where 7, is purely
imaginary, i.e. p, =0 and 7/, = —iq,, corresponding to
real, exponentially behaving (nonoscillating) plane waves
of the type
k(pg)(B) = K pet4atmal", (19.25)

In that case, the real vector g, must satisfy G**q,q;, = — %,
and therefore it must be timelike.

We have seen above that the covariant components @,
are given by Eq. (19.5). The corresponding contravariant
components G*t,;, read

a_(_1_ 35
7T =\Ts T8 T8

If we conventionally define the “future” in  space as the
direction in which p° = B! + % + ° increases (in other
words the direction of decreasing volume of the Universe,
i.e. towards the cosmological singularity), the vector @w® is
past directed (and e™«#" increases toward the future). Then,
focusing on the case where 7/, is purely imaginary, if the
real timelike 3-vector g“ is also past directed, the sum
q“ + @* will be timelike and past directed, so that the real
factor et(9a+@a)f" will increase towards the cosmological
singularity. On the other hand, if we consider a timelike
vector g“ which is future directed, the sum ¢“ 4+ @w* may
have several different types of f-space orientations. Let us
only note here the fact that the squared length of w* is

(19.26)

23
@’ =G ww’ = -~

T (19.27)
This is larger (in absolute value) than the squared magni-
tude of ¢: ¢*> = G,pq"q” = —3. Therefore, in the particular
case where ¢g“ would be taken to be proportional to w*, the
sum £¢“ + w® would remain future directed whatever
the sign = is, i.e. the direction of ¢“. In the general case
where we retain a nonzero real part p, in 7}, there are even
more possibilities. However, before considering more
seriously all those possibilities involving complex values
of the shifted momentum, one should study whether, when
they impinge on one of the gravitational or symmetry walls,
they can be matched to a reflected wave, modulo the
presence of an exponentially decaying wave under the
considered wall (as was shown to be the case for real-z),
waves coupled to a spin-% field [17]).
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B. N = 3 asymptotic plane-wave solutions

The study of plane-wave solutions at level N = 3 leads
to similar conclusions. One finds that the general structure
describing such plane waves is either

- o~ o~ 1 N
(19.28)

or a similar W, state. Each such state is parametrized by a
symmetric tensorial wave function S;;q, or §,,. Indeed, the
scalar f* or f~ is not independent from S, but is
proportional to its trace: f¢ = 6GP1S5,,, where the factor
o is equal either to 0, +1, or —1, depending on the
considered Weyl chamber.

Indeed, by taking the plane-wave limit of our general
Npr =3 analysis above, one finds that the antisymmetric
components Ay, must vanish. For instance, when working
in our canonical Weyl chamber (or, more generally in any
chamber where z = ¢’ is larger than x or y), one first
notices [from its definition in Eq. (11.11)] that all the
components of the vector v, vanish. Therefore, the second
contribution to A, in Eq. (18.13) (proportional to 1,,,,1"1)
vanish. On the other hand, in the first contribution (propor-
tional to f|,a,/v?), one finds that the factor v|,a,)/v* has
a finite, nonzero limit (recall that a, — 0 far from the
gravitational walls). However, Eq. (18.17) shows that, in
the case we are considering (z dominant), the scalar f tends
to zero with respect to h = G”4S . Finally, in this case (z
dominant), both A, and f vanish (in the notation above,
we have ¢ = 0). If we are in a different Weyl chamber (with
a subdominant z), neither f nor the components of v will
vanish. Instead, they will have some finite limits. First,
Eq. (18.17) shows that f = oh, where ¢ = +1 if y is
dominant, and ¢ = —1 if x is dominant. Second, in such
cases, the first contribution to A, in Eq. (18.13) will again

vanish (now because v,a,, /v* = 0). As for the second

contribution, it will again vanish, but now because 1 — 0 in
the considered cases. Indeed, the equation

] 3
%akAkP 4 (= P )AM — 88 = 0, (19.29)
which follows from the general N = 3 equations, implies,

asymptotically, the constraint
U oGk I
A —57 +p=p )t =0 (19.30)

which can only be satisfied, for an arbitrary 7’ k on its mass
shell, if A vanishes.

To derive the asymptotic structure of the symmetric part
S(pq)» We have to deal (as we did in the N = 2 case) with
the div + curl system satisfied by §(,,: namely, the
divergence Eq. (18.24) (where the last term can be
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neglected) and the curl Eq. (18.23) where one should use
f=0GP1S,, in the last term. The final result for the
structure of S(,,,) depends on the considered Weyl chamber
(both because of the different values of o, and of the
different far-wall limits of the coefficients entering the div
+ curl system).

For instance, in the Weyl chamber (a), we obtain plane-
wave amplitudes of the form

Spg = Cs(mpmy + Lli)q”i + M) f=0,
1 i
h—C'; |:—§+§( —JT3):| (1931)
with, now,
—m s —gmy ety (7 - )
LA, =i| —inb+7, —rthy + 7} -1
—3 (n} —73) —37) -3
(19.32)
and
1
Mpg =+~ 0 (19.33)
—1

By contrast, in, say, Weyl chamber (b), the corresponding
amplitudes are given by

S,y = Cy(a,ml, + LY 7} +m,,),

f C3 |:4 5( - 7'[3):| = h, (1934)
with
—7 + 7+ —%(”1 - 75) %”/2
Lygm =i| —3(@ —7) ) -7 |
37T L) m —
(19.35)
. 5 0 1
Mg =7 0o -1 -1 (19.36)
1 -1 2

Contrary to what occurred at level Np = 2, the trans-
formation rules of these amplitudes, when swapping Weyl
chambers, is far from obvious.

Most of the comments we made above in the Np = 2
case apply mutatis mutandis. In particular, the fact that the
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general plane-wave solution at level Ny = 3 depends on
only two complex constants C§, C5 is the plane-wave
transcription of our finding above that there are, in each +
sector, two arbitrary (real) functions of two variables. In
addition, it is also an instructive exercise to see how the
special structure of the Np =3 plane-wave solution
emerges from the SUSY constraints in the limit where
the components z/, get large. In this limit, z/, is approx-
imately null (7> ~ 0), and one can again conveniently
introduce a null basis 7, q,, r,, and corresponding pro-
jected annihilation operators b,.(7') := b%xl,, b.(q) = blq,,
b.(r) = blr,. Using their anticommutation relations it is
then easy to find the general solutlon at level Np =3
of the conditions b, (7')|¥) = 0 = b.(z')|¥). One finds
that it is obtained by acting on the Ny =2 solution

b (7 )b (7')|0)_ by arbitrary combinations of the “trans-
verse” creation operators b (r), i.e.

(csby (r) + c_b_(r)b. (x)b_(x)|0)._.

It is easy to see that such a solution is equivalent to the
above results in the limit where the components z/, get
large. The factorized form (19.37) suggests that one might
obtain the general N =3 solutions by acting on the
general N = 2 solution by some suitable raising operator.
However, we have shown that this was not true beyond the
high-frequency plane-wave limit.

Finally, let us note that the Nz = 4 plane-wave solutions
can be easily obtained from the Ny =2 ones by the
exchange |0)_ — [0), and b% — b%. (As the gravita-
tional-wall terms are neghglble in the considered limit,
one does not need to worry about the additional complex
shift of the f’s.)

(19.37)

XX. BOUNCING UNIVERSES AND BOUNDARY
CONDITIONS IN QUANTUM COSMOLOGY

Since the pioneering work of DeWitt [42], the issue of
boundary conditions (near big bangs or big crunches) in
quantum cosmology has been much discussed. Several
proposals have been made. In particular, DeWitt has
suggested to impose the vanishing of the wave function
of the Universe on the singular “zero-volume” boundary of
superspace, Vilenkin [43,44] suggested a boundary con-
dition selecting a wave function tunneling from “nothing”
into superspace, while Hartle and Hawking [45] have
suggested determining a unique wave function for the
Universe by considering a path integral over compact
Euclidean geometries. See [46] for a comparison of the
predictions from the latter two different choices within a
restricted two-dimensional minisuperspace model, and see
Refs. [47-51] for studies of the wave function of the
(bosonic) Bianchi IX model.

Another context within which the issue of boundary
condition at a spacelike singularity is important is that of
evaporating black holes. In particular, Horowitz and
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Maldacena [52] have suggested the need of imposing a
“final state boundary condition” at a black hole singularity
in order to make sure that no information is absorbed by an
evaporating black hole.

