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Two of the most attractive realizations of inflation in supergravity are based upon the presence of a
constant Fayet-Iliopoulos (FI) term. In D-term hybrid inflation, it is the FI term itself which sets the energy
scale of inflation. Alternatively, the breaking of a Uð1Þ symmetry induced by the FI term can dynamically
generate the quadratic potential of chaotic inflation. The purpose of this note is to study the possible UV
embedding of these schemes in terms of the “field-dependent FI term” related to a string modulus field
which is stabilized by a nonperturbative superpotential. We find that in settings where the FI term drives
inflation, gauge invariance prevents a decoupling of the modulus from the inflationary dynamics. The
resulting inflation models generically contain additional dynamical degrees of freedom compared to
D-term hybrid inflation. However, the dynamical realization of chaotic inflation can be obtained in
complete analogy to the case of a constant FI term. We present a simple string-inspired toy model of this
type.
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I. INTRODUCTION

Inflation is a promising paradigm to explain the initial
conditions of the universe. In particular, hybrid inflation
scenarios driven by F terms [1,2] or D terms [3,4] have
been studied extensively in the literature and provide
intriguing links to UV-complete theories like string theory.
In D-term hybrid inflation (DHI), the vacuum energy is
determined by a constant Fayet-Iliopoulos (FI) term asso-
ciated with a Uð1Þ gauge symmetry. Inflation proceeds in a
false vacuum state where the slope of the inflaton potential
is generated by quantum corrections. When the inflaton
reaches a critical value the Uð1Þ symmetry is spontane-
ously broken and inflation ends in a waterfall phase
transition.
On the other hand, implementations of chaotic inflation

[5] in supergravity have gained new traction in the literature
since the possible discovery of primordial gravitational
waves by the BICEP2 Experiment [6]. While the signal is
currently being analyzed regarding a possible foreground
contamination (see, for example, [7]), the tensor-to-scalar
ratio inferred by the BICEP2 collaboration is in good
agreement with the value predicted by chaotic inflation
with a quadratic potential.
Recently, it was noted that DHI may contain a regime of

chaotic inflation [8]. Specifically, if the critical value of the
inflaton is super-Planckian a phase of chaotic inflation may
follow after the Uð1Þ phase transition. We show explicitly
that DHI in the waterfall regime is identical to the standard
realization of chaotic inflation in supergravity discussed in
[9,10]. The role of the “stabilizer field” invoked in [9,10] is
played by one of the waterfall fields. The nonminimal
Kähler potential of the stabilizer, which is required to
decouple it from inflation, is explained by a Uð1Þ gauge

interaction and can be obtained by integrating out the vector
supermultiplet of the broken symmetry.
With regard to a possible UV embedding of these

inflation models, it was noted in [11–13] that constant
FI terms in supergravity are potentially troubled. However,
supergravity models in which the arguments of [11–13] do
not apply have been studied in [14–16]. Given this ongoing
discussion in the literature, we are particularly interested
in “field-dependent FI terms”1 generated in the presence
of a (pseudo-)anomalous Uð1Þ symmetry, in the following
denoted by Uð1ÞA. The appearance of such D terms was
first discussed in the context of the Green-Schwarz mecha-
nism [17] in heterotic string theory in [18]. There it was
argued that the dilaton, whose axionic part cancels the
anomalies associated with Uð1ÞA, acquires a D term which
bears resemblance to an FI term if the dilaton is assumed to
be stabilized. Similar D terms arise in certain compactifi-
cations of type IIB string theory, where the role of the
dilaton is played by a Kähler modulus (see, for example,
the discussion in [19]). However, it was soon realized that
modulus or dilaton stabilization is a subtle issue in the
presence of the field-dependent FI term [20]. Gauge
invariance of the modulus superpotential poses severe
restrictions on possible setups [19,21–23]. In particular,
it has been shown that invoking nonperturbative super-
potential terms for the Kähler modulus or dilaton requires
the inclusion of additional fields charged under Uð1ÞA.
Otherwise, the respective field cannot be stabilized in a
gauge-invariant way. This can be achieved, for example, by

1Notice that this terminology is somewhat misleading. The
field-dependent FI term is the D term of a modulus field which
transforms nonlinearly under a Uð1Þ symmetry. Thus, it is quite
different in nature from the constant gauge-invariant term
introduced by Fayet and Iliopoulos.
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including a gauge sector with chiral matter which under-
goes gaugino condensation [24,25].
We wish to clarify whether a field-dependent FI term

can play the role of an effective constant which drives
inflation.2 In the case of DHI, we discuss a series of obstacles
which prevent possible setups from resembling the simple
controllable model introduced in [3,4]. Taking stabilization
of all additional fields into account, it turns out that in all
feasible setups of modulus stabilization with nonperturbative
superpotentials the modulus never decouples from the
dynamics of inflation, rendering much more complicated
multifield inflation models. We remark, however, that in
cases where the modulus which generates the FI term does
not appear in the superpotential some of our arguments may
be avoided. This can be realized, for example, in the Large
Volume Scenario (cf. the discussion in [26]).
In the case of inflation in the chaotic regime of DHI,

on the other hand, a separation of the modulus from the
inflaton dynamics seems possible in all moduli stabilization
schemes. We provide an example in which the effective
theory, after integrating out the modulus and the heavy
Uð1Þ vector supermultiplet supersymmetrically, is identical
to single-field chaotic inflation.

