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We study the process of primordial black hole (PBH) formation at the beginning of the radiation era for
the cosmological scenario in which the inflaton is a pseudo-Nambu-Goldstone boson (axion) and there is a
coupling of the inflaton with some gauge field. In this model inflation is accompanied by the gauge quanta
production, and a strong rise of the curvature power spectrum amplitude at small scales (along with non-
Gaussianity) is predicted. We show that data on PBH searches can be used for a derivation of essential
constraints on the model parameters in such an axion inflation scenario. We compare our numerical results
with the similar results published earlier, in the work [A. Linde, S. Mooij, and E. Pajer, Phys. Rev. D 87,
103506 (2013)].
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I. INTRODUCTION

It is well known that inflationary models that predict
prolonged inflation are very sensitive to Planck-scale
physics (see, e.g., the recent reviews in Refs. [1,2]). This
sensitivity is especially important for large-field models
when one needs to protect the inflationary potential from a
possible large effect of an infinite number of higher-
dimension operators. Even in supersymmetric models of
inflation this protection is not guaranteed, because the
supersymmetry is broken by the inflationary background at
the Hubble scale.
It was shown very long ago that the simplest and most

natural solution of this problem is to assume that the
inflaton φ is a pseudo-Nambu-Goldstone boson (PNGB)
[3–13], because in this case there is the shift symmetry,
φ → φþ const, which is broken by instanton effects
(or explicitly). In the limit when this symmetry is exact,
the potential is flat, and the corrections to slow-roll
parameters are under control due to the smallness of the
symmetry breaking.
If PNGB is pseudoscalar (e.g., it is an axion), it is natural

to assume that there is a coupling of it with some gauge
field. This coupling is not forbidden by the shift symmetry
and, in general, is phenomenologically favorable (e.g., it
can lead to successful reheating). This coupling is essential
if the axion decay constant f is not too large [because
the interaction term is inversely proportional to f; see
Eq. (1) below]. In UV-complete models of axion inflation
(e.g., those based on string theory [8]) one has f ≪ MP
and, at the same time, a large excursion of the axion field is
allowed. The inflationary potential in these models is
similar to the potential in large-field models.
The main feature of axion inflation with an inflaton-

gauge field coupling is that such a coupling leads to the

production of gauge quanta, and—through the inverse
decay of these quanta into inflaton perturbations—the rise
of non-Gaussianity effects1 and the violation of scale
invariance. In particular, the rather essential formation of
primordial black holes (PBHs) becomes possible [19,20].2

In the present work we consider a process of PBH
formation and PBH constraints for the axion inflation
models in which the inflationary expansion is accompanied
by the gauge quanta production. Our consideration differs
from that carried out in the recent work by Linde et al. [20]
in two respects. First, we checked the hypothesis that a
probability distribution function (PDF) for curvature fluc-
tuations produced in an axion inflation model has the same
form as that in χ2n models. Second, for the calculation of the
βPBH functions describing the fraction of the Universe’s
mass in PBHs at their formation time, we use the full
machinery of the Press-Schechter [23] formalism rather
than the simple integral over the PDF of the curvature field
(see, in this connection, Refs. [24,25]).
The plan of the paper is as follows. In the second section

we review the main assumptions and formulas of the axion
inflation model in which there is a coupling of the inflaton
with the gauge field. In the third section, we discuss the
choice of a suitable PDF for the ζ field in our scenario. In
the fourth section—using the Press-Schechter formalism—
we derive the PBH mass spectra needed to obtain the PBH
constraints. The last section contains our conclusions. In
Appendix A we study the time evolution of the curvature
perturbation power spectrum behind the Hubble horizon. In
Appendix B we study the shape of the ζ bispectrum in our
axion inflation scenario, comparing it with the prediction of
the χ2 model.
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1Non-Gaussian effects in processes of PBH formation have
been studied in several pioneering works [14–18].