We wish to point out here that our finding that super-
gravity predicts the presence (in the major part of our
Hilbert space) of a fachyonic (i.e. negative) squared-mass
u? in the WDW Eq. (8.1) naturally leads to a kind of final-
state boundary condition at the singularity that might be
relevant to the black hole information-loss problem.

Let us start by explaining in simple terms the origin of
the squared-mass term y?, and its a priori importance near
the singularity. It is well known that the supergravity
Lagrangian density L (per unit proper spacetime volume)
contains terms quartic in the fermions: L, ~ yw*. Such terms
will correspond to a proper energy density p, ~y*. We
have seen above that, when quantizing the spatial zero
modes of y the variables W satisfying a Clifford algebra
(with a numerically fixed r.h.s. of order unity in Planck
units) are obtained by rescaling y according to
w =g /4, Eq. (2.29), where g = (abc)® denotes the
determinant of the spatial metric. As a consequence the
proper energy density linked to the quartic fermionic terms
scales with the proper spatial volume V3 = abc as

pa~g =) =(abe)?=a® (201
where a := (abc)l/ 3 denotes the geometric average of the
three scale factors. As the volume @’ of the Universe
decreases, the energy density p, increases faster than the
other well-known contributions to the energy density, such
as the energy density p ~ (abc)~(") = g=3(+%) associ-
ated with a fluid with the equation of state p = wp, with
w < 1. Well-known examples are (i) a cosmological con-
stant (w = —1) with p = Cst; and (ii) thermal radiation
(w=1) with p~a~*. The anisotropy energy associated
with the Bianchi IX curvature, namely py, ~ a*/(b*c?) +
cyclic plays initially a special role because of the Kasner
oscillations which can make, e.g., a> b,c, thereby
allowing (as proven in Ref. [1]) the anisotropic curvature
energy P.uv to be more important than any ordinary fluid-
type energy (having w < 1). However, when averaging
over the billiard motion of p'=—Ina, f*>=—Inb,
? = —Inc, within some chamber, all the separate scale
factors a, b, ¢ will eventually decrease and formally tend
toward zero (though at different, and chaotically changing
speeds), so that the ratio p.y./ps~a* + b* + ¢ will
eventually decrease and tend toward zero as
V3 = abc — 0. This reasoning shows that, when going
toward the singularity, the anisotropic potential V (f) =
Ha*+b* + ) =L (V> + *a® + a*b?)  will initially
dominate over usual energy densities (such as thermal
energy, when included), but will ultimately be dominated
by the effect of the squared-mass term x>. The latter
conclusion does not depend on the sign of u>. We are,
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however, going to see that the sign of u?> has crucial
consequences for the issue of boundary conditions at the
singularity. Let us also note that the dependence of the
fermionic energy density (20.1) on the spatial volume
formally corresponds to a stiff equation of state p = p, with
index w = +1 (as that corresponding to a massless sca-
lar field).

After these heuristic considerations, let us consider the
technical aspects of the behavior of the quantum wave
function near the singularity. As is well known from the
study of the classical Bianchi IX dynamics [2,53] and its
generalizations [27,54,55], the asymptotic behavior of the
dynamics of the scale factors near the singularity is best
exhibited by replacing the flat Lorentzian coordinates ¢ by
the corresponding (hyperbolic) polar coordinates p, y*:

p=pr® with p=1/=G.,pp"

Gaupy“y? = —1.
(20.2)

In other words, the variable p (which should not be confused
with the notation used above for the proper energy density) is
the Lorentzian radius, while the corresponding Lorentzian
“angular coordinates” are encoded in the two independent
components of the vector y running on the unit hyperboloid,
which is a realization of the Lobachevski plane. (The unit-
hyperboloid vector y¢ should be distinguished from the
notation y% used for Dirac matrices.) In terms of these
“polar” coordinates, the metric in f space becomes

G pdpidpt = —dp* + p*do? (20.3)
where do? is the constant-curvature (K = —1) metric on the
unit y hyperboloid. The corresponding d’ Alembertian oper-
ator in f# space reads

Oy = +G*8,0, = =G &7,

1 1
= —Fap(pd_lap) +;A}, (204)

where, for more generality, we have provisionally considered
the case of any f-space dimension d (= the number of spatial
dimensions). In our case, d = 3 and we have

1 2 1
—0,(p?0,) = 2 +=09, =-d%p. 20.5
7 ) (p70)) T, oP (20.5)

In terms of the rescaled wave function ¥’ and of these polar
coordinates, the WDW Eg. (8.6) reads

1 1 o
<p 9p — ;Ay + i+ W(ﬁ)> W(p.y") =0. (20.6)

Leaving to future work a study of the near-singularity limit
of the first-order SUSY constraints (17.32), we shall only
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give here an approximate treatment of the asymptotic
behavior of the solutions of the second-order WDW equa-
tion. When approaching the cosmological singularity we
have p — o0, and all the potential terms in W(5) = W (py)
become very sharp functions of y on Lobachevski space
(because of the factor p multiplying the argument of W). In
the interior of the intersection of a Weyl chamber of AE;
on the unit y hyperboloid, i.e. when, say, 0 < y! < y> <y,
the potential W (py) will tend toward zero as p — +co. On
the other hand, when one goes on the other side of the
gravitational wall (i.e. when, say, yl < 0) the relevant
bosonic gravitational-wall term o +e~*’' tends toward
400, and dominates the spinorial J-dependent term
xJ lle‘zf’yl. This suggests (as in the purely bosonic case)
that we can replace the gravitational-wall terms by an
infinite, sharp wall located at y' = 0. The case of the
symmetry walls is a a priori more subtle because they
are purely quantum (and spin dependent), and also because
they are not exponential, but proportional to 1/sinh?f,,.
However, a local analysis of the regular solutions near these
walls shows that the exact wave function ¥’ (as well as W)
vanish on the symmetry walls. Finally, we can impose, in the
asymptotic limit p — +oco that the wave function W’
vanishes on all the boundaries of each Weyl chamber, while,
in the interior, it satisfies the equation

1 1 R
<p8/27/’ ~ 7 A, + ﬂz) W'(p.y)=0. (20.7)

As ji% is a ¢ number at each fermionic level, and as we have
just seen that W'(p,y“) satisfies Dirichlet boundary con-
ditions on the y-space walls y' =0, y' = y?, and y? = y°,
we can expand (at each level Ng) the general solution of
(20.7) in a series of separated modes of the form

(p,y") =Y Ralp)Yu(r). (20.8)

Here, the “angular factors” Y, (y“)’s are eigenmodes, with
Dirichlet boundary conditions, of the Laplace-Beltrami
operator on, say, the triangular billiard chamber with
boundaries y' = 0, y! = y?, and y?> = y> on the unit hyper-
boloid, while R,(p) is a corresponding radial factor. The
latter Dirichlet billiard is the quantum version of the so-
called Artin billiard, whose domain is half the famous
keyhole-shaped fundamental domain of the modular group
SL(2, Z). The spectrum of our quantum triangular Dirichlet
billiard corresponds to the spectrum of odd cusp automor-
phic forms. See, e.g., [56,57] for nice accounts of the theory
of such Maass automorphic waveforms. The eigenvalues
Ay, With

A Yn(Va) = _ﬂnyn(}/a)

, (20.9)

are often written as A, =1+ r2. The fundamental
Dirichlet eigenmode has r; = 9.5336952613536..., which
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corresponds to the surprisingly large lowest eigen-
value 1; = 91.14134533635....

The differential equation that each radial factor R,(p)
must satisfy reads

1 A
(/—) %p + p—’; + u2> R,(p) =0. (20.10)

As for ordinary three-dimensional quantum mechanical
spherically symmetric problems we can consider the
rescaled radial function u,(p) := pR,(p), which satisfies
a one-dimensional Schrédinger equation. However, as p is a
timelike, rather than a spacelike, variable, we must reverse
the sign of the analog one-dimensional potential. In other
words, one can think of p as the position of a quantum
particle moving, with zero energy, in the potential (modulo
a factor 2)

A
Ulp) = - - (20.11)

p

with a wave function satisfying
(=05 + U(p)uy(p) = 0. (20.12)

The qualitative features of this quantum problem near the
singularity (i.e. as p — +o0) crucially depend on the sign of
p?, because lim,_, . U(p) = —u*. [We are aware of the fact
that all the solutions we are going to discuss can be written
in terms of (suitably modified) Bessel functions. However,
it is more illuminating for our purpose to focus on the
approximate analytic expressions that are relevant near the
singularity.]