II. FI TERMS IN SUPERGRAVITY
AND STRING THEORY

In order to introduce the basic notions for the following
discussion, let us briefly review both constant FI terms
and field-dependent FI terms related to an anomalous Uð1Þ
symmetry.

A. Constant FI Terms

In a supergravity theory with Uð1Þ gauge interactions,
the Lagrangian is determined by the choice of super-
potential W, Kähler potential K, gauge kinetic function
f, and Killing vectors ηα specifying the gauge trans-
formation properties of chiral superfields ϕα. The super-
potential and Kähler potential enter the Lagrangian in the
combination K þ log jWj2, which must be gauge invariant.
The gauge kinetic function transforms trivially under the
Uð1Þ up to a possible shift required for anomaly cancella-
tion. It determines the gauge coupling as g2 ¼ ðRefÞ−1. In
case the Uð1Þ symmetry is linearly realized, chiral super-
fields ϕα transform as

ϕα → eiqαϵϕα; ð2:1Þ

where ϵ is a chiral superfield gauge transformation param-
eter and qα denotes the charge of ϕα. This corresponds to
the choice of Killing vector ηα ¼ iqαϕα. The transforma-
tion of the Uð1Þ vector superfield V can be written as

V → V −
i
2
ðϵ − ϵ̄Þ: ð2:2Þ

The scalar potential may contain an F-term and a D-term
piece, i.e., V ¼ VF þ VD with

VF ¼ eKðKαᾱDαWDᾱW̄ − 3jWj2Þ; ð2:3Þ

VD ¼ 1

2Ref
D2: ð2:4Þ

The D terms associated with the Uð1Þ can be expressed as

D ¼ −iηαKα−i
Wα

W
ηα|fflfflfflfflffl{zfflfflfflfflffl}

≡ξ

: ð2:5Þ

Notice that, by gauge invariance, W may transform with a
constant phase denoted by ξ. This is precisely the constant
FI term introduced in [30].

B. Field-dependent FI terms

The consistency of constant FI terms from the perspec-
tive of string theory and quantum gravity is an issue of vital
discussion in the literature. In [11–13] it was pointed out
that a constant FI term in supergravity may be inconsistent
when coupled to quantum gravity, while possible counter-
examples have been studied in [14–16]. Whatever the
outcome of this discussion, so far there are no known
four-dimensional effective theories derived from string
theory which contain constant FI terms. String theory,
however, provides an elegant mechanism which generates
field-dependent FI terms which, from the viewpoint of
cosmology, may play a similar role as their constant
counterparts.
Depending on the full gauge group and chiral spectrum

of the theory under consideration, aUð1Þ symmetry like the
one in Sec. II A can have several gauge anomalies, in which
case we denote it by Uð1ÞA. These manifest as divergences
of the gauge current J, i.e.,

∂μJμ ∝ c1AG2−Uð1ÞA trF μν
~F μν

þ c2AUð1Þ3AFμν
~Fμν þ c3Agrav2−Uð1ÞA trRμν

~Rμν; ð2:6Þ

where F , F, and R denote the field strengths of a non-
Abelian gauge group piece G, Uð1ÞA, and the Riemann
tensor, respectively. The prefactors ci depend on the
underlying string construction, while the anomaly coeffi-
cients A are given by

AG2−Uð1ÞA ¼
X
f

qflðRfÞ; AUð1Þ3A ¼
X
α

q3α;

Agrav2−Uð1ÞA ¼
X
α

qα: ð2:7Þ2For alternative and very recent attempts to reconcile inflation
with field-dependent FI terms, see [26–29].
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The first sum runs over all chiral fermions transforming in
the representation R of G and lðRÞ denotes the quadratic
index of R. The sums in the second and third expression
run over all chiral fermions.
For the theory to be consistent, all anomalies must be

canceled by the four-dimensional variant of the Green-
Schwarz mechanism [17]. This means there must be at least
one axion which shifts under Uð1ÞA, and this shift cancels
all anomalies via its coupling to the field strengths.
Motivated by compactifications of type IIB string theory,
we take the axion to be the imaginary part of a Kähler
modulus ρ and assume all other moduli to be stabilized by
fluxes [31]. Note that the discussion proceeds analogously
in heterotic string theory with the dilaton playing the role of
the Kähler modulus. The transformation of ρ under Uð1ÞA
reads

ρ → ρ − iδGSϵ; ð2:8Þ

which corresponds to the Killing vector ηρ ¼ −iδGS. In
what follows we consider the case G ¼ SUðNcÞ and Nf
quark pairs transforming as ðNc; qÞ and ðN̄c; ~qÞ under
SUðNcÞ ×Uð1ÞA, respectively. Cancellation of the pure
Uð1Þ3A and the mixed SUðNcÞ ×Uð1Þ2A anomaly then
implies [19]

δGS ¼
1

6πκ

X
α

q3α ¼
1

4π ~κ
Nfðqþ ~qÞ; ð2:9Þ

where the first sum again runs over all chiral fermions. We
do not impose additional constraints on δGS related to the
cancellation of the gauge-gravity anomaly, as in type IIB
orientifold compactifications the coupling of the axion to
the Riemann tensor is model dependent. The coefficients κ
and ~κ which enter the above equation are Oð1Þ constants
which appear in the gauge kinetic functions; i.e.,

f ¼ κ

2π
ρ; ~f ¼ ~κ

2π
ρ; ð2:10Þ

for Uð1ÞA and SUðNcÞ, respectively. The Uð1ÞA gauge
coupling is given by

g2 ¼ 1

Ref
¼ 4π

κðρþ ρ̄Þ ð2:11Þ

and similarly for the gauge coupling of the SUðNcÞ. In the
following we choose a normalization which coincides with
the one used in the work of KKLT [32]; i.e., κ ¼ ~κ ¼ 1

2
.

