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Primordial magnetic fields create a large squeezed-type non-Gaussianity in tensor perturbation, which
generates non-Gaussian temperature fluctuations in the cosmic microwave background. We for the first
time derive an observational constraint on such a tensor non-Gaussianity from observed cosmic microwave
background maps. Analyzing temperature maps of the WMAP 7-year data, we find that such a tensor
non-Gaussianity is consistent with zero. This gives an upper bound on primordial magnetic field strength
smoothed on 1 Mpc as B1 Mpc < 3.1 nG at 95% C.L.
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I. INTRODUCTION

Primordial non-Gaussianity is a powerful probe of
inflationary models, and various aspects of their property,
e.g., amplitude and scale dependence, have been inves-
tigated from a diversity of cosmological and astrophysical
observables. To date, methods to estimate parameters
characterizing non-Gaussianity in primordial perturbations
from the cosmic microwave background (CMB) have
been extensively investigated by many authors [1–9].
Some specific types of non-Gaussianity have already been
constrained by observed data, e.g., flocNL ¼ 2.7� 5.8,
feqNL ¼ −42� 75, and forthNL ¼ −25� 39 (68% C.L.) [10]
(for scale-dependent non-Gaussianities, see Ref. [11]).
These bounds have been estimated under an assumption

that the primordial non-Gaussianity arises from the scalar
perturbations. On the other hand, there exist various models
for the early Universe which predict non-Gaussianities
associated with not only scalar mode but also vector and
tensor modes [12–17]. Despite that many attempts have
been made so far to constrain primordial non-Gaussianities,
those in vector and tensor perturbations predicted by these
models have yet to be constrained. Provided predictions
from theoretical models and precise data from current CMB
observations, we believe that it is timely to investigate
constraints on non-Gaussianities in perturbations other than
scalar ones. Among various theoretical models, we in this
paper focus on the electromagnetic field in the early
Universe as a mechanism to generate vector and tensor
non-Gaussianities [18–20].
By cosmological observations of galaxies, cluster of

galaxies, and cosmic rays, the existence of large-scale
magnetic fields at the present Universe is supported

(see, e.g., Refs. [21,22]). There have been a number of
studies in which vector fields that exist during inflation
are examined as sources for the observed magnetic fields
[23–26]. However, due to the problems of backreaction and
strong dynamics, it has been in general very difficult to
construct a consistent model of magnetogenesis via pri-
mordial vector fields [27–31]. While these theoretical
considerations strongly restrict model building,1 phenom-
enological approaches to constrain primordial magneto-
genesis are also important. Specifically, through impacts on
the CMB anisotropy, properties of primordial magnetic
fields (PMFs), which are assumed to be generated from
primordial vector fields, can be constrained. For example,
observational constraints on the amplitude of PMFs as well
as its scale dependence can be obtained by the CMB power
spectra alone (for current bounds, see, e.g., Refs. [36–39]).
Assuming that the field strength of PMFs has a Gaussian

distribution, their energy-momentum tensor creates all
types of perturbations, which are highly non-Gaussian
due to the quadratic dependence on the field strength
[18–20,40–49]. This leads to non-Gaussian CMB anisot-
ropies and suggests that higher order correlation functions
or polyspectra of the CMB anisotropy beyond the power
spectrum should also be informative in probing PMFs. On
the basis of this concept, this paper newly explores an
observational constraint on the PMF strength by evaluating
the magnitude of non-Gaussianity in the CMB temperature
anisotropies.
In the case of PMF, the tensor non-Gaussianity, which

becomes prominent in the squeezed limit, dominates over
the scalar one [47], and hence, non-Gaussian temperature
fluctuations mainly have information of the tensor mode.
Since CMB tensor-mode fluctuations generated from PMFs
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have unique features and are distinct from CMB signals
from ordinary scalar perturbations in inflationary Universe,
a nontrivial constraint is expected to be obtained. In this
sense, this work corresponds to a first attempt to constrain a
tensor non-Gaussianity from CMB data. This is also
another motivation of this paper.
This paper is organized as follows. In the next section,

we summarize the tensor non-Gaussianity originating
from PMFs. In Sec. III, after performing some validation
tests of our bispectrum estimator and data treatments, we
put limits on the magnetic tensor bispectrum from the
observed temperature maps of the WMAP 7-year result
[50–53], which we translate into constraints on the ampli-
tude of PMFs. The final section is devoted to summary and
discussion.