If 42 is strictly positive (which happens only at fermionic
level N = 3 where y* = 1), U(p) becomes negative near
the singularity (p — +o0). The general solution near the
singularity will then be a superposition of incoming and
outgoing waves
pR,(p)=u,(p)~a,e* +b,e” " asp—+oo. (20.13)
The frequency of these waves only depends on y = \//7
and not on the spatial eigenvalues 4,. The possibility of
such incoming or outgoing waves near the singularity
signals a possible information loss (or information gain) at
the singularity. At the classical level, the presence of such
oscillating modes means that a positive y? ultimately
quenches the BKL chaotic oscillations of the scale factors,
and (as would the presence of a massless scalar field) leads
to a final, monotonic, power-law approach toward a zero-
volume singularity.

In our supergravity context, 4> never vanishes. Let us,
however, allow comparison of our results with those
obtained in previous works, where u> = 0 was generally
assumed, and discuss what happens when x> = 0 in the
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quantum problem (20.12). In that case, it is the subdomi-
nant term —j7 in the potential that matters. The fact that it is
negative leads again to a wavelike behavior near the
singularity, with the presence of both positive and negative
frequencies. However, in that case one should take as
position variable Inp. One easily finds that the general
solution of (20.12) then reads [58]

Rn(/)) — anp—l/Zeir,, Inp 4 bnp—l/Ze—ir,,lnp (2014)

where r, = /4, —% is the eigenvalue parametrization
introduced above. Again the simultaneous possibility of

such incoming or outgoing waves signals a possible
information loss (or information gain) at the singularity.
At the classical level, the presence of such oscillating
modes means that a vanishing x? leads to unending BKL
chaotic oscillations of the scale factors, toward a zero-
volume singularity.

Let us now consider the case where i is strictly negative
(which happens at all fermionic levels, apart from N = 3).
In that case U(p) becomes positive (i.e. repulsive) near the
singularity so that the general solution is a superposition of
exponentially decreasing or increasing solutions:

pRn(p) = MH(,O) ~ ang_‘/d/’ + bneH/de’ as p — +oo

(20.15)

where |u| :== \/—p?. The presence of possible solutions that
are exponentially growing as p — +oco suggests (similarly
to the case of a quantum particle impinging on a repulsive
potential wall) that we should impose as boundary con-
dition at the singularity the absence of such growing
modes, i.e. the vanishing of all the coefficients b,,. In other
words, it is natural to require that p R, (p) ~ e P — 0 as
p — +oo. At the classical level the absence of oscillating
solutions near the singularity tells us that a negative
4>, ie. a negative fermionic energy density p, ~
—|ul?(V3)™2 ~ —|ul*(abc)72, has the effect not only of
stopping the chaotic BKL oscillations, but even of stopping
the collapse of the Universe toward small volumes, and to
naturally force the Universe to “bounce” toward large
volumes. It is interesting to see that supergravity naturally
predicts (in most cases) that quartic-in-fermion terms
(linked to spatial zero modes) lead to such a stopping,
and reversal, of the collapse. Though these negative
fermionic energy densities are of quantum origin, it seems
consistent (within our fully quantum framework) to take
them into account and to conclude that they indeed allow
for cosmological bounces. In other words, our work
realizes (within our minisuperspace context) a wish
expressed by DeWitt [42], namely showing the dynamical
consistency of imposing the vanishing of the wave function
of the Universe at the zero-volume boundary of superspace.

For completeness, let us give the exact solution of the
separated quantum radial Eq. (20.10), corresponding to one
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spatial mode Y,(y). When imposing our suggested
decaying boundary condition at the singularity, it is of
the form

/

an
Rylp) = 71 K (o) (20.16)

where r, = /4, —1 and where K, (z) is the K-Bessel
function for a pure imaginary order. The latter imaginary-
order, real-argument K-Bessel function is real, exponen-
tially decaying for large argument, and real oscillatory
when |u|p < r,. Viewed from a classical limit standpoint,
the above radial wave function describes a bounce of p
around the minimal value p;, ~ r,/|p|.

If we come back for a moment to the classical dynamics
of (diagonal) Bianchi IX cosmological models, it is
interesting to note that the effect of adding a negative
u> to the ordinary (classical) bosonic potential
W, (B) =2V ,(p), with Eq. (2.28), has been studied in
the literature. Indeed, Refs. [59] and [60] have considered a
modification of the usual BKL dynamics equivalent to
adding a negative y?, with the motivation that such a
“physically unacceptable” negative energy term had been
unwittingly included in some previous numerical studies of
BKL chaos, thereby leading to unexpected, erratic oscil-
lations of the three-volume. In a follow-up paper [60], it
was further noted that the Bianchi IX dynamics modified
by a negative y”> contains numerous closed orbits in f
space, i.e. Universes that bounce periodically. The exist-
ence of such classical cyclically bouncing Universes (of the
type of the old cycloid-based Friedman Universe, but with a
regular minimum volume state) is intuitively understand-
able in view of the closed-Universe-recollapse property of
classical Bianchi IX models. Let us recall that Lin and Wald
[61] have proven that vacuum Bianchi IX models cannot
expand for an infinite time, but must recollapse. [The later
reference [62] has extended this result to the nonvacuum
case, under the condition that the matter content satisfies
the dominant energy condition, and that the average
pressure is non-negative. Strictly speaking, their results
do not apply to our case, but, as our negative energy (and
pressure) fermionic term p4 = p, decreases very fast «
(a b ¢)~2 during the expansion, we are considering here that
the recollapse is actually induced by the large-volume limit
of the bosonic Bianchi IX potential V (/) (which, modulo a
rescaling by g = (abc)? is the anisotropic equivalent of the
well-known Friedman curvature-potential term o —k/ a2,
with k = +1, responsible for the recollapse of closed
Friedman Universes).]

In Fig. 3 we sketch (in 8 space, indicating the Lorentzian
coordinates &%, &', £ defined in Appendix A below) two of
the simplest cyclically bouncing Bianchi IX models (with
an additional negative x?) found in Ref. [60]: namely the
ones labeled (i) and (vii) in Table 1 there. (They refer to a
diagonal Bianchi IX model, without the symmetry walls
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FIG. 3. Two examples of periodically bouncing Universes
confined within the Lorentzian f-space “bottle” made by the
bosonic Bianchi IX potential V() augmented by a negative
u? term. '

present in our supergravity framework.) The funnel-type
structure surrounding these periodic curves is a sketchy
representation of the bosonic potential V,(f); it indicates
the locus of the f-space points where V (f) = +1. For
values of order unity of the momenta 7, = Gabﬁb , the level
set V,(B) = +1 represents the approximate location of the
potential wall which confines f(zr) motions oriented in
spacelike or null directions, and leads to the usual billiard
description. What is not represented (and must be mentally
added by the reader) is the fact that, both in the upper part
[where the negative x* term dominates over V,(f)] and in
the lower part of the funnel [where the potential V,(f)
becomes deeply negative because, for large, nearly iso-
tropic spaces a ~ b ~ ¢ we have V() ~ —3a*] there are
other potential walls that can confine (7) motions oriented
in a timelike direction, and make it bounce backwards in °
“time”. Indeed, we have seen above that, for instance, the
potential U(p), Eq. (20.11), describing the motion in a f-
space timelike direction (like the p one) was the opposite of
the usual potential V() (augmented by the 4 term), so
that a negative V (#) wall approached in a timelike
direction is roughly equivalent to a positive V,(8) wall
approached in a spacelike direction. In other words, we
should think of the funnel represented in Fig. 3 as being a
kind of closed “bottle” (in the sense of “magnetic bottles™)
within which a f-space motion is confined in all directions.