Since ρ transforms nontrivially underUð1ÞA, the familiar
no-scale Kähler potential must be modified accordingly,

K¼−3 logðρþ ρ̄Þ→K¼−3 logðρþ ρ̄−2δGSVÞ: ð2:12Þ

Allowing for the presence of additional chiral fields ϕα

which transform linearly underUð1ÞA, the D-term potential
reads

VD ¼ 4π

ρþ ρ̄

�X
α
qαKαϕα þ ξGS

�
2

; ð2:13Þ

where we have assumed gauge invariance of W, i.e., the
absence of a constant FI term in VD. The piece

ξGS ≡ −δGS∂ρK ≃ 3δGS
ρþ ρ̄

ð2:14Þ

is usually called a field-dependent FI term in the literature.

III. INFLATION WITH CONSTANT FI TERMS

Before discussing inflation in models with a field-
dependent FI term as in Eq. (2.13), let us first turn to the
simpler case of inflation with constant FI terms. The prime
example of this kind is D-term hybrid inflation. We first
review the well-known embedding of DHI in supergravity
before discussing a very interesting and less investigated
situation: DHI can contain a phase of chaotic inflation with a
quadratic potential after the waterfall transition.

A. D-term hybrid inflation

DHI in supergravity can be described by the super-
potential

W ¼ λφϕþϕ− ð3:1Þ

and Kähler potential

K ¼ jϕþj2 þ jϕ−j2 −
ðφ − φ̄Þ2

2
: ð3:2Þ

Here, the real part of φ is identified with the inflaton,
protected from supergravity corrections by a shift sym-
metry of K, and ϕ� are the waterfall fields responsible for
ending inflation. They carry the charges q� under a Uð1Þ
gauge symmetry. Along the inflationary trajectory φ ¼ φ̄,
the F- and D-term potentials read

VF ¼ λ2ejϕ−j2 jϕ−j2φ2;

VD ¼ g2

2
ðq−jϕ−j2 þ ξÞ2; ð3:3Þ

where we have set ϕþ ¼ 0 which corresponds to its
minimum during and after inflation. Notice that gauge
invariance requires qþ þ q− ¼ ξ. For the moment, we have
neglected the dependence of the Kähler potential on the
vector superfield of the Uð1Þ.
The scalar potential V ¼ VF þ VD has a supersymmetric

Minkowski minimum at jϕ−j ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffi
ξ=jq−j

p
and φ ¼ 0. For
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large values of the inflaton field, φ > φc ≡ g
ffiffiffiffiffiffiffiffiffiffijq−jξ

p
=λ, the

potential has a plateau where ϕ− ¼ 0, and the gauge
symmetry is restored. The corresponding potential energy
is determined by the FI term,

V0 ¼
g2ξ2

2
: ð3:4Þ

The Yukawa interaction in the superpotential breaks the
shift symmetry in the inflaton direction and lifts the
potential at the one-loop level, generating a slope for
the inflaton. Standard DHI has a potential problem due
to the generation of cosmic strings in the Uð1Þ phase
transition. Furthermore, it predicts a scalar spectral index of
ns > 0.98 in tension with CMB data [33]. However, minor
modifications of the Kähler potential can reconcile the
model with observation (see for example [34]).

B. Chaotic inflation

It was realized recently that in DHI inflation not
necessarily terminates after the Uð1Þ phase transition [8].
If the critical field value is very large, φc ≫ 1, the scalar
potential in the waterfall regime may be sufficiently flat for
inflation to continue. This type of situation is achieved
if the Yukawa coupling λ is suppressed compared to the
gauge coupling g. Indeed, the inflaton potential (3.3) is of
the form m2φ2 close to the supersymmetric minimum
which suggests the possibility of chaotic inflation.
In order to see that, in the waterfall regime, DHI is indeed

identical to the standard realization of chaotic inflation in
supergravity, we consider the full Kähler potential, includ-
ing the Uð1Þ vector superfield V,

K ¼ ϕ̄þe2qþVϕþ þ ϕ̄−e2q−Vϕ− −
ðφ − φ̄Þ2

2
þ 2ξV: ð3:5Þ

We perform the field redefinitions

ϕþ →

�
ϕ−ffiffiffiffiffiffiffiffiffiffiffiffiffi
ξ=jq−j

p �
− qþ
jq− j
ϕþ;