II. TENSOR NON-GAUSSIANITY
GENERATED FROM PMFS

First, we briefly summarize the mechanism of PMFs to
generate CMB temperature fluctuations and its signatures
in observed CMB bispectrum. After PMFs are produced
and stretched beyond the horizon during inflation, the
anisotropic stress of PMFs contributes to the source term in
the Einstein equation and supports the growth of curvature
and tensor perturbations even on superhorizon scales until
neutrino decoupling. However, subsequent to neutrino
decoupling, finite anisotropic stress fluctuations in neutri-
nos cancel out the magnetic anisotropic stress fluctuations,
and therefore, the enhancement of metric perturbations
ceases. The resultant curvature and tensor perturbations
produce CMB anisotropies, which are called passive-mode
fluctuations [54].
Let us denotes the initial perturbations of the transverse-

traceless (TT) part of the metric as δgTTij =a
2 ¼R

d3k
ð2πÞ3

P
λ¼�2h

ðλÞ
k eðλÞij ðk̂Þeik·x, where λ denotes the helicity

and eðλÞij ðk̂Þ is the basis of TT tensors obeying

eðλÞij ðk̂Þeðλ
0Þ

ij ðk̂Þ¼2δλ;−λ0 and eðλÞ�ij ðk̂Þ¼eð−λÞij ðk̂Þ¼eðλÞij ð−k̂Þ
[12]. The initial condition of CMB fluctuations is deter-

mined by hðλÞk , which are estimated as [54]

hðλÞk ≈ −1.8
lnðTB=TνÞ
4πργ;0

eð−λÞij ðk̂Þ

×
Z

d3k0

ð2πÞ3 Biðk0ÞBjðk − k0Þ; ð1Þ

where TB and Tν denote the energy scales at PMF creation
and neutrino decoupling, respectively, and ργ;0 is the
present photon energy density. Supposing that PMFs Bi
are quantum-mechanically created and the probability
distribution of their field strength obeys pure Gaussian

statistics as is the case in majority of models, hðλÞk , which is
proportional to the PMF anisotropic stress fluctuations,

becomes highly non-Gaussian fields obeying the chi-square
distribution due to the quadratic dependence on the
Gaussian PMFs. Owing to the local form of Eq. (1), the

bispectrum of gravitational waves [hQ3
n¼1 h

ðλnÞ
kn

i or

hQ3
n¼1 h

ðλnÞ
lnmn

ðknÞi in Eq. (2)] is amplified in the squeezed
limit (k1 ≈ k2 ≫ k3 or l1 ≈ l2 ≫ l3) if the PMF power
spectrum is nearly scale invariant [20,47].
The CMB temperature anisotropies for given direction n̂

are quantified via the spherical harmonics expansion as
ΔTðn̂Þ

T ¼ P
lmalmYlmðn̂Þ. Using a harmonic-space repre-

sentation, hðλÞk ¼ P
lmh

ðλÞ
lmðkÞ−λYlmðk̂Þ, the CMB bispec-

trum is formed as [12,55]

�Y3
n¼1

alnmn

�
¼

�Y3
n¼1

ð−iÞln
Z

k2ndkn
2π2

T ln
ðknÞ

�

×
X

λ1;λ2;λ3¼�2

�Y3
n¼1

hðλnÞlnmn
ðknÞ

�

¼
�
l1 l2 l3

m1 m2 m3

�
Bl1l2l3 ; ð2Þ

where T lðkÞ is the temperature transfer function of the
tensor mode involving the amplification for l≲ 100 by
the tensor-mode Integrated Sachs-Wolfe (ISW) effect [56].
The transfer function determines the shapes of the CMB
bispectrum; thus, the tensor-mode magnetic Bl1l2l3 under
examination is less correlated with the usual scalar local-
type one, even if their primordial Fourier-space bispectra
resemble each other [47,49]. According to Ref. [47], under
the presence of PMFs, the tensor mode dominates over total
signal of the CMB bispectrum at the WMAP angular
resolution (l≲ 500), and the contributions of scalar and
vector modes are negligible. Therefore, in our bispectrum
estimation, we take into account the signals coming from
the tensor non-Gaussianity (1) alone. Note that Bl1l2l3 is
proportional to the magnetic field strength to the
sixth power.
In what follows, we obey the conventional parametriza-