Evidently, the periodic curves confined within such a f-
space bottle (and sketched in Fig. 3) are just fine-tuned
examples of generic classical orbits, which will chaotically
[59,60] oscillate up and down (as well as sideways, as in
standard BKL chaos) in this bottle. We have explicitly
checked, by numerically integrating the classical S-particle
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equations of motion, in presence of an additional negative
/42 term, that, indeed, generic classical orbits tend to fill in a
chaotic way the funnel represented in Fig. 3. Note,
however, that if one considers motions having, at some
point, very large momenta 7, = Gahﬁ" their confining
funnel will be correspondingly larger (though only loga-
rithmically so). However, we think that the existence of a
(presumably infinite) number of periodic f-space orbits is
conceptually important for the following reason. Studies of
the relation between classical chaos and quantum chaos
(notably through the basic contributions of Selberg [63] and
Gutwiller [64]) have shown that there is an intimate link
(embodied in some trace formula) between the closed orbits
of a classical system, and the eigenvalue spectrum of the
corresponding quantum dynamical system. This classical
versus quantum correspondence suggests that the existence
of a discrete spectrum of periodic orbits in # space (when
u?> < 0) signals the presence of a corresponding discrete set
of quantum states confined within the bottle of Fig. 3, i.e.
describing quantum bouncing universes, satisfying the
boundary condition that the wave function ¥ vanishes
exponentially both when ° — +oco (small volumes) and
when 0 - —co (large volumes). Our results above for
fermionic levels Ny = 0 and 1 has rigorously established
(by explicit construction) the existence of three such
(square-integrable) discrete states (confined in all direc-
tions). (They might be considered as the first three states in
the expected tower of discrete states.) On the other hand,
our results on continuous'' states at levels N r=2,3,and 4
has shown that one could construct continuous families
(parametrized by several arbitrary functions of two varia-
bles) of square-integrable states, that exponentially decayed
when going under the gravitational walls (i.e. sideways in
Fig. 3). Among these, our emphasis on the importance of
having a negative y® suggests that we should restrict our
attention to the cases Ny = 2 and 4 for which p?> = —%.
However, our construction did not give us any freedom of
imposing boundary conditions either as f° — +o0, or as
f° = —oco. Our discussion above of the behavior of
quantum billiards (with 4> < 0) at the singularity, suggests
that the imposition of the condition that ¥ vanishes
exponentially when % — +oco will eliminate half of the
solution space (by setting all the b,’s to zero). This roughly
leaves a solution space containing only one arbitrary
function of two variables. [Indeed, each sequence {a,}
or {b, } parametrizes an arbitrary function of two variables,
> .a,Y,.(7), satisfying Dirichlet conditions on our y-space
Weyl chamber.] The imposition of a similar exponential
decay of U when 8° - —oo (i.e. for large volumes) might
further restrict the arbitrariness described by the sequence
{a,} to leave only a much sparser discrete sequence of
states, conceivably equivalent to having, say, only one

""The discrete states at level 2 were found to be nonsquare
integrable.
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arbitrary function of one variable. (Though, at this stage,
we cannot discard the possibility that this second restriction
might eliminate all discrete states.) A toy model showing
the subtleties involved in such a reduction follows.

Let us consider a simple model of a Lorentzian dynamics
within a potential that confines motions both in spacelike
and in timelike directions, namely, a simple WDW-type
equation representing a two-dimensional Lorentzian har-
monic oscillator,

HU(1,x) =0 (20.17)

with

2H = 40?7 - 02 — 0?t* + 02X’ (20.18)
We have H = —H, + H, where both H, = 1 (=0} + o}1*)
and H, = §(—0% + w}x?) are usual, confining harmonic
oscillators. The harmonic frequency for timelike motions
(in the 7 direction) is @, > 0, while the harmonic frequency
for spacelike motions (in the x direction) is @, > 0. The
eigenvectors of H can be looked for in a factorized form
U(t,x) = f(t)g(x). As both f(¢) and g(x) must be eigen-
functions of confining-type harmonic oscillators, they will
be both restricted to a discrete spectrum if we impose that
(1, x) exponentially decays both in timelike and spacelike
directions (and for both signs of these two axes). Under
these conditions, we must have W(¢,x) = h,,(t)h,(x)
(where m, n denote natural integers, and %, are the usual
Hermite eigenmodes), and the eigenvalues of the total H
(HY = E,,,9) are restricted to the values

1 1
E,.= —(m+§)a},+ <n—|—§)wx.

The WDW equation demands that we only consider states
such that E,,, = 0. As a consequence, we see that (i) if the
ratio of the two frequencies w;,, @, is rational there will exist
a restricted set of modes satisfying all our conditions [e.g.,
in the simple case where @, = w, we get the one-integer
sequence U, (t,x) = h,(t)h,(x) of solutions]; (i) on the
other hand, if the ratio w,/w, is irrational, there does not
exist any solution satisfying our conditions [though, there
exists modes of the type f(z)h,(x) that will decay in both
spatial directions, as well as when ¢ — —o0, but that blow
up when f— 4o0.] In our case, we can hope that
supersymmetry will relate the behavior in timelike and
spacelike directions and allow for the existence of a final,
sparse discrete set of solutions decaying in all directions.
The fact that we have proven the existence of such states at
levels Np =0 and Np =1 is a good indication in
this sense.

We initially hoped that the existence of classical bounc-
ing solutions (as sketched in Fig. 3) might entail the
existence of corresponding quantum states. In particular,

(20.19)
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it is tempting to interpret the lowest classical periodic
solution, labeled 1 in Fig. 3, as corresponding to the unique
quantum ground-state at level Nz = 0. [As sketched in the
figure, the latter classical solution describes a universe
which has a nearly constant Planck-size volume (nearly

constant 56 = ‘/TEﬁO), but whose “shape” oscillates. This
roughly fits with the wave function (13.5) of the N =0
state.] However, the toy model (20.18) shows (when a/b is
irrational) that the existence of classical bouncing and
confined solutions does not guarantee the existence of
corresponding quantum states. We leave to future work a
study of the existence of quantum bouncing solutions at
levels Np =2 and Np = 4.

In this work, we only considered the dynamics of pure
supergravity, without extra matter content. Our aim was not
to suggest a phenomenological description of early cosmol-
ogy that might later turn into our observed Universe, but
rather to investigate the conceptual role of supergravity in the
dynamics close to a big bang or big crunch singularity. If,
however, we contemplate an extension of our model con-
taining, say, some type of inflationary sector (with an
inflaton field ¢), we will have a modification of the
WDW Egq. (20.6) consisting (notably) of adding both a
derivative term proportional to —d% and an additional
contribution to the potential term W(f) proportional to
+(abc)?V(¢), where V(¢) denotes the inflationary poten-
tial (which is chosen to be positive so as to be able to mimic a
positive cosmological constant). When considering the
dynamics of a timelike (i.e. volumelike) gravitational degree
of freedom [such as f° = —In(abc))] the additional term
W, = +(abc)>V(p) = e=#'V(¢) must be considered (as
explained above) as being a downfalling cliff rather than a
repulsive wall. Therefore, from the point of view of the
quantum dynamics of B° the confining (near isotropic
metrics) wall W,(f) that led to the above recollapse at
large volumes will be eventually counteracted (on the large
volume side) by the deconfining, attractive effect of W . In
other words, we have here a situation where the wave
function for #° can tunnel through the potential barrier linked
to W,(3), to emerge on the inflationary side where it can lead
to an exponentially expanding space. (In picturesque terms
the “bottle” of Fig. 3 should be thought of as leaking, by a
quantum tunnel effect, on its bottom side, corresponding to
large volumes.) Such models have been often considered in
the literature, see, e.g., [43—46,49]. The new aspect that our
work might provide is a specific proposal for the “initial
wave function of the Universe,” describing a sort of quantum
storage ring within the upper part of the bottle of Fig. 3,
corresponding to Planckian-size universes.

XXI. SUMMARY AND CONCLUSIONS

Let us summarize our main results:
(1) We have studied the dynamics of a triaxially
squashed 3-sphere (a.k.a. Bianchi IX model) in
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D =4, N =1 supergravity by means of a new
approach that gauge fixes, from the start, the 6
degrees of freedom describing possible local Lorentz
rotations of the tetrad. In our approach, the only
constraints to consider are the four SUSY con-
straints, Sy ~ 0, the Hamiltonian constraint
H=~0, and the three diffeomorphism con-
straints H; ~ 0.

