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We provide a cosmological implementation of the evolutionary quantum gravity, describing an isotropic
Universe, in the presence of a negative cosmological constant and a massive (preinflationary) scalar
field. We demonstrate that the considered Universe has a nonsingular quantum behavior, associated to a
primordial bounce, whose ground state has a high occupation number. Furthermore, in such a vacuum state,
the super-Hamiltonian eigenvalue is negative, corresponding to a positive emerging dust energy density.
The regularization of the model is performed via a polymer quantum approach to the Universe scale factor
and the proper classical limit is then recovered, in agreement with a preinflationary state of the Universe.
Since the dust energy density is redshifted by the Universe de Sitter phase and the cosmological constant
does not enter the ground state eigenvalue, we get a late-time cosmology, compatible with the present
observations, endowed with a turning point in the far future.
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I. INTRODUCTION

The problem of defining a proper notion of time in
quantum gravity is one of its most puzzling questions,
common to the different existing approaches [1–3]. From a
physical point of view, the relational approach [4] appears
very promising, especially when matter is included in
quantum dynamics. In fact, as discussed in [5–7] a dualism
exists between a dust fluid and the time evolution of the
quantum gravitational field.
However, such a promising approach has a weak

point, concerning the nonpositive character of the super-
Hamiltonian spectrum in comparison with the intrinsic
positive energy density associated to a dust fluid.
The possibility to interpret the super-Hamiltonian eigen-

values as the comoving contribution −ρ ffiffiffi
h

p
(ρ being the

dust energy density and h the three-metric determinant)
allows interesting speculations [8–10] on the role played in
quantum gravity by a reference frame: no longer a simple
gauge reparametrization of the dynamics, but a real source
involved in the system evolution, i.e. a quantum violation
of the general relativity principle [11]. Such a dualism
between a dust fluid and a clock has a mandatory
implementation in quantum cosmology, where the non-
vanishing super-Hamiltonian spectrum must provide, on
the classical limit, a dustlike cosmological component of

the Universe, also investigated as a possible dark matter
candidate [12,13].
Here we provide a self-consistent picture of the quantum

evolution of the early Universe, as described in the
framework of evolutionary quantum gravity, showing
how the resulting dust component has a positive energy
density and its contribution to the Universe critical param-
eter is redshifted by the inflationary scenario to unobserv-
able values. We consider a homogeneous and isotropic flat
Universe, endowed with a negative cosmological constant
and a massive scalar field, well mimicking the preinfla-
tionary behavior of the inflaton field [14–16] in a model
with a decay from a false vacuum (see [17,18] for the
comparison of this scenario with experimental data).
We analyze the quantum evolution of this cosmological

model according to a revised Wheeler-DeWitt approach
which allows for a time evolution of the Universe wave
function, as determined by a Schrödinger prescription. By
an adiabatic approximation, we show how the considered
quantum dynamics has a well-defined classical limit and
at early stages predicts a nonsingular behavior (removing
the initial singularity), in close analogy to a big-bounce
structure in the limit of very small Universe volumes.
Furthermore, we calculate the full spectrum of the super-
Hamiltonian, which is associated to a positive value of the
dual dust energy density, but with the shortcoming of an
unbounded-from-below profile of the eigenvalues.
To remove the unpleasant feature of an unstable quantum

system which does not possess a ground state, we treat the
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Universe volume as a discrete variable in the polymer
quantum approach [19–21]. As a result, the positive nature
of the spectrum is altered (states corresponding to negative
dust energy density appear), but a stable ground state
emerges in correspondence to very high occupation num-
bers. Such a ground (vacuum) state is associated to a
positive dust energy density and it is suitable to implement
a quasiclassical limit of the dynamics. In fact, in the limit
ℏ → 0, the high occupation number of this ground state
ensures finite energy density, which is of Planckian value if
the discretization parameter of the polymer approach is
taken of the Planck length order. It is worth stressing how
the value of the negative cosmological constant does not
enter the ground state eigenvalue and it can be taken
sufficiently small to ensure a turning point of the Universe
in the far future (de facto the presented model describes a
cyclic Universe, possessing a future classical turning point
and a bounce in the past).
In the proposed scheme, the preinflationary Universe

emerges as the classical limit of an evolutionary quantum
dynamics and it is endowed by a dust energy density (relic of
the quantum clock) which is then redshifted to very small
values by the subsequent de Sitter phase. We stress how the
dust contribution, differently from the ordinary matter,
cannot be restored by the inflaton decay during the reheating
phase and its fate is an increasing dilution up to present
unobservable amounts. In other words, the impossibility to
observe today the matter counterpart of the evolutionary
quantum gravity model is explained in the same spirit as the
“unwanted relic paradox” is solved by inflation [14,15].
Therefore, we provide a very promising cosmological

implementation of the evolutionary quantum gravity, thought
as the intrinsic matter-time dualism, which relies on the
existence of a regular ground state of the Universe, endowed
with appropriate properties for a regular classical limit.
In summary, while the problem of introducing a reliable

time variable in quantum gravity is clearly an open
question, and many competitive approaches stand in
literature [2,3,22,23], we emphasize how the present
analysis enforces the idea that the time-fluid dualism
admits intriguing cosmological applications, as already
inferred in [13]. In fact, the most significant difficulty of
such a relational approach is the nonpositive nature of the
super-Hamiltonian spectrum, resulting in the nonpositive
energy density of the fluid. We propose as solution the
restriction of such a requirement to the ground state of the
theory only. Here, we achieve a positive regularized
“vacuum” state for the model, via the introduction of a
negative cosmological constant, but its validity can be more
general. In this sense, the matter-time dualism possesses a
nice feature in the cosmological paradigm, which upgrades
its reliability, making it of comparable impact to the well-
known multitime approach [24], which is very powerful for
characterizing the cosmological evolution in terms of the
Universe volume as time variable.

The present paper is organized as follows: in Sec. II we
present the framework of evolutionary quantum gravity in a
minisuperspace context; in Sec. III we give some physical
arguments on why we consider an evolutionary quantum
cosmology and a negative cosmological constant; in
Sec. IV we introduce the cosmological model and we
solve the associated evolutionary Schrödinger equation in
the early- and late-time limits; in Sec. V we perform
polymer quantization as ρ → 0 and we outline the emer-
gence of a bounded-from-below energy spectrum. Finally,
in Sec. VI brief conclusions follow.