V → V þ 1

2jq−j
log

� jϕ−j2
ξ=jq−j

�
; ð3:6Þ

which, after a Kähler transformation, yield

W ¼ λ

ffiffiffiffiffiffiffiffi
ξ

jq−j

s
φϕþ; ð3:7Þ

K ¼ ϕ̄þe2qþVϕþ þ ξ

jq−j
e2q−V −

ðφ − φ̄Þ2
2

þ 2ξV: ð3:8Þ

Apparently, the field redefinitions in (3.6) correspond to a
gauge choice. What we end up with is the superfield
version of unitary gauge, as can be seen from the fact that

the chiral superfield ϕ− has disappeared from the spectrum.
It has been eaten by the vector superfield V, which became
massive in turn. Integrating out V supersymmetrically by
solving its equation of motion, ∂VK ¼ 0, yields

V ¼ −
qþ

2jq−jξ
jϕþj2 þOðjϕþj4Þ: ð3:9Þ

After performing another Kähler transformation we arrive
at the effective superpotential and Kähler potential,

W ¼ mφϕþ ð3:10Þ

K ¼ jϕþj2 −
jϕþj4
Λ2

−
ðφ − φ̄Þ2

2
; ð3:11Þ

with m ¼ λ
ffiffiffiffiffiffiffiffiffiffiffiffiffi
ξ=jq−j

p
eξ=2jq−j and Λ2 ¼ 2jq−jξ=qþ2.

Notice that Eqs. (3.10) and (3.11) define the standard
embedding of chaotic inflation in supergravity [9,10]. Here,
ϕþ plays the role of the stabilizer field. Note, however, that
in [10] the Kähler potential term jϕþj4=Λ2 was introduced
by hand in order to give a sufficiently large mass,mϕþ > H,
to the stabilizer field during inflation. In our case this term
arises in the effective theory via the exchange of the heavy
Uð1Þ gauge boson.
So far we have worked in the supersymmetric limit,

which is valid only in the vicinity of the minimum φ ¼ 0.
However, corrections are suppressed as long as the scale of
the Uð1Þ breaking is large compared to the supersymmetry
breaking scale, which coincides with the Hubble scale. This
becomes evident by considering the full potential. Tracing
the minimum of ϕ−, the inflaton potential for φ < φc takes
the form3

V ¼ V0

�
1 −

V0

2g2ξ2

�
; ð3:12Þ

with V0 ¼ λ2φ2ξ. This implies that if
ffiffiffiffiffi
gξ

p
> MGUT ∼ 0.01

in Planck units the last 50–60 e-folds of inflation can occur
within the quadratic regime of the potential. The cosmic
string problem of DHI is absent in this case since the Uð1Þ
symmetry is already broken during inflation.

IV. FIELD-DEPENDENT FI TERMS AND
MODULUS STABILIZATION

The aim of the present note is to investigate whether the
simple inflation models discussed in Sec. III can effectively
arise in a UV-complete theory like string theory. Therefore,
we concentrate on the field-dependent FI terms related
to the Green-Schwarz mechanism in the presence of an
anomalous Uð1ÞA symmetry, as introduced in Sec. II B.
The field-dependent FI-term from a modulus ρ scales as
ðρþ ρ̄Þ−1 and the corresponding Lagrangian scales as

3We neglect the small correction to V from the factor eK.
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ðρþ ρ̄Þ−3 [cf. Eq. (2.13)]. Thus, if the superpotential and
Kähler potential exhibit no further dependence on ρ it is a
runaway direction. Therefore, an appropriate mechanism to
stabilize ρ has to be considered.
Naively, we could assume that ρ obtains a large super-

symmetric mass mρ ≫ ξGS by some unspecified mecha-
nism so that the field-dependent FI term becomes an
effective constant. However, it was argued in [20] that this
assumption is inconsistent. The reason is that the vector
superfield V of Uð1ÞA would receive the same large
mass mρ via the Stückelberg mechanism. This, however,
immediately implies that one can integrate out V super-
symmetrically at the scale mρ which excludes the very
existence of an FI term in the effective theory. Hence, a
more careful treatment of modulus stabilization is required
in the presence of the field-dependent FI term.
The standard procedure to stabilize the lightest Kähler

modulus ρ is to employ instantonic contributions to the
superpotential of the form

W ¼ W0 þ
X
j

Aje−ajρ: ð4:1Þ

The interplay of one or several such terms with a constant
W0, stemming from fluxes in the internal manifold [35], or
with corrections to the Kähler potential can lead to stable
minima for ρ.
The coefficients Aj are typically assumed to be constant

in the effective theory and may arise from integrating out
heavy moduli. However, if ρ contains the Green-Schwarz
axion, constant coefficients Aj would result in a violation of
Uð1ÞA gauge invariance. In order to remedy the theory, the
Aj must be promoted to functions AjðϕαÞ of chiral super-
fields ϕα which carry charge under Uð1ÞA. Writing each
piece of the superpotential in the form

W ⊃ AðϕαÞe−q0ρ=δGS ; ð4:2Þ

gauge invariance implies q½AðϕαÞ� ¼ −q0 for the charge of
the function A [cf. the transformation (2.8)]. Superpotential
terms as in Eq. (4.2) arise, for example, in intersecting
D-brane models where the couplings between matter
fields are suppressed by the world-sheet instanton action.
Generation of Yukawa couplings of this type has first been
treated in [36,37] (for a review see [38]). Alternatively, the
ϕα can be associated with the mesonic states of a strongly
coupled non-Abelian gauge theory. Consider an SUðNcÞ
gauge theory with one pair of quarks fQ; ~Qg transforming
as ðNc; qÞ and ðN̄c; ~qÞ under SUðNcÞ ×Uð1ÞA, respec-
tively. To ensure that the D-term potentials of these fields
do not cancel the modulus-dependent FI term we assume
qþ ~q > 0. The SUðNcÞ undergoes gaugino condensation
at a scale