2Inflation models with pseudo-Nambu-Goldstone fields
coexisting with the inflaton, and subsequent PBH production
processes, have been considered in Refs. [21,22].
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II. AXION INFLATION WITH GAUGE
FIELD PRODUCTION

A. Outline of the model

We consider the model of axion inflation in which there
is a coupling of the pseudoscalar inflaton (axion) to gauge
fields of the form

Lint ¼ −
α

4f
φFμν

~Fμν; ð1Þ

where Fμν ¼ ∂μAν − ∂νAμ is the field strength correspond-
ing to some U(1) gauge field Aμ, ~F

μν ¼ ημνωθFωθ=ð2 ffiffiffiffiffiffi−gp Þ
is the dual strength, f is the axion decay constant, and α is a
dimensionless parameter.
It was shown in Ref. [10] that the evolution (rolling) of

the inflaton leads to a generation of the field Aμ and to a
subsequent amplification (due to tachyonic instability) of
its modes. The solutions for the amplified modes are well
parametrized by the formula (the index “þ” means the
circular polarization of quanta)

~Aþðk; τÞ ≅
1ffiffiffiffiffi
2k

p
�

k
2ξaH

�
1=4

exp

�
πξ − 2

ffiffiffiffiffiffiffi
2ξk
aH

r �
; ð2Þ

where

ξ≡ α _φ

2fH
; ð3Þ

and τ ≅ −1=ðaHÞ. During inflationary expansion the
value of ξ changes with time. If ξ is larger than 1, the
amplification factor eπξ is essential. The production of
gauge field quanta can affect the inflationary process.
In general, it prolongs inflation [10] because it sources
inflaton perturbations through the inverse decay δAþ
δA → δφ [26].
The tachyonic amplification of gauge-field modes leads

to a characteristic evolution of the power spectrum of
primordial curvature perturbations. The production of
gauge quanta causes a strong increase in the spectrum
amplitude. To put constraints on this increase from PBHs
one must study the behavior of the ξ parameter as a function
of time during inflationary expansion. The cosmological
evolution equations for the inflaton with extra contributions
from the gauge field are [10]

φ̈þ 3H _φþ V 0 ¼ α

f
h~E · ~Bi; ð4Þ

3H2M2
P ¼ 1

2
_φ2 þ V þ 1

2
h~E2 þ ~B2i: ð5Þ

Here,

~B≡ 1

a2
~∇ × ~A; ~E≡ −

1

a2
~A0: ð6Þ

The connection of h~E · ~Bi and h~E2 þ ~B2i with ξ is given
by [10]

h~E · ~Bi ≈ −2.4 × 10−4
H4

ξ4
e2πξ;

1

2
h~E2 þ ~B2i ≈ 1.4 × 10−4

H4

ξ3
e2πξ: ð7Þ

For a calculation of the curvature power spectrum one
needs the evolution equation for the inflaton field pertur-
bation, δφ. To derive this equation one must take the
backreaction effects into account [10,27]. The approximate
accounting of these effects leads to the (operator) equation
[10,27]

δφ̈þ 3βHδ _φ −
∇2

a2
δφþ V 00δφ ¼ α

f
½~E · ~B − h~E · ~Bi�; ð8Þ

where β is defined by the expression

β≡ 1 − 2πξ
α

f
h~E · ~Bi
3H _φ

: ð9Þ

Equations (4) and (5) are solved numerically, giving the
solutions φðtÞ and HðtÞ with initial conditions for φð0Þ and
Hð0Þ, where t ¼ 0 corresponds, in our case, to the moment
when cosmic microwave background (CMB) scales exit the
horizon. As a byproduct one obtains the function ξðtÞ.

B. Axion potential

A typical axion inflationary potential that is exploited in
natural inflation models [3,4] is given by the formula

VðφÞ ¼ Λ4

�
1 − cos

�
φ

f

��
: ð10Þ

In UV-complete models of axion inflation, the axion action
is shift symmetric, i.e., the shift symmetry φ → φþ const
is broken only nonperturbatively. In particular, in closed
string models with type IIB Calabi-Yau orientifold com-
pactifications, such axions are available (see, e.g., the
review paper [28]). The inflationary potential in such
models is periodic, due to instanton effects, but it is flat
enough to drive inflation only in the case when the axion
decay constant is larger than MP. It is well known,
however, that it is difficult to obtain such large values of
f in UV-complete theories [29,30]. So, the potential of a
single axion, Eq. (10), cannot provide the large-field
inflation with long slow-roll evolution and a large value
of the field excursion.
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There are several groups of models in which large-field
inflation is possible with sub-Planckian axion decay con-
stants: “Racetrack inflation” models [31], N-flation models
[6], assisted inflation models [32,33], and axion mono-
dromy inflation models [8,9,11–13]. The latter approach
looks very promising and we have used it in the present
paper for numerical calculations. In particular, it was shown
in Ref. [8] that, in type IIB string theory, the presence of
space-filling Dp-branes wrapping some two-cycles of the
compact internal space leads to a breaking of the shift
symmetry and to the monodromy phenomenon: the poten-
tial energy for the axion arising from integrating two-form
fields over these two-cycles is not periodic and increases
with an increase of the axion field. As a result, one has an
additional component of the axion potential,