II. EVOLUTIONARY QUANTUM COSMOLOGY

One of the most promising approaches to the problem of
time in quantum gravity relies on the dualism existing
between a dust fluid and a physical clock [5–7]. Here we
briefly discuss this correspondence in the framework of
the minisuperspace, i.e. as restricted to the case of homo-
geneous cosmological models.
The cosmological implementation of the Wheeler-

DeWitt equation corresponds to dealing with a finite
number of degrees of freedom, say qi (i ¼ 1; 2;…; n)
generalized coordinates, representing scale factors of the
Universe and matter fields. The dynamics of the model is
summarized by the classical system HamiltonianHðqi; piÞ,
pi being the conjugate momenta to the generalized coor-
dinates. Implementing an evolutionary quantum dynamics
for the considered homogeneous model, in place of the
standard Wheeler-DeWitt frozen formalism [25], consists
of assuming that the Universe wave function ψ evolves
with respect to an external parameter t, which plays the role
of a physical clock; i.e. we take ψ ¼ ψðt; qiÞ.
The evolution of the system is then naturally determined

by the Schrödinger equation

iℏ∂tψ ¼ NðtÞĤψ ; ð1Þ
whereNðtÞ denotes the lapse function and Ĥ is the operator
version of the super-Hamiltonian. By taking the wave
function in the following integral representation

ψðt; qiÞ ¼
Z

dEϕðE; qiÞ exp
�
− i
ℏ
E
Z

NðtÞdt
�
; ð2Þ

the Schrödinger equation above is associated to the time
independent eigenvalue problem

Ĥϕ ¼ Eϕ; ð3Þ
E being the super-Hamiltonian eigenvalue.
As far as we take the classical limit, for ℏ → 0, by setting

the wave function as ψ ∼ exp iσ=ℏ, the eigenvalue problem
above takes the form of a Hamilton-Jacobi equation,
containing an additional matter contribution −E, σ being
the Jacobi function. Since the Hamiltonian is a scalar
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density of weight 1=2, to get an energy density, we need
to divide this new contribution by the Universe volume
Vu ∼

ffiffiffi
h

p
(h being the three-metric determinant) and hence

we get ρnew ¼ −E=Vu, which clearly describes a dust
comoving fluid.
The clock-dust-fluid dualism is well expressed in quan-

tum cosmology by the correspondence traced above
between the super-Hamiltonian spectrum and the energy
density of the dust emerging in the classical limit of the
evolutionary quantum picture. The limit of this analogy is
in the nonpositive nature of the super-Hamiltonian spec-
trum, which prevents us from ensuring an always positive
dust energy density. Indeed, we stress how, invoking a
minimal energy principle for the quantum Universe, the
request of a positive dust fluid energy density must be
transferred to such a ground (vacuum) state only. In this
respect, we finally observe how the value of the emerging
contribution ρnew depends directly on the boundary con-
ditions, characterizing the considered cosmological model,
which fixes the ground state eigenvalue. As a result, it is not
immediately recognizable that the constraint ensuring that
the emerging dust behaves as a test fluid. In this sense, the
emerging energy density must be regarded as the physical
substantiation of the comoving reference frame. In other
words, an evolutionary quantum cosmology predicts, in the
classical limit, the existence of a natural preferred comov-
ing reference frame, unavoidably affecting the quantum
evolution of the system. Despite the fact that the coordinate
reparametrization of the adopted scheme is still allowed,
the present scenario can be interpreted as quantum breaking
of the general relativity principle [10].

III. PHYSICAL GROUNDS AND MOTIVATION

We now address two subtle features at the ground of our
model, which are indeed intrinsically connected to each
other, i.e. the implementation of an evolutionary quantum
cosmology and the presence of a negative cosmological
constant in the Universe dynamics.
Clearly, the solution of the problem of time is one of the

open questions in quantum gravity, both for what concerns
the nature of the field, materializing the clock, and also
for the properties time must possess on a classical regime,
as well as on a quantum regime. This problem was
interestingly addressed in [1,4,26], where defining a time
and defining a reference frame in quantum gravity are
related concepts. For some attempts to characterize the time
variable as a relational clock having peculiar properties,
like a monotonic behavior, see [27,28]. However, one of the
most interesting points of view on this topic, different from
the one here proposed, is the so-called multitime approach
[24], in which it is emphasized how the gravitational field
has to be separated into its two real physical degrees of
freedom, while the remaining part of the space geometry
labels the evolution. For a review of the various viable
approaches to the problem of time in quantum gravity and a

discussion of their successes and shortcomings, see [2] (see
also [3]).
However, as discussed in the previous section, the

dualism between an external time and the presence of a
dust fluid in the quantum dynamics is a well-established
fact. The physical nature of time depends on the details of
the considered model and it relies on the link existing
between the super-Hamiltonian eigenvalue and the dust
energy density [5–7]. In the present analysis we avoid the
specification of a particular framework, making essentially
reference to the Schrödinger-like dynamics of the Universe
wave function, because on a cosmological setting the
physical output of an evolutionary approach is just the
emergence of a new matter contribution to the thermal bath
of the Universe. Such an additional matter density defines
also a new reference frame, which is, to some extent, a
preferred one, in view of its non-test-fluid character.
Hence, it is clear how the question concerning the

positive value of the emerging dust energy density (a
central theme in the matter-time dualism in quantum
gravity) is crucial when reconstructing the Universe ther-
mal history [14]. It is just the request to deal with a fully
negative spectrum of the super-Hamiltonian (fully positive
dust energy density) which leads us to involve a negative
cosmological constant in the dynamics. In so doing we get
a contribution in the Hamiltonian which corresponds to a
harmonic oscillator energy, but with a global negative sign.
Such a feature has a rather general validity (see Sec. VI)
since, even for a generic inhomogeneous cosmological
model the kinetic contribution of the Universe volume to
the Hamiltonian, together with the negative cosmological
constant term, provides the same harmonic-oscillator
structure. However, such a contribution implies an unstable
behavior of the full Hamiltonian operator, whose spectrum
is unbounded from below. The regularization is performed
via a polymer quantum treatment of the Universe scale
factor (say the Universe volume). Such a regularization
procedure provides a well-defined ground state, having the
right negative eigenvalue for getting a viable phenomenol-
ogy. In other words, as proposed in [13], we are imple-
menting the idea that, on a quantum level, it is enough to
require that the dust energy density corresponding to the
ground state be positive in order to get a reliable physi-
cal model.
It is worth stressing how the ground state eigenvalue