Λ ¼ e−2πρ=ð3Nc−1Þ: ð4:3Þ

At energy scales below Λ the effective theory can be
described by the (canonically normalized) mesonic degrees
of freedom M ¼

ffiffiffiffiffiffiffiffiffiffi
2QQ̄

p
. The gauge-invariant superpoten-

tial of [24,25] reads

W ¼ ðNc − 1Þ
�
2e−2ðqþ ~qÞρ=δGS

M2

� 1
Nc−1

; ð4:4Þ

after inserting the expression for δGS in Eq. (2.9). In the
case of gaugino condensation, the function A in Eq. (4.2) is
generically nonanalytic. This is important since any field
with negative Uð1ÞA charge4 entering A can potentially
cancel the FI term through its vacuum expectation value.
Only for nonanalytic A the inclusion of negatively charged
fields is unnecessary.5

From the perspective of modulus stabilization the
dependence of A on other chiral fields is undesirable:
the nonperturbative superpotential of Eq. (4.2) now induces
couplings of the modulus to other light degrees of freedom,
rather than generating a mass term. Only if the fields ϕα

themselves are stabilized appropriately an effective modu-
lus mass term may arise.

V. D-TERM INFLATION FROM
FIELD-DEPENDENT FI TERMS

Having discussed modulus stabilization, let us analyze
whether DHI can proceed with a field-dependent FI term.
We are interested in situations where the modulus ρ is
stabilized during inflation and does not perturb the dynam-
ics of DHI.6 As a starting point, assuming that the super-
potential explicitly depends on the charged modulus, we
consider

W ¼ λφϕþϕ− þWmodðρÞ; ð5:1Þ

which entails the superpotential of hybrid inflation and the
piece Wmod ¼ AðϕαÞe−q0ρ=δGS þ � � � responsible for modu-
lus stabilization. In order to promote the instanton con-
tribution to a mass term, stabilization of the fields ϕα must
be achieved by one of the following mechanisms.

A. Vectorlike mass terms

The presence of gauge anomalies implies charged chiral
states in the spectrum. However, as the ϕα which enter
AðϕαÞ constitute only a subset of the spectrum, they may
not contribute to the anomaly; i.e., they could still receive

4Notice that exchanging “negative charge” with “positive
charge” is merely a choice of convention. Only the sign relative
to ξGS is of importance.

5This fact was used in [19] to construct consistent string
models with KKLT stabilization and D-term uplift.

6The backreaction of stabilized Kähler moduli on DHI, in
setups where ρ is a gauge singlet, has been previously studied
in [39,40].
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large vectorlike masses of the formmϕαϕ̄α. In this case, the
ϕα and the ϕ̄α can be integrated out supersymmetrically
yielding AðϕαÞ ¼ 0. This would imply that the instanton
term disappears in the effective theory below the scale m.7

B. Soft mass terms

Soft masses for the ϕα may be generated by nonvanish-
ing F and D terms. If the field-dependent FI term is not
canceled, gauge-mediated soft masses of the form

LD
soft ¼ g2qαξGSjϕαj2 ð5:2Þ

arise. In addition, depending on the mechanism of modulus
stabilization and supersymmetry breaking, gravity-
mediated soft terms may appear.8 For a minimal choice
of the Kähler potential, these are expected to be of the form

LF
soft ¼ m2

3=2jϕαj2; ð5:3Þ

where m3=2 ¼ eK=2W denotes the gravitino mass.

C. Mass terms from spontaneous symmetry breaking

Finally, if Uð1ÞA is broken spontaneously, Yukawa
couplings can become effective mass terms. Consider,
for example, a mesonic state M with a coupling λϕ−M2

to the waterfall field. In the true vacuum of the theory ϕ−
cancels the FI term and the meson receives the mass λhϕ−i.
From this discussion it is clear that modulus stabilization

either requires the spontaneous breaking of Uð1ÞA or the
breaking of supersymmetry. In principle, all ingredients
exist within the simple DHI setup of Sec. III A: during
inflation, supersymmetry is broken by the inflaton sector
while the Uð1Þ symmetry is intact. After inflation, super-
symmetry is restored but the Uð1Þ is spontaneously broken
by the vev of ϕ−. While this may lead to successful
stabilization of all fields, the responsible mechanism is
clearly different during and after inflation. Therefore, the
modulus sector does not decouple from the inflaton
dynamics, and we are left with an inflation model with
several dynamical degrees of freedom. This may happen,
for example, in the supersymmetric racetrack scheme
studied in [41].
To obtain the simple controllable DHI setup, the same

mechanism of modulus stabilization must operate in the
entire cosmological history. This requires the inclusion
of additional sources of supersymmetry breaking which
fix the modulus during and after inflation. A similar