VðφÞ ¼ VsrðφÞ þ V instðφÞ: ð11Þ

Here, the subscript “sr” means slow-roll, and “inst” means
instanton. In the concrete model [8], with the C2 axion and
NS5-brane wrapping Σ2 (see Ref. [28] for notations), the
potential Vsr is given by the expression

VsrðφÞ ¼
ϵ

g2sð2πÞ5α02

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
L4 þ g2s

φ2

f2

s
: ð12Þ

Here, L is the dimensionless modulus (L2 is the size of the
two-cycle Σ2), gs is the string coupling constant, 1=ð2πα0Þ
is the string tension, and ϵ is the warp factor [8]. At large
values of φ=f one has the linear potential

VsrðφÞ ≈ μ3φ: ð13Þ

A different realization of the monodromy idea (which is
not based on string theory) was suggested in Refs. [11,12].
In these works, the axion potential was generated by a
modification of the action that introduced the coupling
of the axion to a 4-form. This new coupling leads
to a spontaneous breaking of the shift symmetry and
to the appearance (in the simplest case) of the quadratic
axion potential, just like in the original chaotic inflation
scenario [34].
In this work we will consider both cases: the axion

inflation with the quadratic potential

VðφÞ ¼ m2φ2

2
ð14Þ

(PBH constraints for the axion inflationary model with such
a potential were considered in Ref. [20]), and the inflation
with the linear potential given by Eq. (13). We assume that
effects from the presence of V inst are subdominant, and
hence we neglect this term.
Using the expressions for the axion potentials,

Eqs. (4) and (5) can be solved. The initial conditions for

t ¼ 0—corresponding to the moment of time when the
scale with the comoving wave number k ¼ k� ¼
0.002 Mpc−1 enters the horizon—are

φðt ¼ 0Þ ¼ φ0; _φðt ¼ 0Þ ¼ −
V 0ðφ0Þ
3H0

;

Hðt ¼ 0Þ ¼ H0 ¼
1

MP

ffiffiffi
3

p Vðφ0Þ1=2: ð15Þ

The constant m (or μ) is fixed by the requirement that the
curvature perturbation power spectrum Pζ reaches the
observed value [35] at cosmological scales, Pζðk�Þ≈
2.4 × 10−9. For the linear potential (13), we obtained μ ≈
6.3 × 10−4MP and the following set of initial conditions:
φ0 ≈ 10.6MP, j _φ0j ≈ 2.8 × 10−6M2

P, H0 ≈ 2.9 × 10−5MP.
For quadratic potential (14), we have m ¼ 6.8 × 10−6MP
and φ0≈15MP, j _φ0j≈5.6×10−6M2

P, H0 ≈ 4.2 × 10−5MP.
In Fig. 1 we show the results of our numerical calcu-

lations, i.e., the dependence of ξ on N (the number of
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FIG. 1. The value of ξðNÞ for different values of ξ at CMB
scales and different choices of the model potential. Solid curves
are for the case of the potential (14); dashed curves are for the
potential (13). The curves are labeled with the value of ξðNCMBÞ.
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e-folds before the end of inflation) for different values of ξ
at CMB scales.
To close this subsection, one should note that axion

monodromy inflation with potentials given by Eqs. (13)
and (14) predicts rather large values for the tensor-to-scalar
ratio: r ¼ 0.07 for the linear potential, and r ¼ 0.14 for the
quadratic one. The latter value is not excluded by the
Planck [35] and BICEP2 [36] data.