The quantization of this constrained Hamiltonian
system has been done by first canonically quantizing
the 6 bosonic [g;;(7)], and 12 fermionic (w43) gauge-
fixed degrees of freedom. The 6 metric degrees of
freedom are parametrized by means of three loga-

rithmic scale factors ' = —loga, f* = —logh,
p? = —logc measuring the squashing of the
three-geometry, and by three FEuler angles

@', ¢*, @* parametrizing the orientation of the quad-
ratic form g;; w.r.t. the Cartan-Killing metric k;;
associated with the SU(2) homogeneity symmetry
of the squashed 3-sphere. The canonical quantiza-
tion of the gravitino leads (similarly to the Ramond
string) to a spin(8, 4) Clifford algebra for a suitably
rescaled, and linearly transformed, gravitino zero-
mode 4 (a =1,2,3;A = 1,2,3,4); see Eq. (4.4).
This implies that the wave function of the Universe
is a 64-dimensional spinor depending on six bosonic
variables (8, ¢*), (6 =1, ...,64).

The constraints are then imposed a la Dirac as
restrictions on the state: S,|¥) =0, H|¥) =0,
H,|¥) = 0. Because of our choice of parametriza-
tion of the Euler angles [connecting g,;(¢) to the
Cartan-Killing metric k;; associated with the Bianchi
IX structure constants] one finds that the diffeo-
morphism constraints are equivalent to requiring that
the wave function W, (f%, @) does not depend on
the three Euler angles ¢“. The remaining constraints
are uniquely ordered by requiring that they be
Hermitian, and are found to consistently close;
see Eq. (7.1).

The (rotationally reduced) SUSY  constraints
S,|W) =0 yields four simultaneous Dirac-like
equations, S, ¥ = (+45P40g0+--)¥(B) =0 (where
the ®¢’s are four separate triplets of 64 x 64 gamma
matrices) describing the propagation of the 64-
component spinorial wave function W(f) in the
three-dimensional space of the logarithmic scale
factors B! = —loga, > =—logh, p* = —logc.
The latter f space is endowed with the Lorent-
zian-signature metric G,,, Eq. (2.26), induced
by the kinetic terms of the Einstein-Hilbert action.
Each one of the Dirac-like equations S,U(f) = 0
forms a first-order symmetric hyperbolic system.
In addition, W(f) satisfies initial-value-type
constraints in S space, and a second-order
Klein-Gordon-type ~ Wheeler-DeWitt  equation,
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AV = (-1G"0,0, + ---)¥ = 0, which is a con-
sequence of the SUSY constraints.

The operatorial content of the S,’s and of H reveals
a hidden hyperbolic Kac-Moody structure which
confirms (and extends at the fully quantum level)
previous conjectures about a correspondence be-
tween supergravity and the dynamics of a spinning
particle on an infinite-dimensional coset space
[AE;/K(AE3) in our present context]. The newest
aspect of this hidden Kac-Moody structure is the fact
that all the terms in A that are quartic in fermions
give rise to a “squared-mass term” 2> in the
Wheeler-DeWitt equation which commutes with
all the Operators S12, S23,S31,J11,122,J33 that
are the building blocks of the quantum Hamiltonian
H [and which are second-quantized versions of the
generators of the Lie algebra K(AE;), i.e. the
maximally compact subalgebra of the hyperbolic
Kac—Moody algebra AE;]. In addition, the
operator j is found to be expressible in terms of
the square of a certain (centered) fermion
number Ny —3=Cp:= 16,9 “123§b  which
also  commutes with all the operators
S12’S237S31"]117‘]22"]33' n
Representing the Clifford gravitino generators &4 in
terms of two sets of annihilation and creation
fermionic operators b9, b%, b%, b% (where
b= b") allows one to decompose the fermionic
Hilbert space into various fermion-number levels,
r These correspond to constructing the 64
states of spin(8, 4) by acting with a certain number
of b operators on the empty state |0)__ (annihilated
by the six b¢’s). Actually, N F = = Cr + 3 counts the
total number N + N¥ of b’ operators. The use of
the “chiral” operators b4, b“ b, b allows one to
write explicitly the SUSY constraints in a convenient
form; see Eq. (11.4). One of the main new results of
our approach is that we succeeded in describing in
detail the complete solution space, say VINE), of the
SUSY constraints S,¥(f) = 0, at ferrnlonlc level
Np = N + NE. Tt is a mixture of discrete-spectrum
states (parametrized by a few constant parameters,
and known in explicit form) and of continuous-
spectrum states (parametrized by arbitrary functions
entering some initial-value problem): V(0 = V(lo) is
one dimens10na1 V“) = Vgl) is two dimen-
sional; V2 V( b V @) 2 is the direct sum of a
three- d1mens10nal space V and of an infinite-
dimensional space V ool parametrized by one con-
stant and two (real) functions of two (real) variables
(together Wlth an add1t10nal arbitrary constant);
Ve = o2 b V 2 is the direct sum of two
infinite- d1mens1ona1 spaces, each one of which
involves as free data two parameters and two func-
tions of two variables. Moreover, when 4 < N < 6,

Hne nr)-



THIBAULT DAMOUR AND PHILIPPE SPINDEL

there is a duality under which VVr) is one-to-one
mapped to V=¥r)_ Our results significantly differ
from the conclusions of previous works.

(7) At fermionic levels 2 < N <4, where there are
continuous-spectrum states, we have explicitly de-
scribed the kind of plane-wave states they give rise
to in the asymptotic far-wall limit where the various
exponential potential terms in the SUSY constraints
are small. In this regime, the wave function of the
Universe looks like a spinorial plane-wave that
bounces between well-separated spin-dependent po-
tential walls, probably leading to a spinorial arith-
metic chaos linked to the Weyl group of AEj;.

(8) A surprising result is that supergravity predicts that
the squared-mass term ji* entering the Wheeler-
DeWitt equation is negative over most of the
Sfermionic Hilbert space. This is a quantum effect
(quartic in the fermions) which has important
implications for the dynamics of the geometry near
the big bang, or big crunch, (small-volume) singu-
larity. Indeed, the corresponding contribution to the
energy density, py ~ u>(V3)™2 = u*(a b c)~2, domi-
nates the other contributions when the spatial vol-
ume V3 = abc tends toward zero. When considered
at the classical level, such a negative p, necessarily
leads to a halting of the collapse of the Universe, and
makes its volume bounce back toward larger vol-
umes. We suggest, at the quantum level, to require
that the wave function W () satisfy the correspond-
ing quantum boundary condition to vanish for small
volumes. When considering a big crunch, this
boundary condition is a kind of final-state boundary
condition, that might be important for the resolution
of the information-loss problem in black hole
evaporation. We also suggest that this quantum
avoidance of zero-volume singularities would lead
to a “bottle effect” between small-volume-Universes
and large-volume ones, and to a corresponding
storage-structure made of a discrete spectrum of
quantum states (starting with the Planckian-size
universes described by the discrete SUSY states at
levels Np =0 and 1).

Our results open new perspectives that we hope to

discuss in future work. Among them, let us mention:

(1) studying the quantum fermionic billiard defined by
the reflection of the plane-wave states discussed
above on the various potential walls;

(i1) discussing the existence of a discrete set of quantum
states confined within the Lorentzian “bottle” asso-
ciated with a negative eigenvalue of /%, and their
eventual link with the classical periodic orbits in
p space;

(iii) defining a norm on the solutions of the SUSY
constraints;
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(iv) discussing the matching of our early Bianchi IX
dynamics to a later inflationary era;

(v) generalizing the N' = 1, D = 4 case considered here
to more supersymmetric cases, and in particular to
the N =8, D = 4 case, or, the ' = 1, D = 11 one,
where the relevant Kac-Moody algebra should
be Ejp;

(vi) including the effect of inhomogeneous modes on the
dynamics of the spatial zero modes consid-
ered above.
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APPENDIX A: SUMMARY OF NOTATION

To facilitate the reading let us recap below the definitions
of the different variables parametrizing the metric degrees
of freedom.

Scale factors of the metric:
b=eP, c=e",

abc = g‘(ﬂ] ) = e—/jo.

a = e‘ﬂ] .
(A1)
Note that the billiard limit % =p'+ >+ - 4+

corresponds to the small three-volume limit a b ¢ — 0.
Diagonal metric components are

W ==l P =pr=] W ==l

x? y? Z
(A2)

Let us note also the definitions
ﬂlzzﬂl—ﬁzz—uv ﬂ23=ﬁ2—ﬁ3,
Pa =P = p' = -, (A3)
P=p+p+p, (Ad)
NN . V2 s V6

50:7ﬁ0, & ZTﬁzs, 52:?(ﬂ12—ﬁ31)’
(AS)
T = 3/30’ X = ePs, Y = PP (A6)
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1 1 -
U = ——coth ff;, = —cothu, 0 00
2 2 S A s 1 0 0 0
5 0,1,2.3
1 1 r=r>r'v’r = (A13)
V= —Ecothﬁu = Ecoth v. (A7) 0 0 0 1
0O 0 -1 0
Let us also recall
0= det(&ﬁ) = N./y, APPENDIX B: CHARACTERISTICS

. OF FERMIONIC SUBSPACES
g = detl(gy))] = det[(K1)> = (abe).  (A8)

The following two tables summarize the dimensions and
eigenvalues of the quadratic fermionic operators ~yy that
play a basic role in underlying the quantum dynamics
X discussed in the text.