is surprisingly unaffected by the value of the negative
cosmological constant [see (64)] and, therefore, Λ is freely
available for the cosmological problem and it can be
properly fixed to a very small value, whose dynamical
role will be only to provide a turning point in the far future.
The negative cosmological term, here considered, has no
“interference” with the present phenomenon of Universe
acceleration [29,30], whose origin could be due to a
positive cosmological constant [31], but also to other
physical mechanisms (as for instance quintessence
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paradigms [32]). This effect is indeed a late evolutionary
feature of the Universe, almost uncorrelated with the
domain of validity of this study. Furthermore, a positive
cosmological constant term would not guarantee the
spectral features traced above.
However, motivations for including a negative cosmo-

logical constant in the Universe dynamics can be found
in many modern fundamental theories, such as supersym-
metry [33] and AdS/CFT correspondence [34].
Finally, we stress how, independently of the dust energy

density origin (a nonvanishing eigenvalue for the super-
Hamiltonian or a matter clock involved in the dynamics)
the corresponding cosmological evolution could have a
deep phenomenological impact on the present Universe.
We demonstrate that this contribution, associated to the
regularized ground state eigenvalue, admits a reliable
classical limit and then it is redshifted by the inflation
e-folding, leaving no measurable trace on the observed
Universe.

IV. THE MODEL

Let us consider a preinflationary Universe described by
a flat Friedmann-Robertson-Walker (FRW) metric, whose
metric is (we work in units c ¼ 1)

ds2 ¼ dt2 − a2ðtÞdl2RW; ð4Þ

with

dl2RW ¼ dr2 þ r2ðdθ2 þ sin2ðθÞdϕ2Þ; ð5Þ

and a massive noninteracting scalar field ϕ, modeling the
inflaton trapped into a false vacuum.
The Hamiltonian for such a system in the presence of a

negative cosmological constant −Λ, Λ > 0, reads [35]

H ¼ − 2πG
3

p2
a

a
− Λ
8πG

a3 þ 1

2ℏa3
p2
ϕ þ

1

2

m2

ℏ
a3ϕ2; ð6Þ

pa and pϕ being the conjugate momenta to a and ϕ,
respectively, while m is the mass of the scalar field.
In view of quantization a convenient set of phase-space

coordinates is obtained via the canonical transformation

a → ρ ¼ a3=2; pa → pρ ¼
2

3
paρ

−1=3; ð7Þ

and the Hamiltonian (6) in the new set of variables takes the
following form

H ¼ − 3πG
2

p2
ρ − Λ

8πG
ρ2 þ 1

2ℏρ2
p2
ϕ þ

1

2

m2

ℏ
ρ2ϕ2: ð8Þ

The canonical quantization of the associated dynamical
system is obtained by replacing the configuration variables
ρ and ϕ with multiplicative operators defined in a suitable
(pre-)Hilbert space and the momenta with the proper
derivative operators, i.e.

pρ → −iℏ ∂
∂ρ ; pϕ → −iℏ ∂

∂ϕ ; ð9Þ

such that the Wheeler-DeWitt operator Ĥ becomes

ĤΨðρ;ϕÞ ¼
�
3πl4

P

2G
∂2

∂ρ2 −
Λ

8πG
ρ2 − ℏ

2ρ2
∂2

∂ϕ2

þ 1

2

m2

ℏ
ρ2ϕ2

�
Ψðρ;ϕÞ; ð10Þ

lP ¼ ffiffiffiffiffiffiffi
ℏG

p
being the Planck length. The evolutionary

quantum equation associated with (10) reduces to an
eigenvalue equation for the Hamiltonian (8)

ĤΨðρ;ϕÞ ¼ EΨðρ;ϕÞ: ð11Þ

A. Quasiclassical limit

Let us address a Born-Oppenheimer approximation (to
be verified a posteriori), in which we construct the wave
function as the product of the following two terms

Ψðρ;ϕÞ ¼ ζðρÞχðρ;ϕÞ; ð12Þ

in which χ describes the scalar field wave function and
depends parametrically on ρ, while ζ is the Universe wave
function.
Hence, we impose�

− ∂2

∂ρ2 þ
Λ

12π2l4
P
ρ2
�
ζnðρÞ ¼

2G
3πl4

P
Eρ
nζnðρÞ: ð13Þ

The equation above can be written as the Schrödinger
equation describing a harmonic oscillator with mass
M ¼ 1

3πG and frequency Ω ¼ 1
2

ffiffiffiffiffiffi
3Λ

p
. A solution of the

eigenvalue problem (13) is thus given by

ζnðρÞ ¼ NnΛ
1=8⋆ e−

ffiffiffiffi
Λ⋆

p
ρ2

2 HnðΛ1=4⋆ ρÞ; ð14Þ

where HnðxÞ is the Hermite polynomial of degree n, Nn ¼ffiffiffiffiffiffiffiffiffiffiffiffi
1

π1=22nn!

q
is a normalization constant and

Λ⋆ ≡ Λ
12π2l4

P
: ð15Þ

CIANFRANI, MONTANI, AND PITTORINO PHYSICAL REVIEW D 90, 103503 (2014)

103503-4



The eigenvalues Eρ
n reads

Eρ
n ¼ ℏ

1

2

ffiffiffiffiffiffi
3Λ

p �
nþ 1

2

�
; ð16Þ

where n ∈ N is restricted to be odd [36].
In the same way, we impose�
− ∂2

∂ϕ2
þm2

ℏ2
ρ4ϕ2

�
χkðρ;ϕÞ ¼

2ρ2

ℏ
Eϕ
k χkðρ;ϕÞ; ð17Þ

whose solution reads

χkðρ;ϕÞ ¼ Nkm
1=4⋆

ffiffiffi
ρ

p
e−m⋆ϕ2ρ2

2 Hkð
ffiffiffiffiffiffi
m⋆

p
ϕρÞ; ð18Þ

where

m⋆ ≡m
ℏ
; ð19Þ

with eigenvalues given by

Eϕ
k ¼ m

�
kþ 1

2

�
; k ∈ N: ð20Þ

The solution of (8) is to be considered in the context of a
theory of small oscillations of the scalar field around the
minimum of its potential. In this way the scalar field cannot
explore the complete profile of the potential VðϕÞ, and this
makes the quantum number k confined in a limited interval
whose upper limit depends on the parameters of the model.
In the appendix we demonstrate that an approximated

solution of the eigenvalue equation (11) is given by the
product of the functions (14) and (18) for ρ → ∞, i.e.