C. Curvature power spectrum

In the limit of very small backreaction one has β → 1. In
this limit, the solution of Eq. (8) is [26,37]

PζðkÞ ¼ Pζ;srðkÞð1þ Pζ;srðkÞf2ðξÞe4πξÞ; ð16Þ

Pζ;srðkÞ ¼
�
H2

2π _φ

�
2

: ð17Þ

The function f2ðξÞ is defined in Refs. [26,37].
Near the horizon crossing one has an approximate

solution of Eq. (8) (everywhere below we omit the
contribution of the vacuum part, i.e., the solution of the
homogenous equation):

δφ ≈
α

f
ð~E · ~B − h~E · ~BiÞ

3βH2
; ð18Þ

and, correspondingly, one has for the curvature (see
Appendix A)

ζ ≈ −
α

f
ð~E · ~B − h~E · ~BiÞ

3βH _φ
: ð19Þ

The variance of the curvature power spectrum is [20]

hζðxÞ2i ¼ H2

_φ2
hδφ2i ≈ α2

f2
h~E · ~Bi2
ð3βH _φÞ2 : ð20Þ

From this equation, in the limit of large backreaction (when
β ≫ 1), the simple approximate formula for the power
spectrum is obtained as [10,20,27]

PζðkÞ ≈ hζðxÞ2i ¼ 1

ð2πξÞ2 : ð21Þ

Some examples of the power-spectrum solutions are shown
in Fig. 2. For the calculations we used the approximate
formula (20) which takes backreaction into account (at the
latest stages of inflation the backreaction effects are quite
essential). We then added the contribution of the vacuum
part, which is dominant at small values of k. The con-
nection of the comoving wave number k with N is given by

k ¼ aeHðNÞe−N; ð22Þ

where ae is the scale factor at the end of inflation.

III. PDFs AND NON-GAUSSIANITY

For a derivation of the PBH constraints we need an
expression for the PDF of the ζ field. Evidently, this is a
technical problem in the non-Gaussian case because, for in
order to calculate the PDF one must know (in principle) all
of the cumulants (moments) contributing to its series
expansion.
In our case, the simplest assumption that we can use in

this concrete model is the following [20]: the ζ field is
distributed as a square of some Gaussian field χ,

ζ ¼ χ2 − hχ2i; ð23Þ

keeping in mind that the non-Gaussianity of fluctuations δφ
[described by, e.g., Eq. (8)] arises solely from the fact that
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FIG. 2. The curvature perturbation power spectrum PζðkÞ
calculated for different values of ξCMB, for two shapes of the
inflaton potential. The curves are labeled with the value
of ξðNCMBÞ.
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the particular solution of this equation is bilinear in the field
Aμ (the latter is assumed to be Gaussian).
If Eq. (23) holds (in this case, we have the so-called χ2

model), the PDF of ζ is given by (see, e.g., Refs. [38,39])

pζðζÞ ¼
1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

ζ þ hχ2i
p pχ

� ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ζ þ hχ2i

q �
; ð24Þ

pχðχÞ ¼
1

σχ
ffiffiffiffiffiffi
2π

p e
− χ2

2σ2χ ; σ2χ ≡ hχ2i: ð25Þ

The variance and skewness of the ζ field are, respectively,

hζ2i ¼ 2hχ2i2; hζ3i ¼ 8hχ2i3; ð26Þ

so that the first nontrivial reduced cumulant is

D3 ¼
hζ3i

hζ2i3=2 ¼
ffiffiffi
8

p
: ð27Þ

More generally, one can use the χ2n model, in which the ζ
field is written as a sum of n squares of Gaussian fields,

ζ ¼
Xn
i¼1

χ2i − nhχ2i i: ð28Þ

In this case, the PDF of ζ is [40,41]

pνðνÞ ¼
�
1þ ν

ffiffi
2
n

q �n
2
−1

ð2nÞ
n−1
2 Γðn

2
Þ exp

�
−
n
2

�
1þ

ffiffiffi
2

n

r
ν

��
; ð29Þ

ν≡ ζffiffiffiffiffiffiffiffi
hζ2i

p ; pνðνÞdν ¼ pζðζÞdζ: ð30Þ

The cumulants of the χ2n distribution are given by the simple
formula

Dm ¼ ðm − 1Þ!
�
2

n

�m
2
−1
: ð31Þ

It is tempting to assume that the best choice in our case is
the χ22 model, i.e., n ¼ 2, in accordance with the fact that
the photon has two polarizations. The expression for the
corresponding PDF follows from Eq. (29),

pνðνÞ ¼ e−ð1þνÞ; ð32Þ

and the PDF for the ζ field is

pζðζÞ ¼
1ffiffiffiffiffiffiffiffi
hζ2i

p pνðνÞ; ð33Þ

with the properties

Z
∞

−
ffiffiffiffiffiffi
hζ2i

p ζpζðζÞdζ ¼ 0;

Z
∞

−
ffiffiffiffiffiffi
hζ2i

p pζðζÞdζ ¼ 1;