conclusion has previously been drawn in [20]. There it
was noted that, in a field-dependent realization of DHI,
F terms and D terms must split their roles in a way that
F terms provide modulus stabilization while D terms drive
inflation. Assuming that the modulus mass is comparable to
the gravitino mass, mρ ∼m3=2, as for example in the setup
by KKLT [32], results in the constraint

m3=2 > gξGS; ð5:4Þ
which ensures that the modulus decouples from inflation.
In the following, we wish to point out that a series of
problems arises even if this constraint is satisfied.
First, no negatively charged fields beyond ϕ− should be

introduced as these fields would receive large tachyonic
masses during inflation and tend to cancel the FI term.
Therefore, we consider the case of gaugino condensation,
where the function A in the instanton term contains only the
positively charged mesonic fields (cf. the discussion in
Sec. IV). It turns out that in this setup, condition (5.4) is
insufficient to decouple the modulus sector from inflation.
This is because during inflation the FI term induces soft
masses mM ∼ g

ffiffiffiffiffiffiffi
ξGS

p
for the meson fields.9 These soft

masses are enhanced compared to the Hubble scale as they
originate from gauge mediation. In order to avoid that
the mesons, and as a consequence also the modulus, are
shifted by large amounts at the end of inflation, the gauge-
mediated masses should be subdominant. This can be
achieved by introducing even larger gravity-mediated soft
masses mM ∼m3=2 > g

ffiffiffiffiffiffiffi
ξGS

p
. At the same time the water-

fall fields must be protected against such large gravity-
mediated masses by a specific choice of Kähler potential;
otherwise inflation would never end. The origin of this
sequestering could lie in a higher dimensional theory where
the dominant source of supersymmetry breaking is local-
ized on a different brane than the waterfall fields [42].
Second, even in this case, another type of problem occurs

related to the size of the instanton term. Given that modulus
stabilization must proceed via supersymmetry breaking,
one expects that

Fρ ∼ AðMαÞe−aρ ∼m3=2; ð5:5Þ

as, for example, in KKLT. For the case of a condensing
SUðNcÞ gauge theory with a single meson M, one finds
AðMÞ ¼ ðNc − 1ÞM−2=ðNc−1Þ. The meson is then stabilized
by the interplay of this instanton term and its mass term, as
explained in detail in [21]. Evidently, the instanton term is
responsible for a large vev ofM, which can be expressed as

M ∼
Fρ

mM
: ð5:6Þ

7This does not hold for nonanalytic functions Awhich arise via
gaugino condensation. However, in the case of gaugino con-
densation vectorlike mass terms do not appear because the
effective degrees of freedom, the mesons, are already two-particle
states.

8Notice that the inflaton, protected by a shift symmetry of the
Kähler potential, does not receive a soft mass term at tree level.

9Without loss of generality we assume qM ∼Oð1Þ for the
Uð1ÞA charge of the mesons.
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Given a meson mass mM ∼m3=2, the minimum lies at
M ∼ 1 in Planck units. Therefore, if the constraint (5.4)
holds, the D-term contribution of the meson exceeds the
size of the field-dependent FI term. This is inconsistent
with having an effective realization of standard DHI.10

In order to find a possible way out of this apparent
predicament, one may invoke schemes of modulus stabi-
lization with mρ ≫ m3=2. An example of this kind may be
given by the modulus stabilization via additional Kähler
potential terms as proposed, for example, in [43]. But even
this is not a full solution to the problem, as stabilization
of the mesons still requires a very large gravitino mass and
DHI is spoiled by the large displacement of the meson
[cf. Eq. (5.6)].
To summarize, in models where the field-dependent FI

term drives inflation there is always an intimate connection
between modulus stabilization and inflation. Generically,
the modulus does not decouple from the dynamics of
inflation. When trying to obtain the simple controllable
scheme of DHI as an effective theory, a series of problems
arises. These problems are related to the fact that inflation
backreacts on the modulus stabilization and vice versa.
While we have shown that there is no straightforward
realization of DHI with a field-dependent FI term, we
cannot exclude that it arises to some approximation by a
very delicate engineering of the Kähler potential and the
mechanism of modulus stabilization.
In the following section we explore the possibility that

inflation proceeds in the waterfall regime of hybrid infla-
tion. In this case the FI term is canceled during inflation,
and modulus stabilization can be achieved via the breaking
of Uð1ÞA. As discussed below, the obstacles mentioned
above are absent in this case.

VI. F-TERM INFLATION FROM
FIELD-DEPENDENT FI TERMS

In this section we present a string-inspired toy model of
inflation with a field-dependent FI term which circumvents
the problems discussed in the previous section. Inflation is
driven by the F term of one of the waterfall fields after the
waterfall phase transition, as suggested in [8] and reviewed
in Sec. III B. The resulting effective theory after integrating
out the modulus and the heavy vector supermultiplet is
identical to chaotic inflation with a quadratic potential. We
first demonstrate our scheme of modulus stabilization and
afterward discuss its coupling to inflation.