Ψn;kðρ;ϕÞ ¼ ζnðρÞχkðρ;ϕÞ
¼ NnNkΛ

1=8⋆ m1=4⋆ e−
ffiffiffiffi
Λ⋆

p
ρ2

2 HnðΛ1=4⋆ ρÞ
×

ffiffiffi
ρ

p
e−m⋆ϕ2ρ2

2 Hkð
ffiffiffiffiffiffi
m⋆

p
ϕρÞ; ð21Þ

with associated eigenvalue

En;k ¼ −Eρ
n þ Eϕ

ρ þ
ffiffiffi
3

p

2
ℏ

ffiffiffiffi
Λ

p �
kþ 1

2

�
¼

ffiffiffi
3

p

2
ℏ

ffiffiffiffi
Λ

p
ðk − nÞ þm

�
kþ 1

2

�
: ð22Þ

Therefore, in the late-time limit ρ → ∞, the Born-
Oppenheimer approximation (21) is well grounded for
energy eigenstates. However, the energy spectrum is
unbounded from below; thus the resulting dynamical
system is unstable.
Semiclassical states can be constructed through the wave

packets peaked around some classical values ~n and ~k as
follows:

Ψ½ ~n;~k�ðρ;ϕ;tÞ¼A
X∞
n¼1

X∞
k¼1

e
−ðn− ~nÞ2

2σ2
1 e

−ðk−~kÞ2
2σ2

2 ζnðρÞχkðρ;ϕÞe−i
En;kt

ℏ ;

ð23Þ

where σ1 and σ2 denote the distribution variances, while A
is a normalizing factor.
We want to study the evolution in time of the expectation

values of the operator ρ on such states, i.e.

hρit ¼ hΨ½ ~n;~k�ðtÞjρjΨ½ ~n;~k�ðtÞi

¼
Z

∞

0

dρ
Z

∞

−∞
dϕðΨ½ ~n;~k�ðρ;ϕ; tÞÞ�ρΨ½ ~n;~k�ðρ;ϕ; tÞ;

ð24Þ

and its variation

hΔρ2it ¼
Z

∞

0

dρ

×
Z

∞

−∞
dϕ½ðΨ½ ~n;~k�ðρ;ϕ; tÞÞ�ρ2Ψ½ ~n;~k�ðρ;ϕ; tÞ�− hρi2t :

ð25Þ

A similar analysis is performed for ϕ.
In Figs. 1, 2, 3 and 4, the behaviors of such expectation

values and variances are sketched.
We fixed ~n ¼ 11, ~k ¼ 3, σ1 ¼ 0.1 and σ2 ¼ 0.1, while

Λ⋆ ¼ 1 and m⋆ ¼ 100. Time is in units of 2π
10

1
Ω ¼ 2π

5
ffiffiffiffi
3Λ

p .

We see how the variances remain bounded and much
smaller than the corresponding expectation values.

B. Close to the singularity

In the limit ρ → 0 we expect the potential term of the
scalar field in (8) to be negligible with respect to the kinetic
one, i.e.

0

1

2

3

4

t
0 5 10 15 20 25 30 35

FIG. 1 (color online). The points denote the expectation value
of the scale factor on the wave packet (23) in units of 1

Λ1=4⋆
.
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1

2ρ2
p2
ϕ ≫

1

2
m2ρ2ϕ2; ð26Þ

such that the Hamiltonian (8) can be rewritten by neglecting
this potential term

H ¼ − 3πG
2

p2
ρ − Λ

8πG
ρ2 þ 1

2ℏρ2
p2
ϕ: ð27Þ

Let us first consider the associated classical system coming
out of an evolutionary quantum dynamics, i.e. for H ¼ E.
By recalling the expression pa ¼ − 3c2

4πG a _a, the following
Friedmann equation is obtained�

_a
a

�
2

¼ 8πG
3

�
1

2ℏa6
p2
ϕ − E

a3
− Λ
8πG

�
ð28Þ

where pϕ is constant since the field is sufficiently frozen
near the minimum. An analytic solution is given by

aðtÞ ¼ ½Aþ B sin ðωtþ ϕÞ�1=3; ð29Þ

where

A¼−4πGE
Λ
; B¼�

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
8πG
Λ

�
p2
ϕ

2ℏ
þ2πG

E2

Λ

�s
; ω¼

ffiffiffiffiffiffi
3Λ

p
;

ð30Þ

and since jBj > jAj the classical initial singularity a ¼ 0 is
still present. Indeed, it can be shown that there is also a final
big crunch singularity, as usual in models with a negative
cosmological constant.
The scalar field dynamics can also be solved analytically,

finding

ϕ ¼ pϕ

ℏω
2ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

B2 − A2
p arctanh

�
Bffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

B2 − A2
p

þ Affiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
B2 − A2

p tan

�
1

2
ðωtþ ϕÞ

��
þ cost ð31Þ

The classical behavior of a and ϕ is depicted in Figs. 5
and 6.
It is worth noting that the presence of a negative

cosmological constant ensures the existence of a turning
point in the Universe late classical evolution.
The associated quantum equation in evolutionary quan-

tum gravity reads�
3πl4

P

2G
∂2

∂ρ2 −
Λ

8πG
ρ2 − ℏ

2ρ2
∂2

∂ϕ2

�
Ψðρ;ϕÞ ¼ EΨðρ;ϕÞ:

ð32Þ

We look for a plane-wave solution for the scalar field, i.e.

Ψðρ;ϕÞ ¼ 1ffiffiffiffiffiffi
2π

p ei
kϕϕ

ℏ ζðρÞ; ð33Þ

such that one gets the following equation for ζ

0 5 10 15 20 25 30

0.20

0.15

0.10

0.05

0.00

t

FIG. 3 (color online). The expectation value of the scalar field

calculated on the wave packet (23). hϕit is in units of Λ1=4
⋆ffiffiffiffiffi
m⋆

p .