tion for the power spectrum of PMFs as

hBiðkÞBjðk0Þi ¼ ð2πÞ3 PBðkÞ
2

Pi
jðk̂Þδð3Þðkþ k0Þ; ð3Þ

PBðkÞ ¼
ð2πÞnBþ5B2

1 Mpc

ΓðnBþ3
2
Þð 2π

1 MpcÞnBþ3
knB; ð4Þ

where Pi
jðk̂Þ≡δij− k̂ik̂j, nB and B1 Mpc are the divergence-

free projection tensor, the PMF spectral index, and the
PMF strength smoothed on 1 Mpc scale, respectively. In
the next section, we constrain the amplitude of bispectrum
given by

MARESUKE SHIRAISHI AND TOYOKAZU SEKIGUCHI PHYSICAL REVIEW D 90, 103002 (2014)

103002-2



A≡
�
B1 Mpc

3 nG

�
6

∝ Bl1l2l3 ; ð5Þ

under an assumption of the generation of PMFs at the GUT
scale (TB=Tν ¼ 1017) and nearly scale-invariant shapes of
the PMF power spectrum (nB ¼ −2.9). Note that theoreti-
cally A should take a positive value.
In the Planck bispectrum analysis [10], a non-

Gaussianity parameter of the Legendre-polynomial bispec-
tra (the so-called c2), parametrizing the size of magnetic
bispectrum of the passive scalar mode with nB ¼ −2.9 and
TB=Tν ¼ 1017, namely c2 ≈ −2A, was constrained, and the
corresponding limit is A ¼ −1.9� 13.9 (68% C.L.) or
B1 Mpc < 5.2 nG (95% C.L.) [9]. In the next section, we
obtain more stringent constraints even from the WMAP
data since the most dominant contribution comes from the
tensor-mode bispectrum under examination, which was not
included in the previous analysis [10]. We note that there
are other bounds on PMFs from the CMB power spectra,
where the so-called magnetic compensated mode [54,57]
is included and/or nB is treated as a free parameter:
Planck gives B1 Mpc < 3.4 nG and nB < 0 [39], and SPT
gives B1 Mpc < 3.5 nG [38].

III. OBSERVATIONAL LIMITS

Given a theoretical template of Bl1l2l3 for a specific
theoretical model, we can in general construct an optimal
estimator of the amplitude of the bispectrum of primordial
perturbations [5,58]. An optimal cubic estimator for the
amplitude of bispectrum can be approximated as

Â ¼ 1

6N

X
limi

�
l1 l2 l3

m1 m2 m3

�
BA¼1
l1l2l3

×

�Y3
n¼1

alnmn

Cln

− 3
hal1m1

al2m2
iMC

Cl1Cl2

al3m3

Cl3

�
; ð6Þ

where BA¼1
l1l2l3

is the template bispectrum for the PMF
model being normalized with A ¼ 1, the bracket denotes
the ensemble average of (Gaussian) Monte-Carlo realiza-
tions, and N is the normalization factor equal to the Fisher
matrix:

N ≡ X
l1l2l3

ðBA¼1
l1l2l3

Þ2
6Cl1Cl2Cl3

: ð7Þ

This estimator form is derived under the so-called diagonal
covariance approximation where numerically unfeasible
computations of inverse of the covariance matrix are
avoided by a simple replacement ðC−1aÞl → al=Cl.
Practically, the bispectrum estimations based on this
approximate form and the simple recursive inpainting
technique for regions covered by mask retain optimality

(with error bars that agree with the optimal ones derived
from the Fisher matrix within 5%), and hence, it has been
adopted in the Planck analysis [10]. Note that this form
automatically involves relevant experimental features, i.e.,
beam, partial sky mask, and anisotropic noise, as Bl1l2l3