OF = ykwk, Ok = —Pkyk, (A10) The first table displays the decomposition of the
64-dimensional spin(8, 4) spinorial space into the irreducible
subspaces defined in Sec. X, as well as 1nt0 eigensubspaces
of the fermion number operators N r and NT % It provides the

0100 -0 00 dimensions of these subspaces, the eigenvalues of N r, of its
i |1 000 5 |01 0 0 centered version Cp = N — 3, of the squared-mass oper-
"“looo1l” T"71lo o <1 ol ator fi> = 1/2 — (7/8)C% [see Eqs (9.14)~(9.16)], and of the
001 0 0 0 0 1 partial b number operator N_,.
(A1) im Ny Cp P NE
1 0o -3 - 0
000 -l 00 0 1\ 3¢3 o2 -3 180
3 0 01 O 5 0 0 -1 0 63303 2 -1 —lg 10201600
r = N . 10810 30 L ueoe (e’
0 100 0 1.0 0} 3939306 4 1 -2 3010262
-1 0 0 O -1 0 0 O 3¢3 5 2 -3 3p2
L)
a2 ! 6 3 : 3

The second table provides the eigenvalues of the Kac-Moody-related operators J,;, S, and 3‘%2 that are the building
blocks of the SUSY constraints and of the Hamiltonian. It displays how these eigenvalues are split along the irreducible
subspaces of the total 64- d1mens10nal fermionic space defined in Sec. X. Let us notice that the operators J 15 - Ja, J33, and
S, commute with N and N% ", while only the squares of the other spin operators S,3 and S5, commute with N . The finer
subspace decompositions of the 15-dimensional spaces Np =2 or 4 in 6 4 3 4 3 4 3-dimensional subspaces provide
invariant subspaces only for J,;, Ja,, J33, and 3‘%2.

dim Np Ju Si s2,

1 0 (-3 ©) ©

303 I (1,~1]) @ (1. ~1]) (=3123.) ® (=3.3]) G3h) @ G.51)

6D303D3 2 (=3155123) ® (=3.5]) (=25, =111, 1], 05, 2]5) (0ly,4),) @ (1]3)

® (=3.5h) & (=3.3]) @ (1.-1)) @ (0.4],) @ (1[3)

10 3 ((=2[,.05.2),) ® 0) (=3.=3ls3l) ® =3) (GlogleD @Y

@® 10 ® (-2),.0[5.2[,) ® 0) ® ((=3ls3143) @) ® (Glaogle?) &

3630306 4 (_%|2’%)€B(_% 2’%) ( 1,1|2) ( |3) ( |3)
® (=313 ® (=3.3:3h) ® (=2[5, 1[5, 111, 0]5.2[,) @ (4]5.0)(4,.04)

33 5 (=1.3)) ® (-1.5]») (=313 & (=3.3]») G.ib) @ G.1h)

1 6 (+2) ©) ©
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APPENDIX C: L§; OPERATOR COMPONENTS

When working in the chiral basis [i.e. replacing the original Majorana indices A, B, C = 1,2, 3,4 by a pair of indices €, €
referring, on the model of (10.2) to the combinations + = 1 4+ i2, — =3 — i4, + = 1 — i2, — = 3 + i4] the operators LEB

occurring in our basic anticommutation relations Eq. (7.1) read (with €,0,p = £)

L.my @

Lo = =ilmbtdidl +5 (P i = p i) (BLed "8l + bES:087) + 1ibLedesl”), (C1)
Li, =0, (C2)

P L ke, ) Tk —p koo P M B 7k eep
L= 2 [ukbo625¢ + (py — Pk)b 820" + ubs0: 78" + (p i — pr)bZs0:75¢]. (C3)

APPENDIX D: EXPLICIT TENSOR COMPONENTS

The components of the completely symmetric, traceless object 7,,. introduced in Eq. (11.12) are given by

S i(x(y+2) —2y2) - i(y(z 4 x) —2zx) S i(z(x +y) —2xy)
M A —y)(x—2) A -0 -2 WA --y)
o iy —42) +3y2) S ((z—4y)+3 y)

e 20(x-y)(x—2) 1 20(x —z)(x—y)

. __iy(x—42) +3x2) . :_(( 4x) + 32x)

122 20(y-x)(y—2) 2 20y —2)(y—x)

oo _Hzlx—4y) + 3xy) oo _Hz(y =4x) + 3yx)

B 20— (z—y) T T 20— y)(e—x)

T123 = —2L0

APPENDIX E: H(; ), SPACE: SOLVING THE
CONSTRAINT EQUATIONS

Let us show why the general solution of the constraint
equations (17.32) [arising from the 2 + 1 decomposition of
the Maxwell-like equations (17.19), (17.20) for the sym-
metric tensor k,, arising at level Ny = 2] can be para-
metrized by two arbitrary functions of two variables
(together with an additional constant).

A preliminary useful observation is that, when reex-
pressed in the Lorentzian coordinates (17.26), (17.27),
(17.28), some components of 7;;, vanish, namely,
01 =0= Th05- (E1)
As a consequence the constraint C; only involves kg;
and ko@

(O37)kg 1

where y = 2i(p\V) + u — @) [see Egs (11.9)—(11.12)].

Oikys — Oskyy = (Oq7)kys — (E2)

Therefore, the general solution for kg3, ky5 (considered
at some given initial “time” &) can be parametrized as

ko, = €'0,K[E, &, (E3)

where K[£!, ] is a first arbitrary function of two variables.

In this section, it will be often useful to give special
names to the following exponential form of the Lorentzian
coordinates &V, &', £%:

T = g\/-_go (ﬂl+ﬁ2+ﬁ3)
X = V2 — o5,
Y = V68 — (28 —F-5)

In terms of these exponentiated Lorentzian coordinates, the
explicit expression of the integrating factor ¢’ entering the
parametrization (E3) of kg5, ky5 reads
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L X2yl
(2”2/3 777 —)

oo X = Y)¥8(1 — XY)¥/8(1 — X2)3/3 -
- X3/4y3/8
(E4)

Let us now consider the remaining constraints C »» and C/i?’
p =1,2. Because of the vanishing, indicated above, of
several relevant components of the tensor z,,,,, one finds that
the two constraints C; do not involve kg. [Because of the
identity (17.33) between the constraints, the two constraints
C’, will provide a way to consistently determine kg, once we
will have determined the “spatial” components kj, (with
p.q =1,2) of the tensor k,; (see below).] The essential
issue is then to parametrize the general solution of the two
constraints C;, p = 1,2, viewed as equations for the three
unknowns kj 1, k75, ks5. There are many ways of doing so.
By assuming that some linear combination of these three
components is known, the constraints C;, = 0 will give two
equations for two other (linearly independent) combinations
of the three kj ;. Surprisingly, we found that the so-obtained
system of two equations for two unknowns can be elliptic or
hyperbolic, depending on the choice of combination that is
assumed to be known. Among possible choices, we found
one which has nice properties. (We shall see below that these
special properties are linked to a corresponding special
arrangement of the characteristic lines entering the initial-
constraints system with respect to the symmetry walls.) It
consists in taking the particular combination

kss —3kii = H(E' &). (ES)

as second arbitrary function parametrizing the solution of the
constraints. Using this combination to eliminate kj 5, the two
constraints C;, = 0 then give a linear system of equations for
k;; and kjs, with source terms depending on the given
functions H(¢', &) and K (&', &) (that enter the kj ,’s). It is
convenient to rewrite this system in terms of suitably
rescaled versions of all the k,;’s. Namely, we set

~ A

a,b=0,1,2 (E6)

5 -
kap = €kap

where the rescaling factor e* is defined as

et =

1/2 1/2 1/2
eyX/ (X-Y) /2(1 xy)Y (E7)
(1-Xx2)Y'/3
where e’ is the integrating factor (E4) introduced above.