0 10 20 30 40 50 60

0.0019

0.0020

0.0021

0.0022

0.0023

0.0024

0.0025

t

FIG. 4 (color online). Motionof the scalar fielduncertainty hΔϕit
calculated on the wave packet (23). hΔϕit is in units of Λ1=4⋆ffiffiffiffiffi

m⋆
p .

0 10 20 30 40 50 60

0.0126

0.0128

0.0130

0.0132

0.0134

t

FIG. 2 (color online). The uncertainty hΔρit calculated on the
wave packet (23). hΔρit is in units of 1

Λ1=4
⋆
.
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� ∂2

∂ρ2 − Λ⋆ρ2 þ
k2ϕ⋆
ρ2

�
ζðρÞ ¼ E⋆ζðρÞ; ð34Þ

with

k2ϕ⋆ ¼ G
3πℏl4

P
k2ϕ; E⋆ ¼ 2G

3πl4
P
E: ð35Þ

A solution of Eq. (34) can be constructed by considering
the following wave function

ζ ¼ fðρÞe− ffiffiffiffi
Λ⋆

p
ρ2

2 ρλ; ð36Þ

where [37]

λ ¼
1þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 − 4k2ϕ⋆

q
2

: ð37Þ

In what follows, we consider the solution with real λ’s, i.e.

jkϕ⋆j <
1

2
: ð38Þ

We assume a power series expansion for the unknown
function fðρÞ

fðρÞ ¼
Xn0
n¼0

cn;n0ρn; n; n0 ∈ 2N; ð39Þ

and the eigenvalue problem (36) provides the following
difference equation

cnþ2;n0 ðnþ 2Þ
		 ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1 − 4k2ϕ⋆
q

þ nþ 2




− cn;n0
	
E⋆ þ

ffiffiffiffiffiffi
Λ⋆

p 	 ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 − 4k2ϕ⋆

q
þ 2nþ 2




¼ 0; ð40Þ

with the restriction

E⋆ ¼ − ffiffiffiffiffiffi
Λ⋆

p 	 ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 − 4k2ϕ⋆

q
þ 2n0 þ 2



: ð41Þ

The expression of the coefficients cn;n0 can be written in
terms of (the analytically continued) Euler Γ-function as
follows [38]:

csoln;n0 ¼
ðð−1Þnþ1ÞΓ

	
1þ 1

2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1−4k2ϕ⋆

q 

Λn=4⋆

Γðn
2
þ1ÞΓ

	
n
2
þ 1

2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1−4k2ϕ⋆

q
þ1


 ð−1Þn2
n0
2
!

ðn0
2
−n

2
Þ! ;

ð42Þ

and the solution of Eq. (32) thus reads

Ψn0;kϕðρ;ϕÞ ¼ Cei
kϕϕ

ℏ e
− ffiffiffiffi

Λ⋆
p

ρ2

2 ρ
1þ

ffiffiffiffiffiffiffiffiffi
1−4k2

ϕ⋆
p

2

Xn0
n¼0

csoln;n0ρ
n; ð43Þ

where C is a normalizing factor and with energy eigenvalue

En0;kϕ ¼ −ℏ
ffiffiffiffiffiffi
3Λ

p

4

	 ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 − 4k2ϕ⋆

q
þ 2n0 þ 2



: ð44Þ

Indeed, the procedure we used to solve Eq. (34) is just the
generalization of those adopted for a three-dimensional
harmonic oscillator, in which case k2ϕ⋆ ¼ −lðlþ 1Þ, l being
the angular momentum. In fact, the eigenfunction (43) and
the eigenvalue (44) correspond to the three-dimensional
generalization of the harmonic oscillator eigenfunctions
and eigenvalues. In particular, the sum

P
n0
n¼0 c

sol
n ρn coin-

cides with Laguerre polynomials generalized for continu-
ous kϕ values. Within this model, the value of kϕ⋆
determines if there is a physical singularity [39] in ρ ¼ 0:
it is absent for kϕ⋆ < 1

2
and present for kϕ⋆ > 1

2
[40,41].

Therefore, by assuming the condition (38), we get a
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0.5

0.0
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1.0

t

FIG. 6 (color online). Classical trajectory of ϕ in function of
time. Time is in units of 2π

10ω and the scalar field in units of
pϕ

ℏω
2ffiffiffiffiffiffiffiffiffiffi

B2−A2
p .

0 10 20 30 40

0.0

0.5

1.0

t

a

FIG. 5 (color online). Classical trajectory of the scale factor a in
function of time. Time is in units of 2π

10ω and the scale factor aðtÞ in
units of B1=3. It is worth noting how the singularity a ¼ 0 is
reached in a finite amount of time both in the past and in the
future.
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nonsingular scenario for the early Universe and the big-bang
singularity is removed.
Semiclassical states can now be constructed as follows:

Ψ½~kϕ; ~n�ðρ;ϕ; tÞ ¼ A
Z þ1=2

−1=2
dkϕ⋆e

−ðkϕ−~kϕÞ2
2α2

X∞
n¼1

e−
ðn− ~nÞ2
2σ2

× e−i
En;kϕ

t

ℏ Ψn;kϕðρ;ϕÞ; ð45Þ

A being a normalizing factor. The behavior of expectation
values and distribution variances is presented in Figs. 7
and 8 for σ ¼ 0.1.
This analysis confirms that the quantum model is non-

singular as ρ → 0, since the initial singularity is replaced
by a bounce. Furthermore, deviation becomes smaller and
smaller as t increases; thus the Universe becomes more and
more classical at late times.