Z
∞

−
ffiffiffiffiffiffi
hζ2i

p ζ2pζðζÞdζ ¼ hζ2i: ð34Þ

If a PDF of the ζ field is known, one can calculate
not only the reduced cumulants Dm but also the shapes
of ζ polyspectra (e.g., the shapes of ζ bispectra). From
the other side, some of these functions can be calculated
in our inflation model directly, without using the PDF.
In particular, the reduced cumulant D3 is given by the
simple relation [20] (in the region where the backreaction is
large)

D3 ¼
hζ3i

hζ2i3=2 ≅
1=ð4π3ξ3Þ

ð1=ð2πξÞ2Þ3=2 ¼ 2: ð35Þ

This value coincides with the D3 following from Eq. (31)
for n ¼ 2 [compare it with the D3 value given by Eq. (27)].
So, the choice of the χ22 model as a description of the PDF
seems to be appropriate.
Some results of the ζ bispectrum calculations in our

axion inflation model and a comparison with corresponding
χ2-model predictions are given in Appendix B.

IV. PBH CONSTRAINTS

For calculations of PBH constraints we need the PDF for
the smoothed ζ field, ζR (R is the smoothing radius). We
assume, using the arguments of Refs. [41–43] (see also
Ref. [39]), that PDF of the smoothed ζ field can be
expressed in the form

pζ;RðζRÞ ¼
1ffiffiffiffiffiffiffiffiffi
hζ2Ri

p ~p~νð~νÞ; ~ν ¼ ζRffiffiffiffiffiffiffiffiffi
hζ2Ri

p : ð36Þ

Besides, we assume (following conclusions of
Refs. [43,44]) that cumulants of the PDF are approximately
equal in smoothing and nonsmoothing cases,

Dm;R ≈Dm: ð37Þ

It follows from Eq. (37) that the PDF of the smoothed ζ
field can be written as [39]

pζ;RðζRÞ ¼
1ffiffiffiffiffiffiffiffiffi
hζ2Ri

p p~νð~νÞ; ð38Þ

where p~νð~νÞ is given by Eq. (29) with n ¼ 1 for the χ2

model and n ¼ 2 for the χ22 model, with the substitution
ν → ~ν. In this approximation the effects of the smoothing
come only through the variance

ffiffiffiffiffiffiffiffiffi
hζ2Ri

p
, while the shape of
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the PDF is the same as in the nonsmoothing case. The
variance of ζR is given by the formula

hζ2Ri ¼
Z

∞

0

~W2ðkRÞPζðkÞ
dk
k
; ð39Þ

where ~WðkRÞ is a Fourier transform of the window function
[45], and we use a Gaussian one, ~W2ðkRÞ ¼ e−k

2R2

.
One can show that the energy-density fraction of the

Universe contained in PBHs which form near the time of
formation t ¼ tf [at this time the horizon mass is equal to
MhðtfÞ ¼ Mf

h] is given by the integral [39,46]

ΩPBHðMf
hÞ ≈

1

ρi

�
Mf

h

Mi

�1=2 Z
nBHðMBHÞM2

BHd lnMBH

≈
ðMf

hÞ5=2
ρiM

1=2
i

nBHðMBHÞjMBH≈fhM
f
h
: ð40Þ

Here, nBHðMBHÞ is the PBH mass spectrum, ρi andMi are,
respectively, the energy density and horizon mass at the
beginning of the radiation era (if the reheating is fast, it
coincides with an end of inflation), and fh is a constant
[equal to ð1=3Þ1=2] which connects the value of PBH mass
forming at the moment tf with the horizon mass at that
moment (see, e.g., Ref. [24]). The PBH mass spectrum in
the Press-Schechter [23] formalism is proportional to
the derivative ∂P=∂R, where P is the integral over the ζ
PDF [46],

PðRÞ ¼
Z∞
ζc

pζdζ: ð41Þ

Approximately, one has [39,46]

ΩPBHðMf
hÞ ≈ βPBHðMf

hÞ; ð42Þ

where βPBH is, by definition, the fraction of the Universe’s
mass in PBHs at their formation time,