A. Modulus stabilization

We consider a setup in which the modulus ρ has the
gauge-invariant superpotential

W ¼ χþðϕ2
−e−ρ=δGS −mϕ−Þ; ð6:1Þ

where χþ and ϕ− are chiral superfields with Uð1ÞA charge
þ1 and −1, respectively. Yukawa couplings suppressed
by an instanton action like the one in Eq. (6.1) arise, for
example, in intersecting D-brane models (cf. [38]).
Modulus stabilization via Yukawa-type interactions has
previously been studied in [44]. We assume the no-scale
Kähler potential

K ¼ −3 log ½ρþ ρ̄ − 2δGSV − ϕ̄−e−2Vϕ− − χ̄þe2Vχþ�;
ð6:2Þ

where, as before, V denotes the Uð1ÞA vector supermul-
tiplet. We remark that the choice of K in Eq. (6.2) is
convenient and well motivated from a string theory
perspective, but the specific form of K does not affect
the following discussions.
At the level of global supersymmetry it is clear that

minimizing the F-term potential of χþ stabilizes ρ at a
nonzero vev. To see things more clearly, let us perform the
following field redefinitions,

V → V þ log

� jϕ−jffiffiffiffiffiffiffi
δGS

p
�
; ð6:3Þ

ρ → ρþ δGS log

�
ϕ−ffiffiffiffiffiffiffi
δGS

p
�
; ð6:4Þ

χþ →

ffiffiffiffiffiffiffi
δGS

p
ϕ−

χþ: ð6:5Þ

With these redefinitions, ϕ− is eliminated from the spec-
trum and we obtain, analogous to Sec. III B, the superfield
version of unitary gauge. The Kähler potential in this frame
becomes

K ¼ −3 log ½ρþ ρ̄ − 2δGSV − ðδGSe−2V þ χ̄þe2VχþÞ�:
ð6:6Þ

We can again integrate out V supersymmetrically by
solving its equation of motion and obtain

V ¼ −
jχþj2
2δGS

þOðjχþj4Þ; ð6:7Þ

at leading order in χþ. Using this solution we find for the
effective superpotential and Kähler potential,

W ¼ δGSχþ

�
e−ρ=δGS −

mffiffiffiffiffiffiffi
δGS

p
�
; ð6:8Þ

K ¼ −3 log
�
ρþ ρ̄ − δGS − jχþj2 þ

jχþj4
2δGS

�
: ð6:9Þ

10While it may be possible to obtain an approximate version of
DHI with an FI term generated by stabilized mesons, the analysis
of such schemes is beyond the scope of this work.
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The effective Lagrangian defined by Eqs. (6.8) and (6.9)
has a supersymmetric minimum at

ρ0 ≡ −δGS log
�

mffiffiffiffiffiffiffi
δGS

p
�

ð6:10Þ

and χþ ¼ 0. In the vacuum, the mass of the canonically
normalized modulus is given by

mρ ¼
m

3
ffiffiffiffiffiffiffi
δGS

p ¼ 1

3
e−

3
2ξGS ; ð6:11Þ

which coincides with the mass of χþ. The fermionic
components of ρ and χþ combine into a Dirac fermion.
Notice that there is an intricate relation between the size of
the effective FI term defined in Eq. (2.14) and the mass of
the modulus field. A large supersymmetric mass for the
modulus can be achieved by an effective FI term close to
the Planck scale, as it naturally appears in string compac-
tifications. As an example, mρ ∼MGUT corresponds to
ξGS ∼ 0.4. In this parameter regime it is possible to stabilize
ρ at a large vev, ρ0 ≫ 1 in Planck units, to guarantee the
validity of the supergravity approximation. We remark that,
in this discussion, we treat δGS as a free parameter since
additional chiral states may contribute to the anomaly
without affecting our discussion.

B. Chaotic inflation

Consider the system defined by the superpotential

W ¼ χþðϕ2
−e−ρ=δGS −mϕ−Þ þ λφϕþϕ−; ð6:12Þ

which is obtained by adding the superpotential of DHI to
the modulus sector discussed in Sec. VI A, identifying the
waterfall field ϕ− with the field which renders the instanton
term gauge-invariant. As in Sec. III, φ is protected by a shift
symmetry in the Kähler potential and its real part is the
inflaton field. The Kähler potential reads

K ¼ −3 log ½ρþ ρ̄ − jϕ−j2 − jϕþj2 − jχþj2 þ ðφ − φ̄Þ2�:
ð6:13Þ

Here we implicitly assume that the inflaton is part of the
matter sector of a possible string theory embedding. As an
example, it could be associated with a Wilson line scalar
with the shift symmetry being a consequence of higher
dimensional gauge invariance. A discussion of the generic
obstacles of large-field inflation in string theory by means
of our toy model is, however, beyond the scope of this
paper. For a recent discussion of large-field inflation with
Wilson lines, see [45].
Along the lines of Sec. III B we can absorb ϕ− into the

vector superfield, which we integrate out supersymmetri-
cally to obtain the effective theory for the remaining

degrees of freedom. We find the following effective super-
potential and Kähler potential,

W ¼ δGSχþðe−ρ=δGS − 3mρÞ þ λ
ffiffiffiffiffiffiffi
δGS

p
φϕþ; ð6:14Þ

K ¼ −3 log
�
ρþ ρ̄ − δGS − jϕþj2 − jχþj2

þ ðjϕþj2 þ jχþj2Þ2
2δGS

þ ðφ − φ̄Þ2
�
; ð6:15Þ

where we have used Eq. (6.11) to express m in terms of
the modulus mass. In case ρ is stabilized at a scale far above
the Hubble scale during inflation, it decouples from the
dynamics and can be integrated out together with χþ (see
Sec. VI A). The resulting effective theory for φ and ϕþ can
then be described by

W ¼ m̂ φ̂ ϕ̂þ; K ¼ jϕ̂þj2 −
jϕ̂þj4
2ξGS

−
ðφ̂ − ¯̂φÞ2

2
; ð6:16Þ

where we have introduced the mass parameter m̂ ¼
λ

ffiffiffiffiffiffiffi
ξGS

p
=3

ffiffiffi
6

p
and the canonically normalized superfields

ϕ̂þ ¼ ϕþ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
3=ð2ρ0 − δGSÞ

p
and φ̂ ¼ φ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
6=ð2ρ0 − δGSÞ

p
.