V. POLYMER QUANTIZATION

In this section we implement polymer quantization for
the variable ρ describing the Universe volume. We will
outline how this procedure provides a bounded-from-below
dust energy contribution, which allows us to fix the value of
E owing to the relaxation of the Universe to the funda-
mental state.
Polymer quantization [19,20] realizes a representation of

the Weyl algebra which is not unitary equivalent to the
Schrödinger representation. In fact, it is based on violating
one of the hypotheses of the Stone–von Neumann unique-
ness theorem, namely weak continuity. This is due to the
fact that the space of configuration variables is endowed
with a discrete topology, such that only finite translations
can be implemented and momenta are not defined. Hence,
in order to write a proper Hamiltonian, one is forced to
introduce a lattice in the configuration space and to
approximate the momenta by the action of the translation
operator on the minimum lattice distance (polymer scale).
In this sense, polymer quantization naturally accounts
for the presence of a fundamental discrete structure, as
expected in quantum gravity approaches. As a conse-
quence, the quantum dynamics is significantly affected
at scales which are comparable with the polymer scale,
while in the continuum limit there is a substantial overlap
with the results obtained in the Schrödinger representation.
Let us address polymer quantization for ρ. The asso-

ciated wave function in the frozen case can be written as

Ψpolðρ;ϕÞ ¼ ζpolðρÞeikϕϕℏ ; ð46Þ

where the superscript pol denotes the polymer part of the
wave function. The function ζpol belongs to the Hilbert
space of square-integrable functions over the Bohr com-
pactification of the real line. It can be expanded on the
eigenvectors of the polymer operator ρ, whose spectrum is
defined on the lattice Lλ⋆ ¼ fρ ¼ nλ⋆; n ∈ Zg, i.e.

ρ̂jnλ⋆i ¼ nλ⋆jnλ⋆i; ð47Þ

λ⋆ being the polymer scale. Finite translations act as

Tρjρ0i ¼ jρ0 þ ρi; ð48Þ

and the momentum operator can be defined in terms of
them as follows:

p̂pol
ρ ¼ ℏ

2iλ⋆
ðTλ⋆ − T−λ⋆Þ; ð49Þ

which formally coincides with the replacement

p̂ρ →
1

λ⋆
sin

�
λ⋆p̂ρ

ℏ

�
: ð50Þ
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FIG. 8 (color online). The uncertainty of ρ on the wave packet
(45). hΔρit is in units of 1

Λ1=4⋆
.
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FIG. 7 (color online). The points denote the expectation value
of the scale factor on the wave packet (45), while the continuous
line is the classical behavior of ρ (both in units of 1

Λ1=4⋆
). We note

how the initial singularity is avoided in the quantum model.
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The eigenvalue problem (34) becomes�
ĤPHO þ k2ϕ

1̂

ρ2

�
ζpolðρÞ ¼ −EζpolðρÞ; ð51Þ

where ĤPHO is the Hamiltonian operator for the harmonic
oscillator in the polymer representation, which in the
momentum polarization reads [42]

ĤPHO ~ζpolðpρÞ ¼
ℏ2

8Mλ2⋆

�
2 − 2 cos

�
2λ⋆pρ

ℏ

��
~ζpolðpρÞ

− ℏ2

2
MΩ2

d2 ~ζpolðpρÞ
dp2

ρ
; ð52Þ

where M and Ω denote the mass and the frequency of the
harmonic oscillator and they take the following expression
in terms of the parameters of the model

M ¼ 1

3πG
; Ω ¼

ffiffiffiffiffiffi
3Λ

p

2
: ð53Þ

Let us assume that the second term on the left-hand side
of (51) is a small perturbation and let us solve first the
eigenvalue problem for the polymer harmonic oscillator:

ℏ2

8Mλ⋆

�
2 − 2 cos

�
2λ⋆pρ

ℏ

��
~ζpol − ℏ2

2
MΩ2

d2 ~ζpol

dp2
ρ

¼ −E~ζpol:
ð54Þ

By introducing the following quantities

u ¼ λ⋆pρ

ℏ
þ π

2
; α ¼ − 2E

ℏΩg
− 1

2g2
; g ¼ MΩλ2⋆

ℏ
;

ð55Þ
Eq. (54) takes the form of a Mathieu equation

d2 ~ζpol

du2
þ
�
α − 1

2
g−2 cos ð2uÞ

�
~ζpol ¼ 0: ð56Þ

We restrict to those solutions which are periodic (or
antiperiodic) in u, since the associated conjugate variable
ρ is discrete. These solutions of the Mathieu equation are
parametrized by g and they can be written as

~ζpol2n ðuÞ ¼ π−1=2cenðu; gÞ; α ¼ AnðgÞ ð57Þ

~ζpol2nþ1ðuÞ ¼ π−1=2senðu; gÞ; α ¼ BnðgÞ ð58Þ

where cen and sen ðn ∈ NÞ are respectively the sine and
cosine elliptic functions, while An and Bn are the character-
istic values functions. For even n, cen and sen are π
periodic, while for odd n they are π antiperiodic. The
energy eigenvalues are

E2n ¼ −ℏΩg
2

�
AnðgÞ þ

1

2g2

�
; ð59Þ

E2nþ1 ¼ −ℏΩg
2

�
BnðgÞ þ

1

2g2

�
: ð60Þ

It is worth noting how in our case the condition g ≪ 1
holds, since we have

g ¼ λ2⋆
ffiffiffiffiffiffi
3Λ

p

3πl2
P
≪ 1 → Λ ≪

3π2

l2
P
; ð61Þ

where we fixed the polymer scale λ⋆ ∼ l3=2
P . The condition

above is an intrinsic consistency condition for our model,
since if it was violated then the negative cosmological
constant would drive the Universe evolution from the
Planck time up to now. Hence, we can expand the
characteristic values in powers of g near g ¼ 0, so getting

α ¼
�
2nþ 1

2

�
g−1 − 2n2 þ 2nþ 1

4
þOðgÞ; ð62Þ

such that the energy spectrum becomes

En ¼ −ℏ
ffiffiffiffiffiffi
3Λ

p

2

��
nþ 1

2

�
− 2n2 þ 2nþ 1

8
gþOðg2Þ

�
:

ð63Þ

It is worth noting how the spectrum exhibits a minimum
corresponding to

nmin ∼
2

g
→ Emin ∼

ℏ
ffiffiffiffiffiffi
3Λ

p

2g
¼ 3πℏl2

P

2λ2⋆
: ð64Þ

Therefore, the dynamical system is now endowed with a
ground state, corresponding to the minimum energy eigen-
value, and one can assume the Universe to dynamically
relax into such a state. Furthermore, the minimum eigen-
value is negative and the dual dust field energy density is
positive; thus it behaves as an ordinary dust field
contribution.
Let us now estimate the additional term in (51). By

performing the Fourier transform of Mathieu functions it is
possible to describe the eigenfunctions (57) and (58) in the
coordinate representation. We consider only the Mathieu
sine periodic functions, since the same estimate can be
repeated for the cosine, and with odd index, since nothing
changes for an even one. Hence, se2nþ1 can be expanded as
follows:

se2nþ1ðu; gÞ ¼
X∞
m¼0

B2nþ1
2mþ1ðgÞ sin½ð2mþ 1u�; ð65Þ

where B2nþ1
2mþ1ðgÞ are Fourier coefficients for which
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X∞
m¼0

jB2nþ1
2mþ1j2 ¼ 1: ð66Þ

The normalized energy eigenstates jE2nþ1i, for which
hpρjE2nþ1i ¼ ~ζpol2nþ1, can thus be expanded in terms of
jρi ¼ eiρpρ=ℏjpρi as follows:

jE2nþ1i ¼
1ffiffiffi
2

p
Xþ∞

m¼−∞
ð−ÞmB2nþ1

j2mþ1jjð2mþ 1Þλ⋆i: ð67Þ

Inverse powers of ρ can be regularized in polymer
representation using the expression [43]

dsgnðρÞffiffiffiffiffiffijρjp →
1

λ⋆

	 ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
jρþ λ⋆j

p − ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
jρ − λ⋆j

p 

; ð68Þ

which provides for 1=ρ2

1̂

ρ2
→

1

λ4⋆

	 ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
jρþ λ⋆j

p − ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
jρ − λ⋆j

p 

4
: ð69Þ

Hence, the expectation value of the additional term in (51)
on energy eigenstates reads

k2ϕ

�
E2nþ1

���� 1̂ρ2
����E2nþ1


¼ k2ϕ

λ2⋆

X∞
m¼0

jB2nþ1
2mþ1j2

	 ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
j2mþ 2j

p − ffiffiffiffiffiffiffiffiffi
j2mj

p 

4

≤
k2ϕ
λ2⋆

X∞
m¼0

	 ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
j2mþ 2j

p − ffiffiffiffiffiffiffiffiffi
j2mj

p 

4
; ð70Þ

where we used the condition (66). Let us note that	 ffiffiffiffiffiffiffiffiffiffiffi
nþ 1

p − ffiffiffiffiffiffiffiffiffiffiffi
n − 1

p 

4
<

2

n2
∀ n > 1; ð71Þ

and thus

X∞
m¼0

	 ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
j2mþ 2j

p − ffiffiffiffiffiffiffiffiffi
j2mj

p 

4
< 4þ

X∞
m¼1

2

ð2mþ 1Þ2

¼ 2þ
X∞
m¼0

2

ð2mþ 1Þ2 ¼ 2þ π2

4
; ð72Þ

such that for the expression (70) one has

k2ϕ

�
E2nþ1

���� 1̂ρ2
����E2nþ1


<

8þ π2

4

k2ϕ
λ2⋆

: ð73Þ

The ratio Δ of this term with the ground state energy
eigenvalue reads

Δ ¼
k2ϕhE2nþ1j 1̂ρ2 jE2nþ1i

Emin
<

8þ π2

4
k2ϕ⋆; ð74Þ

and it tells us if the additional term is actually a small
perturbation or not. For instance, we can require Δ < 10−1,
so getting

kϕ⋆ < 0.15: ð75Þ
We see how the smaller the value of kϕ⋆, the more

accurate the energy spectrum (63) we got in polymer
representation.

VI. CONCLUSION

We presented a self-consistent cosmological picture,
based on the implementation of an evolutionary quantum
gravity approach to a reliable model of the primordial
isotropic Universe. Indeed, we construct a nonsingular
cosmology, corresponding to a cyclic Universe, having a
quantum big bounce in the past, associated to the details
of its quantum dynamics, and a late turning point, due to
the presence of a small negative cosmological constant. The
main issue of the analysis above consists in determining,
via a polymer quantum approach, a ground state of the
Universe, associated to a positive dust energy density and
to a high occupation number. For such a vacuum state of
the model, it is possible to construct a reliable classical
limit, which reconciles the early evolutionary Universe
phase with a standard preinflationary scenario (with a
decay from a false vacuum). Furthermore, the emerging
dust energy density is strongly redshifted by the Universe
de Sitter phase and thus, the postinflationary dynamics is
indistinguishable from the Standard Model one. Finally, we
observe that the value of the negative cosmological con-
stant does not enter the ground state energy of the Universe
and so it can be easily stated as an amount which is unable
to affect the present Universe dynamics. We can conse-
quently conclude that an evolutionary quantum cosmology
exists, able to solve the singular nature of the big bang,
without any dynamical discrepancy with respect to a
standard Friedmann Universe and with the additional
feature of a natural picture of the model classical limit.
Despite the fact that the present study offers an interest-

ing cosmological paradigm for the matter-time dualism and
the related evolutionary quantum gravity, we stress how the
problem of a unique definition of a physical clock for the
dynamics of the gravitational field in canonical quantum
gravity remains one of the most challenging topics in this
area and deserves attention for both its fundamental
developments and specific applications.
We conclude by observing how the relevance of the

present model must be also recognized in its possibly very
general character. In fact, the anisotropic Universe degrees
of freedom are dynamically equivalent to a scalar field and
the associated potential (due to the cosmological model
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spatial curvature) is quadratic in the limit of a quasi-
isotropic Universe. Then, we could first extend the present
model to the homogeneous Bianchi Universe (in particular
to the Bianchi IX model, generalizing the closed isotropic
Universe) and then to a generic inhomogeneous Universe,
via a quantum version of the so-called Belinski-Lipschitz-
Kalatnikov conjecture [44,45].
Although, differently from the scalar field dynamics,

there is no firm evidence that the limit of small anisotropies
is prescribed by the Universe evolution, the perspective to
replace the scalar field with the cosmological gravitational
field degrees of freedom opens very general and intriguing
scenarios for the implementation of the idea traced here.
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APPENDIX: BORN-OPPENHEIMER
APPROXIMATION

We demonstrate that the solutions of the evolutionary
equation (11) in the large ρ limit can be constructed as
the product of the two harmonic oscillator solutions (14)
and (18). In particular, by inserting the expression (21) into
Eq. (11) one gets