βPBHðMf
hÞ≡

ρPBHðtfÞ
ρðtfÞ

: ð43Þ

Now, utilizing Eqs. (40) and (42), one can use the
experimental limits on the value of βPBH [47,48] to
constrain parameters of models used for PBH production
predictions. The PBH mass spectrum needed for a deriva-
tion of ΩPBH in Eq. (40) depends on the amplitude of the
curvature power spectrum Pζ (see Refs. [38,39,46] for
details).
The results of the PBH mass spectra calculation for the

considered model are given in Fig. 3 for several values of
the parameter ξCMB ≡ ξðNCMBÞ and for two choices of the
parameter ζc, which is a model-dependent PBH formation

threshold (see, e.g., Ref. [46]). For a calculation of the ζ
PDF entering Eq. (41), we have used the χ22 model.
The PBH mass value (as a function of N) in our model is

given by the formula

MBH ¼ fhMeqk2eq
a2e

e2N

HðNÞ2 ; ð44Þ

where HðNÞ is the Hubble constant during inflation at the
epoch determined by the value of N, ae is the scale factor at
the end of inflation, and Meq and keq are the horizon mass
and wave number corresponding to the moment of matter-
radiation equality. The result of the calculation using
Eq. (44) is shown in Fig. 4, together with the result of
the calculation using the more simple formula suggested in
Ref. [20] (namely, MBH ¼ 10e2N g). It is seen that the
curves start at almost the same value at N ¼ 0. The
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FIG. 3. Primordial black hole mass spectra corresponding to
curvature perturbation power spectra shown in Fig. 2. Solid
curves are for the case ζc ¼ 0.75, while dashed curves are for
ζc ¼ 1. The curves are labeled with the value of ξðNCMBÞ. The
thick lines schematically show the existing constraints on the
PBH abundance [47,48].
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difference at larger N is due to the fact that Eq. (44) takes
into account the dependence of H on N.

V. RESULTS AND DISCUSSION

The main results of the paper are shown in Figs. 2 and 3.
Figure 2 illustrates the fact that—due to the tachyonic
instability of the gauge field—an amplitude of the curvature
power spectrum is very large (up to 10−3) at small scales,
k ∼ ð1015–1020Þ Mpc−1, for a broad range of ξCMB values.
Figure 3 shows the PBH mass spectra for definite values of
the parameter ξCMB. On the vertical axis of Fig. 3 the
combination M−1=2

i ρ−1i M5=2
BHnBHðMBHÞ is shown; just this

combination is approximately equal to βPBH, as it follows
from Eq. (40). We compare these spectra with PBH data
[47,48], in which we consider only data for MBH > 109 g
as the most reliable ones. For such a comparison we drew in
Fig. 3 the zigzag line representing, schematically, the well-
known βPBH-constraint summary curve (see Fig. 9 in
Ref. [48]). If some of our curves cross this zigzag line,
the corresponding ξ value is, according to our logic,
forbidden. Finally, we obtain the constraint on the value
of ξCMB, for the quadratic potential (14),

ξCMB < 1.8: ð45Þ

This constraint can be compared with the corresponding
result of Ref. [20], ξCMB < 1.5. In terms of the constants α
and f, the limit (45) corresponds to α=f < 26M−1

P .
We performed a similar analysis for the case of the linear

potential (13), and in this case the constraint on ξCMB turns
out to be stronger,

ξCMB < 1.7; ð46Þ

corresponding to α=f < 36M−1
P .

For a derivation of these results, we used the assumption
that the ζ field has a χ22 distribution. For a comparison, we
also performed the same calculations for a simple χ2 model
(with one degree of freedom) and obtained the following
PBH limits on the parameters: for the quadratic potential
ξCMB < 1.75, and for the linear potential ξCMB < 1.65.
Luckily, the constraints weakly depend on the choice of
PDF (n ¼ 1 or n ¼ 2).
In conclusion, one should note that PBH constraints are

stronger than those from CMB scales [2] and forthcoming
constraints from gravity-wave experiments [49].
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APPENDIX A: CURVATURE POWER SPECTRUM
BEHIND THE HUBBLE HORIZON