¼
bl1bl2bl3B

theory
l1l2l3

andCl ¼ b2lC
theory
l þ Nl, with bl andNl

denoting beam transfer function and noise spectrum.
The form (6) indicates that to obtain Â from a single

realization, a direct implementation requires Oðl5
maxÞ

arithmetics (as is the case in non-Gaussian map creation
mentioned in Sec. III A), where lmax is the maximum
multipole. For lmax ∼ 1000, required computational time is
enormous. In the literature of the so-called KSW approach
[5,59–61], a factorized estimator form has been found for
the case of the standard scalar non-Gaussianity where the
angle dependence is removed since the dependence on
ðl1; m1Þ, ðl2; m2Þ, and ðl3; m3Þ can be separated from one
another. On the other hand, in the tensor case, due to
complicated spin dependence, different multipoles are
tangled with one another and there is no way to reduce
numerical operations in the same manner as the KSW
approach.2 In this paper, we straightforwardly perform
Oðl5

maxÞ arithmetics in estimator computations; then to
prevent us from taking too much computational time, let us
stop summations at lmax ¼ 100. In our PMF case, the
signal-to-noise ratio is almost saturated at l≃ 100 [47];
thus, we believe that by choosing such small lmax, con-
straints on A do not change so much in comparison with
analyses at the WMAP resolution lmax ≃ 500.
A summary of our analysis and treatment of the data set

are as follows. In Sec. III B, we place observational limits
on the magnetic bispectrum using the coadded temperature
maps from the WMAP 7-year observation at V and W
bands [52,53].3 We then compare the constraints from both
(not foreground-cleaned) raw and foreground-cleaned data.
Prior to it, in Sec. III A, we check the validity of our
estimator by using simulated non-Gaussian maps originat-
ing from known magnetic bispectrum. In these works, for
error estimations and linear term computations, we use 500
simulated Gaussian maps. Taking into account experimen-
tal uncertainties, in these maps, we include an anisotropic
noise component. Furthermore, to reduce effects of residual
foregrounds, we apply the KQ75y7 mask recommended by
the WMAP team [53], whose sky coverage is fsky ¼ 0.706.
After removing monopole and dipole components, the
masked regions are inpainted by means of the recursive
inpainting procedure adopted in the Planck analysis [10].
Our pixel-space computations are based on a resolution
Nside ¼ 512 in the HEALPix pixelization scheme [70].4

2The so-called separable modal estimator [62–69] is applicable
to general nonfactorizable bispectrum templates like the
PMF case.

3http://lambda.gsfc.nasa.gov.
4http://healpix.jpl.nasa.gov.
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The CMB signal power spectrum Cl is computed using the
CAMB code [71], assuming a concordance flat power-law
ΛCDM model with the mean cosmological parameters
from the WMAP 7-year data alone [50]. Our beam transfer
function and anisotropic noise component are generated by
coadding the data in the V and W band channels by means
of the WMAP-team method [72].

A. Validation tests using simulated maps

Before moving to the actual data analysis, we check the
validity of our bispectrum estimations mentioned above
using simulated non-Gaussian maps with known PMF
bispectrum. More specifically, we generate 50 realizations
of non-Gaussian CMB temperature maps assuming
A ¼ 3.50, which corresponds to ∼3σ significance and
compare the estimator Â of Eq. (6) from these realizations
with the input A.
According to Refs. [62,73,74], given a power spectrum

Cl and bispectrum Bl1l2l3 , a random realization of CMB
temperature anisotropy alm can be approximately given as

alm ≡ aGlm þ aNGlm; ð8Þ

aNGl1m1
¼ 1

6

�Y3
n¼2

X
lnmn

aG�lnmn

Cln

��
l1 l2 l3

m1 m2 m3

�
Bl1l2l3 : ð9Þ

Here,aGlm is theGaussian part of a realizationwhosevariance
is given by hQ2

n¼1a
G
lnmn

i¼Cl1ð−1Þm1δl1;l2δm1;−m2
, and aNGlm

denotes the non-Gaussian part of the realization. In the same
manner as the estimator computation,we stop summations at
lmax ¼ 100. This truncation is reasonable since, for
l≳ 100, the tensor bispectrum is highly damped and does
not contribute to aNGlm as shown in Fig. 1. This also enables us

to generate many non-Gaussian maps, despite the need for
Oðl5

maxÞ operations.
Mean values of A computed from 50 non-Gaussian maps

with A ¼ 3.50 and 1σ errors estimated from 500 Gaussian
maps are summarized in Table I. In these estimations, we
assume two types of surveys: a full-sky noiseless “ideal”
survey and a “WMAP-like” survey involving all exper-
imental features of WMAP discussed above. It is verified
from Table I that as expected, our estimator recovers the
input value A ¼ 3.50 within error bars both in the ideal
and WMAP-like surveys. Moreover, the resultant error bars

are well consistent with the Fisher matrix values: δA ¼
1=

ffiffiffiffiffiffiffiffiffiffiffiffiffi
fskyN

q
¼ 1.17 (ideal) and 1.39 (WMAP). These

results show that our estimator retains optimality and
support the validity of our computations.