In terms of such rescaled versions of the k,;’s (and a
correspondingly rescaled version of H), one gets the
following system of two equations for kj5, and kjj:

Oikis — Oskij = 5 (E8)

=05+ 05 (1 + A)kis +3(Dy + Oy (u + A)ki = 52
(E9)
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Here, the new function yu is defined as

(X —Y)"2(1 - XY)'/2

et =e"’ X12y2/3 ’

(E10)

while the (known) source terms appearing on the r.h.s.’s are
given by

VG-

Slz_Tk(A)Q—i_CI:I’ (Ell)

VG-

$2 =3 koi + (rH — 0;H) (E12)

where

Y(1+X?)+2X(1-2Y?)

2V/6(X = Y)(1 = XY)

Vox(y+2z) +2yz— 44
12 (x—y)(x-2)
(E13)

and

4X(1+X*)(1+Y?) +Y(1—18X% - X*)
2/2(1 = X?)(X = Y)(1 — XY)
. 4(x* +yz2)(y + 2) + x(y* + 2%) — 18xyz
a ﬂ( Az=y)(z=x)(y—x) >

(E14)

The system (E8), (E9), can be viewed as a Dirac
equation for the “spinor” y = (kjs,v/3ki;)7, with source
s = (sq, —\/igsz)T, namely,

D/H—/Il// =S (EIS)

with a Dirac operator (coupled to a “connection” w; =

0, given by the gradient of a function w) of the general
form

0; ~1.0,

<+%(52+%) _(8T;i-a)i)> (EL6)

by

D, =

with the function @ given [in the case of our specific
Eq. (E15)] by the sum w = u + A.

It happens that, in our case, the Dirac-like Eq. (E15) has
special properties that allows one to control its solutions,
and even to explicitly compute its relevant Green’s func-
tion. Let us start by noting that it is a Dirac equation of the
hyperbolic (rather than elliptic) type. Indeed, if we absorb
the factors % in a rescaling of & (say &' := \/3&2) the
derivative terms in our Dirac equation take the form
y10; + 7% 0y, where the 2 x 2 matrices y?' are given in
terms of the standard Pauli matrices ot®!i by

103509-47



THIBAULT DAMOUR AND PHILIPPE SPINDEL

1 — 1" — Pauli
=03

2 _ _; Pauli
Y =y = —io,™".

. (E17)
This shows that these two gamma matrices define a Clifford
algebra of Lorentzian signature: y?y4 + y?y? = 2yP'¢,
with #?'¢" = diag(4-1,—1). The Dirac equation (E15) is
therefore (as any Lorentzian Dirac equation) equivalent to a

symmetric-hyperbolic first-order system for the unknowns

w = (kjs,V/3k;1)", with known sources s = (s, —\/Lgsz)T.

In addition, as the gamma matrices y’" are real, we are
discussing here a real Dirac equation. From the point of
view of looking for solutions of the constraints (ES), (E9),

we can think of the 2-plane &!, & as being a 2-dimensional
Lorentzian spacetime (though, with respect to the G,
metric in f space, it is a spacelike hypersurface, which we
are using as initial Cauchy slice.) These remarks suffice to
prove that, locally, a general solution of the constraints [i.e.
of Eq. (E15)] is determined by the two arbitrary functions
of two variables H, K (which enter the source term s),
modulo some “initial conditions” in the auxiliary

2-dimensional Lorentzian space 51,52 (which might
involve arbitrary functions of one variable, but no other
arbitrary functions of two variables).

Surprisingly, it is possible to be more precise, and to
solve globally the Dirac Eq. (E15) when incorporating
boundary conditions that are natural for our problem. This
arises because two remarkable facts happen to be true:
(i) the first-order system (E15) is directly related to the
well-known second-order Euler-Poisson-Darboux (EPD)
equation; and (ii) the characteristics lines, as well as the
singular line, of this auxiliary EPD equation coincide with
the trace of the symmetry walls f* = ° on the 2-plane
&' £2. Let us briefly explain these facts, and how they allow
one to solve Eq. (E15).

Let us start by exhibiting the connection of the character-
istic lines of our Dirac Eq. (E15) to the symmetry walls.
This follows simply from the fact that we have seen above
that &' := £! and & := v/3&% were Lorentzian coordinates,
so that the corresponding null coordinates read

£l — /38
H—=—=

U_é+v%?_
> _ e tv3e&

1_ g3
7 p=p.

(E18)

B =B

This result shows that the two symmetry walls ! = >
and B! = 3 are characteristic for the Dirac equation.
As for the third symmetry wall, > = 3, it enters our
Dirac equation through a singularity of the connection
terms wj = 0w = J5(u + 4). Indeed, by inserting the
(several) changes of variables introduced above, one
finds that

e~ = e~ = —(coth[u] + coth[v]).  (E19)

N[ =
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This formula shows that the gradients of @ have (polelike)
singularities not only when either «# or v vanish, but also
along the line where u = —v, i.e., in view of the definitions
(E18) of u and v, along the line where p = .
Summarizing, we have the following correspondences
between the symmetry walls [which are singular lines
for the Dirac equation (E15)] and some special lines in the
Lorentzian 2-plane £!, & [coordinatized by the null coor-
dinates (E18)]

=0« B =p). (=0« (B =p)

(u+v=0) < (=p). (E20)
What is remarkable in these simple correspondences is not
that the symmetry walls are singular lines for our Dirac
equation (indeed, they were singular planes already in the
original SUSY constraints), but that their traces on the
Lorentzian 2-plane £!, & have a special orientation with
respect to the null coordinates (E18). Let us henceforth
consider that we work within our canonical chamber a, i.e.
B! < p* < . This chamber has two boundaries: the null
boundary u = 0 (' = %), and the timelike boundary u +
v=0 (f*=p°). In rescaled Lorentzian coordinates
V=gl &= /382, these two boundaries are, respec-
tively, the diagonal £ = &%, and the vertical axis & = 0. If
we give ourselves some boundary conditions for y on these
boundaries, and if we can construct a Green’s function G
(satisfying these boundary conditions) for our Dirac equa-
tion, we can conclude that the convolution Gxs of the
Green'’s function with the sources s will define the (unique)
solution y satisfying the boundary conditions. (We are
assuming here for simplicity that the data H, K have a
compact support, away from the boundaries, so that the
source s is regular and compact supported.)

Natural boundary conditions for y are obtained as
follows. A local analysis, near a symmetry wall g, = f* —
p of the solutions of the Hi1,1),-sector SUSY constraints
shows that the general solution is a superposition of two
types of solutions: a regular solution where the symmetric
tensor k,, behaves like [J’:; /8 as P — 0, and a singular
solution where k,, behaves like ﬁ;,f/ 8 As was already
mentioned above, the fact that there exist conserved Dirac-
like currents that are bilinear in the wave function (i.e.
bilinear in k,, for the present case) suggests that we should
impose that k,, is square integrable when integrated over a
spacelike section in g space (say [d&'dE? ~ [ dudv).
Imposing such a square-integrability requirement leads
us to keeping, at each symmetry wall, only the solutions
where k,, behaves like ﬁ:; /8. We shall use this restriction
in solving our Dirac-like system, and, in particular, in
constructing a Green’s function incorporating these boun-
dary conditions.

We succeeded in constructing a Green’s function G for
our Dirac-like system, incorporating such boundary con-
ditions, in the following way. As the source s has two
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independent components, we can separately consider the
two problems where one of the two components of s vanish
(and, when looking for a Green’s function, where the
remaining component is a § function). Let us first consider
the case where s; = 0. In that case, the explicit form of the
first equation of our system, namely Eq. (E8), says that
there exists a scalar field ® such that

i{iﬁ = 82@ and kﬁ = 81(13. (E21)
Inserting this form in the second equation of our system,
namely Eq. (E9), leads to a second-order equation for the
potential ®. This second-order equation remarkably hap-
pens to be equivalent to an EPD equation. This equivalence
occurs because the function e = ¢~ happens to
enjoy the following special separation property:

e = e~ W) = —(coth[u] + coth[v]) = U(u) + V(v).