It is well known that, in general, the curvature
perturbation amplitude ζ does not stay constant in time
after its scale exits the horizon during inflation. This is
the case even in the standard single-field inflation model
if, in particular, slow-roll is temporarily violated in the
process of the inflationary expansion [50–52]. It was
shown in Refs. [51,52] (see also Ref. [53]) that in
such models the modes can have a very complicated
evolution and can be strongly amplified on super-
horizon scales. As a result of such amplification, in
particular, the perturbation amplitudes at horizon reentry
can differ rather strongly from amplitudes at the time of
the exit.
In this appendix we derive the curvature perturbation

power spectrum, closely following Ref. [10]. Two main
differences are: (i) the authors of Ref. [10] assumed that α is
very large (∼102 or larger), and (ii) they considered the case
of the cosine potential [given by Eq. (10)]. In contrast with
this, we consider the case when f=α ≪ MP, α ∼ 1 and our
potentials are nonperiodic. Nevertheless, we show in this
appendix that the resulting spectrum formula in our case is
just the same as that in Ref. [10] if we limit ourselves to
considering the small scales, which exit the horizon at the
final stages of inflationary expansion. Only these scales are
of interest to us because we are studying the PBH
production processes.
Equation (8), which takes into account the backreaction

effects, can be simplified using the slow-roll approximation
in the background equation (4). We assume that the slow-
roll regime is mainly supported by the dissipation into
gauge-field modes, i.e.,

3H _φ ≪ V 0; ðA1Þ

V 0 ≅
α

f
h~E · ~Bi: ðA2Þ

lo
g 10

M
B

H
g

0 10 20 30 40 50
0

10
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N

FIG. 4. Primordial black hole mass MBH that is produced,
depending on the number N of inflation e-folds. The dashed line
is the calculation using our formulas [Eq. (44)], while the solid
line is obtained using the formula MBH ¼ 10e2N g of Ref. [20].
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The inequality (A1) holds if f=α is small compared to MP.
Using the definition of ξ [Eq. (3)] and the approximate
relation 3H2M2

P ≅ V, one can rewrite Eq. (A1) in the form

2ξ ·
f
α
·
V
V 0 ≪ 1: ðA3Þ

For the quadratic potential, V ¼ 1
2
m2φ2, one obtains from

Eq. (A3) that

ξ ·
f
α
φ ≪ 1; ðA4Þ

and, for the linear potential, V ¼ μ3φ,

2ξ ·
f
α
φ ≪ 1: ðA5Þ

We are interested in the final stage of inflation when
small scales exit the horizon (N ∼ 10). During this stage
ξ ∼ 5 (see Fig. 1) and φ ∼MP [20,27]. Substituting our
limiting values of f=α (see Sec. V) into Eqs. (A4) and (A5),
one can see that the inequalities (A4) and (A5) really hold.
To obtain the approximate equation (A2) one must show

that the term φ̈ in Eq. (4) is small in comparison to V 0. The
proof of this is easily performed in complete analogy with
the proof of Eq. (A1). Now, using Eq. (A2) and the relation
following from Eq. (9),

β ¼ 1 − πh~E · ~Bi α2

3H2f2
; ðA6Þ

one can rewrite Eq. (8) in the following form [changing
the time variable τ ≅ −1=ðaHÞ and going over into
k space) [10]:

δφ00ð~kÞ − 2

τ

�
1þ παV 0

2fH2

�
δφ0ð~kÞ þ

�
k2 þ V 00

H2τ2

�
δφð~kÞ

¼ −
α

f
a2J ðτ; ~kÞ; ðA7Þ

J ðτ; ~kÞ ¼
Z

d3x

ð2πÞ3=2 e
−i~k ~x½~E · ~B − h~E · ~Bi�: ðA8Þ

We can treat V 0=H2 and V 00=H2 as adiabatically evolving
parameters, as well as H and ξ [e.g., for the quadratic
potential, V 0=H2 ∼ ðV 0=VÞM2

P ∼M2
P=φ, V

00=H2 ∼M2
P=φ

2],
because Δφ ≪ φ when Δt ∼H−1 [20,27]. Due to this, we
neglect their time dependencies during the essential part of
the inflationary evolution of each mode. In this case the
homogenous equation (A7) [i.e., Eq. (A7) with

J ðτ; ~kÞ ¼ 0] can be written in the form

τ2δφ00 þ bτδφ0 þ ðcτ2 þ dÞδφ ¼ 0; ðA9Þ

b ¼ −
παV 0

fH2
− 2; c ¼ k2; d ¼ V 00

H2
: ðA10Þ

The solution of this equation is expressed through the
cylindrical functions (see, e.g., Ref. [54]):