B. WMAP results

Here we present our constraints from the WMAP7 (raw
and foreground-cleaned) data, including experimental fea-
tures (beam, noise and mask) and inpainted as mentioned
above. Prior to estimating the amplitude of the magnetic
bispectrum, we estimated flocNL with lmax ¼ 100 from the
foreground-cleaned data and found the 1σ bound:
ð−1.0� 1.4Þ × 102, where this value is consistent with
the corresponding results found from the figures in the
literature [75] and the error bar is also equal to the Fisher

matrix value 1=
ffiffiffiffiffiffiffiffiffiffiffiffiffi
fskyN

q
. This is another validation check

of our data treatments.
In the PMF case, our final results from the raw and

foreground-clean maps are, respectively, A ¼ −1.8� 1.4
and −1.5� 1.4 (68% C.L.), indicating consistency with
Gaussianity at 2σ regardless of the presence of foregrounds.
Taking into account the foreground-cleaned result and a
theoretical prior, A ≥ 0, we find new upper limit on the
PMF strength, namely, B1 Mpc < 3.1 nG at 95% C.L.
As expected, this is tighter than the passive scalar-
mode constraint from Planck mentioned in Sec. II
(A ¼ −1.9� 13.9), owing to considering the tensor-mode
contribution.
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FIG. 1 (color online). Angular power spectrum of a single non-
Gaussian realization aNGlm with A ¼ 3.50 (red solid) generated
from the input Gaussian power spectrum CG

l (blue dotted). The
consistency with the theoretically predicted power spectrum of
aNGlm (green dashed) is confirmed. It is visually apparent that aNGlm
decays rapidly at around l ¼ 100 due to the end of the ISW
enhancement in the tensor bispectrum.

TABLE I. Mean values of A obtained from 50 simulated non-
Gaussian maps with the input value A ¼ 3.50, together with 1σ
errors estimated from 500 Gaussian maps. We here compute the
estimator assuming full-sky noiseless ideal and WMAP-like
surveys. It is found that the mean values and the error bars
reach the input value 3.50 and the Fisher matrix values 1.17
(ideal) and 1.39 (WMAP), respectively.

Ideal: fsky ¼ 1 WMAP: fsky ¼ 0.706

Average 3.54 3.86
1σ error 1.13 1.36
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IV. SUMMARY AND DISCUSSION

The origin of the observed large-scale magnetic fields is
one of the most important and interesting issues in probe of
the early Universe, and some researchers seek answers in
the inflationary paradigm. In this paper, we have discussed
an observational constraint on the seed magnetic field
stretched by the inflationary expansion from the analysis of
non-Gaussianities in CMB anisotropies. Signal of the
Gaussian field strength of the PMF becomes largest on
large scales via the enhancement of non-Gaussian tensor
perturbations through the ISW effect.
We have analyzed the WMAP 7-year temperature maps

and confirmed no evidence of squeezed-type tensor non-
Gaussianity due to PMFs. Our constraint on the amplitude
of the tensor non-Gaussianity leads to an upper bound on
the PMF strength as B1 Mpc < 3.1 nG (95% C.L.). This
result is not sensitive to the foregrounds. This value may be
improved by considering impacts of polarizations [49].
Aside from the issue on PMFs, this is a first challenge to

constrain a primordial tensor non-Gaussianity from the
CMB bispectrum. The tensor CMB bispectrum has spectral
shapes quite distinct from the scalar one and leads to
nontrivial constraints that have never seen in the scalar
case. Unfortunately, the tensor bispectrum has a tangled
multipole dependence, and the bispectrum estimator cannot
be efficiently factorized as the KSW approach. In the
present paper, we have performed Oðl5

maxÞ huge amount

of summations to compute the estimator in the brute-force
way by focusing solely on large-scale signals up to
lmax ¼ 100. In other words, the brute-force method is
not applicable to the data analysis with higher resolution,
but it will be possible to access such small scales by means
of a model-independent factorizable estimator [62–69].
Probing tensor non-Gaussianity beyond lmax ¼ 100
remains as a next challenging and exciting issue (although,
of course, it is naturally expected that the constraints on the
magnetic tensor bispectrum do not vary so much since the
signal-to-noise ratio is already saturated at lmax ¼ 100).
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