(E22)

N =

In the last equation, we have introduced the new null
coordinates U/ and V, defined as

1 1/ X+Y
U = ECOth[l/t] = 5 (m),

1 1 /XY +1
= — h = — .
14 5 cot [v] 2<XY—1>

(E23)

In terms of these transformed null coordinates, the equation
for the potential ® becomes

B+ Dy

1
Oy —— O,
v Uu+V)

“U+v)
4S2

T3 =) (1=

(E24)

Let us recall that the general form of the homogeneous EPD
equation is

9,0 dy
“V+u+v

dy|F=0. (E25)

LI+V

It is easily seen that the differential operator appearing in
the equation for @ is of the EPD type withm = n = — % As
we are in the case where m = n, one can explicitly compute
the Green’s fuction for this differential operator. This is best
seen by rescaling the potential ® by a factor (U + V)!/2.
Namely, if we set

d=U+V)0 (E26)

we find that the differential operator acting on P reads
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3 1
Oydy ————=| . E27
<“ ' 4(U+V)2) 27
In terms of the new null coordinates I/,) the two
boundaries where we can impose boundary conditions are
(B =p) <

(U = ), B=p)< U+V=0).

(E28)

In the auxiliary 2-dimensional Minkowski space spanned
by the null coordinates i/,), we can think of the first
boundary U/ = oo as being past null infinity (Z~), while the
second boundary I/ +V = 0 would be the spatial origin.
(In terms of auxiliary “time” and “radius” coordinates 7°
and R, with i/ =R -7, and V =R + 7, this interpre-
tation would, respectively, correspond to the boundaries
T - —o0 with 74+ R =Cst, and R =0.) By going
through the various redefinitions of independent and
dependent variables, it is straightforward to relate the
boundary conditions (at the two relevant symmetry walls
P12, Pa3) on k,, discussed above to corresponding boun-
dary conditions on ® at the corresponding boundaries (/ =
0 (Z7), and U +V = 2R = 0. More precisely, a local
analysis of the equation for ® at these boundaries yields the
following. First, near 7~ an incoming-radiation behavior
for @, i.e. (U, V) ~ ¢, (V) + OU™") would correspond
to a singular solution k,, ~ f#,"". Therefore, in terms of ®
we should impose a no-incoming-radiation condition at Z~
(in the ¢/, V plane). Second, a local Fuchs-type analysis of
the equation for @ at the regular singular point U +V =
2]3 = 0 leads to an indicial equation for the exponents s in

~(U+V)* ~RS of the form s(s — 1) = 3 The solutions
of this indicial equation are s =3 and s = —5. As the
difference between these two exponents is an 1nteger the
(more regular) solution built around s :% will be unam-

biguously defined, while the (more singular) solution built
1

around s = —5 will contain logarithmic terms (and an
arbitrary constant). Similarly to what happened at the other
boundary, one finds that the logarithmic-free, more regular
solution around R ~ f,3 =0 corresponds to a square-
integrable solution &, ~ﬂ2+33/ 8 while the more singular
solution (containing 1oganthms) corresponds to a non-
square-integrable &, ~ ﬁ 12 Summanzmg, our boundary
conditions lead us to select solutions (and, in particular, a
Green’s function) for ® which satisfy the two conditions:
(i) absence of incoming radiation on Z~, and (ii) vanishing
of ® at the spatial origin R = 0 accordmg to & ~ R
These conditions uniquely select a Green’s function for the

® equation of the reflected-retarded form
G_%[up, VP;Z/{, V] = Q[Up + V}e[u - UP]G[VP - V]

R_%[L{P,VP,U, V] (E29)

Here, the field point is denoted Up, Vp; U,V denotes the
source point on which one will integrate after the inclusion
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of the source term, and § denotes Heaviside’s step function.
In addition, the “Riemann” function R_ 3 is explicitly given
by a Legendre function of index +2 More generally, we
have

Up —U)(V = Vp)
Up +Vp)U+ V)]
(E30)

i [Up, VpiUh, V] =

¥l
i

where the upper-sign case corresponds to R 3, while the
lower-sign (defining R +1) will correspond to the other EPD
equation considered below, and where we adopt the
following definition of Legendre functions:

11—z
P,[z] = ,F, [—u, 1+vu; I;T].

These two Green’s functions satisfy

3
<aupavp - W) G_3/4Up, Vp; U, V]
— ol ~UlsVr V), (B31)
1 .
aupayp + W G1/4[Z/{p, VP,Z/{, V]

These reflected-retarded Green’s functions include three
Heaviside step functions 6. The two step functions O] —
UplO]Vp — V) are the usual step functions defining a retarded
Green’s function, having a support (w.r.t. the source point, for
a given field point P) in the past light cone of Up, Vp. The
additional step function O[Up + V| geometrically corre-
sponds to restricting the support of the Green’s function to
what would be the image in the 7', R plane of a past light cone
in a, say, four-dimensional Minkowski spacetime 7, X, ), Z

(with R = /X2 + )? + Z?). Indeed, the line Up +V =0
is easily seen to be the image in the 7, R plane of the
continuation of the radial null geodesic emitted (toward the
past) by the field point {/p, Vp and reflected toward positive
values of R after it encounters the origin R = 0. Such
reflected-retarded Green’s functions (solutions of the EDP
equation) are also uniquely selected when considering the
T, R-plane Green’s function for the radial equation describ-
ing the propagation of massless scalar waves having a fixed
multipolarity Y, (0, ¢). In the latter case, it has been found
that the (retarded, multipolar) Green’s function in the 7, R
plane was given by Eq. (E29) with a Riemann function R,
given by Eq. (E30) with a Legendre function P; instead of P 1
(see Appendix D in Ref. [65]). [In both cases, the regularity
condition at the radial origin R = O selects a P, solution
instead of a Q, one (which would contain logarithms).]
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Let us briefly discuss the case where it is the second
component of the source s which vanishes, i.e. s, = 0. In
that case, the second equation of our system, namely
Eq. (E9), says that there exists a scalar field ¥ such that

kiy =050,  (E33)

Inserting this form in the first equation of our system,
namely Eq. (E8), leads to a second-order equation for the
potential W. This second-order equation again happens to
be equivalent to an EPD equation. When using the trans-
formed null coordinates (E23), it is an EPD equation with
m=n= —I—%, of the form

Ou(U +V)OLV + 0y(U + V)0, ¥
4S1

T 3(1—4A)(1-02) (E34)
Using the rescaled potential
= U+V)2T (E35)
we now get the differential operator
(auav + 1;) ¥. (E36)
4U+V)?

The discussion of the boundary conditions for this equation
is entirely analogous, mutatis mutandis, to the one above.
The two exponents at I/ + ) = 2R = 0 are now %,%—l— 0
(where the +0 indicates a logarithmic correction
R'2InR). Again, one finds that one must select as a
regular solution the solutions of the W equation that contain
no incoming radiation on Z~, and which are regular on the
axis R =0 (this excludes the solution containing a
logarithm). At the end of the day, this selects again a
reflected-retarded Green’s function, which is now of the
form

G+:1‘[MP,VP;Z/{, V] = G[Z/lp + V]e[u _uP]a[VP - V]

XR_,'_%[MP,VP,Z/[, V] (E37)

with a Riemann function R il given by the lower-sign case
of Eq. (E30), i.e. given by a Legendre function of index — 5
The matricial Green’s function for the original Dlrac
equation (E15) can finally be read off from the following
explicit solution for y in terms of the two components of
the source s, i.e. the solution of the system (E8)—(E9):
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( Gy/4%0) )
X

G _3/4%07
where the * denotes an integration over U/, ). Here, the new
source terms o, and o, [which differ from s;, s, by factors

related to our redefinitions above, and notably by a Jacobian
linked to du/dU = 1/(2U* — 1/2)], etc.) are given by

(E38)

_ 2S1
a1 - AU Y
2\/(/{ + VSZ

2E30-an)(1 -2

Note that the presence of derivatives acting on the scalar
Green’s functions G, G_3;4 (which contain step
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functions) means that the matricial Green’s function
for our Dirac system contains 6 functions having their
support on the (reflected) past light cone, in addition to
step functions with support within the interior of the latter
light cone.

Finally, having (uniquely) obtained kq;, kj5, and
ks in terms of the two arbitrary functions H and K, it
only remains to determine kg5 (on our chosen initial
Cauchy slice of constant £%). This is done by integrating
the two constraints C},. We already mentioned that this
system is integrable. It therefore determines ky; by
a line integral, modulo an arbitrary solution of the homo-
geneous system that involves one free constant, Cy,
namely,

(1=X2P4(X -Y)¥3(1 = XY)¥8 oo
e .

k(()]’(l)om) = C4 X3/2 ITX

(E39)
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