δφ ¼ τ
1−b
2 ZνðkτÞ; ν ¼ 1

2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ð1 − bÞ2 − 4d

q
; ðA11Þ

ZνðkτÞ ¼ C1JνðkτÞ þ C2NνðkτÞ; ðA12Þ

NνðkτÞ ¼
JνðkτÞ cosðπνÞ − J−νðkτÞ

sinðπνÞ : ðA13Þ

Using the estimates given above, one can check that
jbj ≫ 1, d ≪ jbj, so

ν ≈
1

2
ð1 − bÞ

ffiffiffiffiffiffiffiffiffiffiffiffiffi
1 −

4d
b2

r
≈
1 − b
2

−
d

1 − b
: ðA14Þ

We are interested in the power spectrum at k ≪ aH, i.e., at
kjτj ≪ 1, so one can use the approximation

JνðxÞ ≈
�
x
2

�
ν 1

Γðνþ 1Þ : ðA15Þ

The solution of the full equation (A7) is obtained by
the variation-of-constants method (or by the method
of Green functions, which is technically the same) and

is given by the integration over the source function J ðτ; ~kÞ.
Finally, using the approximation (A15) one obtains

δφ ∼ −
α

f

Z
τ

−∞
dτ0τ0

	�
τ

τ0

�
νþ1

2
−b
2

−
�
τ

τ0

�
−νþ1

2
−b
2




× a2ðτ0ÞJ ðτ0; ~kÞ: ðA16Þ

Since jτj < jτ0j one can neglect the first term in the
brackets, because νþ 1

2
− b

2
≈ 1 − b ≫ 1, −νþ 1

2
− b

2
≈

d
1−b ≪ 1. Using Eq. (A14), this leads to

δφ ∼
α

f

Z
τ

−∞
dτ0τ0

�
τ

τ0

� d
jbj
; ðA17Þ

d
jbj ≈

V 00f
παV 0 ≪ 1: ðA18Þ

Using this expression and the relation ζ ¼ Hðδφ= _φÞ, a
formula for the curvature perturbation power spectrum is
obtained straightforwardly [10], with the result

Pζ ≈
10−2

ξ2

�
ξk
aH

�2d
jbj
; k ≪ aH: ðA19Þ

We see from this formula that the power spectrum at super-
horizon scales has no amplification; on the contrary, it
decreases with time when the scale moves away from the
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horizon. Due to a small value ofd=jbj the time dependence is
rather mild. Further, we see from Eq. (A19) that in the limit
of small d=jbj (which corresponds to the limit of large
backreaction) the curvature spectrum is almost scale invari-
ant in a region of small scales, in accordancewith the results
shown in Fig. 2. We come to the conclusion that our
estimates of the spectrum amplitude based on the approxi-
mate solution of Eq. (8) [given by Eq. (19)] are reliable.

APPENDIX B: THE SHAPE OF THE
ζ BISPECTRUM

The bispectrum of the non-Gaussian ζ field is defined by
the expression

hζðk1Þζðk2Þζðk3Þi¼ð2πÞ3δðk1þk2þk3ÞBðk1;k2;k3Þ:
ðB1Þ

If ζ ¼ χ2 − hχ2i, the formula for B is [55]

Bðk1;k2;k3Þ

¼8

3

�Z
d3k0

ð2πÞ3PGðjk1−k0jÞPGðjk2þk0jÞPGðk0Þþ2 perm�;

ðB2Þ

where PGðkÞ is the curvature power spectrum of the
Gaussian χ field, PGðkÞ ∼ kn. The shape S of the bispec-
trum, which is defined by the formula

Sðk1; k2; k3Þ ¼ ðk1k2k3Þ2Bðk1; k2; k3Þ; ðB3Þ
has a characteristic “squeezed” form, shown in Fig. 5
(upper panel; n ¼ −2.9).
The bispectrum in our axion inflation model is calculated

using the formula

Bðk1; k2; k3Þ ¼
3

10
P3

ζ;sre
6πξ k

3
1 þ k32 þ k33
k31k

3
2k

3
3

f3

�
ξ;
k2
k1

;
k3
k1

�
:

ðB4Þ

Here, the function f3 is defined in Refs. [37,56]. An
example of the calculation of the corresponding shape
function (for ξ ¼ 6) is shown in Fig. 5 (lower panel).
Comparing the two shape functions, one can see that the

shape function of our model differs rather strongly from the
typical equilateral shape function (see, e.g., Ref. [57] for
examples of equilateral shapes). At the same time, there is
some similarity with the χ2 model prediction, namely, in
both figures there is some concentration of points along the
diagonal line.
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