Evidently, by integrating out all heavy degrees of freedom,
we have obtained the standard realization of chaotic
inflation as an effective theory.
However, for finite mρ a small correction to the pre-

dictions of chaotic inflation arises due to a displacement of
the modulus during inflation. Integrating out ρ at its shifted
vev induces an inflaton-dependent correction to the scalar
potential. The leading-order correction can be found by
expanding V around ρ0, i.e.,

V ¼ 1

ðρþ ρ̄ − δGSÞ2
½m̂2φ̂2ð2ρ0 − δGSÞ2 þ 3m2

ρjρ − ρ0j2�;
ð6:17Þ

where we have set φ̂ ¼ ¯̂φ along the inflationary trajectory.
Minimizing this expression with respect to ρ gives

ρ − ρ0 ¼
4ρ0 − 2δGS

3m2
ρ

m̂2φ̂2: ð6:18Þ

By plugging this result back into Eq. (6.17) we can obtain
an effective potential for the inflaton field. The correction
can be conveniently expressed as a power series in H=mρ

along the lines of [46]. Including the leading-order term we
obtain

V ¼ V0

�
1 −

4

3

V0

m2
ρ

�
; ð6:19Þ

with V0 ¼ m̂2φ̂2. Notice that the numerical coefficient of
the correction term differs from the result obtained in [46]
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due to the different choice of Kähler potential. As naively
expected, the correction induced by the shift of the modulus
completely disappears in the limit where ρ is infinitely
heavy. Formρ > H the second term in Eq. (6.19) may have
a controllable effect on the inflationary observables. The
investigation of this effect is, however, beyond the scope of
this note.
Notice that modulus stabilization in the effective theory

implies constraints on the initial conditions of the system.
In particular, inflation cannot begin at arbitrarily large field
values of φ̂. To ensure that ρ remains stabilized in the entire
cosmological history, the energy density of the universe
must never exceed the modulus mass. This is a conceptual
subtlety which remains to be addressed in many effective
theories of inflation with moduli stabilization.

VII. CONCLUSION

In this note we have pointed out an intimate connection
between D-term hybrid inflation and chaotic inflation,
related to Fayet-Iliopoulos terms of different origins.
DHI driven by a constant FI term proceeds in the regime
where a Uð1Þ gauge symmetry is unbroken, whereas
chaotic inflation can be the effective theory after the
Uð1Þ phase transition. In this picture, the mass of the
inflaton is generated by a Yukawa interaction. The stabi-
lizer field required in a supergravity realization of chaotic
inflation can be identified with one of the waterfall fields.
The nonminimal Kähler potential, which is usually intro-
duced by hand to decouple the stabilizer from inflation, has
its origin in a Uð1Þ gauge interaction. We explicitly show
that it is obtained by integrating out the heavy vector
superfield of the broken Uð1Þ.
From a UV perspective, constant FI terms pose a

potential problem. Therefore, we have investigated the
implementation of DHI and the aforementioned chaotic
inflation setup with a field-dependent FI term. In the
presence of an anomalous Uð1Þ symmetry, the latter is
related to a string modulus which contains the Green-
Schwarz axion. We studied the question whether a

field-dependent FI term can play the role of its constant
counterpart in the early universe. We found that in settings
where the field-dependent FI term provides the vacuum
energy of inflation, there is always a strong interplay
between modulus stabilization and inflation. In models
where the charged modulus appears in the superpotential,
properly accounting for gauge invariance prevents a decou-
pling of the modulus from the dynamics of inflation. While
successful D-term inflation may be obtained, the resulting
scheme does not resemble the simple controllable pattern
of DHI.
This leads us to consider inflation in the broken phase of

the Uð1Þ symmetry. We have shown that the Uð1Þ phase
transition, triggered by the field-dependent FI term, can
lead to a successful realization of chaotic inflation—
analogous to the case of a constant FI term. In this setting
the modulus couples to the Uð1Þ breaking field through an
instanton-suppressed Yukawa coupling. After the breaking
of the Uð1Þ symmetry a supersymmetric modulus mass
term arises whose size is controlled by the field-dependent
FI term. With the FI term close to the Planck scale, as
expected in realistic string constructions, mρ exceeds the
Hubble scale of inflation. In this case the backreaction of
the modulus on the inflaton potential is under control.
Eventually, a picture emerges in which string moduli do

not participate in supersymmetry breaking. This appears
very attractive from a phenomenological perspective as it
allows for low-energy supersymmetry breaking without
light moduli.
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