�
3πl4

P

2G
∂2

∂ρ2 −
Λ

8πG
ρ2 − ℏ

2ρ2
∂2

∂ϕ2
þ 1

2

m2

ℏ
ρ2ϕ2

�
ζnðρÞχkðρ;ϕÞ

¼ 3πl4
P

2G
fζ00nðρÞχkðρ;ϕÞ þ ζnðρÞχ00kðρ;ϕÞ þ 2ζ0nðρÞχ0kðρ;ϕÞg

−
ℏ
2ρ2

ζnðρÞ
∂2

∂ϕ2
χkðρ;ϕÞ þ

�
1

2

m2

ℏ
ρ2ϕ2 − 3πl4

P

2G
Λ⋆ρ2

�
ζnðρÞχkðρ;ϕÞ

¼ EζnðρÞχkðρ;ϕÞ; ðA1Þ

where 0 denotes the derivative with respect to the variable ρ.
These derivatives can be evaluated thanks to the following
identity for Hermite polynomials

∂
∂ρHnðρÞ ¼ 2nHn−1ðρÞ; ðA2Þ

and the following asymptotic recurrence relation holding as
soon as ρ → ∞

Hn−1ðρÞ≃ 1

2ρ
HnðρÞ; ðA3Þ

which can be combined together, so getting

∂
∂ρHnðρÞ≃ n

ρ
HnðρÞ: ðA4Þ

Hence, ζ0nðρÞ in the limit ρ → ∞ reads

ζ0nðρÞ≃
�
− ffiffiffiffiffiffi

Λ⋆
p

ρþ n
ρ

�
ζnðρÞ; ðA5Þ

and by iterating ζ00nðρÞ can be estimated, finding

ζ00nðρÞ≃
�
Λ⋆ρ2 − 2

ffiffiffiffiffiffi
Λ⋆

p �
nþ 1

2

�
þ nðn − 1Þ

ρ2

�
ζnðρÞ:

ðA6Þ

The same procedure gives the following expressions for
χ0kðρ;ϕÞ and χ00kðρ;ϕÞ:

χ0kðρ;ϕÞ≃
"
−m⋆ϕ2ρþ kþ 1

2

ρ

#
χkðρ;ϕÞ; ðA7Þ

χ00kðρ;ϕÞ

≃
�
m2⋆ϕ4ρ2−2m⋆ðkþ1Þϕ2þðkþ 1

2
Þðk− 1

2
Þ

ρ2

�
χkðρ;ϕÞ:

ðA8Þ

By using the relations above, the eigenvalue problem (A1)
becomes

3πl4
P

2G
ζ00nðρÞχkðρ;ϕÞ − ℏ

2ρ2
ζnðρÞ

∂2

∂ϕ2
χkðρ;ϕÞ

þϒðρ;ϕÞζnðρÞχkðρ;ϕÞ ¼ EζnðρÞχkðρ;ϕÞ; ðA9Þ

where
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ϒðρ;ϕÞ ¼
ffiffiffi
3

p

2
ℏ

ffiffiffiffi
Λ

p �
kþ 1

2

�
|fflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflffl}

a

− Λ
8πG

ρ2|fflfflffl{zfflfflffl}
b

þ 3πl4
p

2G
1

ρ2

�
kþ 1

2

��
2nþ k − 1

2

�
|fflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}

c

þ
�
1

2

m2

ℏ
þ

ffiffiffi
3

p

2
m

ffiffiffiffi
Λ

p �
ρ2ϕ2|fflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}

d

− 3πl2
Pmðnþ kþ 1Þϕ2|fflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}

e

þ 3πl2
P

2ℏ
m2ρ2ϕ4|fflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflffl}
f

: ðA10Þ

We proceed to the analysis of each single term in (A10):
(a) The constant terms redefine the energy eigenvalue;
(b) The terms of ρ2 order is the leading one as ρ → ∞;
(c) The terms proportional to 1

ρ2
are negligible as soon as����E −

ffiffiffi
3

p

2
ℏ

ffiffiffiffi
Λ

p �
kþ 1

2

�����
≫

3πl4
P

2G
1

ρ2

�
kþ 1

2

��
2nþ k − 1

2

�
: ðA11Þ

(d) The terms ρ2ϕ2 determine the quadratic part of the
effective scalar field potential and, to preserve the
solution (18), we must impose

m ≫ ℏ
ffiffiffiffiffiffi
3Λ

p
; ðA12Þ

which tell us that the square root of the cosmological
constant must be negligible with respect to the mass of
the inflaton in the false vacuum.

(e) The contribution of order ρ0ϕ2 can be neglected with
respect to that of order ρ2ϕ2 as soon as

1

2
m2ρ2 ≫ 3πl2

Pmðnþ kþ 1Þ: ðA13Þ

(f) The term proportional to ρ2ϕ4 can be seen as a quartic
potential contribution for the scalar field and it can be
neglected if

ϕ2 ≪
1

3πl2
P
; ðA14Þ

which means that the scalar field takes sub-Planckian
values (this is basically the reason why we cannot
apply this framework to chaotic inflation [46]).

Therefore, as soon as ρ is sufficiently big that the
conditions (A11) and (A13) hold, Eq. (A1) reduces to

3πl4
P

2G
ζ00nðρÞχkðρ;ϕÞ − ℏ

2ρ2
ζnðρÞ

∂2

∂ϕ2
χkðρ;ϕÞ þ

�
− Λ
8πG

ρ2 þ 1

2
m2ρ2ϕ2 þ

ffiffiffi
3

p

2
ℏ

ffiffiffiffi
Λ

p �
kþ 1

2

��
ζnðρÞχkðρ;ϕÞ

¼ EζnðρÞχkðρ;ϕÞ; ðA15Þ

from which it follows that (21) is the proper eigenfunction
with eigenvalue (22).
If the Universe energy eigenvalue is preserved, we can

take for E the value (64) (for λ⋆ ¼ l3=2
P ) and estimate n via

the relation (22) (we assume the contribution of the scalar
field to be negligible). Hence, from (A11) we get

ρ2 ≫ 2nl3
P → a ≫ 10−6m; ðA16Þ

which fixes a lower bound for the age in which the decay
into the true vacuum (thus also inflation) starts.
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